TWI721183B - 用於微製造超音波傳感器的電接點配置 - Google Patents

用於微製造超音波傳感器的電接點配置 Download PDF

Info

Publication number
TWI721183B
TWI721183B TW106120350A TW106120350A TWI721183B TW I721183 B TWI721183 B TW I721183B TW 106120350 A TW106120350 A TW 106120350A TW 106120350 A TW106120350 A TW 106120350A TW I721183 B TWI721183 B TW I721183B
Authority
TW
Taiwan
Prior art keywords
substrate
ultrasonic
ultrasonic sensor
electrical
sensor
Prior art date
Application number
TW106120350A
Other languages
English (en)
Other versions
TW201808786A (zh
Inventor
強納森M 羅斯貝格
蘇珊A 阿里
傑米 史考特 拉赫利恩
保羅 弗朗西斯 克里斯特門
凱斯G 法菲
Original Assignee
美商蝴蝶網路公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 美商蝴蝶網路公司 filed Critical 美商蝴蝶網路公司
Publication of TW201808786A publication Critical patent/TW201808786A/zh
Application granted granted Critical
Publication of TWI721183B publication Critical patent/TWI721183B/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/87Electrodes or interconnections, e.g. leads or terminals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B1/00Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
    • B06B1/02Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy
    • B06B1/06Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B1/00Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
    • B06B1/02Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy
    • B06B1/0292Electrostatic transducers, e.g. electret-type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B1/00Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
    • B06B1/02Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy
    • B06B1/06Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction
    • B06B1/0607Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction using multiple elements
    • B06B1/0622Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction using multiple elements on one surface
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/36Assembling printed circuits with other printed circuits
