TWI724278B - 利用用於窄頻通訊的窄頻分時雙工訊框結構的方法、裝置、和非暫態電腦可讀取媒體 - Google Patents

利用用於窄頻通訊的窄頻分時雙工訊框結構的方法、裝置、和非暫態電腦可讀取媒體 Download PDF

Info

Publication number
TWI724278B
TWI724278B TW107104684A TW107104684A TWI724278B TW I724278 B TWI724278 B TW I724278B TW 107104684 A TW107104684 A TW 107104684A TW 107104684 A TW107104684 A TW 107104684A TW I724278 B TWI724278 B TW I724278B
Authority
TW
Taiwan
Prior art keywords
sub
frame
downlink
frames
narrowband
Prior art date
Application number
TW107104684A
Other languages
English (en)
Other versions
TW201836315A (zh
Inventor
果里桑卡 索米切堤
卡皮 巴塔德
艾柏多 瑞可亞瓦利諾
曉峰 王
馬尼坎單 錢德拉塞卡
Original Assignee
美商高通公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 美商高通公司 filed Critical 美商高通公司
Publication of TW201836315A publication Critical patent/TW201836315A/zh
Application granted granted Critical
Publication of TWI724278B publication Critical patent/TWI724278B/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • H04L1/1819Hybrid protocols; Hybrid automatic repeat request [HARQ] with retransmission of additional or different redundancy
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0055Physical resource allocation for ACK/NACK
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0092Indication of how the channel is divided
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/14Two-way operation using the same type of signal, i.e. duplex
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/14Two-way operation using the same type of signal, i.e. duplex
    • H04L5/1469Two-way operation using the same type of signal, i.e. duplex using time-sharing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices

Abstract

在本案內容的一個態樣中,提供了一種方法、電腦可讀取媒體和裝置。該裝置可以決定一組窄頻TDD訊框結構中的用於窄頻通訊的窄頻TDD訊框結構。該裝置可以使用窄頻TDD訊框結構來發送窄頻實體下行鏈路通道的一系列重複。在一個態樣中,一系列重複中的第一部分的重複是使用第一加擾序列在一或多個第一下行鏈路子訊框集合中發送的。在一個態樣中,一系列重複中的第二部分的重複是使用第二加擾序列在一或多個第二下行鏈路子訊框集合中發送的。

Description

利用用於窄頻通訊的窄頻分時雙工訊框結構的方法、裝置、 和非暫態電腦可讀取媒體
本專利申請案主張享受以下申請的權益:於2017年2月15日提出申請的、名稱為「NARROWBAND TIME-DIVISION DUPLEX FRAME STRUCTURE FOR NARROWBAND COMMUNICATIONS」的印度申請序號No.201741005360、以及於2017年10月3日提出申請的、名稱為「NARROWBAND TIME-DIVISION DUPLEX FRAME STRUCTURE FOR NARROWBAND COMMUNICATIONS」的美國專利申請案第15/724,127號,以引用方式將上述申請案的全部內容明確地併入本文。
概括地說,本案內容係關於通訊系統,並且更具體地,本案內容係關於用於窄頻通訊的窄頻分時雙工(TDD)訊框結構。
無線通訊系統被廣泛地部署以提供諸如電話、視訊、資料、訊息傳遞以及廣播之類的各種電信服務。 典型的無線通訊系統可以採用能夠經由共享可用的系統資源來支援與多個使用者的通訊的多工存取技術。此類多工存取技術的實例係包括分碼多工存取(CDMA)系統、分時多工存取(TDMA)系統、分頻多工存取(FDMA)系統、正交分頻多工存取(OFDMA)系統、單載波分頻多工存取(SC-FDMA)系統以及時分同步分碼多工存取(TD-SCDMA)系統。
已經在各種電信標準中採用這些多工存取技術以提供公共協定,該協定使得不同的無線設備能夠在城市、國家、地區、以及甚至全球層面上進行通訊。一種實例電信標準是5G新無線電(NR)。5G NR是由第三代合作夥伴計畫(3GPP)發佈的連續的行動寬頻進化的一部分,以便滿足與時延、可靠性、安全性、可擴展性(例如,隨著物聯網路(IoT)一起)相關聯的新要求和其他要求。5G NR的一些態樣可以基於4G長期進化(LTE)標準。存在對5G NR技術進一步改進的需求。這些改進亦可以適用於其他多工存取技術以及採用這些技術的電信標準。
與用於LTE通訊的頻率頻寬相比,窄頻通訊涉及利用有限的頻率頻寬進行通訊。窄頻通訊的一個實例是窄頻(NB)IoT(NB-IoT)通訊,其限於系統頻寬的單個資源區塊(RB)(例如,180kHz)。窄頻通訊的另一個實例是增強型機器類型通訊(eMTC),其限於系統頻寬的六個RB(例如,1.08MHz)。
NB-IoT通訊和eMTC可以降低設備複雜度,實現多年電池壽命,以及提供更深的覆蓋以到達具有挑戰性的地點(例如,建築物內部深處)。由於窄頻通訊所提供的覆蓋可以包括到達具有挑戰性的地點(例如,位於建築物的地下室中的智慧燃氣表),因此存在關於一或多個傳輸將沒有被正確地接收的增加的機會。因此,可以在窄頻通訊中使用重複的傳輸以增加關於傳輸將被接收器設備正確解碼的概率。TDD訊框結構可以支援重複的傳輸,這是由於與頻分雙共(FDD)訊框結構相比,TDD訊框結構具有數量增加的連續下行鏈路及/或上行鏈路子訊框。因此,存在對於支援用於窄頻通訊的窄頻TDD訊框結構的需求。
下文提供了對一或多個態樣的簡要概述,以便提供對此類態樣的基本理解。該概述不是對全部預期態樣的詳盡綜述,並且既不意欲標識全部態樣的關鍵或重要元素,亦不意欲於圖示任何或全部態樣的範疇。其唯一的目的是以簡化的形式提供一或多個態樣的一些概念,作為隨後提供的更詳細的描述的序言。
與用於LTE通訊的頻率頻寬相比,窄頻通訊涉及利用有限的頻率頻寬來進行通訊。窄頻通訊的一個實例是NB-IoT通訊,其限於系統頻寬的單個RB,例如,180kHz。窄頻通訊的另一個實例是eMTC,其限於系統頻寬的六個RB,例如,1.08MHz。
NB-IoT通訊和eMTC可以降低設備複雜度,實現多年電池壽命,以及提供更深的覆蓋以到達具有挑戰性的地點(例如,建築物內部深處)。然而,由於窄頻通訊所提供的覆蓋可以包括到達具有挑戰性的地點(例如,位於建築物的地下室中的智慧燃氣表),因此存在關於一或多個傳輸將沒有被接收器設備正確地解碼的增加的機會。因此,窄頻通訊可以包括預定數量的重複傳輸以增加使傳輸被接收器設備正確地解碼的機會。窄頻通訊系統可以使用TDD訊框結構,這是由於與FDD訊框結構相比,某些TDD訊框配置可以包括可以用於重複傳輸的更大數量的連續上行鏈路及/或下行鏈路子訊框。因此,存在對於支援使用窄頻TDD訊框結構來進行窄頻通訊的需求。
本案內容提供了一種用於支援用於窄頻通訊的一或多個窄頻TDD訊框結構的機制。
在本案內容的一個態樣中,提供了一種方法、電腦可讀取媒體和裝置。該裝置可以決定要在用於窄頻通訊的複數個窄頻TDD訊框結構中的窄頻TDD訊框結構中的子訊框中發送窄頻實體下行鏈路通道。另外,當該窄頻TDD訊框結構包括一或多個特殊子訊框時,該裝置可以決定該子訊框是特殊子訊框還是下行鏈路子訊框。此外,該裝置可以基於該決定該子訊框是特殊子訊框還是下行鏈路子訊框,來決定如何發送窄頻實體下行鏈路通道。另外地,該裝置可以發送該窄頻實體下行鏈路通道。
在另一個態樣中,該裝置可以決定一組窄頻TDD訊框結構中的用於窄頻通訊的TDD訊框結構。另外,該裝置可以將該窄頻TDD訊框結構中的至少一個RB分配用於向第一UE發送窄頻實體下行鏈路通道。此外,該裝置可以將UE-RS映射到被分配用於發送該窄頻實體下行鏈路通道的該至少一個RB。另外地,該裝置可以基於該映射來向該第一UE發送該UE-RS。
在另外的態樣中,該裝置可以決定一組窄頻TDD訊框結構中的用於窄頻通訊的窄頻TDD訊框結構。另外,該裝置可以決定在該窄頻TDD訊框結構中用於向UE發送下行鏈路控制通道的第一子訊框集合。在一個態樣中,該第一子訊框集合中的最後一個子訊框可以是子訊框n。此外,該裝置可以排程在該窄頻TDD訊框結構中由該UE用於報告與該下行鏈路控制通道相關聯的第一ACK/NACK的第一上行鏈路子訊框。在另一個態樣中,該第一上行鏈路子訊框可以是基於在該子訊框n之後的k 0 個子訊框被延遲的。另外地,該裝置可以在DCI傳輸中的第一延遲欄位中將與該k 0 個子訊框相關聯的資訊用信號發送給該UE。
在另一個態樣中,該裝置可以接收指示一組窄頻TDD訊框結構中的用於窄頻通訊的窄頻TDD訊框結構的資訊。另外,該裝置可以針對來自基地台的下行鏈路傳輸來監測包括該窄頻TDD訊框結構的第一無線電訊框中的一或多個下行鏈路子訊框。此外,該裝置可以將至少一 個上行鏈路傳輸延遲至在該第一無線電訊框之後的第二無線電訊框中的上行鏈路子訊框。
在再一個態樣中,該裝置可以接收指示一組窄頻TDD訊框結構中的用於窄頻通訊的窄頻TDD訊框結構的資訊。此外,該裝置可以接收與窄頻實體下行鏈路通道相關聯的下行鏈路授權。該裝置亦可以在複數個子訊框上接收與該下行鏈路授權相關聯的該窄頻實體下行鏈路通道,該複數個子訊框包括上行鏈路子訊框、下行鏈路子訊框和特殊子訊框。此外,該裝置可以接收與窄頻實體上行鏈路通道相關聯的上行鏈路授權。在另一個態樣中,該裝置可以使用位於該複數個子訊框之前或位於該複數個子訊框之後中的至少一種情況的一或多個上行鏈路子訊框來發送與該上行鏈路授權相關聯的該窄頻實體上行鏈路通道。
在再一個態樣中,該裝置可以接收指示一組窄頻TDD訊框結構中的用於窄頻通訊的窄頻TDD訊框結構的資訊。另外,該裝置可以接收與窄頻實體上行鏈路通道相關聯的上行鏈路授權。該裝置亦可以在複數個子訊框上發送與該上行鏈路授權相關聯的該窄頻實體上行鏈路通道。在一個態樣中,該複數個子訊框可以包括上行鏈路子訊框、下行鏈路子訊框和特殊子訊框。此外,該裝置可以接收與窄頻實體下行鏈路通道相關聯的下行鏈路授權。此外,該裝置可以在位於該複數個子訊框之前或位於該複數個子訊框之後中的至少一種情況的一或多個下行鏈路子 訊框中接收與該下行鏈路授權相關聯的該窄頻實體下行鏈路通道。
在另一個態樣中,該裝置可以決定用於窄頻通訊的窄頻TDD訊框結構。在一個態樣中,該窄頻TDD訊框結構可以包括以下各項中的一項或多項:下行鏈路子訊框集合、上行鏈路子訊框集合、特殊子訊框集合或靈活子訊框集合。另外,該裝置可以向UE發送與該窄頻TDD訊框結構相關聯的位元映像。在一個態樣中,該位元映像可以包括以下各項中的該一項或多項:該下行鏈路子訊框集合、該上行鏈路子訊框集合、該特殊子訊框集合或該靈活子訊框集合。
在另外的態樣中,該裝置可以決定一組窄頻TDD訊框結構中的用於窄頻通訊的窄頻TDD訊框結構。該裝置亦可以使用該窄頻TDD訊框結構來發送窄頻實體下行鏈路通道的一系列重複。在一個態樣中,該一系列重複中的第一部分的重複可以是使用第一加擾序列在一或多個第一下行鏈路子訊框集合中發送的。在另一個態樣中,該一系列重複中的第二部分的重複可以是使用第二加擾序列在一或多個第二下行鏈路子訊框集合中發送的。
在另一個態樣中,該裝置可以決定一組窄頻TDD訊框結構中的用於窄頻通訊的窄頻TDD訊框結構。另外,該裝置可以使用該窄頻TDD訊框結構來發送窄頻實體下行鏈路通道的第一冗餘版本和該窄頻實體下行鏈路通道的第二冗餘版本。在一個態樣中,可以在該第一冗 餘版本和第二冗餘版本之間切換之前發送的任一冗餘版本的重複的數量可以是基於所決定的窄頻TDD訊框結構中的下行鏈路子訊框的數量和預定的最大重複數量的。
為實現前述目的和相關目的,一或多個態樣包括下文中充分描述的特徵以及在請求項中特別指出的特徵。下面的描述和附圖詳細闡述了一或多個態樣的某些說明性的特徵。但是,這些特徵指示可以採用各態樣的原理的各種方式中的僅幾種方式,並且本描述意欲包括全部此類態樣和它們的均等物。
100:無線通訊系統和存取網路
102:基地台
102':基地台
104:UE
110:覆蓋區域
110':覆蓋區域
120:通訊鏈路
132:回載鏈路
150:Wi-Fi存取點(AP)
152:Wi-Fi站(STA)
154:通訊鏈路
160:進化封包核心(EPC)
162:行動性管理實體(MME)
164:其他MME
166:服務閘道
168:多媒體廣播多播服務(MBMS)閘道
170:廣播多播服務中心(BM-SC)
172:封包資料網路(PDN)閘道
174:歸屬用戶伺服器(HSS)
176:IP服務
180:基地台
184:波束成形
192:D2D通訊鏈路
198:窄頻TDD訊框結構
200:圖
230:圖
250:圖
280:圖
310:eNB
316:發送(TX)處理器
318:發射器
320:天線
350:UE
352:天線
354:接收器
356:接收(RX)處理器
358:通道估計器
359:控制器/處理器
360:記憶體
368:TX處理器
370:接收(RX)處理器
374:通道估計器
375:控制器/處理器
376:記憶體
400:窄頻TDD訊框結構
410:表
412:窄頻TDD訊框結構
414:窄頻TDD訊框結構
416:窄頻TDD訊框結構
500:資料流
501:流程
503:流程
504:基地台
505:流程
506:UE
507:NPDSCH
509:NPDSCH
511:NPDSCH
600:資料流
601:流程
603:流程
604:基地台
605:流程
606:UE
607:UE-RS
609:第一通道估計
611:流程
613:NRS
615:第二通道估計
617:流程
619:流程
621:NPDSCH
700:資料流
701:流程
703:流程
704:基地台
705:流程
706:UE
707:資訊
709:流程
713:資訊
715:附隨體
800:資料流
801:資訊
803:流程
804:基地台
805:NPUSCH傳輸
806:UE
807:下行鏈路授權
809:NPDSCH
811:上行鏈路授權
813:NPUCCH
815:上行鏈路授權
817:NPUSCH
819:下行鏈路授權
821:NPDSCH
845:資料流
855:資料流
900:資料流
903:位元映像
904:基地台
906:UE
1001:流程
1003:流程
1004:基地台
1005:流程
1006:UE
1007:流程
1009:流程
1100:資料流
1101:流程
1103:NPDSCH
1104:基地台
1105:NPDSCH
1106:UE
1200:流程圖
1202:方塊
1204:方塊
1206:方塊
1208:方塊
1210:方塊
1212:方塊
1214:方塊
1216:方塊
1218:方塊
1220:方塊
1222:方塊
1224:方塊
1226:方塊
1228:方塊
1230:方塊
1300:流程圖
1302:方塊
1304:方塊
1306:方塊
1308:方塊
1310:方塊
1312:方塊
1314:方塊
1316:方塊
1318:方塊
1320:方塊
1322:方塊
1324:方塊
1326:方塊
1328:方塊
1330:方塊
1400:流程圖
1402:方塊
1404:方塊
1406:方塊
1408:方塊
1410:方塊
1412:方塊
1414:方塊
1416:方塊
1500:流程圖
1502:方塊
1504:方塊
1506:方塊
1508:方塊
1510:方塊
1512:方塊
1514:方塊
1600:流程圖
1602:方塊
1604:方塊
1606:方塊
1608:方塊
1610:方塊
1700:流程圖
1702:方塊
1704:方塊
1800:資料流圖
1802:裝置
1802':裝置
1804:接收組件
1806:加擾序列組件
1808:實體下行鏈路通道組件
1810:子訊框組件
1812:發送組件
1850:UE
1900:圖
1904:處理器
1906:電腦可讀取媒體/記憶體
1910:收發機
1914:處理系統
1920:天線
1924:匯流排
2000:流程圖
2002:方塊
2004:方塊
2006:方塊
2100:流程圖
2102:方塊
2104:方塊
2106:方塊
2108:方塊
2110:方塊
2112:方塊
2114:方塊
2200:流程圖
2202:方塊
2204:方塊
2206:方塊
2208:方塊
2210:方塊
2212:方塊
2214:方塊
2300:資料流圖
2302:裝置
2302':裝置
2304:接收組件
2306:監測組
2308:發送組件
2310:延遲組件
2350:基地台
2400:圖
2404:處理器
2406:電腦可讀取媒體/記憶體
2410:收發機
2414:處理系統
2420:天線
2424:匯流排
2500:資料流圖
2502:裝置
2502':裝置
2504:接收組件
2506:實體下行鏈路通道組件
2508:發送組件
2550:UE
2600:圖
2604:處理器
2606:電腦可讀取媒體/記憶體
2610:收發機
2614:處理系統
2620:天線
2624:匯流排
圖1是圖示無線通訊系統和存取網路的實例的圖。
圖2A、2B、2C和2D是分別示出DL訊框結構、DL訊框結構內的DL通道、UL訊框結構、以及UL訊框結構內的UL通道的LTE實例的圖。
圖3是示出存取網路中的進化型節點B(eNB)和使用者設備(UE)的實例的圖。
圖4是示出根據本案內容的某些態樣的實例窄頻TDD訊框結構的圖。
圖5圖示根據本案內容的某些態樣的可以用於支援使用窄頻TDD訊框結構的窄頻通訊的資料流。
圖6A和6B圖示根據本案內容的某些態樣的可以用於支援使用窄頻TDD訊框結構的窄頻通訊的資料流。
圖7A和7B圖示根據本案內容的某些態樣的可以用於支援使用窄頻TDD訊框結構的窄頻通訊的資料流。
圖8A圖示根據本案內容的某些態樣的可以用於支援使用窄頻TDD訊框結構的窄頻通訊的資料流。
圖8B圖示根據本案內容的某些態樣的可以用於支援使用窄頻TDD訊框結構的窄頻通訊的資料流。
圖8C圖示根據本案內容的某些態樣的可以用於支援使用窄頻TDD訊框結構的窄頻通訊的資料流。
圖9圖示根據本案內容的某些態樣的可以用於支援使用窄頻TDD訊框結構的窄頻通訊的資料流。
圖10圖示根據本案內容的某些態樣的可以用於支援使用窄頻TDD訊框結構的窄頻通訊的資料流。
圖11圖示根據本案內容的某些態樣的可以用於支援使用窄頻TDD訊框結構的窄頻通訊的資料流。
圖12A-12C是一種無線通訊的方法的流程圖。
圖13A-13C是一種無線通訊的方法的流程圖。
圖14A和14B是一種無線通訊的方法的流程圖。
圖15是一種無線通訊的方法的流程圖。
圖16是一種無線通訊的方法的流程圖。
圖17是一種無線通訊的方法的流程圖。
圖18是圖示在示例性裝置中的不同單元/組件之間的資料流的概念性資料流圖。
圖19是圖示針對採用處理系統的裝置的硬體實現方式的實例的圖。
圖20是一種無線通訊的方法的流程圖。
圖21是一種無線通訊的方法的流程圖。
圖22是一種無線通訊的方法的流程圖。
圖23是圖示在示例性裝置中的不同單元/組件之間的資料流的概念性資料流圖。
圖24是圖示針對採用處理系統的裝置的硬體實現方式的實例的圖。
圖25是圖示在示例性裝置中的不同單元/組件之間的資料流的概念性資料流圖。
圖26是圖示針對採用處理系統的裝置的硬體實現方式的實例的圖。
以下結合附圖闡述的詳細描述意欲作為對各種配置的描述,而並不意欲代表可以在其中實施本文描述的概念的僅有配置。出於提供對各種概念的透徹理解的目的,詳細描述包括特定細節。然而,對於本發明所屬領域中具有通常知識者將顯而易見的是,可以在沒有這些特定細節的情況下實施這些概念。在一些實例中,公知的結構和組件以方塊圖形式示出,以便避免模糊此類概念。
現在將參考各種裝置和方法來提供電信系統的若干態樣。這些裝置和方法將經由各種框、組件、電路、程序、演算法等(被統稱為「元素」),在以下詳細描述中進行描述,以及在附圖中進行示出。這些元素可以使用電子硬體、電腦軟體或其任意組合來實現。至於此類元素是實現為硬體還是軟體,取決於特定的應用以及施加在整個系統上的設計約束。
舉例而言,元素或者元素的任何部分或者元素的任意組合可以被實現成包括一或多個處理器的「處理系統」。處理器的實例係包括被配置為執行貫穿本案內容所描述的各種功能的微處理器、微控制器、圖形處理單元(GPU)、中央處理單元(CPU)、應用處理器、數位訊號處理器(DSP)、精簡指令集計算(RISC)處理器、片上系統(SoC)、基頻處理器、現場可程式設計閘陣列(FPGA)、可程式設計邏輯裝置(PLD)、狀態機、閘控邏輯、個別硬體電路以及其他適當的硬體。處理系統中的一或多個處理器可以執行軟體。無論是被稱為軟體、韌體、中介軟體、微代碼、硬體描述語言還是其他術語,軟體都應該被廣義地解釋為意指指令、指令集、代碼、程式碼片段、程式碼、程式、副程式、軟體組件、應用、軟體應用、套裝軟體、常式、子常式、物件、可執行檔、執行的執行緒、程序、函數等。
因此,在一或多個實例實施例中,所描述的功能可以用硬體、軟體或其任意組合來實現。若用軟體來實 現,則該等功能可以作為一或多個指令或代碼儲存在或編碼在電腦可讀取媒體上。電腦可讀取媒體包括電腦儲存媒體。儲存媒體可以是能夠由電腦存取的任何可用的媒體。經由舉例而非限制的方式,此類電腦可讀取媒體可以包括隨機存取記憶體(RAM)、唯讀記憶體(ROM)、電子可抹除可程式設計ROM(EEPROM)、光碟儲存、磁碟儲存、其他磁存放裝置、上述類型的電腦可讀取媒體的組合、或者能夠用於儲存能夠由電腦存取的具有指令或資料結構形式的電腦可執行代碼的任何其他媒體。
圖1是圖示無線通訊系統和存取網路100的實例的圖。無線通訊系統(亦被稱為無線廣域網路(WWAN))包括基地台102、UE 104和進化封包核心(EPC)160。基地台102可以包括巨集細胞(高功率蜂巢基地台)及/或小型細胞(低功率蜂巢基地台)。巨集細胞包括基地台。小型細胞包括毫微微細胞、微微細胞和微細胞。
基地台102(被統稱為進化型通用行動電信系統(UMTS)陸地無線電存取網路(E-UTRAN))經由回載鏈路132(例如,S1介面)與EPC 160以介面方式連接。除了其他功能之外,基地台102亦可以執行以下功能中的一或多個功能:使用者資料的傳輸、無線電通道加密和解密、完整性保護、標頭壓縮、行動性控制功能(例如,切換、雙重連接)、細胞間干擾協調、連接建立和釋放、負載平衡、針對非存取層(NAS)訊息的分發、NAS 節點選擇、同步、無線電存取網路(RAN)共享、多媒體廣播多播服務(MBMS)、使用者和設備追蹤、RAN資訊管理(RIM)、傳呼、定位、以及警告訊息的傳送。基地台102可以經由回載鏈路134(例如,X2介面)來直接或間接地(例如,經由EPC 160)相互通訊。回載鏈路134可以是有線的或無線的。
基地台102可以與UE 104無線地進行通訊。基地台102之每一者基地台102可以為相應的地理覆蓋區域110提供通訊覆蓋。可以存在重疊的地理覆蓋區域110。例如,小型細胞102'可以具有與一或多個巨集基地台102的覆蓋區域110重疊的覆蓋區域110'。包括小型細胞和巨集細胞兩者的網路可以被稱為異質網路。異質網路亦可以包括家庭進化型節點B(eNB)(HeNB),其可以向被稱為封閉用戶群組(CSG)的受限組提供服務。基地台102和UE 104之間的通訊鏈路120可以包括從UE 104到基地台102的上行鏈路(UL)(亦被稱為反向鏈路)傳輸及/或從基地台102到UE 104的下行鏈路(DL)(亦被稱為前向鏈路)傳輸。通訊鏈路120可以使用多輸入多輸出(MIMO)天線技術,其包括空間多工、波束成形及/或發射分集。通訊鏈路可以是經由一或多個載波的。基地台102/UE 104可以使用在用於每個方向上的傳輸的多至總共Yx MHz(x個分量載波)的載波聚合中分配的每個載波多至Y MHz(例如,5、10、15、20、100MHz)的頻寬的頻譜。載波可以彼此相 鄰或可以彼此不相鄰。載波的分配可以關於DL和UL是不對稱的(例如,與針對UL相比,可以針對DL分配更多或更少的載波)。分量載波可以包括主分量載波和一或多個輔分量載波。主分量載波可以被稱為主細胞(PCell),以及輔分量載波可以被稱為輔細胞(SCell)。
某些UE 104可以使用設備到設備(D2D)通訊鏈路192來相互通訊。D2D通訊鏈路192可以使用DL/UL WWAN頻譜。D2D通訊鏈路192可以使用一或多個副鏈路通道,例如,實體副鏈路廣播通道(PSBCH)、實體副鏈路發現通道(PSDCH)、實體副鏈路共享通道(PSSCH)和實體副鏈路控制通道(PSCCH)。D2D通訊可以經由多種多樣的無線D2D通訊系統,例如,F1ashLinQ、WiMedia、藍芽、ZigBee、基於IEEE 802.11標準的Wi-Fi、LTE或NR。
無線通訊系統亦可以包括Wi-Fi存取點(AP)150,其經由5GHz非許可頻譜中的通訊鏈路154來與Wi-Fi站(STA)152相通訊。當在非許可頻譜中進行通訊時,STA 152/AP 150可以在進行通訊之前執行閒置通道評估(CCA),以便決定通道是否是可用的。
小型細胞102'可以在經許可及/或非許可頻譜中操作。當在非許可頻譜中操作時,小型細胞102'可以採用NR並且使用與Wi-Fi AP 150所使用的相同的5 GHz非許可頻譜。採用非許可頻譜中的NR的小型細胞102'可以提升覆蓋及/或增加存取網路的容量。
g節點B(gNB)180可以在毫米波(mmW)頻率及/或近mmW頻率中操作,以與UE 104進行通訊。當gNB 180在mmW或近mmW頻率中操作時,gNB 180可以被稱為mmW基地台。極高頻(EHF)是RF在電磁頻譜中的一部分。EHF具有30GHz到300GHz的範圍並且具有1毫米和10毫米之間的波長。該頻帶中的無線電波可以被稱為毫米波。近mmW可以向下擴展到3GHz的頻率,具有100毫米的波長。超高頻(SHF)頻帶在3GHz和30GHz之間擴展,亦被稱為釐米波。使用mmW/近mmW射頻頻帶的通訊具有極高的路徑損耗和短距離。mmW基地台180可以利用與UE 104的波束成形184來補償極高的路徑損耗和短距離。
EPC 160可以包括行動性管理實體(MME)162、其他MME 164、服務閘道166、多媒體廣播多播服務(MBMS)閘道168、廣播多播服務中心(BM-SC)170、以及封包資料網路(PDN)閘道172。MME 162可以與歸屬用戶伺服器(HSS)174相通訊。MME 162是處理在UE 104和EPC 160之間的訊號傳遞的控制節點。通常,MME 162提供承載和連接管理。所有的使用者網際網路協定(IP)封包經由服務閘道166來傳輸,該服務閘道116本身連接到PDN閘道172。PDN閘道172提供UE IP位址分配以及其他功能。PDN閘道172和 BM-SC 170連接到IP服務176。IP服務176可以包括網際網路、網內網路、IP多媒體子系統(IMS)、PS流服務及/或其他IP服務。BM-SC 170可以提供針對MBMS使用者服務供應和傳送的功能。BM-SC 170可以充當用於內容提供者MBMS傳輸的入口點,可以用於在公共陸地行動網路(PLMN)內授權和發起MBMS承載服務,並且可以用於排程MBMS傳輸。MBMS閘道168可以用於向屬於廣播特定服務的多播廣播單頻網路(MBSFN)區域的基地台102分發MBMS傳輸量,並且可以負責通信期管理(開始/停止)和收集與eMBMS相關的計費資訊。
基地台亦可以被稱為gNB、節點B、進化型節點B(eNB)、存取點、基地台收發機、無線基地台、無線收發機、收發機功能單元、基本服務集(BSS)、擴展服務集(ESS)或某種其他適當的術語。基地台102為UE 104提供到EPC 160的存取點。UE 104的實例係包括蜂巢式電話、智慧型電話、對話啟動協定(SIP)電話、膝上型電腦、個人數位助理(PDA)、衛星無線電單元、全球定位系統、多媒體設備、視訊設備、數位音訊播放機(例如,MP3播放機)、照相機、遊戲控制台、平板設備、智慧設備、可穿戴設備、運載工具、電錶、氣泵、大型或小型廚房電器、醫療保健設備、植入物、顯示器或任何其他具有類似功能的設備。UE 104中的一些UE 104可以被稱為IoT設備(例如,停車計費表、氣泵、 烤箱、運載工具、心臟監護器等)。UE 104亦可以被稱為站、行動站、用戶站、行動單元、用戶單元、無線單元、遠端單元、行動設備、無線設備、無線通訊設備、遠端設備、移動使用者站、存取終端、行動終端、無線終端、遠端終端機、手機、使用者代理、行動服務客戶端、客戶端、或某種其他適當的術語。
再次參照圖1,在某些態樣中,基地台102可以被配置為支援用於窄頻通訊的一或多個窄頻TDD訊框結構(198)(例如,對應於圖4-26)。
圖2A是圖示LTE中的DL訊框結構的實例的圖200。圖2B是圖示LTE中的DL訊框結構內的通道的實例的圖230。圖2C是圖示LTE中的UL訊框結構的實例的圖250。圖2D是圖示LTE中的UL訊框結構內的通道的實例的圖280。其他無線通訊技術可以具有不同的訊框結構及/或不同的通道。在LTE中,訊框(10ms)可以被劃分成10個大小相等的子訊框。每個子訊框可以包括兩個連續的時槽。可以使用資源網格來表示兩個時槽,每個時槽包括一或多個時間併發的資源區塊(RB)(亦被稱為實體RB(PRB))。資源網格被劃分成多個資源元素(RE)。在LTE中,針對普通循環字首,RB包含頻域中的12個連續的次載波和時域中的7個連續的符號(對於DL,OFDM符號;對於UL,SC-FDMA符號),總共為84個RE。針對擴展循環字首,RB包含頻域中的12個 連續的次載波和時域中的6個連續的符號,總共為72個RE。每個RE攜帶的位元數量取決於調制方案。
如圖2A中所示,RE中的一些RE攜帶用於UE處的通道估計的DL參考(引導頻)信號(DL-RS)。DL-RS可以包括特定於細胞的參考信號(CRS)(有時亦被稱為公共RS)、特定於UE的參考信號(UE-RS)和通道狀態資訊參考信號(CSI-RS)。圖2A圖示用於天線埠0、1、2和3的CRS(分別被指示為R0、R1、R2和R3)、用於天線埠5的UE-RS(被指示為R5)以及用於天線埠15的CSI-RS(被指示為R)。圖2B圖示訊框的DL子訊框內的各種通道的實例。實體控制格式指示符通道(PCFICH)在時槽0的符號0內,並且攜帶指示實體下行鏈路控制通道(PDCCH)是佔用1個、2個還是3個符號(圖2B圖示佔用3個符號的PDCCH)的控制格式指示符(CFI)。PDCCH在一或多個控制通道元素(CCE)內攜帶下行鏈路控制資訊(DCI),每個CCE包括九個RE組(REG),每個REG包括一個OFDM符號中的四個連續的RE。UE可以被配置有亦攜帶DCI的特定於UE的增強型PDCCH(ePDCCH)。ePDCCH可以具有2、4或8個RB對(圖2B圖示兩個RB對,每個子集包括一個RB對)。實體混合自動重傳請求(ARQ)(HARQ)指示符通道(PHICH)亦在時槽0的符號0內,並且攜帶指示基於實體上行鏈路共享通道(PUSCH)的HARQ確認(ACK)/否定ACK(NACK)回饋的HARQ指示符 (HI)。主同步通道(PSCH)在訊框的子訊框0和5內的時槽0的符號6內,並且攜帶被UE用來決定子訊框定時和實體層身份的PSS。輔同步通道(SSCH)在訊框的子訊框0和5內的時槽0的符號5內,並且攜帶被UE用來決定實體層細胞身份組號的SSS。基於實體層身份和實體層細胞身份組號,UE可以決定實體細胞識別符(PCI)。基於PCI,UE可以決定上述DL-RS的位置。實體廣播通道(PBCH)在訊框的子訊框0的時槽1中的符號0、1、2、3內,並且攜帶主資訊區塊(MIB)。MIB提供DL系統頻寬中的RB的數量、PHICH配置和系統訊框號(SFN)。實體下行鏈路共享通道(PDSCH)攜帶使用者資料、不是經由PBCH發送的廣播系統資訊(例如,系統資訊區塊(SIB))以及傳呼訊息。