    • H05K3/361Assembling flexible printed circuits with other printed circuits
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment
    • H10N30/05Manufacture of multilayered piezoelectric or electrostrictive devices, or parts thereof, e.g. by stacking piezoelectric bodies and electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/20Piezoelectric or electrostrictive devices with electrical input and mechanical output, e.g. functioning as actuators or vibrators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B2201/00Indexing scheme associated with B06B1/0207 for details covered by B06B1/0207 but not provided for in any of its subgroups
    • B06B2201/20Application to multi-element transducer
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/10Details of components or other objects attached to or integrated in a printed circuit board
    • H05K2201/10613Details of electrical connections of non-printed components, e.g. special leads
    • H05K2201/10954Other details of electrical connections
    • H05K2201/10977Encapsulated connections
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/07Treatments involving liquids, e.g. plating, rinsing
    • H05K2203/0703Plating
    • H05K2203/0726Electroforming, i.e. electroplating on a metallic carrier thereby forming a self-supporting structure

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Transducers For Ultrasonic Waves (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)
  • Pressure Sensors (AREA)
  • Micromachines (AREA)

Abstract

單晶片超音波裝置具有超音波傳感器基板、其具有多個傳感器單元,以及電氣基板。對於每個傳感器單元,一個或多個傳導性接合連接被設置在超音波傳感器基板和電氣基板之間。電氣基板的實例包括CMOS晶片、包括類比電路的積體電路、插入件和印刷電路板。

Description

用於微製造超音波傳感器的電接點配置
本申請案一般涉及超音波成像。更具體來說,本申請案涉及與互補式金屬氧化物半導體(CMOS)電路集成的電容式微加工超音波傳感器(CMUT)、及其形成方法。
本申請案在35 U.S.C.§ 119(e)下主張於2016年6月20日所提申且名稱為「用於微製造超音波傳感器的電接點配置」(代理人檔案編號B1347.70031US00)的美國臨時專利申請案62/352,394的權利,其之整體以引用方式併入本文中。
CMUT是包括在微加工空腔上方的膜的已知裝置。膜可用於將聲音信號轉換成電氣信號,反之亦如此然。因此,CMUT可作為超音波傳感器加以操作。