如圖2C中所示,RE中的一些RE攜帶用於eNB處的通道估計的解調參考信號(DM-RS)。另外,UE可以在子訊框的最後一個符號中發送探測參考信號(SRS)。SRS可以具有梳狀結構,並且UE可以在梳齒中的一個梳齒上發送SRS。SRS可以被eNB用於通道品質估計,以實現UL上的取決於頻率的排程。圖2D圖示訊框的UL子訊框內的各種通道的實例。基於實體隨機存取通道(PRACH)配置,PRACH可以在訊框內的一或多個子訊框內。PRACH可以包括子訊框內的六個連續的RB對。PRACH允許UE執行初始系統存取和實現UL同步。實體上行鏈路控制通道(PUCCH)可以位於UL系 統頻寬的邊緣上。PUCCH攜帶上行鏈路控制資訊(UCI),例如,排程請求、通道品質指示符(CQI)、預編碼矩陣指示符(PMI)、秩指示符(RI)和HARQ ACK/NACK回饋。PUSCH攜帶資料,並且可以另外用於攜帶緩衝器狀態報告(BSR)、功率餘量報告(PHR)及/或UCI。
圖3是在存取網路中eNB 310與UE 350進行通訊的方塊圖。在DL中,可以將來自EPC 160的IP封包提供給控制器/處理器375。控制器/處理器375實現層3和層2功能。層3包括無線電資源控制(RRC)層,以及層2包括封包資料彙聚協定(PDCP)層、無線電鏈路控制(RLC)層和媒體存取控制(MAC)層。控制器/處理器375提供:與以下各項相關聯的RRC層功能:系統資訊(例如,MIB、SIB)的廣播、RRC連接控制(例如,RRC連接傳呼、RRC連接建立、RRC連接修改、以及RRC連接釋放)、無線電存取技術(RAT)間行動性、以及用於UE量測報告的量測配置;與以下各項相關聯PDCP層功能:標頭壓縮/解壓縮、安全性(加密、解密、完整性保護、完整性驗證)、以及切換支援功能;與以下各項相關聯的RLC層功能:上層封包資料單元(PDU)的傳輸、經由ARQ的糾錯、RLC服務資料單元(SDU)的串接、分段和重組、RLC資料PDU的重新分段、以及RLC資料PDU的重新排序;及與以下各項相關聯的MAC層功能:邏輯通道和傳輸通道之間的映射、MAC SDU 到傳輸塊(TB)上的多工、MAC SDU從TB的解多工、排程資訊報告、經由HARQ的糾錯、優先順序處置、以及邏輯通道優先化。
發送(TX)處理器316和接收(RX)處理器370實現與各種信號處理功能相關聯的層1功能。層1(其包括實體(PHY)層)可以包括傳輸通道上的錯誤偵測、傳輸通道的前向糾錯(FEC)編碼/解碼,交錯、速率匹配、映射到實體通道上、實體通道的調制/解調、以及MIMO天線處理。TX處理器316基於各種調制方案(例如,二進位移相鍵控(BPSK)、正交移相鍵控(QPSK)、M-移相鍵控(M-PSK)、M-正交幅度調制(M-QAM))處理到信號群集的映射。經編碼且調制的符號隨後可以被拆分成並行的串流。每個串流隨後可以被映射到OFDM次載波,與時域及/或頻域中的參考信號(例如,引導頻)多工,並且隨後使用快速傅裡葉逆變換(IFFT)組合到一起,以產生攜帶時域OFDM符號串流的實體通道。OFDM串流被空間預編碼以產生多個空間串流。來自通道估計器374的通道估計可以用於決定編碼和調制方案,以及用於空間處理。可以根據由UE 350發送的參考信號及/或通道狀況回饋來推導通道估計。可以隨後經由單獨的發射器318TX將每一個空間串流提供給不同的天線320。每個發射器318TX可以利用相應的空間串流來對RF載波進行調制以用於傳輸。
在UE 350處,每個接收器354RX經由其各自的天線352接收信號。每個接收器354RX恢復出被調制到RF載波上的資訊,並且將該資訊提供給接收(RX)處理器356。TX處理器368和RX處理器356實現與各種信號處理功能相關聯的層1功能。RX處理器356可以對該資訊執行空間處理以恢復出以UE 350為目的地的任何空間串流。若多個空間串流以UE 350為目的地,則可以由RX處理器356將它們合併成單個OFDM符號串流。RX處理器356隨後使用快速傅裡葉變換(FFT)將該OFDM符號串流從時域變換到頻域。頻域信號包括針對該OFDM信號的每一個次載波的單獨的OFDM符號串流。經由決定由eNB 310發送的最有可能的信號群集點來對每個次載波上的符號和參考信號進行恢復和解調。這些軟決策可以基於由通道估計器358計算的通道估計。軟決策隨後被解碼和解交錯以恢復出由eNB 310最初在實體通道上發送的資料和控制信號。隨後將該資料和控制信號提供給控制器/處理器359,控制器/處理器359實現層3和層2功能。
控制器/處理器359可以與儲存程式碼和資料的記憶體360相關聯。記憶體360可以被稱為電腦可讀取媒體。在UL中,控制器/處理器359提供在傳輸通道和邏輯通道之間的解多工、封包重組、解密、標頭解壓縮、以及控制信號處理,以恢復出來自EPC 160的IP封包。控 制器/處理器359亦負責使用ACK及/或NACK協定來支援HARQ操作的錯誤偵測。
與結合eNB 310進行的DL傳輸所描述的功能類似,控制器/處理器359提供:與以下各項相關聯的RRC層功能:系統資訊(例如,MIB、SIB)擷取、RRC連接、以及量測報告;與以下各項相關聯的PDCP層功能:標頭壓縮/解壓縮、以及安全性(加密、解密、完整性保護、完整性驗證);與以下各項相關聯的RLC層功能:上層PDU的傳輸、經由ARQ的糾錯、RLC SDU的串接、分段和重組、RLC資料PDU的重新分段、以及RLC資料PDU的重新排序;及與以下各項相關聯的MAC層功能:邏輯通道和傳輸通道之間的映射、MAC SDU到TB上的多工、MAC SDU從TB的解多工、排程資訊報告、經由HARQ的糾錯、優先順序處置、以及邏輯通道優先化。
TX處理器368可以使用由通道估計器358根據由eNB 310發送的參考信號或回饋推導出的通道估計來選擇適當的編碼和調制方案並且促進空間處理。可以經由單獨的發射器354TX將由TX處理器368產生的空間串流提供給不同的天線352。每個發射器354TX可以利用相應的空間串流來對RF載波進行調制,以用於傳輸。
在eNB 310處,以與結合UE 350處的接收器功能所描述的方式相類似的方式來處理UL傳輸。每個接收器318RX經由其各自的天線320接收信號。每個接 收器318RX恢復出被調制到RF載波上的資訊並且將該資訊提供給RX處理器370。
控制器/處理器375可以與儲存程式碼和資料的記憶體376相關聯。記憶體376可以被稱為電腦可讀取媒體。在UL中,控制器/處理器375提供在傳輸通道和邏輯通道之間的解多工、封包重組、解密、標頭解壓縮、控制信號處理,以恢復出來自UE 350的IP封包。可以將來自控制器/處理器375的IP封包提供給EPC 160。控制器/處理器375亦負責使用ACK及/或NACK協定來支援HARQ操作的錯誤偵測。
與用於LTE通訊的頻率頻寬相比,窄頻通訊涉及利用有限的頻率頻寬來進行通訊。窄頻通訊的一個實例是NB-IoT通訊,其限於系統頻寬的單個RB,例如,180kHz。窄頻通訊的另一個實例是eMTC,其限於系統頻寬的六個RB,例如,1.08MHz。
NB-IoT通訊和eMTC可以降低設備複雜度,實現多年電池壽命,以及提供更深的覆蓋以到達具有挑戰性的地點(例如,建築物內部深處)。然而,由於窄頻通訊所提供的覆蓋可以包括到達具有挑戰性的地點(例如,位於建築物的地下室中的智慧燃氣表),因此存在關於一或多個傳輸將不被接收器設備正確地解碼的增加的機會。因此,窄頻通訊可以包括預定數量的重複傳輸以增加使傳輸被接收器設備正確地解碼的機會。窄頻通訊系統可以使用TDD訊框結構,這是由於與FDD訊框結構相 比,某些TDD訊框配置可以包括可以用於重複傳輸的更大數量的連續上行鏈路及/或下行鏈路子訊框。存在針對支援使用窄頻TDD訊框結構來進行窄頻通訊的需求。
本案內容經由支援使用窄頻TDD訊框結構的NPDCCH、NPDSCH、NPUCCH及/或NPUSCH傳輸(例如,如下文參照圖5-28描述的),提供瞭解決方案。
圖4是圖示根據本案內容的某些態樣的可以被決定用於窄頻通訊的窄頻TDD訊框結構400的圖。在某些態樣中,窄頻TDD訊框結構400可以是根據表410中列出的一組窄頻TDD訊框結構(例如,配置0-配置o)來決定的。例如,基地台可以基於從網路接收的較高層訊號傳遞(例如,RRC訊息傳遞)來決定窄頻TDD訊框結構。補充地及/或替代地,基地台可以基於通道狀況來決定窄頻TDD訊框結構。
在一個態樣中,窄頻TDD訊框結構400可以包括被拆分成兩個半訊框的10ms訊框,每個半訊框為5ms長。半訊框可以被進一步拆分成五個子訊框,每個子訊框為1ms長。窄頻TDD訊框結構400可以包括在表410中列出的窄頻配置中的任何一種窄頻配置。
切換週期指的是UE可以用來在監測下行鏈路子訊框(例如,針對來自基地台的下行鏈路傳輸)和使用上行鏈路子訊框來發送傳輸之間進行切換(反之亦然)的時間。取決於所決定的窄頻TDD訊框結構400,切換週期可以是5ms、10ms或大於10ms(例如,20ms)。 對於具有5ms切換週期的窄頻TDD訊框結構412(例如,配置0-2和6),特殊子訊框(SSF)可以存在於窄頻TDD訊框結構400的兩個半訊框中。對於具有10ms切換週期的窄頻TDD訊框結構414(例如,配置3-5),特殊子訊框可以存在於第一個半訊框中,而不存在於第二個半訊框中。對於具有大於10ms切換週期的窄頻TDD訊框結構416(例如,配置lo),可以不需要任何特殊子訊框,這是因為多於整個訊框可以用於執行切換。在包括特殊子訊框的窄頻TDD訊框結構412、414(例如,配置0、1、2、3、4、5和6)中,子訊框0和5以及特殊子訊框中的下行鏈路引導頻時槽(DwPTS)可以被預留用於下行鏈路傳輸。補充地及/或替代地,在包括特殊子訊框的窄頻TDD訊框結構412、414中,特殊子訊框中的上行鏈路引導頻時槽(UpPTS)和緊接在該特殊子訊框之後的子訊框可以被預留用於上行鏈路傳輸。
當在頻帶中模式及/或保護頻帶模式下操作時,窄頻TDD訊框結構400可以重用某些LTE TDD訊框結構(例如,見圖4中的配置0、1、2、3、4、5、6)。補充地及/或替代地,窄頻TDD訊框結構400中的一些子訊框可以被標記為靈活子訊框(例如,見圖4中的配置lo)。UE可以根據從基地台接收的當前授權,將靈活子訊框作為下行鏈路子訊框或上行鏈路子訊框來使用。
在某些態樣中,在圖4中的表410中列出的窄頻TDD配置的子集可以用於支援窄頻通訊。例如,配置0 可能不適於窄頻通訊,這是因為配置0僅具有兩個下行鏈路子訊框。在一種配置中,可以在頻帶中模式及/或保護頻帶模式下(例如,但是不在獨立模式下)支援使用窄頻TDD訊框結構的窄頻通訊。在另一種配置中,可以在頻帶中模式、保護頻帶模式和獨立模式下支援使用窄頻TDD訊框結構的窄頻通訊。
另外,多個窄頻下行鏈路載波和多個窄頻上行鏈路載波可以用於增強基地台和UE之間的窄頻通訊。在這些載波當中,窄頻錨定載波可以用於為啟用多載波的UE提供同步、系統資訊、傳呼、資料和控制。因此,當使用窄頻錨定載波時,可以減少管理負擔窄頻系統資訊。可能不是在所有窄頻載波上都提供針對某個細胞的同步和傳呼。不提供同步及/或傳呼的窄頻載波可以被稱為窄頻非錨定載波。在用於選擇減輕干擾的錨定載波和用於針對非錨定載波的發射功率控制的基地台之間的協調提供另外的網路效能優勢。
特殊子訊框上的NPDCCH及/或NPDSCH
儘管窄頻FDD訊框結構可以在下行鏈路子訊框中包括用於下行鏈路傳輸的資源,但是某些窄頻TDD訊框結構可以在下行鏈路子訊框和特殊子訊框兩者中包括用於下行鏈路傳輸的資源。例如,特殊子訊框的DwPTS部分包括可以被分配用於下行鏈路傳輸的資源。在一些場景中,存在如下的需求:決定特殊子訊框的DwPTS部分中的資源是否可以被分配用於NPDCCH及 /或NPDSCH,以高效地使用窄頻TDD訊框結構中的可用資源。
圖5圖示根據本案內容的某些態樣的可以用於在下行鏈路子訊框以及特殊子訊框中分配用於NPDCCH及/或NPDSCH的資源的資料流500。基地台504可以對應於例如基地台102、180、604、704、804、904、1004、1104、2350、eNB 310、裝置1802/1802'、2502/2502'。UE 506可以對應於例如UE 104、350、606、706、806、906、1006、1106、1850、2550、裝置2302/2302'。另外,基地台504和UE 506可以被配置為使用窄頻通訊(例如,NB-IoT及/或eMTC)來進行通訊。例如,UE 506可以是NB-IoT設備及/或eMTC設備,並且基地台504可以能夠在一或多個下行鏈路子訊框以及特殊子訊框中(例如,在特殊子訊框的DwPTS部分中)發送NPDCCH及/或NPDSCH。
在一個態樣中,基地台504可以決定501要在窄頻TDD訊框結構中的子訊框中發送NPDCCH及/或NPDSCH。例如,基地台504可以決定501窄頻TDD訊框結構是來自圖4中的表410的配置0、1、2、3、4、5、6、lo中的一種配置。
另外,當所決定的窄頻TDD訊框結構包括一或多個特殊子訊框(例如,圖4中的配置0、1、2、3、4、5、6和n)時,基地台504可以決定503被分配用於 NPDCCH及/或NPDSCH的子訊框是特殊子訊框還是下行鏈路子訊框。
在另一個態樣中,基地台504可以決定505如何發送NPDCCH及/或NPDSCH,以及如何分配一或多個下行鏈路子訊框及/或特殊子訊框中的資源。在一個態樣中,基地台504可以在所有可用的下行鏈路子訊框(例如,沒有被用於切換的下行鏈路子訊框)中分配用於NPDCCH及/或NPDSCH的資源。然而,基地台504對特殊子訊框上的資源的分配可以根據特殊子訊框配置(例如,在DwPTS部分中有多少資源是可用的)及/或所決定的窄頻TDD訊框。
在第一配置中,基地台504可以決定505要在下行鏈路子訊框中而不在特殊子訊框中發送NPDCCH及/或NPDSCH。在第一配置中,基地台504可以不在特殊子訊框上分配用於NPDCCH及/或NPDSCH的資源。若在基地台504處配置了NPDCCH及/或NPDSCH的重複,則可以在窄頻TDD訊框結構的特殊子訊框處推遲資源的分配,直到下一可能的下行鏈路子訊框為止。假設配置2被用作窄頻TDD訊框結構,則可以在子訊框0上分配用於NPDCCH及/或NPDSCH的資源,而在子訊框1處被推遲,直到子訊框3為止(例如,資源配置在特殊子訊框1處被推遲,直到下一下行鏈路子訊框3為止)。因此,基地台504可以在子訊框0中發送NPDCCH 507及/或NPDSCH 507,而NPDCCH 511及/或NPDSCH 511 的重複可以是在子訊框3(例如,配置2中的下一下行鏈路子訊框)中發送的。
在第二配置中,基地台504可以決定505要在下行鏈路子訊框中發送NPDCCH 507、509及/或NPDSCH 507、509(例如,NPDCCH 507及/或NPDSCH 509)以及在特殊子訊框中發送NPDCCH 507、509及/或NPDSCH 507、509(例如,NPDCCH 509及/或NPDSCH 509)。在第二配置中,基地台504可以在下行鏈路子訊框以及一或多個特殊子訊框的DwPTS部分中分配用於NPDCCH及/或NPDSCH的資源。
在第二配置的第一態樣中,基地台504可以對一或多個特殊子訊框的UpPTS部分中的OFDM符號打孔。
在第二配置的第二態樣中,基地台504可以對一或多個特殊子訊框的DwPTS部分和UpPTS部分中的OFDM符號打孔。經由對一或多個特殊子訊框的DwPTS部分和UpPTS部分中的OFDM符號打孔,UE 506可以在接收到無線電訊框中的NPDCCH及/或NPDSCH時忽略(例如,不監測或丟棄)特殊子訊框。
在第二配置的第三態樣中,基地台504可以基於子訊框(例如,下行鏈路子訊框或特殊子訊框)中的下行鏈路OFDM符號的數量,來對該子訊框中的NPDCCH及/或NPDSCH進行速率匹配。與下行鏈路子訊框相比, 特殊子訊框可以具有較少數量的OFDM符號,這是因為特殊子訊框中僅有DwPTS部分被專用於NPDCCH及/或NPDSCH。因此,針對特殊子訊框的速率匹配可以不同於針對下行鏈路子訊框的速率匹配。
在第三配置中,當特殊子訊框中的OFDM符號的數量大於預定閥值時,基地台504可以決定505要在特殊子訊框中發送NPDCCH 509及/或NPDSCH 509。否則,基地台504可以在下一下行鏈路子訊框中發送NPDCCH 511及/或NPDSCH 511的重複。舉一個說明性實例,假設配置2用於窄頻TDD訊框結構,特殊子訊框1具有十個OFDM符號,以及預定閥值是五個OFDM符號。這裡,基地台504可以在子訊框0中發送NPDCCH 509及/或NPDSCH 509並且在特殊子訊框1中發送NPDCCH 511及/或NPDSCH 511的重複。
在第四配置中,當特殊子訊框中的OFDM符號的數量小於預定閥值時,基地台504可以決定505要在特殊子訊框中發送NPDCCH 509及/或NPDSCH 509。在第四配置中,基地台504可以利用特殊子訊框中被打孔的OFDM符號的子集(例如,DwPTS部分及/或UpPTS部分中的OFDM符號的子集),來發送NPDCCH 509及/或NPDSCH 509。舉一個說明性實例,假設配置2用於窄頻TDD訊框結構,特殊子訊框1具有五個OFDM符號,以及預定閥值是十個OFDM符號。這裡,基地台504可以在子訊框0中發送NPDCCH 509及/或 NPDSCH 509,而在特殊子訊框1中利用特殊子訊框1中被打孔的OFDM符號的子集來發送NPDCCH 511及/或NPDSCH 511的重複。
在第五配置中,當特殊子訊框中的OFDM符號的數量小於預定閥值時,基地台504可以決定505要禁止在特殊子訊框中發送NPDCCH及/或NPDSCH。在第五配置中,基地台504可以在下一可用的下行鏈路子訊框中發送NPDCCH 511及/或NPDSCH 511。舉一個說明性實例,假設配置2用於窄頻TDD訊框結構,特殊子訊框1具有五個OFDM符號,以及預定閥值是十個OFDM符號。這裡,基地台504可以在子訊框0中發送NPDCCH 509及/或NPDSCH 509,並且進行等待,直到下一下行鏈路子訊框3來發送NPDCCH 511及/或NPDSCH 511的重複為止。
在第六配置中,當特殊子訊框中的OFDM符號的數量小於預定閥值時,基地台504可以決定505要丟棄在特殊子訊框中對NPDCCH及/或NPDSCH的傳輸。
UE-RS
當下行鏈路通道和上行鏈路通道是在相同的通道或頻寬上發送的時,可以發生通道相互性。使用窄頻TDD訊框結構,下行鏈路通道傳輸和上行鏈路通道傳輸可以發生在相同的窄頻上,並且因此,通道相互性可以是適用的。通道相互性可以用於實現在使用窄頻FDD訊框結構時可能是不可用的特定於UE的波束成形。
在窄頻通訊中,波束成形可能被期望用於補償路徑損耗(當UE處於信號難以到達的位置時可能發生路徑損耗)。例如,當信號需要到達位於建築物內部深處的UE時,由於存在可能阻擋信號的傳播的障礙物(例如,牆壁、傢俱、人等),因此可能發生強衰減。因而,窄頻通訊中的傳播特性可以受益於定向波束成形,其中定向波束成形將發射能量集中在與主要空間散射體、反射體、及/或衍射路徑相對應的特定空間方向上,以克服UE處的信號損耗。波束成形可以經由天線陣列(例如,相控陣列)來實現,其中天線陣列協調用於在UE的特定方向上對高頻信號進行波束成形,並且因此,擴展了信號的範圍。
圖6A和6B圖示根據本案內容的某些態樣的可以用於支援特定於UE的波束成形的資料流600。基地台504可以對應於例如基地台102、180、604、704、804、904、1004、1104、2350、eNB 310、裝置1802/1802'、2502/2502'。UE 506可以對應於例如UE 104、350、606、706、806、906、1006、1106、1850、2550、裝置2302/2302'。另外,基地台604和UE 606可以被配置為使用窄頻通訊(例如,NB-IoT及/或eMTC)、波束成形及/或預編碼來進行通訊。例如,UE 606可以是NB-IoT設備及/或eMTC設備。
參照圖6A,基地台604可以決定601窄頻TDD訊框結構(例如,在圖4中的表410中列出的配置0、1、2、3、4、5、6、l或o)用於與UE 606的窄頻通訊。
為了執行波束成形,基地台604可以在窄頻TDD訊框結構中分配603用於向UE 606發送NPDCCH及/或NPDSCH的至少一個RB,將UE-RS映射到605被分配用於NPDCCH及/或NPDSCH的至少一個RB,以及基於(605處的)映射來向UE 606發送UE-RS 607。在一個態樣中,基地台604可以使用傳統引導頻結構(例如,傳統埠5引導頻結構、經修改的傳統埠107/108引導頻結構、經修改的傳統埠109/110引導頻結構等)來填充UE-RS 607。
在某些配置中,在傳統引導頻結構中,UE-RS 607可以不與窄頻參考信號(NRS)613(例如,在圖6B中可見)共享資源。例如,網路(例如,較高層)可以指示不包括NRS 613的某些下行鏈路子訊框。若NPDCCH及/或NPDSCH是在不包括NRS 613的子訊框中發送的,則基地台604可以在與NRS 613相同的RE中發送UE-RS 607。可選地,SRS可以被網路用來進一步支援針對通道相互性的量測。若支援多使用者MIMO能力(例如,若基地台604將兩個UE分配給用於NPDCCH及/或NPDSCH的同一RB),則可以重用傳統埠107/108引導頻結構或傳統埠109/110引導頻結構。
在一個態樣中,UE 606可以使用UE-RS 607來執行(例如,被基地台604用來發送UE-RS 607的通道的)通道估計。基於通道估計的結果,基地台604可以接收與從UE 606發送的UE-RS 607相關聯的第一 通道估計609。在一個態樣中,基地台604可以使用從UE 606接收的第一通道估計609來執行611波束成形程序。
參照圖6B,基地台604可以向UE 606發送NRS 613,以及從UE 606接收與NRS 613相關聯的第二通道估計615。另外,UE 606可以將從基地台604處的每個發射天線(例如,埠)發送的NRS 613合併,以增強通道估計(例如,第二通道估計615)。
基地台604可以使用第二通道估計來決定617針對用於發送NPDCCH及/或NPDSCH的複數個發射天線之每一者發射天線的預編碼。
在一種配置中,基地台604可以用信號通知619多個發射天線之每一者發射天線與相同的預編碼相關聯。在某些配置中,用信號通知619可以指示NRS 613在切換到另一個預編碼之前,針對預定數量的無線電訊框(例如,十(10)個無線電訊框)使用相同的預編碼。在一個態樣中,用信號通知619可以是作為DCI或RRC訊息傳遞來發送的。在一種配置中,用信號通知619可以指示NPDCCH是使用第一數量的天線(例如,一個、兩個、三個等)發送的以及NPDSCH是使用第二數量的天線(例如,一個、兩個、三個等)發送的。
在一種配置中,NPDCCH 621及/或NPDSCH 621可以是基地台604使用來自基於波束成形及/或預編碼的發射天線之每一者發射天線的資料串流發 送的。預編碼可以被應用於特定於UE 606的窄頻載波(例如,非錨定載波)。
ACK/NACK
圖7A和7B圖示可以用於在窄頻TDD訊框結構是根據本案內容的某些態樣時適應ACK/NACK傳輸的資料流700。基地台504可以對應於例如基地台102、180、604、704、804、904、1004、1104、2350、eNB 310、裝置1802/1802'、2502/2502'。UE 506可以對應於例如UE 104、350、606、706、806、906、1006、1106、1850、2550、裝置2302/2302'。另外,基地台704和UE 706可以被配置為使用窄頻通訊(例如,NB-IoT及/或eMTC)來進行通訊。例如,UE 706可以是NB-IoT設備及/或eMTC設備。
參照圖7A,基地台704可以決定701要使用窄頻TDD訊框結構中的子訊框來發送NPDCCH及/或NPDSCH。例如,基地台704可以決定701窄頻TDD訊框結構是來自圖4中的表410的配置0、1、2、3、4、5、6、lo中的一種配置。
在一種配置中,基地台704可以決定703在窄頻TDD訊框結構中用於向UE 706發送NPDCCH的第一子訊框集合。例如,第一子訊框集合中的最後一個子訊框可以是子訊框n。另外,基地台704可以排程705窄頻TDD訊框結構中的第一上行鏈路子訊框,以用於UE 706報告與NPDCCH相關聯的第一ACK/NACK。在一種配 置中,第一上行鏈路子訊框可以是基於在最後一個子訊框n之後的k 0 個子訊框而被延遲的。換句話說,UE 706可以在子訊框n+k 0 中發送第一ACK/NACK。可以在DCI傳輸(例如,未在圖7A和7B中示出)中的第一延遲欄位中將與k 0 個子訊框相關聯的資訊707用信號發送給UE 706。
舉一個說明性實例,假設配置2(例如,見圖4中的表410)被用作窄頻TDD訊框結構。另外,假設用於發送NPDCCH的第一子訊框集合包括子訊框0和子訊框1(例如,n等於1),並且k0等於1。因此,在該說明性實例中,UE 706可以在窄頻TDD訊框結構的子訊框2(例如,1+1=2)中發送與NPDCCH相關聯的第一ACK/NACK。
另外,基地台704可以決定709在窄頻TDD訊框結構中用於向UE 706發送NPDSCH的第二子訊框集合。在一個態樣中,第二子訊框集合中的第一子訊框可以位於被分配用於第一ACK/NACK傳輸的子訊框之後的x個子訊框處。例如,第二子訊框集合中的第一子訊框是子訊框n+k 0 +x。第二子訊框集合中的最後一個子訊框可以是在第二集合中的第一子訊框之後的y個子訊框處。例如,第二子訊框集合中的最後一個子訊框可以是子訊框n+k 0 +x+yxy兩者都是正整數。
參照圖7B,基地台704可以排程711窄頻TDD訊框結構中的第二上行鏈路子訊框,以用於UE 706 報告與NPDSCH相關聯的第二ACK/NACK。在一個態樣中,第二上行鏈路子訊框可以在用於發送NPDSCH的最後一個子訊框(例如,子訊框n+k 0 +x+y)之後被延遲m 0 個子訊框,並且m 0 個子訊框可以包括多個下行鏈路子訊框及/或多個上行鏈路子訊框中的至少一個子訊框。可以在DCI傳輸中的第二延遲欄位中將與m 0 個子訊框相關聯的資訊713用信號發送給UE 706。在一種配置中,資訊707、713可以是在同一DCI傳輸中用信號發送的。在另一種配置中,資訊707、713可以是在不同的DCI傳輸中用信號發送的。
再次參照上文針對圖7A和7B論述的說明性實例,進一步假設第二子訊框集合是配置2中的子訊框3、4和5。在該實例中,x等於1以及y等於2。在第一場景中,假設當延遲數量的子訊框中僅包括下行鏈路子訊框時,m 0 等於3。在第二場景中,假設當延遲數量的子訊框中包括下行鏈路子訊框和上行鏈路子訊框時,m 0 等於4。在任一場景中,UE 706可以在UE 706在其中接收到NPDSCH的無線電訊框之後的下一無線電訊框中的子訊框2中發送與NPDSCH相關聯的第二ACK/NACK。補充地及/或替代地,m 0 可以僅包括有效的上行鏈路子訊框及/或下行鏈路子訊框(例如,可用於傳輸而不用於切換的子訊框)。
在某些配置中,基地台704可以從UE 706接收包括複數個ACK/NACK的附隨體715。在一個態樣 中,附隨體之每一者ACK/NACK可以與關聯於一或多個NPDCCH傳輸及/或NPDSCH傳輸的不同的混合自動重傳請求(HARQ)程序相關聯。
上行鏈路和下行鏈路傳輸交錯
圖8A-8C圖示可以在NPDSCH及/或窄頻實體上行鏈路共享通道(NPUSCH)傳輸期間啟用對上行鏈路子訊框和下行鏈路子訊框的交錯的資料流800、854、855。例如,圖8A圖示其中沒有啟用交錯的資料流800。圖8B圖示其中可以啟用交錯並且NPUSCH傳輸可以被限制於某些子訊框的資料流845。圖8C圖示其中可以啟用交錯並且針對NPDSCH傳輸進行監測可以被限制在某些子訊框的資料流855。
基地台504可以對應於例如基地台102、180、604、704、804、904、1004、1104、2350、eNB 310、裝置1802/1802'、2502/2502'。UE 506可以對應於例如UE 104、350、606、706、806、906、1006、1106、1850、2550、裝置2302/2302'。另外,基地台804和UE 806可以被配置為使用窄頻通訊(例如,NB-IoT及/或eMTC)來進行通訊。例如,UE 806可以是NB-IoT設備及/或eMTC設備。