可使用超音波裝置以形成許多不同類型的影像。影像可以是實時影像。例如,可產生影像以顯示組織的二維橫截面、血液流動、組織隨時間的運動、血液的位置、特定分子的存在、組織的剛性、或三維區域的解剖結構。
兩種類型的處理可被用來來製造CMUT。一種方法涉及犧牲 層處理以在犧牲層上方的第一基板上形成CMUT的膜。犧牲層的去除導致膜被懸浮在空腔上方。在另一種方法中,晶圓接合處理將兩個晶圓結合一起以形成具有膜的空腔。
在一個例示性實施例中,一種設備包括單晶片超音波裝置,其具有超音波傳感器基板,該超音波傳感器基板具有鄰近其第一側所設置的多個傳感器單元,並且對於每個傳感器單元來說,一個或多個傳導性接合連接被設置在超音波傳感器基板的第二側和電氣基板之間。
在另一個實施例中,一種超音波裝置包括複合基板,其具有經接合一起的第一基板和第二基板,以在第一基板和第二基板之間定義多個空腔,每個空腔對應於超音波傳感器單元;以及通過多個傳導性接合點而被接合到複合基板的電氣基板,其中每個傳感器單元具有被設置在超音波傳感器基板和電氣基板之間的一個或多個傳導性接合連接。
在另一個實施例中,一種形成超音波裝置的方法包括將第一基板和第二基板接合一起以在其中定義具有多個空腔的複合基板,每個空腔對應於超音波傳感器單元;以及使用多個傳導性接合點以將電氣基板接合到複合基板,其中每個傳感器單元具有被設置在超音波傳感器基板和電氣基板之間的一個或多個傳導性接合連接。
100‧‧‧探針
102‧‧‧單晶片超音波裝置
104‧‧‧讀出視圖
106‧‧‧基板
108‧‧‧超音波傳感器
110‧‧‧電路系統
200‧‧‧單晶片超音波裝置
202‧‧‧超音波傳感器基板
203‧‧‧IC基板
204a、204b、204c、204d‧‧‧超音波傳感器/超音波傳感器單元/單元
206‧‧‧(聲學)死角
208、210‧‧‧接點
300‧‧‧超音波裝置
302‧‧‧工程基板
304‧‧‧CMOS晶圓
306‧‧‧空腔
308‧‧‧第一矽裝置層
310‧‧‧第二矽裝置層
312‧‧‧矽氧化物層
314‧‧‧氧化物層
316a‧‧‧接合點/密封環
316b‧‧‧接合點/接點
316c‧‧‧死角接點
318‧‧‧基底層
320‧‧‧絕緣層
322‧‧‧金屬化層
324‧‧‧接點
326‧‧‧接合銲墊
328‧‧‧隔離結構
330‧‧‧鈍化層
332‧‧‧超音波傳感器
354‧‧‧超音波傳感器空腔
356‧‧‧聲學無效死角
358‧‧‧八邊形區域
360‧‧‧流動停止特徵
362、364‧‧‧鈍化層
366、370‧‧‧種子層
372‧‧‧間隙
380‧‧‧較大圓形區域
382‧‧‧較小圓形區域
384‧‧‧區域
386‧‧‧開口
將參考以下附圖來敘述所主張技術的各種觀點和實施例。應當理解到附圖不必要按比例繪製。出現在多個圖式中的項目在其所出現的所有圖式中由相同元件符號來表示。
圖1例示根據本申請案非限制性實施例中具有可被使用於探針中的單晶片超音波裝置的簡化示意圖的超音波探針,其中具有與積體電路(IC)集成的超音波傳感器;圖2是根據本申請案非限制性實施例中具有與積體電路基板接合的超音波傳感器基板的單晶片超音波裝置的簡化示意圖,其中具有在超音波傳感器單元和積體電路之間的多個接合、以及在超音波傳感器基板的死角和積體電路之間的電氣連接;圖3A是根據本申請案非限制性實施例中沿圖3C的線A-A所取得的橫截面視圖,其例示包括與具有密封空腔的工程基板集成的CMOS晶圓的單晶片超音波裝置的有效傳感器區域;圖3B是根據本申請案非限制性實施例中沿圖3C的B-B線所取得的另一橫截面視圖,其例示在單晶片超音波裝置的有效傳感器之間的死角;圖3C是根據本申請案非限制性實施例中沿著圖3A的箭頭”C”所取得的仰視圖,其圖3A例示傳導性接點對於工程基板的第一矽裝置層的配置的實例,包括對應於超音波傳感器的空腔和聲學無效的死角兩者的區域;和圖3D是根據本申請案非限制性實施例中沿著圖3A的箭頭”D”所取得的俯視圖,其例示圖3A和圖3B兩者中的傳導性接點相對於CMOS晶圓的金屬區域的位置;圖3E是根據本申請案非限制性實施例中例示單晶片超音波裝置的一部分的橫截面視圖,其中鈍化層被保留在微加工超音波傳感器的空腔上方。
超音波傳感器與電氣基板的集成包括將具有各個超音波傳 感器(例如,具有多個電容微機械加工的超音波傳感器或CMUT)的佈置(例如,陣列))的基板接合到具有一些電氣功能的基板以產生超音波裝置。例如,電氣基板可以是插入器、印刷電路板(pcb)、專用電路(ASIC)基板、具有類比電路的基板,具有積體CMOS電路系統(CMOS基板)的基板、或具有電氣功能的任何其它基板。可在單一超音波傳感器和電氣基板之間提供多個接合點,以提供有益的機械支撐並且促進在超音波傳感器基板(例如,CMUT晶圓)與電氣基板之間的機械和電氣集成。在一些實施例中,在電氣基板和用以表示超音波傳感器基板上的死角的聲學無效區域之間提供電氣接觸。電氣接觸可被用來增加從超音波傳感器讀出的信號的信雜比(SNR)、為整體結構提供機械支撐、偏置聲學無效區域及/或通過利用均勻的金屬特徵圖案來提高可製造性。這些特徵可促進超音波傳感器與電氣基板的集成,並且因此可被用來製造單晶片超音波裝置。