參照圖8A,UE 806可以從基地台804接收指示窄頻TDD訊框結構的資訊801。例如,資訊801可以指示窄頻TDD訊框結構是來自圖4中的表410的配置0、1、2、3、4、5、6、lo中的一種配置。
另外,UE 806可以監測803在使用窄頻TDD訊框結構的第一無線電訊框中用於下行鏈路傳輸(例如,NPDCCH及/或NPDSCH)的一或多個下行鏈路子訊框。此外,UE 806可以將NPUSCH傳輸805延遲至位於在第一無線電訊框之後的第二無線電訊框中的上行鏈路子訊框。換句話說,沒有啟用交錯,並且UE 806可以僅監測下行鏈路子訊框或者使用單個無線電訊框中的上行鏈路子訊框來進行發送,而不是進行以上兩種操作。
參照圖8B,UE 806可以從基地台804接收指示用於窄頻通訊的窄頻TDD訊框結構的資訊801。例如,資訊801可以指示窄頻TDD訊框結構是來自圖4中的表410的配置0、1、2、3、4、5、6、lo中的一種配置。
另外,UE 806可以接收為NPDCCH 809及/或NPDSCH 809分配第一子訊框集合的下行鏈路授權807。例如,下行鏈路授權807可以指示下行鏈路子訊框pq被分配用於NPDCCH 809及/或NPDSCH 809。此外,UE 806可以在子訊框pq的集合中的至少一個子訊框中接收與下行鏈路授權807相關聯的NPDCCH 809及/或NPDSCH 809。在第一說明性實例中,假設窄頻TDD訊框結構是配置1,並且在下行鏈路授權807中,子訊框3、4和5(例如,p等於3並且q等於5)被分配用於NPDCCH 809及/或NPDSCH 809。在一個態樣中, 複數個子訊框可以包括上行鏈路子訊框、下行鏈路子訊框和特殊子訊框中的一或多個。
另外,UE 806可以接收為NPUCCH 813及/或NPUSCH 813分配第二子訊框集合的上行鏈路授權811。例如,第二子訊框集合可以位於第一子訊框集合之前、位於第一子訊框集合之後、及/或與第一子訊框集合部分地重疊。另外,UE 806可以被限制為使用第二集合中的子訊框子集來發送NPUCCH 813及/或NPUSCH 813。在一個態樣中,UE 806可以被限制在子訊框子集,以適應從接收NPDCCH 809及/或NPDSCH 809切換到發送NPUCCH 813及/或NPUSCH 813。在某些配置中,下行鏈路授權807和上行鏈路授權811可以是在同一搜尋空間中接收的。在一個態樣中,可以不對NPUCCH(ACK)和NPDSCH進行交錯。
參照上文論述的第一說明性實例,假設上行鏈路授權811指示UE 806可以在位於子訊框1、2、3、4、5、6、7和8的集合中的上行鏈路子訊框中發送NPUCCH 813及/或NPUSCH 813。另外,假設UE 806被限制在位於被分配用於NPDCCH 809及/或NPDSCH 809的第一子訊框之前a個子訊框的子訊框(例如,子訊框p-a)。另外,假設UE 806被限制在位於被分配用於NPDCCH 809及/或NPDSCH 809的最後一個子訊框之後b個子訊框的子訊框(例如,子訊框q+b)。此外,假設a等於1並且b等於二。因此,在第一說明性實例中, UE 806可以使用子訊框1、2和8來發送NPUCCH 813及/或NPUSCH 813,這是因為子訊框3(例如,4-1=3)被限制用於切換,並且子訊框6和7(例如,5+2=7)亦被限制用於切換。
替代地,UE 806可以不使用整個子訊框來從上行鏈路傳輸切換到下行鏈路監測。因此,UE 806可以被限制為在下行鏈路子訊框之前或之後,經由某一數量的符號(而不是子訊框)來進行發送。可以在受限子訊框的開始或結束處對受限符號進行打孔,這取決於是否正在發送NPDSCH及/或NPDCCH。在第一子訊框集合中包括特殊子訊框的場景中,特殊子訊框配置可以支援切換時間,並且不存在額外的切換時間(例如,符號或子訊框)可以被UE 806使用。
參照圖8C,UE 806可以從基地台804接收指示用於窄頻通訊的TDD訊框結構的資訊801。例如,資訊801可以指示窄頻TDD訊框結構是來自圖4中的表410的配置0、1、2、3、4、5、6、lo中的一種配置。
另外,UE 806可以接收為NPUCCH 817及/或NPUSCH 817分配第一子訊框集合的上行鏈路授權815。例如,上行鏈路授權815可以指示下行鏈路子訊框pq被分配用於NPUCCH 817及/或NPUSCH 817。此外,UE 806可以在子訊框pq的集合中的至少一個子訊框中發送與上行鏈路授權815相關聯的NPUCCH 817及/或NPUSCH 817。舉一個說明性實例,假設窄頻TDD 訊框結構是配置1,並且在上行鏈路授權815中,子訊框6和7(例如,p等於6並且q等於7)被分配用於NPUCCH 817及/或NPUSCH 817。在該說明性實例中,第一子訊框集合可以包括特殊子訊框6和上行鏈路子訊框7。
另外,UE 806可以接收為NPDCCH 821及/或NPDSCH 821分配第二子訊框集合的下行鏈路授權819,並且UE 806可以在第二子訊框集合中接收NPDCCH 821及/或NPDSCH 821。在某些配置中,第二子訊框集合可以位於第一子訊框集合之前、位於第一子訊框集合之後、及/或與第一子訊框集合部分地重疊。另外,UE 806可以被限制為針對NPDCCH 821及/或NPDSCH 821來監測第二集合中的子訊框子集。在一個態樣中,UE 806可以被限制為監測所分配的下行鏈路子訊框的集合,以適應從發送NPUCCH 817及/或NPUSCH 817切換到監測可以在第二子訊框集合中接收的NPDCCH 821及/或NPDSCH 821。
參照上文關於圖8C論述的說明性實例,假設下行鏈路授權819向UE 806指示位於子訊框4、5、6、7、8和9之間的下行鏈路子訊框被分配用於NPDCCH 821及/或NPDSCH 821。另外,假設UE 806被限制在位於被分配用於NPUCCH 817及/或NPUSCH 817的第一子訊框之前c個子訊框的子訊框(例如,子訊框p-c)。另外,假設UE 806被限制在位於被分配用於NPUCCH 817及/或NPUSCH 817的最後一個子訊框 之後d個子訊框的子訊框(例如,子訊框q+d)。此外,假設c等於1並且d等於一。因此,在參照圖8C論述的說明性實例中,UE 806可以監測子訊框4和9而不監測子訊框5,這是因為子訊框5(例如,6-1=5)被限於進行切換。不存在位於子訊框7之後的下行鏈路子訊框,並且因此在子訊框7之後沒有下行鏈路子訊框被限制用於切換。
位元映像
圖9圖示根據本案內容的某些態樣的可以用於傳送與窄頻TDD訊框結構相關聯的位元映像的資料流900。基地台504可以對應於例如基地台102、180、604、704、804、904、1004、1104、2350、eNB 310、裝置1802/1802'、2502/2502'。UE 506可以對應於例如UE 104、350、606、706、806、906、1006、1106、1850、2550、裝置2302/2302'。另外,基地台904和UE 906可以被配置為使用窄頻通訊(例如,NB-IoT及/或eMTC)來進行通訊。例如,UE 906可以是NB-IoT設備及/或eMTC設備。
在一個態樣中,基地台904可以決定901用於窄頻通訊的窄頻TDD訊框結構,其包括以下各項中的一項或多項:下行鏈路子訊框集合、上行鏈路子訊框集合、特殊子訊框集合及/或靈活子訊框集合。例如,基地台904可以決定901窄頻TDD訊框結構是來自圖4中的表410的配置0、1、2、3、4、5、6、lo中的一種配置。
在另一個態樣中,基地台904可以向UE 906發送與窄頻TDD訊框結構相關聯的位元映像903。位元映像903可以指示所決定的窄頻TDD訊框結構中的下行鏈路子訊框集合、上行鏈路子訊框集合、特殊子訊框集合及/或靈活子訊框集合。
在一個態樣中,當基地台904在頻帶中模式下操作時,可以向UE 906發送單個位元映像903,其指示下行鏈路子訊框集合、上行鏈路子訊框集合、特殊子訊框集合及/或靈活子訊框集合。替代地,當基地台904在獨立模式下操作時,可以向UE 806單獨地發送指示下行鏈路子訊框集合的第一位圖903、指示上行鏈路子訊框集合的第二位元映像903、指示特殊子訊框集合的第三位元映像903、及/或指示靈活子訊框集合的第四位元映像903。
在一種配置中,與所決定的窄頻TDD訊框結構相關聯的位元映像903的第一長度可以比與窄頻FDD訊框結構相關聯的不同位元映像的第二長度要長。例如,長度N(例如,N=60)的單個位元映像可以用於指示窄頻FDD訊框結構中的下行鏈路子訊框及/或上行鏈路子訊框中的一或多個子訊框。在某些配置中,用於指示窄頻TDD訊框結構中的可用的下行鏈路子訊框、上行鏈路子訊框、特殊子訊框及/或靈活子訊框的位元映像903的長度N可以比用於指示窄頻FDD訊框結構的位元映像要大(例如,N=80)。窄頻TDD訊框結構位元映像的長度可以大於窄頻FDD訊框結構位元映像,這是因為與窄頻 FDD訊框結構相比,使用窄頻TDD訊框結構可以存在可用於分配的更多類型的子訊框。
當基地台904將一或多個靈活子訊框分配用於NPDCCH及/或NPDSCH時,UE 906可以對在所分配的靈活子訊框上發送的NRS以及NPDCCH及/或NPDSCH進行解碼。當基地台904將一或多個靈活子訊框分配用於NPUCCH及/或NPUSCH時,UE 906可以使用所分配的靈活子訊框來發送NPUCCH及/或NPUSCH。當靈活子訊框沒有被分配用於NPDCCH、NPDSCH、NPUCCH或NPUSCH時,UE 906可以忽略靈活子訊框。例如,當靈活子訊框沒有被分配用於NPDCCH、NPDSCH、NPUCCH或NPUSCH時,UE 906可以不在靈活子訊框上執行NRS偵測。
資料加擾
資料加擾可以用於利用預定的加擾序列對信號進行轉置及/或反轉、或者以其他方式對NPDCCH及/或NPDSCH進行編碼。加擾序列對於沒有被配備有適當設置的解擾設備的UE來說可能是難以理解的,並且因此,僅有預期的UE可以正確地對NPDCCH及/或NPDSCH進行解碼。
使用窄頻FDD訊框結構,用於NPDCCH及/或NPDSCH的加擾序列針對跨越下行鏈路子訊框集合的預定數量的重複傳輸(例如,至少四個重複傳輸)可以保持相同。為了增加對NPDCCH及/或NPDSCH正確地解 碼的機會,傳統UE可以對跨越重複傳輸之每一者重複傳輸的NPDCCH及/或NPDSCH的加擾序列進行合併,只要通道在重複傳輸之間不改變。舉一個說明性實例,假設用於使用窄頻FDD訊框結構對NPDSCH的重複傳輸的加擾序列跨越四個下行鏈路子訊框保持相同。另外,假設在跨越包括子訊框0-19的兩個無線電訊框的子訊框{5,6,8,10,13,15,16 17}上重複NPDSCH。子訊框{5,6,8,10}上的NPDSCH的加擾序列可以是基於與子訊框5相關聯的加擾序列的,以及子訊框{13,14,15,17}上的NPDSCH的加擾序列可以是基於與子訊框13相關聯的加擾序列的。
使用窄頻TDD訊框結構,上行鏈路子訊框及/或未使用的靈活子訊框可以位於用於發送NPDCCH及/或NPDSCH的下行鏈路子訊框及/或特殊子訊框之間。結果,使用窄頻TDD訊框結構對NPDCCH及/或NPDSCH的重複傳輸的持續時間與使用FDD訊框結構發送的相同數量的重複的持續時間相比可以增加。因此,與使用窄頻FDD訊框結構的重複傳輸相比,關於通道狀況可能在使用窄頻TDD訊框結構的重複傳輸上改變的可能性可能增加,並且因此,UE不太可能對重複傳輸進行合併。
存在針對如下技術的需求,該技術使UE能夠對在窄頻TDD訊框結構中具有相同加擾序列的重複傳輸進行合併。
圖10圖示根據本案內容的某些態樣的可以啟用對使用窄頻TDD訊框結構發送的NPDCCH及/或NPDSCH的資料加擾的資料流100。基地台504可以對應於例如基地台102、180、604、704、804、904、1004、1104、2350、eNB 310、裝置1802/1802'、2502/2502'。UE 506可以對應於例如UE 104、350、606、706、806、906、1006、1106、1850、2550、裝置2302/2302'。另外,基地台1004和UE 1006可以被配置為使用窄頻通訊(例如,NB-IoT及/或eMTC)來進行通訊。例如,UE 1006可以是NB-IoT設備及/或eMTC設備。
在一個態樣中,基地台1004可以決定1001窄頻TDD訊框結構,其包括以下各項中的一項或多項:下行鏈路子訊框集合、上行鏈路子訊框集合、特殊子訊框集合或靈活子訊框集合。例如,基地台1004可以決定1001窄頻TDD訊框結構是來自圖4中的表410的配置0、1、2、3、4、5、6、lo中的一種配置。
另外,基地台1004可以將複數個子訊框群組成1003複數個子訊框組。在一個態樣中,複數個子訊框組之每一者子訊框組可以與特定的加擾序列相關聯,以及每個子訊框組可以基於下行鏈路子訊框和預定數量的後續子訊框來決定。
在圖10的第一實例中,基地台1004處的用於NPDCCH及/或NPDSCH的加擾序列產生器可以在每 min(RepetitionSize,M)個絕對子訊框之後被重新初始化。絕對子訊框可以是包括某一範圍(例如,四個子訊框)內的所有子訊框的預定的M個子訊框,而不考慮這些子訊框是否被用於發送NPDCCH及/或NPDSCH。
在圖10的第二實例中,基地台1004可以使用預定義的子訊框邊界,並且落在邊界內的所有NPDCCH及/或NPDSCH傳輸可以具有基於該邊界內的最低子訊框索引的相同的加擾。在一個態樣中,邊界可以被定義成mod(sub-frame-index-i_Delta,i_M)=0。
此外,基地台1004可以決定1005複數個子訊框組中的與第一子訊框集合相關聯的第一子訊框組以及複數個子訊框組中的與第二子訊框集合相關聯的第二子訊框組。在圖10的第一實例和第二實例兩者中,假設M等於四,並且NPDSCH在跨越具有子訊框0-19的兩個無線電訊框的子訊框{5,6,8,10,13,14,15,17}上重複。
在上文關於圖10論述的第一實例中,從子訊框5開始的子訊框範圍(例如,四個子訊框)包括子訊框5、6、7、8。從子訊框10(例如,在第一組中的最後一個子訊框之後的第一子訊框)開始的子訊框範圍(例如,四個子訊框)包括子訊框10、11、12、13。此外,從子訊框14(例如,在第二組中的最後一個子訊框之後的第一子訊框)開始的子訊框範圍(例如,四個子訊框)包括子訊框14、15、16、17。因此,基地台1004可以將子 訊框{5,6,8}群組成第一組,將子訊框{10,13}群組成第二組,以及將子訊框{14,15,17}群組成第三組。
在上文關於圖10論述的第二實例中,子訊框的邊界將是{[0-3][4-7][8-11][12-15][16-19]}。因此,基地台1004可以將子訊框{0,1,2,3}群組成第一組,將子訊框{4,5,6,7}群組成第二組,將子訊框{8,9,10,11}群組成第三組,將子訊框{12,13,14,15}群組成第四組,以及將子訊框{16,17,18,19}群組成第五組。
另外地,基地台1004可以決定1007用於第一子訊框組中的第一下行鏈路子訊框集合的第一加擾序列以及用於第二子訊框組中的第二下行鏈路子訊框集合的第二加擾序列。
參照上文關於圖10論述的第一實例,由基地台1004用於在子訊框{5,6,8}中發送的NPDSCH的加擾序列可以是基於子訊框5的加擾序列的。另外,由基地台1004用於在子訊框{10,13}中發送的NPDSCH的加擾序列可以是基於子訊框10的加擾序列的。此外,由基地台1004用於在子訊框{14,15,17}中發送的NPDSCH的加擾序列可以是基於子訊框14的。
參照上文關於圖10論述的第二實例,由基地台1004用於在子訊框{5,6}中發送的NPDSCH的加擾序列可以是基於子訊框4的,由基地台1004用於在子訊框{8,10}中發送的NPDSCH的加擾序列可以是基於子 訊框8的,由基地台1004用於在子訊框{13,14,15}中發送的NPDSCH的加擾序列可以是基於子訊框12的,以及由基地台1004用於在子訊框{17}中發送的NPDSCH的加擾序列可以是基於子訊框16的。
基地台1004可以基於上文關於圖10描述的第一實例或第二實例來發送1009 NPDCCH及/或NPDSCH的一系列重複。
冗餘版本和循環模式
NPDCCH及/或NPDSCH的不同的冗餘版本可以是使用除了上文關於圖10論述的資料加擾序列之外或者代替資料加擾序列的循環模式來發送的。由於窄頻TDD訊框結構可以不包括大量的連續下行鏈路子訊框,因此若通道狀況在一或多個重複循環內改變,則UE可能無法合併冗餘版本。因此,存在針對如下的冗餘版本循環模式的需求,該冗餘版本循環模式可以增加關於UE對基地台使用窄頻TDD訊框結構發送的冗餘版本正確地合併的機會。
圖11圖示根據本案內容的某些態樣的可以啟用用於NPDCCH及/或NPDSCH的冗餘版本循環模式的資料流1100。基地台504可以對應於例如基地台102、180、604、704、804、904、1004、1104、2350、eNB 310、裝置1802/1802'、2502/2502'。UE 506可以對應於例如UE 104、350、606、706、806、906、1006、1106、1850、2550、裝置2302/2302'。另外, 基地台1104和UE 1106可以被配置為使用窄頻通訊(例如,NB-IoT及/或eMTC)來進行通訊。例如,UE 1106可以是NB-IoT設備及/或eMTC設備。
在一個態樣中,基地台1104可以決定1101窄頻TDD訊框結構,其包括以下各項中的一項或多項:下行鏈路子訊框集合、上行鏈路子訊框集合、特殊子訊框集合或靈活子訊框集合。例如,基地台1104可以決定1101窄頻TDD訊框結構是來自圖4中的表410的配置0、1、2、3、4、5、6、lo中的一種配置。
另外,基地台1104可以使用窄頻TDD訊框結構來發送NPDCCH 1103及/或NPDSCH 1103的第一冗餘版本(RV0)以及NPDCCH 1105及/或NPDSCH 1105的第二冗餘版本(RV1)。在一個態樣中,RV0的多個重複可以是在切換到RV1之前的重複循環中發送的,反之亦然。重複循環中的重複的數量可以是基於所決定的窄頻TDD訊框結構中的連續下行鏈路子訊框的數量和預定的最大重複數量的。
舉一個說明性實例,假設配置1用於窄頻TDD訊框結構,配置了NPDCCH 1103及/或NPDSCH 1103的十六個重複,配置了重複的兩個版本,以及重複循環中的最大重複數量是二。因此,在該說明性實例中,基地台1104發送的序列是{RV0RV0 RV1RV1 RV0RV0 RV1RV1 RV0RV0 RV1RV1 RV0RV0 RV1RV1 RV0RV0 RV1RV1 RV0RV0 RV1RV1 RV0RV0 RV1RV1 RV0RV0 RV1RV1}。
圖12A-12C是一種無線通訊的方法的流程圖1200。該方法可以由基地台(例如,基地台102、180、504、604、704、804、904、1004、1104、2350、eNB 310、裝置1802/1802')來執行。在圖12A-12C中,具有虛線的操作指示可選的操作。
在圖12A中,在1202處,基地台可以決定要在用於窄頻通訊的複數個窄頻TDD訊框結構中的窄頻TDD訊框結構中的子訊框中發送實體下行鏈路通道。在一個態樣中,實體下行鏈路通道可以包括NPDCCH或NPDSCH中的至少一個。例如,參照圖5,基地台504可以決定501要在窄頻TDD訊框結構中的子訊框中發送NPDCCH及/或NPDSCH。例如,基地台504可以決定501窄頻TDD訊框結構是來自圖4中的表410的配置0、1、2、3、4、5、6、lo中的一種配置。
在圖12A中,在1204處,當窄頻TDD訊框結構包括一或多個特殊子訊框時,基地台可以決定該子訊框是特殊子訊框還是下行鏈路子訊框。例如,參照圖5,當所決定的窄頻TDD訊框結構包括一或多個特殊子訊框(例如,圖4中的配置0、1、2、3、4、5、6和n)時,基地台504可以決定503被分配用於NPDCCH及/或NPDSCH的子訊框是特殊子訊框還是下行鏈路子訊框。
在圖12A中,在1206處,基地台可以基於決定該子訊框是特殊子訊框還是下行鏈路子訊框,來決定如何發送窄頻實體下行鏈路通道。例如,參照圖5,基地台504可以決定505如何發送NPDCCH及/或NPDSCH,以及如何分配一或多個下行鏈路子訊框及/或特殊子訊框中的資源。在一個態樣中,基地台504可以在所有可用的下行鏈路子訊框(例如,沒有被用於切換的下行鏈路子訊框)中分配用於NPDCCH及/或NPDSCH的資源。然而,基地台504對特殊子訊框上的資源的分配可以根據特殊子訊框配置(例如,在DwPTS部分中有多少資源是可用的)及/或所決定的窄頻TDD訊框。
在圖12A中,在1208處,基地台可以經由在該子訊框是下行鏈路子訊框時決定要在該子訊框中發送窄頻實體下行鏈路通道,從而基於決定該子訊框是特殊子訊框還是下行鏈路子訊框,來決定如何發送窄頻實體下行鏈路通道。例如,參照圖5,基地台504可以在所有可用的下行鏈路子訊框(例如,沒有被用於切換的下行鏈路子訊框)中分配用於NPDCCH及/或NPDSCH的資源。
在圖12A中,在1210處,基地台可以經由在該子訊框是特殊子訊框時決定要禁止在該子訊框中發送窄頻實體下行鏈路通道,從而基於決定該子訊框是特殊子訊框還是下行鏈路子訊框,來決定如何發送窄頻實體下行鏈路通道。例如,參照圖5,在第一配置中,基地台504可以決定505要在下行鏈路子訊框中(而不在特殊子訊框 中)發送NPDCCH及/或NPDSCH。在第一配置中,基地台504可以不在特殊子訊框上分配用於NPDCCH及/或NPDSCH的資源。
在圖12A中,在1212處,基地台可以經由在該子訊框是特殊子訊框時決定要在該子訊框中利用特殊子訊框中的被打孔的OFDM符號的子集來發送窄頻實體下行鏈路通道,從而基於決定該子訊框是特殊子訊框還是下行鏈路子訊框,來決定如何發送窄頻實體下行鏈路通道。在一個態樣中,可以發送窄頻實體下行鏈路通道。例如,參照圖5,在第二配置中,基地台504可以決定505要在特殊子訊框以及下行鏈路子訊框中發送NPDCCH 509及/或NPDSCH 509。在第二配置中,基地台504可以在下行鏈路子訊框以及一或多個特殊子訊框的DwPTS部分中分配用於NPDCCH及/或NPDSCH的資源。在第二配置的第一態樣中,基地台504可以對一或多個特殊子訊框的UpPTS部分中的OFDM符號打孔。
在圖12A中,在1214處,基地台可以經由在該子訊框是特殊子訊框時決定要在該子訊框中利用特殊子訊框的下行鏈路部分中被打孔的至少OFDM符號來發送窄頻實體下行鏈路通道,從而基於決定該子訊框是特殊子訊框還是下行鏈路子訊框,來決定如何發送窄頻實體下行鏈路通道。例如,參照圖5,在第二配置的第二態樣中,基地台504可以對一或多個特殊子訊框的DwPTS部分和UpPTS部分中的OFDM符號打孔。經由對一或多個特殊 子訊框的DwPTS部分和UpPTS部分中的OFDM符號打孔,UE 506可以在接收到無線電訊框中的NPDCCH及/或NPDSCH時忽略(例如,不監測或丟棄)特殊子訊框。
在圖12B中,在1216處,基地台可以經由在該子訊框是特殊子訊框並且特殊子訊框中的OFDM符號的數量大於預定閥值時決定要在該子訊框中發送窄頻實體下行鏈路通道,從而基於決定該子訊框是特殊子訊框還是下行鏈路子訊框,來決定如何發送窄頻實體下行鏈路通道。例如,參照圖5,在第三配置中,當特殊子訊框中的OFDM符號的數量大於預定閥值時,基地台504可以決定505要在特殊子訊框中發送NPDCCH 509及/或NPDSCH 509。否則,基地台504可以在下一下行鏈路子訊框中發送NPDCCH 511及/或NPDSCH 511的重複。舉一個說明性實例,假設配置2用於窄頻TDD訊框結構,特殊子訊框1具有十個OFDM符號,以及預定閥值是五個OFDM符號。這裡,基地台504可以在子訊框0中發送NPDCCH 509及/或NPDSCH 509並且在特殊子訊框1中發送NPDCCH 511及/或NPDSCH 511的重複。
在圖12B中,在1218處,基地台可以經由在該子訊框是特殊子訊框並且特殊子訊框中的OFDM符號的數量小於預定閥值時決定要在該子訊框中利用特殊子訊框中的被打孔的OFDM符號的子集來發送窄頻實體下行鏈路通道,從而基於決定該子訊框是特殊子訊框還是下行鏈路子訊框,來決定如何發送窄頻實體下行鏈路通道。 例如,參照圖5,當特殊子訊框中的OFDM符號的數量小於預定閥值時,基地台504可以決定505要在特殊子訊框中發送NPDCCH 509及/或NPDSCH 509。在第四配置中,基地台504可以利用特殊子訊框中的被打孔的OFDM符號的子集(例如,DwPTS部分及/或UpPTS部分中的OFDM符號的子集)來發送NPDCCH 509及/或NPDSCH 509。舉一個說明性實例,假設配置2用於窄頻TDD訊框結構,特殊子訊框1具有五個OFDM符號,以及預定閥值是十個OFDM符號。這裡,基地台504可以在子訊框0中發送NPDCCH 509及/或NPDSCH 509並且在特殊子訊框1中利用特殊子訊框1中的被打孔的OFDM符號的子集來發送NPDCCH 511及/或NPDSCH 511的重複。
在圖12B中,在1220處,基地台可以經由在該子訊框是特殊子訊框並且特殊子訊框中的OFDM符號的數量小於預定閥值時決定要禁止在該子訊框中發送窄頻實體下行鏈路通道,從而基於決定該子訊框是特殊子訊框還是下行鏈路子訊框,來決定如何發送窄頻實體下行鏈路通道。例如,參照圖5,在第五配置中,當特殊子訊框中的OFDM符號的數量小於預定閥值時,基地台504可以決定505要禁止在特殊子訊框中發送NPDCCH及/或NPDSCH。在第五配置中,基地台504可以在下一可用的下行鏈路子訊框中發送NPDCCH 511及/或NPDSCH 511。舉一個說明性實例,假設配置2用於窄 頻TDD訊框結構,特殊子訊框1具有五個OFDM符號,以及預定閥值是十個OFDM符號。這裡,基地台504可以在子訊框0中發送NPDCCH 509及/或NPDSCH 509,並且進行等待,直到下一下行鏈路子訊框3來發送NPDCCH 511及/或NPDSCH 511的重複。
在圖12B中,在1222處,基地台可以經由在該子訊框是特殊子訊框並且特殊子訊框中的OFDM符號的數量小於預定閥值時決定要丟棄在子訊框中對窄頻實體下行鏈路通道的傳輸,從而基於決定該子訊框是特殊子訊框還是下行鏈路子訊框,來決定如何發送窄頻實體下行鏈路通道。例如,參照圖5,當特殊子訊框中的OFDM符號的數量小於預定閥值時,基地台504可以決定505要丟棄在特殊子訊框中對NPDCCH及/或NPDSCH的傳輸。
在圖12C中,在1224處,基地台可以基於該子訊框中的OFDM符號的下行鏈路的數量,來對該子訊框中的窄頻實體下行鏈路通道進行速率匹配。例如,參照圖5,基地台504可以基於該子訊框(例如,下行鏈路子訊框或特殊子訊框)中的下行鏈路OFDM符號的數量,來對該子訊框中的NPDCCH及/或NPDSCH進行速率匹配。與下行鏈路子訊框相比,特殊子訊框可以具有較少數量的OFDM符號,這是因為特殊子訊框中僅有DwPTS部分被專用於NPDCCH及/或NPDSCH。因此,針對特殊子訊框的速率匹配可以不同於針對下行鏈路子訊框的速率匹配。
在圖12C中,在1226處,基地台可以發送窄頻實體下行鏈路通道。例如,參照圖5,當配置2用作窄頻TDD訊框結構時,基地台504可以在子訊框0中發送NPDCCH 507及/或NPDSCH 507,以及NPDCCH 511及/或NPDSCH 511的重複可以是在子訊框3(例如,配置2中的下一下行鏈路子訊框)中發送的。在另一種配置中,基地台504可以決定505要在特殊子訊框中發送NPDCCH 509及/或NPDSCH 509並且在下行鏈路子訊框中發送NPDCCH 507及/或NPDSCH 507。
在圖12C中,在1228處,基地台可以在後續的下行鏈路子訊框中發送窄頻實體下行鏈路通道。例如,參照圖5,當配置2用作窄頻TDD訊框結構時,基地台504可以在子訊框0中發送NPDCCH 507及/或NPDSCH 507,以及NPDCCH 511及/或NPDSCH 511的重複可以是在子訊框3(例如,配置2中的下一下行鏈路子訊框)中發送的。
在圖12C中,在1230處,在決定要禁止在該子訊框中發送窄頻實體下行鏈路通道時,基地台可以在一下行鏈路子訊框中發送窄頻實體下行鏈路通道。例如,參照圖5,當配置2用作窄頻TDD訊框結構時,基地台504可以在子訊框0中發送NPDCCH 507及/或NPDSCH 507,以及NPDCCH 511及/或NPDSCH 511的重複可以是在子訊框3(例如,配置2中的下一下行鏈路子訊框)中發送的。
圖13A-13C是一種無線通訊的方法的流程圖1300。該方法可以由基地台(例如,基地台102、180、504、604、704、804、904、1004、1104、2350、2550、2750、eNB 310、裝置1802/1802')來執行。在圖13中,具有虛線的操作指示可選操作。
在圖13A中,在1302處,基地台可以決定一組窄頻TDD訊框結構中的用於窄頻通訊的窄頻TDD訊框結構。例如,參照圖6A和6B,基地台604可以決定601窄頻TDD訊框結構(例如,在圖4中的表410中列出的配置0、1、2、3、4、5、6、lo)用於與UE 606的窄頻通訊。
在圖13A中,在1304處,基地台可以將窄頻TDD訊框結構中的至少一個RB分配用於向第一UE發送窄頻實體下行鏈路通道。例如,參照圖6A和6B,基地台604可以將窄頻TDD訊框結構中的至少一個RB分配603用於向UE 606發送NPDCCH及/或NPDSCH。
在圖13A中,在1306處,基地台可以經由將窄頻TDD訊框結構中的至少一個RB分配用於向第二UE發送窄頻實體下行鏈路通道,從而將窄頻TDD訊框結構中的該至少一個RB分配用於向第一UE發送窄頻實體下行鏈路通道。在一個態樣中,經修改的傳統引導頻結構可以用於將窄頻實體下行鏈路通道映射到UE-RS。在另一個態樣中,在經修改的傳統引導頻結構中,NRS和UE-RS可以不共享資源。在另外的態樣中,傳統引導頻 信號結構可以用於將下行鏈路通道映射到UE-RS。在又一個態樣中,在傳統引導頻結構中,NRS和UE-RS可以不共享資源。例如,參照圖6A和6B,若支援多使用者MIMO能力(例如,若兩個UE被基地台604分配給用於NPDCCH及/或NPDSCH的相同的RB),則可以重用傳統埠107/108引導頻結構或傳統埠109/110引導頻結構。在一個態樣中,在傳統引導頻結構中,UE-RS 607可以不與NRS 613共享資源。
在圖13A中,在1308處,基地台可以將UE-RS映射到被分配用於發送窄頻實體下行鏈路通道的至少一個RB。例如,參照圖6A和6B,基地台604可將UE-RS映射到605被分配用於NPDCCH及/或NPDSCH的至少一個RB。在一個態樣中,基地台604可以使用傳統引導頻結構(例如,傳統埠5引導頻結構、經修改的傳統埠107/108引導頻結構、經修改的傳統埠109/110引導頻結構等)來填充UE-RS 607。
在圖13A中,在1310處,基地台可以決定在窄頻TDD訊框結構中包括窄頻實體下行鏈路通道而不包括NRS的至少一個下行鏈路子訊框。例如,參照圖6A和6B,在傳統引導頻結構中,UE-RS 607可以不與NRS 613共享資源。
在圖13B中,在1312處,基地台可以基於映射來向第一UE發送UE-RS。例如,參照圖6A和6B,基地台604可以基於映射來向UE 606發送UE-RS 607。 在一個態樣中,基地台604可以使用傳統引導頻結構(例如,傳統埠5引導頻結構、經修改的傳統埠107/108引導頻結構、經修改的傳統埠109/110引導頻結構等)來填充UE-RS 607。
在圖13B中,在1314處,當決定窄頻實體下行鏈路通道是在不包括NRS的至少一個下行鏈路子訊框中發送的時,基地台可以在與NRS傳輸相關聯的RE位置中發送UE-RS。例如,參照圖6A和6B,網路(例如,較高層)可以指示不包括NRS 613的某些下行鏈路子訊框。若NPDCCH及/或NPDSCH是在不包括NRS 613的子訊框中發送的,則基地台604可以在與NRS 613相同的RE中發送UE-RS 607。
在圖13B中,在1316處,基地台可以從第一UE接收與UE-RS相關聯的第一通道估計。在一個態樣中,第一通道估計可以是在被選擇用於窄頻通訊的TDD訊框結構中接收的。例如,參照圖6A和6B,基地台604可以接收與從UE 606發送的UE-RS(例如,用於發送UE-RS 607的通道)相關聯的第一通道估計609。
在圖13B中,在1318處,基地台可以使用從第一UE接收的第一通道估計來執行波束成形程序。例如,參照圖6A和6B,基地台604可以使用從UE 606接收的第一通道估計609來執行611波束成形程序。
在圖13B中,在1320處,基地台可以使用被選擇用於窄頻通訊的窄頻TDD訊框結構來向第一UE發 送NRS。例如,參照圖6A和6B,基地台604可以向UE 606發送NRS 613。
在圖13C中,在1322處,基地台可以從第一UE接收與NRS相關聯的第二通道估計。在一個態樣中,第二通道估計可以是在被選擇用於窄頻通訊的TDD訊框結構中接收的。例如,參照圖6A和6B,基地台604可以從UE 606接收與NRS 613相關聯的第二通道估計615。
在圖13C中,在1324處,基地台可以基於第二通道估計來決定針對用於發送下行鏈路通道的複數個發射天線之每一者發射天線的預編碼。在一個態樣中,預編碼跨越預定數量的子訊框是恆定的。在另一個態樣中,預編碼被應用於特定於第一UE的窄頻載波。在另外的態樣中,窄頻載波是非錨定載波。例如,參照圖6A和6B,基地台604可以使用第二通道估計來決定617針對用於發送NPDCCH及/或NPDSCH的複數個發射天線之每一者發射天線的預編碼。
在圖13C中,在1326處,基地台可以向第一UE用信號通知基地台處的多個發射天線發送NRS以及多個發射天線之每一者發射天線與相同的預編碼相關聯。在一個態樣中,訊號傳遞可以包括DCI或RRC資訊。例如,參照圖6A和6B,基地台604可以用信號通知619多個發射天線之每一者發射天線與相同的預編碼相關聯。在某些配置中,用信號通知619可以指示NRS 613在切換到另一個預編碼之前,針對預定數量的無線電訊框 (例如,十(10)個無線電訊框)使用相同的預編碼。在一個態樣中,用信號通知619可以是作為DCI或RRC訊息傳遞發送的。在一種配置中,用信號通知619可以指示NPDCCH是使用第一數量的天線(例如,一個、兩個、三個等)來發送的以及NPDSCH是從第二數量的天線(例如,一個、兩個、三個等)來發送的。
在圖13C中,在1328處,基地台可以基於波束成形程序來向UE發送窄頻實體下行鏈路通道傳輸。例如,參照圖6A和6B,可以由基地台604基於波束成形及/或預編碼,使用來自發射天線之每一者發射天線的資料串流來發送NPDCCH 621及/或NPDSCH 621。預編碼可以被應用於特性於UE 606的窄頻載波(例如,非錨定載波)。
在圖13C中,在1330處,基地台可以經由基於預編碼從複數個發射天線之每一者發射天線發送與窄頻實體下行鏈路通道相關聯的資料串流,從而基於波束成形程序,來向UE發送窄頻實體下行鏈路通道傳輸。例如,參照圖6A和6B,可以由基地台604基於波束成形及/或預編碼,使用來自發射天線之每一者發射天線的資料串流發送NPDCCH 621及/或NPDSCH 621。預編碼可以被應用於特性於UE 606的窄頻載波(例如,非錨定載波)。
圖14A和14B是一種無線通訊的方法的流程圖1400。該方法可以由基地台(例如,基地台102、180、 504、604、704、804、904、1004、1104、2350、2550、2750、eNB 310、裝置1802/1802')來執行。在圖14中,具有虛線的操作指示可選操作。
在圖14A中,在1402處,基地台可以決定一組窄頻TDD訊框結構中的用於窄頻通訊的窄頻TDD訊框結構。例如,參照圖7A和7B,基地台704可以決定701要使用窄頻TDD訊框結構中的子訊框來發送NPDCCH及/或NPDSCH。例如,基地台704可以決定701窄頻TDD訊框結構是來自圖4中的表410的配置0、1、2、3、4、5、6、lo中的一種配置。
在圖14A中,在1404處,基地台可以決定在窄頻TDD訊框結構中用於向UE發送下行鏈路控制通道的第一子訊框集合。在一個態樣中,第一子訊框集合中的最後一個子訊框可以是子訊框n。例如,參照圖7A和7B,基地台704可以決定703在窄頻TDD訊框結構中用於向UE 706發送NPDCCH的第一子訊框集合。例如,第一子訊框集合中的最後一個子訊框可以是子訊框n。在一個實例中,假設配置2(例如,見圖4中的表410)用作窄頻TDD訊框結構。另外,假設用於發送NPDCCH的第一子訊框集合包括子訊框0和子訊框1(例如,n等於1)。
在圖14A中,在1406處,基地台可以排程窄頻TDD訊框結構中的第一上行鏈路子訊框,第一上行鏈路子訊框由UE用於報告與下行鏈路控制通道相關聯的第一ACK/NACK。在一個態樣中,第一上行鏈路子訊框可 以是基於在子訊框n之後的k 0 個子訊框而被延遲的。例如,參照圖7A和7B,基地台可以排程705窄頻TDD訊框結構中的第一上行鏈路子訊框,以用於UE 706報告與NPDCCH相關聯的第一ACK/NACK。在一種配置中,第一上行鏈路子訊框可以是基於在子訊框n之後的k 0 個子訊框而被延遲的。換句話說,UE 706可以在子訊框n+k 0 中發送第一ACK/NACK。在與圖7相關聯的一個實例中,假設配置2(例如,見圖4中的表410)被用作窄頻TDD訊框結構。另外,假設用於發送NPDCCH的第一子訊框集合包括子訊框0和子訊框1(例如,n等於1),並且k 0 等於1。因此,與NPDCCH相關聯的第一ACK/NACK可以是由UE 706在窄頻TDD訊框結構的子訊框2(例如,1+1=2)中發送的。
在圖14A中,在1408處,基地台可以在DCI傳輸中的第一延遲欄位中將與k 0 個子訊框相關聯的資訊用信號發送給UE。例如,參照圖7A和7B,可以在DCI傳輸中的第一延遲欄位中將與k 0 個子訊框相關聯的資訊707用信號發送給UE 706。
在圖14A中,在1410處,基地台可以決定在窄頻TDD訊框結構中用於向UE發送下行鏈路資料通道的第二子訊框集合。在一個態樣中,第二子訊框集合中的第一子訊框可以是子訊框n+k 0 +x。在另一個態樣中,第二子訊框集合中的最後一個子訊框可以是子訊框n+k 0 +x+y。在另外的態樣中,xy兩者皆是正整數。 例如,參照圖7A和7B,基地台704可以決定709在窄頻TDD訊框結構中用於向UE 706發送NPDSCH的第二子訊框集合。在一個態樣中,第二子訊框集合中的第一子訊框可以位於被分配用於第一ACK/NACK傳輸的子訊框之後的x個子訊框處。例如,第二子訊框集合中的第一子訊框是子訊框n+k 0 +x。第二子訊框集合中的最後一個子訊框可以在第二集合中的第一子訊框之後的y個子訊框處。例如,第二子訊框集合中的最後一個子訊框可以是子訊框n+k 0 +x+yxy兩者都是正整數。再次參照上文關於圖7論述的實例,進一步假設第二子訊框集合是配置2中的子訊框3、4和5。在該實例中,x等於1以及y等於2。
在圖14B中,在1412處,基地台可以排程窄頻TDD訊框結構中的第二上行鏈路子訊框,第二上行鏈路子訊框由UE用於報告與下行鏈路資料通道相關聯的第二ACK/NACK。在一個態樣中,第二上行鏈路子訊框可以在子訊框n+k0+x+y之後被延遲m0個子訊框。在另一個態樣中,m0個子訊框可以包括多個下行鏈路子訊框或多個上行鏈路子訊框中的至少一個子訊框。例如,參照圖7A和7B,基地台704可以排程711窄頻TDD訊框結構中的第二上行鏈路子訊框,以用於UE 706報告與NPDSCH相關聯的第二ACK/NACK。在一個態樣中,第二上行鏈路子訊框可以在用於發送NPDSCH的最後一個子訊框(例如,子訊框n+k 0 +x+y)之後被延遲 m 0 個子訊框,並且m 0 個子訊框可以包括多個下行鏈路子訊框及/或多個上行鏈路子訊框中的至少一個子訊框。再次參照上文關於圖7論述的實例,進一步假設第二子訊框集合是配置2中的子訊框3、4和5。在該實例中,x等於1以及y等於2。在第一場景中,假設當延遲數量的子訊框中僅包括下行鏈路子訊框時,m 0 等於3。在第二場景中,假設當延遲數量的子訊框中包括下行鏈路子訊框和上行鏈路子訊框時,m 0 等於4。在任一場景中,UE 706可以在UE 706在其中接收到NPDSCH的無線電訊框之後的下一無線電訊框中的子訊框2中發送與NPDSCH相關聯的第二ACK/NACK。補充地及/或替代地,m 0 可以僅包括有效的上行鏈路子訊框及/或下行鏈路子訊框(例如,可用於傳輸而不用於切換的子訊框)。
在圖14B中,在1414處,基地台可以在DCI傳輸中的第二延遲欄位中將與m 0 個子訊框相關聯的資訊用信號發送給UE。例如,參照圖7A和7B,可以在DCI傳輸中的第二延遲欄位中將與m 0 個子訊框相關聯的資訊713用信號發送給UE 706。在一種配置中,資訊707、713可以是在同一DCI傳輸中用信號發送的。在另一種配置中,資訊707、713可以是在不同的DCI傳輸中用信號發送的。
在圖14B中,在1416處,基地台可以從UE接收包括複數個ACK/NACK的附隨體。在一個態樣中,附隨體之每一者ACK/NACK可以與不同的HARQ程序 相關聯。例如,參照圖7A和7B,基地台704可以從UE 706接收包括複數個ACK/NACK的附隨體715。在一個態樣中,附隨體之每一者ACK/NACK可以與關聯於一或多個NPDCCH傳輸及/或NPDSCH傳輸的不同的HARQ程序相關聯。
圖15是一種無線通訊的方法的流程圖1500。該方法可以由基地台(例如,基地台102、180、504、604、704、804、904、1004、1104、2350、2550、2750、eNB 310、裝置1802/1802')來執行。在圖15中,具有虛線的操作指示可選操作。
在1502處,基地台可以決定用於窄頻通訊的窄頻時間TDD訊框結構。在一個態樣中,窄頻TDD訊框結構可以包括以下各項中的一項或多項:下行鏈路子訊框集合、上行鏈路子訊框集合、特殊子訊框集合或靈活子訊框集合。在一個態樣中,靈活子訊框可以可由基地台配置成下行鏈路子訊框或上行鏈路子訊框。例如,參照圖9,基地台904可以決定901用於窄頻通訊的窄頻TDD訊框結構,其包括以下各項中的一項或多項:下行鏈路子訊框集合、上行鏈路子訊框集合、特殊子訊框集合及/或靈活子訊框集合。例如,基地台904可以決定901窄頻TDD訊框結構是來自圖4中的表410的配置0、1、2、3、4、5、6、lo中的一種配置。
在1504處,基地台可以向UE發送與窄頻TDD訊框結構相關聯的位元映像。在一個態樣中,位元 映像可以指示以下各項中的一項或多項:下行鏈路子訊框集合、上行鏈路子訊框集合、特殊子訊框集合或靈活子訊框集合。在另一個態樣中,與窄頻TDD訊框結構相關聯的位元映像的第一長度可以比與窄頻FDD訊框結構相關聯的不同位元映像的第二長度要長。例如,參照圖9,基地台904可以向UE 906發送與窄頻TDD訊框結構相關聯的位元映像903。位元映像903可以指示所決定的窄頻TDD訊框結構中的下行鏈路子訊框集合、上行鏈路子訊框集合、特殊子訊框集合及/或靈活子訊框集合。
在1506處,基地台可以經由發送指示下行鏈路子訊框集合、上行鏈路子訊框集合、特殊子訊框集合或靈活子訊框集合中的一項或多項的單個位元映像,來發送與窄頻TDD訊框結構相關聯的位元映像。例如,參照圖9,當基地台904在頻帶中模式下操作時,可以將指示下行鏈路子訊框集合、上行鏈路子訊框集合、特殊子訊框集合及/或靈活子訊框集合的單個位元映像903發送給UE 906。
在1508處,基地台可以經由發送指示下行鏈路子訊框集合的第一資訊,來向UE發送與窄頻TDD訊框結構相關聯的位元映像。例如,參照圖9,當基地台904在獨立模式下操作時,可以將指示下行鏈路子訊框集合的第一位圖903單獨地發送給UE 806。
在1510處,基地台可以經由發送指示上行鏈路子訊框集合的第二資訊,來向UE發送與窄頻TDD訊框 結構相關聯的位元映像。例如,參照圖9,當基地台904在獨立模式下操作時,可以將指示上行鏈路子訊框集合的第二位元映像903單獨地發送給UE 806。
在1512處,基地台可以經由發送指示特殊子訊框集合的第三資訊,來向UE發送與窄頻TDD訊框結構相關聯的位元映像。例如,參照圖9,當基地台904在獨立模式下操作時,可以將指示特殊子訊框集合的第三位元映像903單獨地發送給UE 806。
在1514處,基地台可以經由發送指示靈活子訊框集合的第四資訊,來向UE發送與窄頻TDD訊框結構相關聯的位元映像。例如,參照圖9,當基地台904在獨立模式下操作時,可以將指示靈活子訊框集合的第四位元映像903單獨地發送給UE 806。
圖16是一種無線通訊的方法的流程圖1600。該方法可以由基地台(例如,基地台102、180、504、604、704、804、904、1004、1104、2350、2550、2750、eNB 310、裝置1802/1802')來執行。在圖16中,具有虛線的操作指示可選操作。
在1602處,基地台可以決定一組窄頻TDD訊框結構中的用於窄頻通訊的窄頻TDD訊框結構。例如,參照圖10,基地台1004可以決定1001窄頻TDD訊框結構,其包括以下各項中的一項或多項:下行鏈路子訊框集合、上行鏈路子訊框集合、特殊子訊框集合或靈活子訊框集合。例如,基地台1004可以決定1001窄頻TDD訊框 結構是來自圖4中的表410的配置0、1、2、3、4、5、6、lo中的一種配置。
在1604處,基地台可以將複數個子訊框群組成複數個子訊框組。在一個態樣中,複數個子訊框組之每一者子訊框組可以與特定的加擾序列相關聯。在另一個態樣中,每個子訊框組可以是基於下行鏈路子訊框和預定數量的後續子訊框來決定的。在另外的態樣中,這些子訊框組可以都不具有重疊的子訊框。例如,參照圖10,基地台1004可以將複數個子訊框群組成1003複數個子訊框組。在一個態樣中,複數個子訊框組之每一者子訊框組可以與特定的加擾序列相關聯,以及每個子訊框組可以是基於下行鏈路子訊框和預定數量的後續子訊框來決定的。在圖10的第一實例中,基地台1004處的用於NPDCCH及/或NPDSCH的加擾序列產生器可以在每min(RepetitionSize,M)個絕對子訊框之後被重新初始化。絕對子訊框可以是包括某一範圍(例如,四個子訊框)內的所有子訊框的預定數量的子訊框,而不考慮這些子訊框是否被用於發送NPDCCH及/或NPDSCH。在圖10的第二實例中,基地台1004可以使用預定義的子訊框邊界,並且落在邊界內的所有NPDCCH及/或NPDSCH傳輸可以具有基於該邊界中的最低子訊框索引的相同的加擾。在一個態樣中,邊界可以被定義成mod(sub-frame-index-i_Delta,i_M)=0。
在1606處,基地台可以決定複數個子訊框組中的與第一子訊框集合相關聯的第一子訊框組以及複數個子訊框組中的與第二子訊框集合相關聯的第二子訊框組。例如,參照圖10,基地台1004可以決定1005複數個子訊框組中的與第一子訊框集合相關聯的第一子訊框組以及複數個子訊框組中的與第二子訊框集合相關聯的第二子訊框組。在圖10的第一實例和第二實例兩者中,假設M等於四,並且NPDSCH在跨越具有子訊框0-19的兩個無線電訊框的子訊框{5,6,8,10,13,14,15,17}上重複。在上文關於圖10論述的第一實例中,從子訊框5開始的子訊框範圍(例如,四個子訊框)包括子訊框5、6、7、8。從子訊框10(例如,在第一組中的最後一個子訊框之後的第一子訊框)開始的子訊框範圍(例如,四個子訊框)包括子訊框10、11、12、13。此外,從子訊框14(例如,在第二組中的最後一個子訊框之後的第一子訊框)開始的子訊框範圍(例如,四個子訊框)包括子訊框14、15、16、17。因此,基地台1004可以將子訊框{5,6,8}群組成第一組,將子訊框{10,13}群組成第二組,以及將子訊框{14,15,17}群組成第三組。在上文關於圖10論述的第二實例中,子訊框的邊界將是{[0-3][4-7][8-11][12-15][16-19]}。因此,基地台1004可以將子訊框{0,1,2,3}群組成第一組,將子訊框{4,5,6,7}群組成第二組,將子訊框{8,9,10,11}群組成第三組,將子訊框{12,13,14,15} 群組成第四組,以及將子訊框{16,17,18,19}群組成第五組。
在1608處,基地台可以決定用於第一子訊框組中的第一下行鏈路子訊框集合的第一加擾序列以及用於第二子訊框組中的第二下行鏈路子訊框集合的第二加擾序列。在一個態樣中,與第二下行鏈路子訊框集合相比,第一下行鏈路子訊框集合可以包括不同數量的子訊框。例如,參照圖10,基地台1004可以決定1007用於第一子訊框組中的第一下行鏈路子訊框集合的第一加擾序列以及用於第二子訊框組中的第二下行鏈路子訊框集合的第二加擾序列。參照上文關於圖10論述的第一實例,被基地台1004用於在子訊框{5,6,8}中發送的NPDSCH的加擾序列可以是基於子訊框5的加擾序列的。另外,被基地台1004用於在子訊框{10,13}中發送的NPDSCH的加擾序列可以是基於子訊框10的加擾序列的。此外,被基地台1004用於在子訊框{14,15,17}中發送的NPDSCH的加擾序列可以是基於子訊框14的。參照關於圖10論述的第二實例,被基地台1004用於在子訊框{5,6}中發送的NPDSCH的加擾序列可以是基於子訊框4的,被基地台1004用於在子訊框{8,10}中發送的NPDSCH的加擾序列可以是基於子訊框8的,被基地台1004用於在子訊框{13,14,15}中發送的NPDSCH的加擾序列可以是基於子訊框12的,以及被 基地台1004用於在子訊框{17}中發送的NPDSCH的加擾序列可以是基於子訊框16的。
在1610處,基地台可以使用窄頻TDD訊框結構來發送窄頻實體下行鏈路通道的一系列重複。在一個態樣中,可以使用第一加擾序列在一個或或多個第一下行鏈路子訊框集合中發送該系列重複中的第一部分的重複。在另一個態樣中,可以使用第二加擾序列在一或多個第二下行鏈路子訊框集合中發送該系列重複中的第二部分的重複。在另外的態樣中,一或多個第一下行鏈路子訊框集合中的每一個可以包括相同數量的子訊框。在某些其他態樣中,一或多個第二下行鏈路子訊框集合中的每一個可以包括相同數量的子訊框。在某些其他態樣中,一或多個第一下行鏈路子訊框集合中的每一個可以包括與一或多個第二下行鏈路子訊框集合中的每一個相同數量的子訊框。例如,參照圖10,基地台1004可以基於上文關於圖10描述的第一實例或第二實例來發送1009 NPDCCH及/或NPDSCH的一系列重複。
圖17是一種無線通訊的方法的流程圖1700。該方法可以由基地台(例如,基地台102、180、504、604、704、804、904、1004、1104、2350、2550、2750、eNB 310、裝置1802/1802')來執行。
在1702處,基地台可以決定一組窄頻TDD訊框結構中的用於窄頻通訊的窄頻TDD訊框結構。例如,參照圖11,基地台1104可以決定1101窄頻TDD訊框結 構,其包括以下各項中的一項或多項:下行鏈路子訊框集合、上行鏈路子訊框集合、特殊子訊框集合或靈活子訊框集合。例如,基地台1104可以決定1101窄頻TDD訊框結構是來自圖4中的表410的配置0、1、2、3、4、5、6、lo中的一種配置。
在1704處,基地台可以使用窄頻TDD訊框結構來發送窄頻實體下行鏈路通道的第一冗餘版本以及窄頻實體下行鏈路通道的第二冗餘版本。在一個態樣中,在第一冗餘版本和第二冗餘版本之間切換之前發送的任一冗餘版本的重複的數量可以是基於所決定的窄頻TDD訊框結構中的下行鏈路子訊框的數量和預定的最大重複數量的。在某些態樣中,下行鏈路子訊框的數量可以包括連續下行鏈路子訊框的數量。例如,參照圖11,基地台1104可以使用窄頻TDD訊框結構來發送NPDCCH 1103及/或NPDSCH 1103的第一冗餘版本(RV0)以及NPDCCH 1105及/或NPDSCH 1105的第二冗餘版本(RV1)。在一個態樣中,RV0的多個重複可以是在切換到RV1之前的重複循環中發送的,反之亦然。重複循環中的重複的數量可以是基於所決定的窄頻TDD訊框結構中的連續下行鏈路子訊框的數量和預定的最大重複數量的。舉一個說明性實例,假設配置1用於窄頻TDD訊框結構,配置了NPDCCH 1103及/或NPDSCH 1103的十六個重複,配置了重複的兩個版本,以及重複循環中的最大重複數量是二。因此,基地台1104發送的序列將是 {RV0RV0 RV1RV1 RV0RV0 RV1RV1 RV0RV0 RV1RV1 RV0RV0 RV1RV1 RV0RV0 RV1RV1 RV0RV0 RV1RV1 RV0RV0 RV1RV1 RV0RV0 RV1RV1}。
圖18是圖示在示例性裝置1802中的不同單元/組件之間的資料流的概念性資料流圖1800。該裝置可以是與UE 1850(例如,UE 104、350、506、606、706、806、906、1006、1106、2550、裝置2302/2302')進行窄頻通訊(例如,NB-IoT通訊或eMTC)的基地台(例如,基地台102、180、504、604、704、804、904、1004、1104、2350、eNB 310、裝置1802'、2502/2502')。該裝置可以包括接收組件1804、加擾序列組件1806、實體下行鏈路通道組件1808、子訊框組件1810和發送組件1812。
在某些配置中,訊框結構組件1808可以被配置為:決定一組窄頻TDD訊框結構中的用於窄頻通訊的窄頻TDD訊框結構。訊框結構組件1808可以被配置為:向發送組件1812發送與窄頻TDD訊框結構相關聯的信號。 在某些態樣中,子訊框組件1810可以被配置為:將複數個子訊框群組成複數個子訊框組。在一個態樣中,複數個子訊框組之每一者子訊框組可以與特定的加擾序列相關聯。在另一個態樣中,每個子訊框組可以是基於下行鏈路子訊框和預定數量的後續子訊框來決定的。在另 外的態樣中,這些子訊框組可以都不具有重疊的子訊框。子訊框組件1810可以被配置為:向發送組件1812發送與複數個子訊框組相關聯的信號。
在某些其他配置中,子訊框組件1810可以被配置為:決定複數個子訊框組中的與第一子訊框集合相關聯的第一子訊框組以及複數個子訊框組中的與第二子訊框集合相關聯的第二子訊框組。子訊框組件1810可以被配置為:向發送組件1812發送與複數個子訊框組中的與第一子訊框集合相關聯的第一子訊框組和複數個子訊框組中的與第二子訊框集合相關聯的第二子訊框組相關聯的信號。
在某些配置中,加擾序列組件1806可以被配置為:決定用於第一子訊框組中的第一下行鏈路子訊框集合的第一加擾序列和用於第二子訊框組中的第二下行鏈路子訊框集合的第二加擾序列。在一個態樣中,與第二下行鏈路子訊框集合相比,第一下行鏈路子訊框集合可以包括不同數量的子訊框。加擾序列組件1806可以被配置為:向發送組件1812發送與第一加擾序列和第二加擾序列相關聯的信號。
在某些配置中,發送組件1812可以被配置為:使用窄頻TDD訊框結構來發送窄頻實體下行鏈路通道的一系列重複。在一個態樣中,一系列重複中的第一部分的重複可以是使用第一加擾序列在一或多個第一下行鏈路子訊框集合中發送的。在另一個態樣中,一系列重複 中的第二部分的重複可以是使用第二加擾序列在一或多個第二下行鏈路子訊框集合中發送的。在另外的態樣中,一或多個第一下行鏈路子訊框集合中的每一個可以包括相同數量的子訊框。在某些態樣中,一或多個第二下行鏈路子訊框集合中的每一個可以包括相同數量的子訊框。在某些其他態樣中,一或多個第一下行鏈路子訊框集合中的每一個可以包括與一或多個第二下行鏈路子訊框集合中的每一個相同數量的子訊框。
該裝置可以包括執行上述圖16的流程圖中的演算法的方塊之每一者方塊的另外的組件。因此,可以由組件執行上述圖16的流程圖之每一者方塊,並且該裝置可以包括那些組件中的一或多個組件。組件可以是被專門配置為執行該程序/演算法的一或多個硬體組件,由被配置為執行該程序/演算法的處理器實現,儲存在電腦可讀取媒體內用於由處理器來實現,或它們的某種組合。
圖19是圖示針對採用處理系統1914的裝置1802'的硬體實現方式的實例的圖1900。可以利用匯流排架構(通常由匯流排1924代表)來實現處理系統1914。匯流排1924可以包括任何數量的互連匯流排和橋接,這取決於處理系統1914的特定應用和整體設計約束。匯流排1924將包括一或多個處理器及/或硬體組件(由處理器1904、組件1804、1806、1808、1810、1812以及電腦可讀取媒體/記憶體1906代表)的各種電路連接到一起。匯流排1924還可以將諸如定時源、周邊 設備、電壓調節器以及功率管理電路之類的各種其他電路進行連接,這些電路是本發明所屬領域中公知的,並且因此將不進行進一步描述。