本文所用術語“SOI晶圓”具有其常規含義,包括矽處理層、埋入氧化物(BOX)層和藉由BOX層以從處理層分離的矽裝置層。
本文所用術語“工程基板”指稱工程上被設計為不同於基處矽晶圓或標準SOI晶圓的基板。工程基板也可以是藉由組合多個不同元件(例如,多個不同晶圓)而形成的“複合基板”。工程基板還可以結合圖案化特徵並且提供裝置功能,如美國專利案9,067,779和美國專利申請公開案2016/0009544,兩者之全部內容藉由引用方式併入本文。
遍及本文記載,除非另有說明,否則術語“大約”的使用包括“精確地”。例如,將距離描述為小於約10微米(μm)將被理解為包括距離小於10μm的情況,並且將距離描述為大約10μm將被理解為包括 距離等於10μm的情況。
單晶片超音波裝置包括與積體電路集成的微加工超音波傳感器,並且可藉由將具有超音波傳感器的基板或晶圓及/或工程基板/晶圓片接合於電氣基板,諸如具有類比電路系統、CMOS電路系統或其它類型的積體電路(IC)、印刷電路板或插入器(例如矽插入器)的基板。利用在單一超音波傳感器和電氣基板之間包括多個導電接合點的接合圖案可增加接合的充分性,並且從而改善製造良率。此接合圖案還可藉由縮短在相鄰超音波傳感器的接合點之間的距離來改善單晶片超音波裝置的結構完整性。
在一些實施例中,在超音波傳感器基板和電氣基板之間的接合圖案可包括在電氣基板與超音波傳感器基板的死角之間的電氣連接。超音波傳感器基板的至少一些超音波傳感器可由傳導性材料中不參與傳感器所執行的傳感的區域來分開。例如,傳感器可包括由傳感區域之外延伸的傳導性材料所形成的電極。因為這些區域對超音波傳感器的傳感沒有貢獻(即它們在聲學上不作用),所以此些區域可被認定為超音波傳感器基板的死角。儘管如此,藉由向這些區域提供電氣接觸可實現有數個益處。
作為一個實例,聲學無效區域可經歷與超音波傳感器類似或相同的電氣雜訊。在IC(或其它類型的電氣基板)和超音波傳感器基板的死角之間包括電氣連接可允許對聲學無效區域進行偏置,其例如可被用來降低區域的雜訊及/或寄生電容。在一些實施例中,此電氣接觸可允許使用聲學無效部分作為感測節點,以允許進行電氣雜訊的偵測,其然後可從期望的超音波傳感器信號中去除電氣雜訊,從而改善單晶片超音波裝置的性能。此電氣連接可被包括在超音波傳感器基板和電氣基板之間的接合圖案 中。此電氣連接的另一個潛在好處在於可使在CMOS晶圓上所生成的金屬特徵圖案更均勻或實質上均勻,從而在經過IC晶圓上所執行的化學機械拋光(CMP)階段有助於保持裝置的平面性。此外,電氣接點還可為聲學無效區域提供機械支撐,並且從而對整個超音波裝置提供機械支撐。在一些實施例中,此些無效區域的尺寸及/或形狀及/或位置可被標準化,而無關於各單位的設計。因此,即使在此些裝置中的單元被不同地佈置,仍可對不同裝置使用相同集合的遮罩及/或處理步驟。
因此,本申請的觀點包括有助於單晶片超音波裝置的製造和操作的超音波傳感器製造設計和技術。
在下文進一步描述上述觀點和實施例以及額外觀點和實施例。此些觀點及/或實施方案可以單獨、一起、或具有兩個或更多的任何組合加以使用,因為應用上不限於此觀點。
圖1例示可在探針中所使用的具有單晶片超音波裝置的簡化示意圖的超音波探針。探針100可以是手持探針,其被配置成插入計算機、智慧型電話、平板電腦或其它外部裝置的,或者與此裝置進行無線通信。探針100可包括單晶片超音波裝置102,如在讀出視圖104中所示。單晶片超音波裝置102可包括具有集成的超音波傳感器108和電路系統110的基板106。為易於說明,圖1的示意圖以並排配置將超音波傳感器108和電路系統110顯示為簡化方塊。如在後續圖式中所例示,並且在下文中進一步敘述,實際實施可具有經堆疊配置的超音波傳感器和電路系統。基板106可以是諸如矽或絕緣體上矽(SOI)基板的半導體基板,並且在一些實施例中是互補金屬氧化物半導體(CMOS)基板。超音波傳感器108可以是電容 式微機械加工超音波傳感器(CMUT),並且電路系統110可以是諸如矽電路系統的積體電路系統。
在讀出視圖104的簡化表示中,為了說明目的,超音波傳感器108和電路系統110以並排方式被示意性地例示。在實務上,此並排配置在實際上是可行的,但也是替代方案。本申請案的實施例關於一種配置,其中基板106藉由將具有超音波傳感器的工程基板接合於與具有IC(或其它電氣基板,諸如矽插入件或其它類型的插入件、或印刷電路板)的基板,使得超音波傳感器和IC可處於堆疊配置。此配置被概念性且示意性地例示於圖2中。