處理系統1914可以耦合到收發機1910。收發機1910耦合到一或多個天線1920。收發機1910提供用於經由傳輸媒體與各種其他裝置進行通訊的方式。收發機1910從一或多個天線1920接收信號,從所接收的信號中提取資訊,以及向處理系統1914(具體為接收組件1804)提供所提取的資訊。另外,收發機1910從處理系統1914(具體為發送組件1812)接收資訊,並且基於所接收的資訊來產生要被應用到一或多個天線1920的信號。處理系統1914包括耦合到電腦可讀取媒體/記憶體1906的處理器1904。處理器1904負責一般的處理,包括對儲存在電腦可讀取媒體/記憶體1906上的軟體的執行。軟體在由處理器1904執行時,使得處理系統1914執行上面針對任何特定裝置所描述的各種功能。電腦可讀取媒體/記憶體1906亦可以用於儲存由處理器1904在執行軟體時所操縱的資料。處理系統1914亦包括組件1804、1806、1808、1810、1812中的至少一個。組件可以是在處理器1904中執行的、位於/儲存在電腦可讀取媒體/記憶體1906中的軟體組件、耦合到處理器1904的一或多個硬體組件、或它們的某種組合。處理系統1914可以是eNB 310的組件,並且可以包括TX處理器316、RX處理器 370以及控制器/處理器375中的至少一個及/或記憶體376。
在某些配置中,用於無線通訊的裝置1802/1802'可以包括:用於決定一組窄頻TDD訊框結構中的用於窄頻通訊的窄頻TDD訊框結構的單元。在某些其他配置中,用於無線通訊的裝置1802/1802'可以包括:用於將複數個子訊框群組成複數個子訊框組的單元。在一個態樣中,複數個子訊框組之每一者子訊框組可以與特定的加擾序列相關聯。在另一個態樣中,每個子訊框組可以是基於下行鏈路子訊框和預定數量的後續子訊框來決定的。在另外的態樣中,這些子訊框組可以都不具有重疊的子訊框。在某些其他配置中,用於無線通訊的裝置1802/1802'可以包括:用於決定複數個子訊框組中的與第一子訊框集合相關聯的第一子訊框組以及複數個子訊框組中的與第二子訊框集合相關聯的第二子訊框組的單元。在某些其他配置中,用於無線通訊的裝置1802/1802'可以包括:用於決定用於第一子訊框組中的第一下行鏈路子訊框集合的第一加擾序列以及用於第二子訊框組中的第二下行鏈路子訊框集合的第二加擾序列的單元。在一個態樣中,與第二下行鏈路子訊框集合相比,第一下行鏈路子訊框集合可以包括不同數量的子訊框。在某些其他配置中,用於無線通訊的裝置1802/1802'可以包括:用於使用窄頻TDD訊框結構來發送窄頻實體下行鏈路通道的一系列重複的單元。在一個 態樣中,一系列重複中的第一部分的重複可以是使用第一加擾序列在一或多個第一下行鏈路子訊框集合中發送的。在另一個態樣中,一系列重複中的第二部分的重複可以是使用第二加擾序列在一或多個第二下行鏈路子訊框集合中發送的。在另外的態樣中,一或多個第一下行鏈路子訊框集合中的每一個可以包括相同數量的子訊框。在某些態樣中,一或多個第二下行鏈路子訊框集合中的每一個可以包括相同數量的子訊框。在某些其他態樣中,一或多個第一下行鏈路子訊框集合中的每一個可以包括與一或多個第二下行鏈路子訊框集合中的每一個相同數量的子訊框。上述單元可以是裝置1802的上述組件中的一或多個及/或裝置1802'的被配置為執行由上述單元所記載的功能的處理系統1914。如前述,處理系統1914可以包括TX處理器316、RX處理器370、以及控制器/處理器375。因此,在一種配置中,上述單元可以是被配置為執行由上述單元所記載的功能的TX處理器316、RX處理器370、以及控制器/處理器375。
圖20是一種無線通訊的方法的流程圖2000。該方法可以由UE(例如,UE 104、350、506、606、706、806、906、1006、1106、1850、2550、裝置2302/2302')來執行。
在2002處,UE可以接收指示一組窄頻TDD訊框結構中的用於窄頻通訊的窄頻TDD訊框結構的資訊。例如,參照圖8A,UE 806可以從基地台804接收 指示窄頻TDD訊框結構的資訊801。例如,資訊801可以指示窄頻TDD訊框結構是來自圖4中的表410的配置0、1、2、3、4、5、6、lo中的一種配置。
在2004處,UE可以針對來自基地台的下行鏈路傳輸監測包括窄頻TDD訊框結構的第一無線電訊框中的一或多個下行鏈路子訊框。例如,參照圖8A,UE 806可以監測在使用窄頻TDD訊框結構的第一無線電訊框中用於下行鏈路傳輸(例如,NPDCCH及/或NPDSCH)的一或多個下行鏈路子訊框。
在2006處,UE可以將至少一個上行鏈路傳輸延遲至在第一無線電訊框之後的第二無線電訊框中的上行鏈路子訊框。例如,參照圖8A,UE 806可以將NPUSCH傳輸805延遲至位於在第一無線電訊框之後的第二無線電訊框中的上行鏈路子訊框。換句話說,沒有啟用交錯,並且UE 806僅可以監測下行鏈路子訊框或者使用單個無線電訊框中的上行鏈路子訊框來發送,而不是進行以上兩種操作。
圖21是一種無線通訊的方法的流程圖2100。該方法可以由UE(例如,UE 104、350、506、606、706、806、906、1006、1106、1850、2550、裝置2302/2302')來執行。在圖21中,具有虛線的操作指示可選操作。
在2102處,UE可以接收指示一組窄頻TDD訊框結構中的用於窄頻通訊的窄頻TDD訊框結構的資 訊。例如,參照圖8B,UE 806可以從基地台804接收指示窄頻TDD訊框結構的資訊801。例如,資訊801可以指示窄頻TDD訊框結構是來自圖4中的表410的配置0、1、2、3、4、5、6、lo中的一種配置。
在2104處,UE可以接收與窄頻實體下行鏈路通道相關聯的下行鏈路授權。例如,參照圖8B,UE 806可以接收為NPDCCH 809及/或NPDSCH 809分配第一子訊框集合的下行鏈路授權807。例如,下行鏈路授權可以指示下行鏈路子訊框pq被分配用於NPDCCH 809及/或NPDSCH 809。
在2106處,UE可以在複數個子訊框上接收與下行鏈路授權相關聯的窄頻實體下行鏈路通道。在一個態樣中,複數個子訊框可以包括上行鏈路子訊框、下行鏈路子訊框和特殊子訊框。在一個態樣中,窄頻實體下行鏈路通道包括NPDSCH。在另外的態樣中,窄頻實體下行鏈路通道可以是在子訊框pq上接收的。例如,參照圖8B,UE 806可以在子訊框pq的集合中的至少一個子訊框中接收與下行鏈路授權807相關聯的NPDCCH 809及/或NPDSCH 809。在與圖8B相關聯的第一實例中,假設窄頻TDD訊框結構是配置1,並且在下行鏈路授權807中,子訊框3、4和5(例如,p等於3並且q等於5)被分配用於NPDCCH 809及/或NPDSCH 809。
在2108處,UE可以經由從子訊框p至子訊框q接收窄頻實體下行鏈路通道,來在複數個子訊框上接收 與下行鏈路授權相關聯的窄頻實體下行鏈路通道。例如,參照圖8B,UE 806可以在子訊框pq的集合中的至少一個子訊框中接收與下行鏈路授權807相關聯的NPDCCH 809及/或NPDSCH 809。在與圖8B相關聯的第一實例中,假設窄頻TDD訊框結構是配置1,並且在下行鏈路授權807中,子訊框3、4和5(例如,p等於3並且q等於5)被分配用於NPDCCH 809及/或NPDSCH 809分配。
在2110處,UE可以接收針對窄頻實體上行鏈路通道的相關聯的上行鏈路授權。在一個態樣中,下行鏈路授權和上行鏈路授權可以是在同一搜尋空間中接收的。例如,參照圖8B,UE 806可以接收為NPUCCH 813及/或NPUSCH 813分配第二子訊框集合的上行鏈路授權811。例如,第二子訊框集合可以位於第一子訊框集合之前、位於第一子訊框集合之後、及/或與第一子訊框集合部分地重疊。另外,UE 806可以被限制為使用第二集合中的子訊框子集來發送NPUCCH 813及/或NPUSCH 813。在一個態樣中,UE 806可以被限制到子訊框子集,以適應從接收NPDCCH 809及/或NPDSCH 809切換到發送NPUCCH 813及/或NPUSCH 813。在某些配置中,下行鏈路授權807和上行鏈路授權811可以是在同一搜尋空間中接收的。在一個態樣中,可以不對NPUCCH(ACK)和NPDSCH進行交錯。參照上文關於圖8B論述的第一實例,假設上行鏈 路授權811指示UE 806可以在位於子訊框1、2、3、4、5、6、7和8的集合中的上行鏈路子訊框中發送NPUCCH 813及/或NPUSCH 813。另外,假設UE 806被限制在位於被分配用於NPDCCH 809及/或NPDSCH 809的第一子訊框之前a個子訊框的子訊框(例如,子訊框p-a)。另外,假設UE 806被限制在位於被分配用於NPDCCH 809及/或NPDSCH 809的最後一個子訊框之後b個子訊框的子訊框(例如,子訊框q+b)。此外,假設a等於1並且b等於二。
在2112處,UE可以使用位於複數個子訊框之前或位於複數個子訊框之後中的至少一種情況的一或多個上行鏈路子訊框,來發送與上行鏈路授權相關聯的窄頻實體上行鏈路通道。在一個態樣中,窄頻實體上行鏈路通道包括NPUCCH或NPUSCH中的至少一者。在另一個態樣中,窄頻實體上行鏈路通道不包括與NPUCCH相關聯的ACK/NACK。例如,參照圖8B,UE 806可以使用子訊框1、2和8來發送NPUCCH 813及/或NPUSCH 813,這是因為子訊框3(例如,4-1=3)被限制用於切換,並且子訊框6和7(例如,5+2=7)亦被限制用於切換。
在2114處,UE可以經由使用在子訊框p-a之前的子訊框或在子訊框q+b之後的子訊框中的至少一個子訊框來發送窄頻上行鏈路實體通道,從而使用位於複數個子訊框之前或位於複數個子訊框之後中的至少一種情 況的一或多個上行鏈路子訊框來發送與上行鏈路授權相關聯的窄頻實體上行鏈路通道。在一個態樣中,ab可以是正整數。例如,參照圖8B,UE 806可以使用子訊框1、2和8來發送NPUCCH 813及/或NPUSCH 813,這是因為子訊框3(例如,4-1=3)被限制用於切換,並且子訊框6和7(例如,5+2=7)亦被限制用於切換。
圖22是一種無線通訊的方法的流程圖2200。該方法可以由UE(例如,UE 104、350、506、606、706、806、906、1006、1106、1850、2550、裝置2302/2302')來執行。在圖22中,具有虛線的操作指示可選操作。
在2202處,UE可以接收指示一組窄頻TDD訊框結構中的用於窄頻通訊的窄頻TDD訊框結構的資訊。例如,參照圖8C,UE 806可以從基地台804接收指示用於窄頻通訊的TDD訊框結構的資訊801。例如,資訊801可以指示窄頻TDD訊框結構是來自圖4中的表410的配置0、1、2、3、4、5、6、lo中的一種配置。
在2204處,UE可以接收與窄頻實體上行鏈路通道相關聯的上行鏈路授權。例如,參照圖8C,UE 806可以接收為NPUCCH 817及/或NPUSCH 817分配第一子訊框集合的上行鏈路授權815。例如,上行鏈路授權815可以指示下行鏈路子訊框pq被分配用於NPUCCH 817及/或NPUSCH 817。
在2206處,UE可以在複數個子訊框上發送與上行鏈路授權相關聯的窄頻實體上行鏈路通道。在一個態樣中,複數個子訊框可以包括上行鏈路子訊框、下行鏈路子訊框和特殊子訊框。例如,參照圖8C,UE 806可以在子訊框pq的集合中的至少一個子訊框中發送與上行鏈路授權815相關聯的NPUCCH 817及/或NPUSCH 817。舉一個說明性實例,假設窄頻TDD訊框結構是配置1,並且在上行鏈路授權815中,子訊框6和7(例如,p等於6並且q等於7)被分配用於NPUCCH 817及/或NPUSCH 817。換句話說,第一子訊框集合可以包括特殊子訊框6和上行鏈路子訊框7。
在2208處,UE可以經由從子訊框p至子訊框q發送窄頻實體上行鏈路通道,從而在複數個子訊框上發送與上行鏈路授權相關聯的窄頻實體上行鏈路通道。例如,參照圖8C,可以在子訊框pq的集合中的至少一個子訊框中發送與上行鏈路授權815相關聯的NPUCCH 817及/或NPUSCH 817。
在2210處,UE可以接收針對窄頻實體下行鏈路通道的下行鏈路授權。例如,參照圖8C,UE 806可以接收為NPDCCH 821及/或NPDSCH 821分配第二子訊框集合的下行鏈路授權819。例如,第二子訊框集合可以位於第一子訊框集合之前、位於第一子訊框集合之後、及/或與第一子訊框集合部分地重疊。另外,UE 806可以被限制為針對NPDCCH 821及/或NPDSCH 821 來監測第二集合中的子訊框子集。在一個態樣中,UE 806可以被限制為僅監測所分配的下行鏈路子訊框的集合,以適應從發送NPUCCH 817及/或NPUSCH 817切換到針對NPDCCH 821及/或NPDSCH 821進行監測。
在2212處,UE可以在位於複數個子訊框之前或位於複數個子訊框之後中的至少一種情況的一或多個下行鏈路子訊框中接收與下行鏈路授權相關聯的窄頻實體下行鏈路通道。例如,參照圖8C,UE 806可以在第二子訊框集合中接收NPDCCH 821及/或NPDSCH 821。例如,第二子訊框集合可以位於第一子訊框集合之前、位於第一子訊框集合之後、及/或與第一子訊框集合部分地重疊。另外,UE 806可以被限制為針對NPDCCH 821及/或NPDSCH 821來監測第二集合中的子訊框子集。在一個態樣中,UE 806可以被限制為僅監測所分配的下行鏈路子訊框的集合,以適應從發送NPUCCH 817及/或NPUSCH 817切換到針對可以在第二子訊框集合中接收的NPDCCH 821及/或NPDSCH 821進行監測。參照上文關於圖8C論述的實例,假設下行鏈路授權819向UE 806指示位於子訊框4、5、6、7、8和9之間的下行鏈路子訊框被分配用於NPDCCH 821及/或NPDSCH 821。另外,假設UE 806被限制在位於被分配用於NPUCCH 817及/或NPUSCH 817的第一子訊框之前c個子訊框的子訊框(例如,子訊框p-c)。另外, 假設UE 806被限制在位於被分配用於NPUCCH 817及/或NPUSCH 817的最後一個子訊框之後d個子訊框的子訊框(例如,子訊框q+d)。此外,假設c等於1並且d等於1。因此,UE 806可以監測子訊框4和9而不監測子訊框5,這是因為子訊框5(例如,6-1=5)被限制用於切換。不存在位於子訊框7之後的下行鏈路子訊框,並且因此在子訊框7之後沒有下行鏈路子訊框被限制用於切換。
在2214處,UE可以經由使用在子訊框p-c之前的子訊框或在子訊框q+d之後的子訊框中的至少一個子訊框來接收窄頻下行鏈路實體通道,從而在位於複數個子訊框之前或位於複數個子訊框之後中的至少一種情況的一或多個下行鏈路子訊框中接收與下行鏈路授權相關聯的窄頻實體下行鏈路通道。在一個態樣中,cd可以是正整數。例如,參照圖8C,UE 806可以在第二子訊框集合中接收NPDCCH 821及/或NPDSCH 821。例如,第二子訊框集合可以位於第一子訊框集合之前、位於第一子訊框集合之後、及/或與第一子訊框集合部分地重疊。另外,UE 806可以被限制為針對NPDCCH 821及/或NPDSCH 821來監測第二集合中的子訊框子集。在一個態樣中,UE 806可以被限制為僅監測所分配的下行鏈路子訊框的集合,以適應從發送NPUCCH 817及/或NPUSCH 817切換到針對可以在第二子訊框集合中接收的NPDCCH 821及/或NPDSCH 821進行監測。參照 上文關於圖8C論述的實例,假設下行鏈路授權819向UE 806指示位於子訊框4、5、6、7、8和9之間的下行鏈路子訊框被分配用於NPDCCH 821及/或NPDSCH 821。另外,假設UE 806被限制在位於被分配用於NPUCCH 817及/或NPUSCH 817的第一子訊框之前c個子訊框的子訊框(例如,子訊框p-c)。另外,假設UE 806被限制在位於被分配用於NPUCCH 817及/或NPUSCH 817的最後一個子訊框之後d個子訊框的子訊框(例如,子訊框q+d)。此外,假設c等於1並且d等於1。因此,UE 806可以監測下行鏈路子訊框4和9而不監測子訊框5,這是因為子訊框5(例如,6-1=5)被限制用於切換。不存在位於子訊框7之後的下行鏈路子訊框,並且因此在子訊框7之後沒有下行鏈路子訊框被限制用於切換。
圖23是圖示在示例性裝置2302中的不同單元/組件之間的資料流的概念性資料流圖2300。該裝置可以是與基地台2350(例如,基地台102、180、504、604、704、804、904、1004、1104、裝置1802/1802'、2502/2502'、eNB 310)進行窄頻通訊(例如,NB-IoT通訊或eMTC)的UE(例如,UE 104、350、506、606、706、806、906、1006、1106、2550、裝置2302')。該裝置可以包括接收組件2304、監測組件2306、發送組件2308和延遲組件2310。
在某些配置中,接收組件2304可以被配置為:接收指示一組窄頻TDD訊框結構中的用於窄頻通訊的窄頻TDD訊框結構的資訊。接收組件2304可以被配置為:向監測組件2306、發送組件2308及/或延遲組件2310中的一或多個發送與指示一組窄頻TDD訊框結構中的用於窄頻通訊的窄頻TDD訊框結構的資訊相關聯的信號。
在某些配置中,監測組件2306可以被配置為:針對來自基地台2350的下行鏈路傳輸監測包括窄頻TDD訊框結構的第一無線電訊框中的一或多個下行鏈路子訊框。在某些態樣中,監測組件2306可以被配置為:經由與接收組件2304及/或發送組件2308進行通訊,來監測第一無線電訊框中的一或多個下行鏈路子訊框。
在某些配置中,延遲組件2310可以被配置為:將至少一個上行鏈路傳輸延遲至在第一無線電訊框之後的第二無線電訊框中的上行鏈路子訊框。延遲組件2310可以被配置為:向發送組件2308發送信號,該信號指示至少一個上行鏈路傳輸被延遲至在第一無線電訊框之後的第二無線電訊框中的上行鏈路子訊框。
該裝置可以包括執行上述圖20的流程圖中的演算法的方塊之每一者方塊的另外的組件。因此,可以由組件執行上述圖20的流程圖之每一者方塊,並且該裝置可以包括那些組件中的一或多個組件。組件可以是被專門配置為執行該程序/演算法的一或多個硬體組件,由被配 置為執行該程序/演算法的處理器實現,儲存在電腦可讀取媒體內用於由處理器來實現,或它們的某種組合。
圖24是圖示針對採用處理系統2414的裝置2302'的硬體實現方式的實例的圖2400。可以利用匯流排架構(通常由匯流排2424代表)來實現處理系統2414。匯流排2424可以包括任何數量的互連匯流排和橋接,這取決於處理系統2414的特定應用和整體設計約束。匯流排2424將包括一或多個處理器及/或硬體組件(由處理器2404、組件2304、2306、2308、2310以及電腦可讀取媒體/記憶體2406代表)的各種電路連接到一起。匯流排2424亦可以將諸如定時源、周邊設備、電壓調節器以及功率管理電路之類的各種其他電路進行連接,這些電路是本發明所屬領域中公知的,並且因此將不進行進一步描述。
處理系統2414可以耦合到收發機2410。收發機2410耦合到一或多個天線2420。收發機2410提供用於經由傳輸媒體與各種其他裝置進行通訊的方式。收發機2410從一或多個天線2420接收信號,從所接收的信號中提取資訊,以及向處理系統2414(具體為接收組件2304)提供所提取的資訊。另外,收發機2410從處理系統2414(具體為發送組件2308)接收資訊,並且基於所接收的資訊來產生要被應用到一或多個天線2420的信號。處理系統2414包括耦合到電腦可讀取媒體/記憶體2406的處理器2404。處理器2404負責一般的處理,包括對儲存在 電腦可讀取媒體/記憶體2406上的軟體的執行。軟體在由處理器2404執行時,使得處理系統2414執行上面針對任何特定裝置所描述的各種功能。電腦可讀取媒體/記憶體2406亦可以用於儲存由處理器2404在執行軟體時所操縱的資料。處理系統2414亦包括組件2304、2306、2308、2310中的至少一個。組件可以是在處理器2404中執行的、位於/儲存在電腦可讀取媒體/記憶體2406中的軟體組件、耦合到處理器2404的一或多個硬體組件、或它們的某種組合。處理系統2414可以是UE 350的組件,並且可以包括TX處理器368、RX處理器356以及控制器/處理器359中的至少一個及/或記憶體360。
在某些配置中,用於無線通訊的裝置2302/2302'可以包括:用於接收指示一組窄頻TDD訊框結構中的用於窄頻通訊的窄頻TDD訊框結構的資訊的單元。在某些其他配置中,用於無線通訊的裝置2302/2302'可以包括:用於針對來自基地台的下行鏈路傳輸監測包括窄頻TDD訊框結構的第一無線電訊框中的一或多個下行鏈路子訊框的單元。在某些其他配置中,用於無線通訊的裝置2302/2302'可以包括:用於將至少一個上行鏈路傳輸延遲至在第一無線電訊框之後的第二無線電訊框中的上行鏈路子訊框的單元。上述單元可以是裝置2302上述組件中的一或多個及/或裝置2302'的被配置為執行由上述單元所記載的功能的處理系統2414。如前述,處理系統2414可以包括TX處理器368、RX處理 器356、以及控制器/處理器359。因此,在一種配置中,上述單元可以是被配置為執行由上述單元所記載的功能的TX處理器368、RX處理器356、以及控制器/處理器359。
圖25是圖示在示例性裝置2502中的不同單元/組件之間的資料流的概念性資料流圖2500。該裝置可以是與UE 2550(例如,UE 104、350、506、606、706、806、906、1006、1106、1850、裝置2302/2302')進行窄頻通訊(例如,NB-IoT通訊或eMTC)的基地台(例如,基地台102、180、504、604、704、804、904、1004、1104、2350、裝置1802/1802'、2502')。該裝置可以包括接收組件2504、實體下行鏈路通道組件2506和發送組件2508。
在某些配置中,訊框結構組件2506可以被配置為:決定一組窄頻TDD訊框結構中的用於窄頻通訊的窄頻TDD訊框結構。訊框結構組件2506可以被配置為:向發送組件2508發送與窄頻TDD訊框結構相關聯的信號。
在某些其他配置中,訊框結構組件2506可以被配置為:使用窄頻TDD訊框結構來決定窄頻實體下行鏈路通道的第一冗餘版本以及窄頻實體下行鏈路通道的第二冗餘版本。在一個態樣中,在第一冗餘版本和第二冗餘版本之間切換之前發送的任一冗餘版本的重複的數量可以是基於所決定的窄頻TDD訊框結構中的下行鏈路子 訊框的數量和預定的最大重複數量的。在某些態樣中,下行鏈路子訊框的數量可以包括連續下行鏈路子訊框的數量。訊框結構組件2506可以被配置為:向發送組件2508發送使用窄頻TDD訊框結構的、與窄頻實體下行鏈路通道的第一冗餘版本和窄頻實體下行鏈路通道的第二冗餘版本相關聯的信號。
在某些配置中,發送組件2508可以被配置為:使用窄頻TDD訊框結構來發送窄頻實體下行鏈路通道的第一冗餘版本以及窄頻實體下行鏈路通道的第二冗餘版本。在一個態樣中,在第一冗餘版本和第二冗餘版本之間切換之前發送的任一冗餘版本的重複的數量可以是基於所決定的窄頻TDD訊框結構中的下行鏈路子訊框的數量和預定的最大重複數量的。在某些態樣中,下行鏈路子訊框的數量可以包括連續下行鏈路子訊框的數量。
該裝置可以包括執行上述圖17的流程圖中的演算法的方塊之每一者方塊的額外的組件。因此,可以由組件執行上述圖17的流程圖之每一者方塊,並且該裝置可以包括那些組件中的一或多個組件。組件可以是被專門配置為執行該程序/演算法的一或多個硬體組件,由被配置為執行該程序/演算法的處理器實現,儲存在電腦可讀取媒體內用於由處理器來實現,或它們的某種組合。
圖26是圖示針對採用處理系統2614的裝置2502'的硬體實現方式的實例的圖2600。可以利用匯流排架構(通常由匯流排2624代表)來實現處理系統 2614。匯流排2624可以包括任何數量的互連匯流排和橋接,這取決於處理系統2614的特定應用和整體設計約束。匯流排2624將包括一或多個處理器及/或硬體組件(由處理器2604、組件2504、2506、2508以及電腦可讀取媒體/記憶體2606代表)的各種電路連接到一起。匯流排2624亦可以將諸如定時源、周邊設備、電壓調節器以及功率管理電路之類的各種其他電路進行連接,這些電路是本發明所屬領域中公知的,並且因此將不進行進一步描述。
處理系統2614可以耦合到收發機2610。收發機2610耦合到一或多個天線2620。收發機2610提供用於經由傳輸媒體與各種其他裝置進行通訊的方式。收發機2610從一或多個天線2620接收信號,從所接收的信號中提取資訊,以及向處理系統2614(具體為接收組件2504)提供所提取的資訊。另外,收發機2610從處理系統2614(具體為發送組件2508)接收資訊,並且基於所接收的資訊來產生要被應用到一或多個天線2620的信號。處理系統2614包括耦合到電腦可讀取媒體/記憶體2606的處理器2604。處理器2604負責一般的處理,包括對儲存在電腦可讀取媒體/記憶體2606上的軟體的執行。軟體在由處理器2604執行時,使得處理系統2614執行上面針對任何特定裝置所描述的各種功能。電腦可讀取媒體/記憶體2606亦可以用於儲存由處理器2604在執行軟體時所操縱的資料。處理系統2614亦包括組件2504、2506、2508 中的至少一個。組件可以是在處理器2604中執行的、位於/儲存在電腦可讀取媒體/記憶體2606中的軟體組件、耦合到處理器2604的一或多個硬體組件、或它們的某種組合。處理系統2614可以是基地台310的組件,並且可以包括TX處理器316、RX處理器370以及控制器/處理器375中的至少一個及/或記憶體376。
在某些配置中,用於無線通訊的裝置2502/2502'可以包括:用於決定一組窄頻TDD訊框結構中的用於窄頻通訊的窄頻TDD訊框結構的單元。在某些其他配置中,用於無線通訊的裝置2502/2502'可以包括:用於使用窄頻TDD訊框結構來發送窄頻實體下行鏈路通道的第一冗餘版本以及窄頻實體下行鏈路通道的第二冗餘版本的單元。在一個態樣中,在第一冗餘版本和第二冗餘版本之間切換之前發送的任一冗餘版本的重複的數量可以是基於所決定的窄頻TDD訊框結構中的下行鏈路子訊框的數量和預定的最大重複數量的。在某些態樣中,下行鏈路子訊框的數量可以包括連續下行鏈路子訊框的數量。上述單元可以是裝置2502的上述組件中的一或多個及/或裝置2502'的被配置為執行由上述單元所記載的功能的處理系統2614。如前述,處理系統2614可以包括TX處理器316、RX處理器370、以及控制器/處理器375。因此,在一種配置中,上述單元可以是被配置為執行由上述單元所記載的功能的TX處理器316、RX處理器370、以及控制器/處理器375。
應當理解的是,所揭示的程序/流程圖中的方塊的特定次序或層次是對示例性方法的說明。應當理解的是,基於設計偏好,可以重新排列程序/流程圖中的框的特定次序或層次。此外,可以合併或省略一些方塊。所附的方法請求項以實例次序提供了各個方塊的元素,而並不意味著限於所提供的特定次序或層次。
提供前面的描述以使得本發明所屬領域中具有通常知識者能夠實施本文描述的各個態樣。對這些態樣的各種修改對於本發明所屬領域中具有通常知識者而言將是顯而易見的,以及本文所定義的整體原理可以應用到其他態樣。因此,請求項並不意欲限於本文所示出的態樣,而是被賦予與文字請求項相一致的全部範疇,其中除非明確地聲明如此,否則提及單數形式的元素不意欲意指「一個且僅僅一個」,而是「一或多個」。本文使用「示例性」一詞意指「用作實例、例或說明」。本文中被描述為「示例性」的任何態樣未必被解釋為比其他態樣優選或者有優勢。除非另外明確地聲明,否則術語「一些」指的是一或多個。諸如「A、B或C中的至少一個」、「A、B或C中的一或多個」、「A、B和C中的至少一個」、「A、B和C中的一或多個」、以及「A、B、C或其任意組合」之類的組合包括A、B及/或C的任意組合,並且可以包括A的倍數、B的倍數或C的倍數。具體地,諸如「A、B或C中的至少一個」、「A、B或C中的一或多個」、「A、B和C中的至少一個」、「A、B和C中的一或多個」、以 及「A、B、C或其任意組合」之類的組合可以是僅A、僅B、僅C、A和B、A和C、B和C、或A和B和C,其中任何此類組合可以包含A、B或C中的一或多個成員或數個成員。貫穿本案內容描述的各個態樣的元素的全部結構和功能均等物以引用方式明確地併入本文中,並且意欲由請求項來包含,這些結構和功能均等物對於本發明所屬領域中具有通常知識者而言是已知的或者將是已知的。此外,本文中沒有揭示的內容是想要奉獻給公眾的,不管此類揭示內容是否明確記載在請求項中。詞語「模組」、「機制」、「元素」、「設備」等等可以不是詞語「單元」的替代。因而,沒有請求項元素要被解釋為單元加功能,除非該元素是明確地使用短語「用於……的單元」來記載的。
1001:流程
1003:流程
1004:基地台
1005:流程
1006:UE
1007:流程
1009:流程