圖2的單晶片超音波裝置200包括與IC基板203接合的超音波傳感器基板202。應當理解,本文所述類型的超音波傳感器基板不限於與IC基板進行接合,因為它們可與任何其它類型的電氣基板進行接合。基板可以是晶圓,並且圖式例示每個基板的一部分,如可從不連續邊界線理解到。超音波傳感器基板202包括多個超音波傳感器,在本文中也被稱為“超音波傳感器單元”或簡稱“單元”204a、204b、204c、204d等。在實務上,可提供大量此單元,例如數百個、數千個、數萬個、或數百萬個,並且應用上的各個觀點不限於此觀點。為了簡化而例示四個超音波傳感器單元。超音波傳感器單元可經電氣組合以形成“超音波元件”。也就是說,超音波元件可包括兩個或更多超音波傳感器,其經電氣耦合以有效地操作為單一更大的超音波傳感器。超音波傳感器單元204a到204d可各自包括諸如CMUT的電容式超音波傳感器。此外,在超音波傳感器單元中的至少一些之間可存在聲學死角206。作為實例,每個單元204a到204d可包括對應 於單元的空腔的導電部分,例如底部電極。死角206可表示相同材料中用以形成電極的一部分,但不與單元的空腔對準,並且因此實質上不參與單元的傳感。在一些情況下,此聲學“死角”藉由經填充溝槽以與傳感器空腔分離,使得死角在機械和電氣上與傳感器單元隔離。
如圖所示,單晶片超音波裝置200在超音波傳感器單元和IC基板203之間包括多個在實體和電氣上不同的接點208。此些接點可以是導電的,並且可表示在超音波傳感器基板202和IC基板203之間的接合點。雖然在所描述例示性實施例中為每個單元204a到204d顯示兩個接點208,但應理解到其它數字是可行的,並且不必要將相同數目的接點設置在每個單元和IC基板之間。如將從圖3B的稍後敘述所理解,在一些實施例中,可在超音波傳感器單元和IC基板之間提供三個接點。圖2是橫截面視圖,並且因此作為非限制性實例,額外接點208可被設置在比頁面的平面更靠近或更遠離的平面中。此外,儘管圖式描述具有圓形橫截面的接點,但是也可對接點使用其它形狀或配置(例如環狀或柵格狀)。
單晶片超音波裝置200還包括在死角206和IC基板203之間的接點210。接點210可以是導電的,並且可表示在超音波傳感器基板202和IC基板203之間的接合點。可在死角區域和IC基板203之間設置多個接點210。將要注意到的是圖2的示意性視圖沒有描述用以包圍個別傳感器單元以及死角區域的絕緣溝槽。
圖3A是圖2中示意性表示的單晶片超音波裝置200的詳細實施部分的例示性橫截面視圖。更具體來說,圖3A是根據本申請案非限制性實施例中包括與具有密封空腔的工程基板所集成的CMOS晶圓的超音波 裝置300的橫截面視圖,並且包括被形成在CMOS晶圓和工程基板的超音波傳感器之間的多個接點。
裝置300包括與CMOS晶圓304所集成的工程基板302。工程基板302包括被形成在第一矽裝置層308和第二矽裝置層310之間的多個空腔306。矽氧化物層312(例如藉由對矽進行熱氧化所形成的熱矽氧化物)可被形成在第一矽裝置層308和第二矽裝置層310之間,在其中形成有空腔306。在非限制性實例中,第一矽裝置層308可被配置為底部電極,並且第二矽裝置層310可被配置為膜。因此,第一矽裝置層308、第二矽裝置層310和空腔306的組合可形成超音波傳感器(例如CMUT),其中在非限制性橫截面視圖中例示有六個。為便於操作作為底部電極或膜,第一矽裝置層308和第二矽裝置層310中的一個或兩個可被摻雜以用作導體,並且在一些情況下是被高度摻雜(例如,具有的摻雜濃度大於1015摻雜劑/cm3、在1015摻雜劑/cm3和1021摻雜劑/cm3之間、或在此範圍內的任何值)。
工程化基板302還可包括在第二矽裝置層310的頂部上的氧化物層314,此氧化物層314在一些實施例中可用作鈍化層,並且如圖所示,可被圖案化為而不存在於接點324上。在下文中進一步敘述的接點324和鈍化層330可被包括在工程基板上。鈍化層330可由任何合適的鈍化材料來形成。在一些實施例中,鈍化層330由Si3N4形成,並且在一些實施例中由SiO2和Si3N4的堆疊形成,然而替代方案仍是可行的。可對應於多個空腔306(如圖3A所示)來去除鈍化層330,或者可保持鈍化層330以覆蓋多個空腔306中的一些或全部(如圖3E所示)。在一些實施例中,多個鈍化層可被保持在空腔上。在一些實施例中,可在空腔內形成一個或多個絕緣層,以優化 裝置電容、減少充電、優化偏壓及/或崩潰電壓、及/或改善裝置可靠性。此些絕緣層可以任何合適方式被圖案化在空腔內。
工程基板302和CMOS晶圓304在接合點316a和316b處被接合一起。接合點可被形成為在工程基板302上的一層與CMOS晶圓304上的一層的熱壓接合(例如,金屬對金屬熱壓接合),或者可以是在本文所述的任何其它合適接合(例如,矽化物接合、焊料接合或共晶接合)。在一些實施例中,接合點316a和316b可具有傳導性,例如由金屬形成。接合點316a在一些實施例中可僅作用為接合點,並且在一些實施例中可形成密封環,例如以氣密式密封裝置300的超音波傳感器。在一些實施例中,接合點316a可定義密封環,其也在工程基板302和CMOS晶圓304之間提供電氣連接。類似地,接合點316b在一些實施例中可用作雙重目的,例如用作接合點並且還提供在工程基板302的超音波傳感器和CMOS晶圓304的IC之間的電氣連接。
注意到的是,例示與六個所例示空腔306中的每一個相對應的兩個接合點316b。例如,參考超音波傳感器332,在此橫截面視圖中顯示兩個接合點316b。在一些實施例中,並非設備300的所有超音波傳感器都需要多個接合點316b,並且當對給定超音波傳感器提供多個接合點316b時,可提供超過兩個的接合點316b,結合圖3C例示一個實例並在下文中進一步描述。接合點316a和316b可具有任何合適的形狀和尺寸。在一些實施例中,所有的接合點316a和316b具有相同尺寸。在其它實施例中,不同接合點316a和316b具有不同尺寸(例如,不同直徑)。接合點之間的間距可以是均勻的或可以是變化的。
仍然參考圖3A,CMOS晶圓304包括基底層(例如,矽塊材晶圓)318、絕緣層320和金屬化層322。金屬化層322可由鋁、銅、或任何其它合適的金屬化材料來形成,並且可表示在CMOS晶圓片中所形成的積體電路的至少一部分。例如,金屬化層322可以用作佈線層、可被圖案化以形成一個或多個電極、或可用於其它功能。在實務中,CMOS晶圓304可包括多個此金屬化層及/或後處理再分佈層,但為簡化起見,僅例示單一金屬化層。堆疊中的多個此金屬的實例可包括但不限於例如銅(Cu)、氮化鈦(TiN)、鋁銅(AlCu)、鋁(Al)、鈦鎢(TiW)、金(Au)、鎳(Ni)、錫(Sn)、鉑(Pt)、鈦(Ti)、鉭(Ta)、以及前述組合和合金。
接合點316b(並且在一些實施例中還包含316a)可提供在CMOS晶圓304的金屬化層322和工程基板的第一矽裝置層308之間的電氣連接。依此方式,CMOS晶圓304的積體電路系統可與工程化基板的超音波傳感器電極及/或膜(例如,發送電信號及/或接收電信號)進行通信。用於給定超音波傳感器的多個接合點316b可經電氣連接,並且因此如圖所示可接觸金屬化層322的共用銲墊。在其它情況下,接合點中的一些可經電氣連接並且一些經電氣隔離,以作為機械支撐。
根據用於形成接合點316a和316b的材料,可提供額外材料以用作種子層、膠黏層、及/或襯墊層。例如,可為接合點316a和316b提供種子層366和370。作為一個實例,接合點316a和316b可以是藉由在工程基板302和CMOS晶圓304中的每一個上放置一定材料量並且然後予以接合一起所形成的熱壓接合點。當然,可使用替代接合方法(包括在其它方法中的使用多晶矽及/或摻雜多晶矽進行接合)。種子層366、370可在接 合之前用於分別促進在CMOS基板304和工程基板302上的接合材料的形成(例如,藉由對接合材料提供鍍層)。
對於由第二矽裝置層310所表示的超音波傳感器膜的電氣接觸在非限制性實例中由接點324來提供,其可由金屬或任何其它合適的導電接觸材料來形成。根據所使用的材料,可另外設置膠黏層。在所示例實例中,接點324可接觸第二矽裝置層310和第一矽裝置層308的一部分兩者,此部分與第一矽裝置層308中對應於傳感器區域的其它部分電氣隔離。在一些實施例中,可在接點324和CMOS晶圓上的接合銲墊326之間提供電氣連接。在其它實施例中,嵌入式通孔(未示出)可被設置成從第一矽裝置層308到第二矽裝置層310的底側,從而避免對於第二矽裝置層310的頂側上的接點324的任何需求。應要理解到的是儘管圖3A例示單一接點324和單一接點326,仍可提供多個接點324以對工程基板302提供電氣存取、及/或仍可提供多個接點326以對CMOS晶圓304提供電氣存取。
工程基板的第一矽裝置層308還包括被配置為電氣隔離各個超音波傳感器的隔離結構(例如隔離溝槽)328。隔離結構328可包括經形成穿過第一矽裝置層308的溝槽,其填充有絕緣材料。另或者,隔離結構328可以藉由對第一矽裝置層308進行適當摻雜來定義。如在下文進一步詳細描述,在第一矽裝置層308中電氣隔離的傳感器區域之間的區域可表示工程基板302的聲學無效或死角區域,其中此些聲學無效區域仍然也藉由接合點被連接到CMOS晶圓304。