Claims (16)

  1. 一種用於一基地台的無線通訊的方法,包括以下步驟:決定一組窄頻分時雙工(TDD)訊框結構中的用於窄頻通訊的一窄頻TDD訊框結構;決定一第一子訊框組,該第一子訊框組與一第一下行鏈路子訊框集合和一第一加擾序列相關聯,該第一下行鏈路子訊框集合包括一第一下行鏈路子訊框和一預定的第一數量的後續子訊框;決定一第二子訊框組,該第二子訊框組與一第二下行鏈路子訊框集合和一第二加擾序列相關聯,該第二下行鏈路子訊框集合包括一第二下行鏈路子訊框和一預定的第二數量的後續子訊框,且其中該第一子訊框組和該第二子訊框組不重疊;及使用該窄頻TDD訊框結構來發送一窄頻實體下行鏈路通道的一系列重複,其中該一系列重複中的一第一部分的重複是使用該第一加擾序列在該第一下行鏈路子訊框集合中發送的;及其中該一系列重複中的一第二部分的重複是使用該第二加擾序列在該第二下行鏈路子訊框集合中發送的。
  2. 根據請求項1之方法,其中:該第一下行鏈路子訊框集合包括與該第二下行鏈路子訊框集合的一數量相同的子訊框。
  3. 根據請求項1之方法,亦包括以下步驟:將複數個子訊框群組成複數個子訊框組,該複數個子訊框組的每一個子訊框組與一特定的加擾序列相關聯,且每個子訊框組是基於一下行鏈路子訊框和一預定數量的後續子訊框來決定的,且其中該等子訊框組都不具有重疊的子訊框。
  4. 根據請求項3之方法,其中該第一下行鏈路子訊框集合包括與該第二下行鏈路子訊框集合相比一不同數量的子訊框。
  5. 一種用於一基地台的無線通訊的裝置,包括:用於決定一組窄頻分時雙工(TDD)訊框結構中的用於窄頻通訊的一窄頻TDD訊框結構的單元;用於決定一第一子訊框組的單元,該第一子訊框組與一第一下行鏈路子訊框集合和一第一加擾序列相關聯,該第一下行鏈路子訊框集合包括一第一下行鏈路子訊框和一預定的第一數量的後續子訊框;用於決定一第二子訊框組的單元,該第二子訊框組與一第二下行鏈路子訊框集合和一第二加擾序列相關聯,該第二下行鏈路子訊框集合包括一第二下行鏈路 子訊框和一預定的第二數量的後續子訊框,且其中該第一子訊框組和該第二子訊框組不重疊;及用於使用該窄頻TDD訊框結構來發送一窄頻實體下行鏈路通道的一系列重複的單元,其中該一系列重複中的一第一部分的重複是使用該第一加擾序列在該第一下行鏈路子訊框集合中發送的;及其中該一系列重複中的一第二部分的重複是使用該第二加擾序列在該第二下行鏈路子訊框集合中發送的。
  6. 根據請求項5之裝置,其中:該第一下行鏈路子訊框集合包括與該第二下行鏈路子訊框集合的一數量相同的子訊框。
  7. 根據請求項5之裝置,亦包括:用於將複數個子訊框群組成複數個子訊框組的單元,該複數個子訊框組的每一個子訊框組與一特定的加擾序列相關聯,且每個子訊框組是基於一下行鏈路子訊框和一預定數量的後續子訊框來決定的,且其中該等子訊框組都不具有重疊的子訊框。
  8. 根據請求項7之裝置,其中該第一下行鏈路子訊框集合包括與該第二下行鏈路子訊框集合相比一不同數量的子訊框。
  9. 一種用於一基地台的無線通訊的裝置,包括:一記憶體;及至少一個處理器,其耦合到該記憶體並且被配置為:決定一組窄頻分時雙工(TDD)訊框結構中的用於窄頻通訊的一窄頻TDD訊框結構;決定一第一子訊框組,該第一子訊框組與一第一下行鏈路子訊框集合和一第一加擾序列相關聯,該第一下行鏈路子訊框集合包括一第一下行鏈路子訊框和一預定的第一數量的後續子訊框;決定一第二子訊框組,該第二子訊框組與一第二下行鏈路子訊框集合和一第二加擾序列相關聯,該第二下行鏈路子訊框集合包括一第二下行鏈路子訊框和一預定的第二數量的後續子訊框,且其中該第一子訊框組和該第二子訊框組不重疊;及使用該窄頻TDD訊框結構來發送一窄頻實體下行鏈路通道的一系列重複,其中該一系列重複中的一第一部分的重複是使用該第一加擾序列在該第一下行鏈路子訊框集合中發送的;及 其中該一系列重複中的一第二部分的重複是使用該第二加擾序列在該第二下行鏈路子訊框集合中發送的。
  10. 根據請求項9之裝置,其中:該第一下行鏈路子訊框集合包括與該第二下行鏈路子訊框集合的一數量相同的子訊框。
  11. 根據請求項9之裝置,其中該至少一個處理器亦被配置為:將複數個子訊框群組成複數個子訊框組,該複數個子訊框組的每一個子訊框組與一特定的加擾序列相關聯,且每個子訊框組是基於一下行鏈路子訊框和一預定數量的後續子訊框來決定的,且其中該等子訊框組皆不具有重疊的子訊框。
  12. 根據請求項11之裝置,其中該第一下行鏈路子訊框集合包括與該第二下行鏈路子訊框集合相比一不同數量的子訊框。
  13. 一種儲存用於一基地台的電腦可執行代碼的非暫態電腦可讀取媒體,該代碼當被一處理器執行時使得該處理器進行以下操作:決定一組窄頻分時雙工(TDD)訊框結構中的用於窄頻通訊的一窄頻TDD訊框結構; 決定一第一子訊框組,該第一子訊框組與一第一下行鏈路子訊框集合和一第一加擾序列相關聯,該第一下行鏈路子訊框集合包括一第一下行鏈路子訊框和一預定的第一數量的後續子訊框;決定一第二子訊框組,該第二子訊框組與一第二下行鏈路子訊框集合和一第二加擾序列相關聯,該第二下行鏈路子訊框集合包括一第二下行鏈路子訊框和一預定的第二數量的後續子訊框,且其中該第一子訊框組和該第二子訊框組不重疊;及使用該窄頻TDD訊框結構來發送一窄頻實體下行鏈路通道的一系列重複,其中該一系列重複中的一第一部分的重複是使用該第一加擾序列在一或多個第一下行鏈路子訊框集合中發送的;及其中該一系列重複中的一第二部分的重複是使用該第二加擾序列在一或多個第二下行鏈路子訊框集合中發送的。
  14. 根據請求項13之非暫態電腦可讀取媒體,其中:該一或多個第一下行鏈路子訊框集合之每一者第一下行鏈路子訊框集合包括一相同數量的子訊框, 該一或多個第二下行鏈路子訊框集合之每一者第二下行鏈路子訊框集合包括該相同數量的子訊框,以及該一或多個第一下行鏈路子訊框集合之每一者第一下行鏈路子訊框集合包括與該一或多個第二下行鏈路子訊框集合之每一者第二下行鏈路子訊框集合一數量相同的子訊框。
  15. 根據請求項13之非暫態電腦可讀取媒體,亦包括用於進行以下操作的代碼:將複數個子訊框群組成複數個子訊框組,該複數個子訊框組的每一個子訊框組與一特定的加擾序列相關聯,且每個子訊框組是基於一下行鏈路子訊框和一預定數量的後續子訊框來決定的,且其中該等子訊框組都不具有重疊的子訊框。
  16. 根據請求項15之非暫態電腦可讀取媒體,其中該第一下行鏈路子訊框集合包括與該第二下行鏈路子訊框集合相比一不同數量的子訊框。
TW107104684A 2017-02-15 2018-02-09 利用用於窄頻通訊的窄頻分時雙工訊框結構的方法、裝置、和非暫態電腦可讀取媒體 TWI724278B (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
IN201741005360 2017-02-15
IN201741005360 2017-02-15
US15/724,127 2017-10-03
US15/724,127 US10524258B2 (en) 2017-02-15 2017-10-03 Narrowband time-division duplex frame structure for narrowband communications