如圖3A進一步所示,裝置300可任選地包括由任何合適的材料所形成的流動停止特徵360,例如二氧化矽或矽氮化物。還可任選地在 CMOS晶圓上形成鈍化層362,並且可以是例如氧化物層。鈍化層362可用作氣密式保護層,作為用於在CMP處理期間對CMOS晶圓304進行平坦化的層、及/或用作MEMS集成的蝕刻停止部。也可任選地包括另一鈍化層364,並且可以是例如氮化物層。作為一個實例,鈍化層364可藉由電漿增強化學氣相沉積(PECVD)來形成。
現在注意到裝置300的各種特徵。例如,應理解到的是工程基板302和CMOS晶圓304可以晶圓級進行單片集成,從而提供超音波傳感器與CMOS IC的低成本單片集成。在所例示實施例中,超音波傳感器相對於CMOS IC為垂直(或堆疊)定位,其可藉由減少對超音波傳感器和CMOS IC進行集成所需的晶片面積來促進緊湊型超音波裝置的形成。
另外,工程基板302僅包括兩個矽層308和310,兩者之間形成有空腔306。第一矽裝置層308和第二矽裝置層310可以是薄的,例如在其它非限制性實例中,每一者的厚度小於50微米、厚度小於30微米、厚度小於20微米、厚度小於10微米、厚度小於5微米、厚度小於3微米、或厚度約2微米。這樣的尺寸有助於實現小型裝置,並且可在不需要TSV下有助於進行電氣接觸到超音波傳感器膜(例如,第二矽裝置層310)。TSV的實施成本高昂,需要專門設備和長時間處理,並且因此予以避免使用可增加製造產量以及降低裝置成本。此外,形成TSV需要許多商業半導體晶圓廠不具備的特殊製造工具,並且因此避免此些工具的需要可改善用於形成裝置的供應鏈,使得相較於使用TSV來說更具商業實用性。TSV可進一步防止具有高密度或小型尺寸的特徵的集成,從而限制設計選項。
如圖3A所示的工程基板302可相對薄,例如總厚度小於100 微米(μm)、總厚度小於50μm、總厚度小於30μm、總厚度小於20μm、總厚度小於10μm、厚度在10和500微米之間、或在此範圍內的任何值或值範圍。因為此薄的尺寸對某些類型的微製造工處理(諸如使用晶片夾具以晶圓級進行的處理)來說可代表較低的結構完整性,值得注意的是可在裝置300中實現此薄的尺寸。
而且,矽裝置層308和310可由單晶矽形成。理解到單晶矽的機械和電學性質,並且因此在超音波傳感器(例如,作為CMUT的膜)中使用此材料可有助於超音波傳感器的行為設計和控制。據此,可促進對大批量製造的擴展。
值得注意的另一特徵是在CMOS晶圓304和第一矽裝置層308的部分之間存在間隙372,原因在於兩者在離散的接合點316a、316b處接合,而不是藉由覆蓋整個表面CMOS晶圓片304進行接合。此間隙的意義在於如果第一矽裝置層308足夠薄時則可能振動。在一些實施例中,這樣的振動可能是不希望的,例如表示與第二矽裝置層310的所需振動成對比的不期望振動。據此,在至少一些實施例中,第一矽裝置層308足夠厚到最小化或避免這樣的振動是有益處的,例如至少4μm厚、至少10μm厚、厚度在10和500μm之間、或在此範圍內的任何值或值範圍。
在替代實施例中,可能期望第一和第二矽裝置層308和310兩者都振動。例如,它們可被構造成展現不同的諧振頻率,從而產生多頻率裝置。多個諧振頻率(在一些實施例中可與諧波相關)可用於例如超音波傳感器的不同操作狀態。例如,第一矽裝置層308可被配置成以第二矽裝置層310的中心頻率的一半進行諧振。
空腔306可具有適當尺寸,例如合適寬度W,對應於超音波傳感器的膜的尺寸,如圖3A進一步所示。寬度尺寸也可用於識別空腔的孔徑尺寸。寬度W約50μm、約5μm和約500μm之間、約20μm和約100μm之間、在前述之間的任何寬度或寬度範圍、或任何其它的合適寬度。在一些實施例中,可以選擇寬度W以最大化空隙分數填充因子,其是被空腔所消耗的面積量相對於被周圍結構所消耗的面積量。
應理解到空腔306可具有任何合適形狀。非限制性實例包括圓形(圓)、六邊形、八邊形和矩形空腔。然而,更一般地,其它多邊形形狀或其它形狀是可行的。
裝置300可使用多個接合步驟來製造。例如,工程基板302可藉由將兩個矽晶圓或SOI晶圓或前述組合接合一起以形成密封空腔306。例如,此接合可涉及形成SiO2-SiO2接合或Si-SiO2。接合之後可進行高溫退火以提供高質量的接合強度。美國專利號9,067,779和美國專利申請公開號2016/0009544中敘述用於形成工程基板的技術的實例,其之全部內容以引用方式併入本文。