Publications (2)

Publication Number Publication Date
TW201836315A TW201836315A (zh) 2018-10-01
TWI724278B true TWI724278B (zh) 2021-04-11

Family

ID=63104870

Family Applications (4)

Application Number Title Priority Date Filing Date
TW109137824A TWI754440B (zh) 2017-02-15 2018-02-09 用於窄頻通訊的窄頻分時雙工訊框結構
TW107104684A TWI724278B (zh) 2017-02-15 2018-02-09 利用用於窄頻通訊的窄頻分時雙工訊框結構的方法、裝置、和非暫態電腦可讀取媒體
TW107104738A TWI712297B (zh) 2017-02-15 2018-02-09 用於窄頻通訊的窄頻分時雙工訊框結構
TW107104685A TWI707597B (zh) 2017-02-15 2018-02-09 用於窄頻通訊的窄頻分時雙工訊框結構

Family Applications Before (1)

Application Number Title Priority Date Filing Date
TW109137824A TWI754440B (zh) 2017-02-15 2018-02-09 用於窄頻通訊的窄頻分時雙工訊框結構

Family Applications After (2)

Application Number Title Priority Date Filing Date
TW107104738A TWI712297B (zh) 2017-02-15 2018-02-09 用於窄頻通訊的窄頻分時雙工訊框結構
TW107104685A TWI707597B (zh) 2017-02-15 2018-02-09 用於窄頻通訊的窄頻分時雙工訊框結構

Country Status (10)

Country Link
US (7) US10542538B2 (zh)
EP (4) EP3583718B1 (zh)
JP (3) JP6680958B1 (zh)
KR (8) KR102576306B1 (zh)
CN (3) CN110268674B (zh)
BR (3) BR112019016742A2 (zh)
ES (1) ES2883629T3 (zh)
SG (3) SG11201906242XA (zh)
TW (4) TWI754440B (zh)
WO (3) WO2018152027A1 (zh)

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10958337B2 (en) 2017-02-14 2021-03-23 Qualcomm Incorporated Narrowband time-division duplex frame structure for narrowband communications
US10542538B2 (en) 2017-02-15 2020-01-21 Qualcomm Incorporated Narrowband time-division duplex frame structure for narrowband communications
US10454657B2 (en) 2017-02-28 2019-10-22 Qualcomm Incorporated Narrowband time-division duplex frame structure for narrowband communications
CN110463122B (zh) 2017-07-12 2022-04-12 Lg 电子株式会社 在tdd特殊子帧上接收下行链路物理信道的方法和nb-iot设备
US11792630B2 (en) 2017-08-10 2023-10-17 Apple Inc. Uplink transmission in TDD supporting feNB-IoT operation
US11272492B2 (en) * 2017-08-10 2022-03-08 Intel Corporation TDD configuration and use of special subframes for feNB-IoTs
EP3665853B1 (en) * 2017-08-10 2023-05-03 Apple Inc. Uplink transmission in tdd supporting fenb-iot operation
EP3665824A1 (en) * 2017-08-11 2020-06-17 Telefonaktiebolaget LM Ericsson (Publ) Special subframe utilization for nb-iot transmission in tdd mode
WO2019095188A1 (en) 2017-11-16 2019-05-23 Qualcomm Incorporated Techniques and apparatuses for carrier management
CN110351855A (zh) * 2018-04-03 2019-10-18 财团法人资讯工业策进会 窄带物联网的基站、用户设备及无线传输方法
CN112075111B (zh) * 2018-05-09 2023-11-10 华为技术有限公司 一种上行传输资源分配方法及装置
KR102434156B1 (ko) * 2018-05-11 2022-08-18 노키아 테크놀로지스 오와이 페이징 상황 시작 결정 기법
US10251075B1 (en) 2018-06-02 2019-04-02 Verizon Patent And Licensing Inc. Systems and methods for coverage and capacity optimizing nodes
US10966188B2 (en) * 2018-06-07 2021-03-30 Apple Inc. Full bandwidth uplink transmission for unlicensed narrowband internet of things
GB201810547D0 (en) * 2018-06-27 2018-08-15 Nordic Semiconductor Asa OFDM channel estimation
GB201810548D0 (en) 2018-06-27 2018-08-15 Nordic Semiconductor Asa OFDM channel estimation
WO2020029219A1 (en) * 2018-08-10 2020-02-13 Qualcomm Incorporated Dynamic resource multiplexing
US11943654B2 (en) * 2018-12-24 2024-03-26 Lg Electronics Inc. Method and apparatus for transmitting buffer size report including dual bitmap information by wireless node in wireless communication system
US11378658B2 (en) 2019-01-30 2022-07-05 Toyota Motor Engineering & Manufacturing North America, Inc. Systems and methods for increasing the dynamic range of a LiDAR sensor
CN109982288A (zh) * 2019-04-10 2019-07-05 宁夏隆基宁光仪表股份有限公司 一种基于NB-IoT物联网燃气表的错峰上报算法
CN112636882B (zh) * 2019-09-24 2022-12-09 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置
CN114095324B (zh) * 2021-11-09 2023-09-12 湖南省时空基准科技有限公司 窄带数据广播的成帧方法及其设备
CN114374473B (zh) * 2021-12-08 2023-08-08 天翼物联科技有限公司 NB-IoT水表数据重传优化方法、系统、装置及存储介质
WO2023151345A1 (zh) * 2022-02-08 2023-08-17 华为技术有限公司 一种通信方法、通信装置及通信系统

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016123292A1 (en) * 2015-01-30 2016-08-04 Qualcomm Incorporated System information block channel design for enhanced machine type communication with coverage enhancements

Family Cites Families (99)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1214553C (zh) * 2000-11-17 2005-08-10 三星电子株式会社 在窄带时分双工码分多址移动通信系统中测量传播延迟的设备和方法
KR100834634B1 (ko) 2001-08-27 2008-06-02 삼성전자주식회사 이동 통신 시스템에서 단말기의 위치 추정 장치 및 방법
US7433708B2 (en) 2004-02-04 2008-10-07 Nokia Corporation Variable bandwidth in a communication system
US9119132B2 (en) 2007-10-10 2015-08-25 Qualcomm Incorporated Efficient system identification schemes for communication systems
EP2200208A1 (en) 2008-12-19 2010-06-23 Panasonic Corporation HARQ ACK/NACK for dynamic PDSCH
US8750862B2 (en) 2010-10-26 2014-06-10 At&T Intellectual Property I, L.P. Performance diagnosis of wireless equipment and a wireless network over out-of-band communication
CN102035786B (zh) * 2010-11-12 2013-05-01 清华大学 一种用于宽带无线通信系统的时分双工传输方法
DK2641342T3 (en) 2010-11-17 2016-12-19 Nokia Technologies Oy Apparatus and method to reduce interference between frequency of shared duplex and time shared duplex signals in a communication system
WO2012109439A1 (en) 2011-02-09 2012-08-16 Interdigital Patent Holdings, Inc. Machine to machine (m2m) frame within a frame
KR101623245B1 (ko) * 2011-04-05 2016-05-20 엘지전자 주식회사 무선 통신 시스템에서 스케줄링 방법 및 장치
KR102031031B1 (ko) 2011-06-20 2019-10-15 삼성전자 주식회사 무선 통신 시스템에서 시분할 복식 프레임 구성 정보 송수신 방법 및 장치
EP2745452A1 (en) 2011-08-15 2014-06-25 Nokia Solutions and Networks Oy Signaling
US20130064216A1 (en) * 2011-09-12 2013-03-14 Research In Motion Limited DMRS Association and Signaling for Enhanced PDCCH in LTE Systems
US9232540B2 (en) 2011-09-30 2016-01-05 Qualcomm Incorporated Random access channel design for narrow bandwidth operation in a wide bandwidth system
JP5796448B2 (ja) 2011-10-07 2015-10-21 ソニー株式会社 無線通信装置及び無線通信方法、並びに無線通信システム
WO2013058564A1 (ko) * 2011-10-19 2013-04-25 엘지전자 주식회사 무선통신 시스템에서 mtc 단말이 신호를 송수신하는 방법
WO2013110218A1 (en) 2012-01-29 2013-08-01 Alcatel Lucent A high interference indicator for time division duplex wireless communication systems
US9497756B2 (en) 2012-03-25 2016-11-15 Comcast Cable Communications, Llc Base station radio resource management
US9143984B2 (en) 2012-04-13 2015-09-22 Intel Corporation Mapping of enhanced physical downlink control channels in a wireless communication network
US9119197B2 (en) 2012-05-22 2015-08-25 Futurewei Technologies, Inc. System and method for delay scheduling
US9247378B2 (en) * 2012-08-07 2016-01-26 Honeywell International Inc. Method for controlling an HVAC system using a proximity aware mobile device
US9900863B2 (en) 2012-09-16 2018-02-20 Lg Electronics Inc. Method for receiving or transmitting broadcast signal in wireless communication system and apparatus therefor
CN104904135A (zh) * 2012-10-05 2015-09-09 美国博通公司 用于半双工频分双工的方法、设备以及计算机程序
US9398548B2 (en) 2012-10-26 2016-07-19 Lg Electronics Inc. Interference control method in wireless communication system and apparatus for the same
WO2014117323A1 (en) 2013-01-29 2014-08-07 Qualcomm Incorporated Tdd reconfiguration with consideration of dtx/drx
US9735942B2 (en) 2013-04-05 2017-08-15 Qualcomm Incorporated Physical broadcast channel (PBCH) coverage enhancements for machine type communications (MTC)
US9713026B2 (en) * 2013-05-17 2017-07-18 Qualcomm Incorporated Channel state information (CSI) measurement and reporting for enhanced interference management for traffic adaptation (eIMTA) in LTE
US9967778B2 (en) * 2013-06-19 2018-05-08 Lg Electronics Inc. Reception method of MTC device
CN103457711B (zh) * 2013-07-05 2017-04-19 大唐移动通信设备有限公司 一种确定控制信道占用的ofdm符号个数的方法及装置
WO2015018033A1 (en) 2013-08-08 2015-02-12 Mediatek Inc. Uplink power control in adaptive tdd systems
CN110224797B (zh) * 2013-08-09 2022-06-07 太阳专利信托公司 用于在通信系统中与基站通信的移动站、方法和存储介质
WO2015042835A1 (en) * 2013-09-26 2015-04-02 Qualcomm Incorporated METHOD AND APPARATUS FOR EFFICIENT USAGE OF DAI BITS FOR eIMTA IN LTE
US9819471B2 (en) 2013-11-04 2017-11-14 Texas Instruments Incorporated Method and apparatus for configuration, measurement and reporting of channel state information for LTE TDD with dynamic UL/DL configuration
CN104811409B (zh) * 2014-01-26 2020-02-07 夏普株式会社 重复传输物理下行控制信道的方法、基站和用户设备
US10420050B2 (en) 2014-02-13 2019-09-17 Lg Electronics Inc. Method for transmitting/receiving synchronization signal for D2D communication in wireless communication system, and apparatus therefor
JP6396487B2 (ja) * 2014-02-26 2018-09-26 エルジー エレクトロニクス インコーポレイティド Fdd半二重通信におけるpdcchモニタリング方法及びその端末
CN106068634B (zh) 2014-03-07 2020-03-10 Lg电子株式会社 以高阶调制方案设置下行链路功率的方法及其终端
CN105099631A (zh) 2014-04-17 2015-11-25 北京三星通信技术研究有限公司 一种处理灵活双工的方法和设备
MX361265B (es) 2014-05-09 2018-12-03 Lg Electronics Inc Metodo para transmitir señal de sincronizacion para comunicacion directa entre terminales en un sistema de comunicacion inalambrica y aparato para el mismo.
EP3154295A4 (en) 2014-06-05 2018-01-10 Sharp Kabushiki Kaisha Terminal device, base station device, and method
US10103847B2 (en) 2014-06-27 2018-10-16 Intel IP Corporation Methods apparatus of eNB and UE for MTC with narrowband deployment
WO2015200667A1 (en) 2014-06-27 2015-12-30 Intel IP Corporation Method and apparatus of ue and enb for mtc with narrowband deployment
US10455565B2 (en) * 2014-09-24 2019-10-22 Lg Electronics Inc. Method and MTC device for receiving downlink control channel
US9732719B2 (en) * 2014-10-31 2017-08-15 Ford Global Technologies, Llc Cold temperature engine start strategies
CN105656597B (zh) 2014-11-24 2020-02-14 华为技术有限公司 数据传输方法和设备
KR101646417B1 (ko) * 2014-12-24 2016-08-08 현대자동차주식회사 연료전지 시스템 및 그 제어 방법
WO2016119446A1 (zh) * 2015-01-27 2016-08-04 中兴通讯股份有限公司 一种实现上行控制信息的传输方法及装置
EP3251226B1 (en) 2015-01-29 2018-08-29 Panasonic Intellectual Property Corporation of America Wireless communication method and device
US20180007667A1 (en) 2015-01-29 2018-01-04 Lg Electronics Inc. Signal receiving method and user equipment, and signal receiving method and base station
CN107534925B (zh) 2015-03-28 2024-02-09 华为技术有限公司 一种无线接入方法、装置、通信系统和终端
WO2016159696A1 (en) * 2015-03-31 2016-10-06 Lg Electronics Inc. Method and apparatus for performing frequency hopping for mtc ue in wireless communication system
US9654902B2 (en) 2015-05-22 2017-05-16 Hyukjun Oh Methods for performing machine type communication for the purpose of coverage enhancement apparatuses and systems for performing the same
CN106160974B (zh) * 2015-04-08 2020-11-24 中兴通讯股份有限公司 一种实现信道传输的方法及基站
CN106162874B (zh) 2015-04-10 2021-10-26 中兴通讯股份有限公司 下行信息接收方法、装置及用户设备
US11146376B2 (en) * 2015-04-22 2021-10-12 Qualcomm Incorporated System type dependent master information block (MIB)
US10057815B2 (en) 2015-05-14 2018-08-21 Qualcomm Incorporated Physical broadcast channel repetition for evolved machine type communication
MX368344B (es) 2015-05-15 2019-09-30 Ericsson Telefon Ab L M Comunicacion de un bloque de transporte en una red inalambrica.
KR20160137347A (ko) 2015-05-22 2016-11-30 송현용 커버리지 확장을 위한 사물 통신 방법, 이를 수행하는 장치 및 시스템
CN107996022B (zh) 2015-05-22 2021-08-27 Lg电子株式会社 用于接收下行链路控制信道的无线装置及方法
US11202183B2 (en) * 2015-06-25 2021-12-14 Qualcomm Incorporated Retuning for enhanced machine type communication
US10165423B2 (en) 2015-07-10 2018-12-25 Qualcomm Incorporated Common search space for machine type communications
US10292176B2 (en) 2015-07-16 2019-05-14 Qualcomm Incorporated Subframe availability for machine type communications (MTC)
US10454606B2 (en) 2015-07-22 2019-10-22 Samsung Electronics Co., Ltd. Method for operating IoT in cellular system and system therefor
JP6662881B2 (ja) 2015-07-24 2020-03-11 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカPanasonic Intellectual Property Corporation of America 基地局、端末および通信方法
US10728078B2 (en) 2015-10-19 2020-07-28 Lg Electronics Inc. Method and user equipment for receiving downlink signal, and method and base station for transmitting downlink signal
EP3371910A1 (en) * 2015-11-04 2018-09-12 Interdigital Patent Holdings, Inc. Methods and procedures for narrowband lte operation
CN108353394A (zh) 2015-11-06 2018-07-31 联发科技(新加坡)私人有限公司 数据传送方法
WO2017078802A1 (en) 2015-11-06 2017-05-11 Intel IP Corporation Synchronization signal design for narrowband internet of things communications
US10104651B2 (en) 2015-12-17 2018-10-16 Mediatek Inc. Physical downlink control channel design for narrow band internet of things
EP3605937B1 (en) 2015-12-18 2021-05-12 Telefonaktiebolaget LM Ericsson (publ) Transmitting and receiving narrowband synchronization signals
US10193734B2 (en) 2015-12-24 2019-01-29 Lg Electronics Inc. Method for transceiving signal in a wireless communication system and apparatus for the same
CN106936756B (zh) 2015-12-31 2019-04-12 中兴通讯股份有限公司 同步信号的传输方法、装置及系统
KR102574506B1 (ko) 2016-01-29 2023-09-05 한국전자통신연구원 비면허대역 통신 시스템에서 신호를 전송하는 방법 및 장치, 상향링크 스케줄링 방법 및 장치, 그리고 채널 상태 측정 구간에 관한 정보를 전송하는 방법 및 장치
GB201602150D0 (en) * 2016-02-05 2016-03-23 Nec Corp Communication system
US11438872B2 (en) 2016-02-05 2022-09-06 Intel Corporation Narrowband internet of things devices and method of operation thereof
EP4287547A3 (en) 2016-02-05 2024-01-03 Sony Group Corporation Communications devices, infrastructure equipment and methods
WO2017146342A1 (ko) 2016-02-26 2017-08-31 엘지전자(주) 협대역 iot를 지원하는 무선 통신 시스템에서 시스템 정보를 수신하는 방법 및 이를 위한 장치
WO2017167839A1 (en) 2016-04-01 2017-10-05 Telefonaktiebolaget Lm Ericsson (Publ) Dynamically configuring nb-iot carriers
JP2019517182A (ja) 2016-04-20 2019-06-20 コンヴィーダ ワイヤレス, エルエルシー ダウンリンク同期
EP3482595B1 (en) 2016-07-07 2021-09-01 LG Electronics Inc. Method and user equipment for receiving downlink signal
WO2018026199A1 (en) 2016-08-02 2018-02-08 Samsung Electronics Co., Ltd. Method and apparatus for communicating in a wireless communication system
WO2018030936A1 (en) 2016-08-11 2018-02-15 Telefonaktiebolaget Lm Ericsson (Publ) Network node, wireless device and methods therein relating to time division duplex configurations for narrowband internet of things
EP3282632A1 (en) 2016-08-12 2018-02-14 ASUSTek Computer Inc. Method and apparatus for determining numerology bandwidth for measurement in a wireless communication system
US10045325B2 (en) 2016-08-12 2018-08-07 Innovative Technology Lab Co., Ltd. Method and apparatus for transmitting/receiving positioning reference signal in wireless communication system
US10548131B2 (en) 2016-11-02 2020-01-28 Qualcomm Incorporated Wireless communication between wideband eNB and narrowband UE
US10484147B2 (en) * 2017-02-03 2019-11-19 Qualcomm Incorporated Techniques for enhanced machine type communication acknowledgment bundling
US10958337B2 (en) 2017-02-14 2021-03-23 Qualcomm Incorporated Narrowband time-division duplex frame structure for narrowband communications
US10542538B2 (en) 2017-02-15 2020-01-21 Qualcomm Incorporated Narrowband time-division duplex frame structure for narrowband communications
US10454657B2 (en) 2017-02-28 2019-10-22 Qualcomm Incorporated Narrowband time-division duplex frame structure for narrowband communications
US11523427B2 (en) 2017-04-28 2022-12-06 Lg Electronics Inc. Random access performing method, and device supporting same
US11071149B2 (en) 2017-05-05 2021-07-20 Apple Inc. Multefire design of random access channel and random access channel procedure for Internet of Things device operation in unlicensed spectrum
US10736112B2 (en) 2017-10-19 2020-08-04 Qualcomm Incorporated Common search space scrambling for MulteFire coverage enhancement
JP6990305B2 (ja) 2017-11-14 2022-02-03 テレフオンアクチーボラゲット エルエム エリクソン(パブル) システムインフォメーションの送信技術
EP3522433B1 (en) 2017-11-15 2021-09-15 LG Electronics Inc. Method for transmitting and receiving system information in wireless communication system supporting tdd narrowband and apparatus therefor
CN111149411B (zh) 2017-11-15 2023-04-28 Lg电子株式会社 在无线通信系统中在随机接入过程期间执行早期数据传输的方法及其设备
JP6818139B2 (ja) 2017-11-15 2021-01-20 エルジー エレクトロニクス インコーポレイティド Tdd狭帯域を支援する無線通信システムにおけるシステム情報を送受信するための方法及びこのための装置
WO2019095188A1 (en) 2017-11-16 2019-05-23 Qualcomm Incorporated Techniques and apparatuses for carrier management
US10904898B2 (en) 2017-11-16 2021-01-26 Qualcomm Incorporated Multi-slot scheduling with repetitive transmission of a transport block with different redundancy versions
US11050523B2 (en) 2018-05-11 2021-06-29 Qualcomm Incorporated Techniques to interpret control information based on a repetition factor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016123292A1 (en) * 2015-01-30 2016-08-04 Qualcomm Incorporated System information block channel design for enhanced machine type communication with coverage enhancements

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio Access (E-UTRA); Physical channels and modulation (Release 14)", 3GPP TS 36.211 V14.1.0, 2017/01/02. *

Also Published As

Publication number Publication date
KR20220100080A (ko) 2022-07-14
US10945265B2 (en) 2021-03-09
US20190327735A1 (en) 2019-10-24
TW201836370A (zh) 2018-10-01
CN110268659A (zh) 2019-09-20
KR20200123286A (ko) 2020-10-28
ES2883629T3 (es) 2021-12-09
KR20200123287A (ko) 2020-10-28
JP2020513227A (ja) 2020-05-07
KR20200078702A (ko) 2020-07-01
JP6676224B1 (ja) 2020-04-08
KR102129699B1 (ko) 2020-07-03
KR102232096B1 (ko) 2021-03-25
EP3583718B1 (en) 2021-07-14
US10420102B2 (en) 2019-09-17
KR20190111989A (ko) 2019-10-02
KR20190112282A (ko) 2019-10-04
WO2018152027A1 (en) 2018-08-23
TW202126004A (zh) 2021-07-01
EP3672134A1 (en) 2020-06-24
TWI712297B (zh) 2020-12-01
US10542538B2 (en) 2020-01-21
KR20190112281A (ko) 2019-10-04
CN110268659B (zh) 2022-03-22
BR112019016742A2 (pt) 2020-04-14
KR20200138840A (ko) 2020-12-10
WO2018152025A1 (en) 2018-08-23
KR102230097B1 (ko) 2021-03-18
CN110268660B (zh) 2021-12-31
JP2020512721A (ja) 2020-04-23
US20180234229A1 (en) 2018-08-16
SG11201906243QA (en) 2019-08-27
KR102248662B1 (ko) 2021-05-04
BR112019016782A2 (pt) 2020-03-31
TWI707597B (zh) 2020-10-11
KR102172132B1 (ko) 2020-11-02
TW201836315A (zh) 2018-10-01
JP6680958B1 (ja) 2020-04-15
BR112019016804A2 (pt) 2020-04-07
US20180234966A1 (en) 2018-08-16
EP3583737A1 (en) 2019-12-25
JP6734484B2 (ja) 2020-08-05
CN110268674B (zh) 2022-02-08
EP3583717A1 (en) 2019-12-25
US20200112955A1 (en) 2020-04-09
TW201838372A (zh) 2018-10-16
CN110268674A (zh) 2019-09-20
KR102248660B1 (ko) 2021-05-04
KR102576306B1 (ko) 2023-09-07
SG11201906242XA (en) 2019-08-27
TWI754440B (zh) 2022-02-01
WO2018152030A1 (en) 2018-08-23
US20190274141A1 (en) 2019-09-05
US10939432B2 (en) 2021-03-02
SG11201906240RA (en) 2019-08-27
US11452094B2 (en) 2022-09-20
EP3583737B1 (en) 2023-09-06
US20200084770A1 (en) 2020-03-12
EP3583718A1 (en) 2019-12-25
CN110268660A (zh) 2019-09-20
JP2020512720A (ja) 2020-04-23
US10932260B2 (en) 2021-02-23
US20180234951A1 (en) 2018-08-16
US10524258B2 (en) 2019-12-31

Similar Documents

Publication Publication Date Title
TWI724278B (zh) 利用用於窄頻通訊的窄頻分時雙工訊框結構的方法、裝置、和非暫態電腦可讀取媒體
TWI729271B (zh) 用於窄頻通訊的窄頻分時雙工訊框結構
TWI710242B (zh) 用於無線通訊的方法、裝置及電腦可讀取媒體