工程基板302的接合和退火發生在與CMOS晶圓304進行集成之前。因此,在工程基板302的形成期間可進行高溫處理。工程基板302的高溫處理也可藉由使用高度摻雜的矽308作為下電極材料來致能。當形成傳感器空腔306時,工程基板302中不存在金屬。如此,使用高溫處理以在工程基板302中形成傳感器空腔306的能力導致高度可靠的裝置。形成空腔的氧化物312是熱生長氧化物。此是一種沒有雜質或俘獲電荷的緻密氧化物,並且與傳感器的矽膜形成牢固接合。所生成裝置是可重複且可靠的, 並且不容易分層(其在以低溫氧化物和低溫空腔接合所形成的CMUT中為常見)。由於高質量的熱氧化物,所以所生成裝置可在不具有充電效應下以高電壓偏置進行。因此,使用具有熱氧化物和高度摻雜矽的工程基板的方法是一種新穎方法,使得致能可製造和可靠的CMUT裝置,其可立即地與CMOS或其他電氣基板(包括晶圓、裸片、插入件、印刷電路板、或重建基板,例如扇入或扇出晶圓級封裝)進行集成。此方法可致能工程基板302和CMOS晶圓304的獨立優化和修改。例如,CMOS晶圓和工程基板可被準備及/或保存在單獨庫存中,從而能夠基於一個或多個業務變數來優化庫存管理,例如營運資金、循環時間、交貨時間、工程製造、品質、風險緩解、資源利用、及/或新產品開發的交付時間。
CMOS晶圓304可具有在其上以使用標準IC製造技術來製造的IC。CMOS晶圓304和工程基板可使用共晶接合、熱壓、矽化物接合、或任何其它合適的接合技術來接合一起,其在至少一些實施例中可以是在足夠低溫下所執行以避免損壞在CMOS晶圓304上的IC的接合技術。在一些實施例中,此溫度可小於450℃。此接合的合適實例被敘述於美國專利號9,067,779和美國專利申請公開號2016/0009544。
圖3B例示裝置300的不同橫截面視圖,其中在一些實施例中,在工程基板302的聲學無效或死角區域和CMOS晶圓304之間提供電氣連接。在一些這樣的實施例中,電氣連接被設置在用以形成超音波傳感器的底部電極的相同層308的聲學無效部分和CMOS晶圓304上的IC(例如接點316c)之間。從圖3B中可看出,到第一矽裝置層308的接點316c對應於在矽氧化物層312中沒有形成空腔的區域(即聲學無效區域)。
現在參考圖3C,顯示沿著圖3A的箭頭“C”所取得的工程基板302的仰視圖。更具體地說,圖3C例示到工程基板302的第一矽裝置層308的傳導性接觸配置的實例,其包括第一矽裝置層308中對應於超音波傳感器空腔(354表示的虛線圓形區域)和聲學無效死角(356表示的區域)的區域。如圖所示,多個八邊形區域358藉由隔離結構328(例如,具有氧化物襯墊和多晶矽填充物的溝槽)被定義在第一矽裝置層308中。彼此電氣隔離並且與聲學無效死角356電氣隔離的八邊形區域358是第一矽裝置層308的聲學有效區域,在於它們對應於超音波傳感器空腔354的位置。相反地,區域356是第一矽裝置層308的聲學無效區域,在於它們不對應於超音波傳感器空腔354的位置。
如圖3C進一步所示,金屬接合點316a、316b和316c連接到第一矽層308。將要注意到的是為清楚起見,圖3A和3B中所示的種子層370在圖3C中省略,然而將可理解到這些層可用於將金屬材料316a、316b和316c接合到第一矽層308。既然多個接合點316b被用於連接到高度摻雜的第一矽層308的聲學無效區域356以定義電極,單一接合點316c也可被用於連接到每一個聲學無效區域356。除了電氣隔離在第一矽層308中的各個傳感器區域,隔離結構328還可用於將密封環316a電氣隔離於傳感器陣列。為更加清楚,圖3C中還顯示出用以接觸第一矽層308的相對側的多個接點324中的一配對的位置關係(在上文配合圖3A所述)。
在所示的例示性實施例中,每個個別傳感器(即每個聲學有效區域358)包括相對於傳感器空腔354的區域進行實質上均勻定位的三個接合點316b。使用多個接合點316b接觸個別聲學有效區域358而不是使用 更大的單一接點可改善在工程基板302和CMOS晶圓304之間的接合,因為通過標準微製造處理可使接合到較小接點更容易地達成。另外或替代地,使用多個接合點316b以接觸個別聲學有效區域358可降低成本,這是由於用於接合的材料量減少及/或由於較短的處理時間(例如,在金屬特徵的鍍製上的較短時間,製造處理的優化,諸如CMP、微影、鍍製和蝕刻,以及機械特性的優化)。
死角接點316c可提供數個優點,包括例如用於較大死角跨度的機械支撐。在其中傳感器單元的直徑從約48μm增加到約96μm(使得傳感器元件佈置從每個元件有4×4個單元變為每個元件有2×2個單元)的配置中,在單元的封裝密度上的改變在經溝槽隔離的傳感器單元之間導致更大的死角區域。此外,死角接點316c可被用於對矽的無效區域進行接地或偏置,以降低寄生電容和雜訊。也就是說,接點316c有助於提供用於與在接點316b上所偵測的信號進行比較的電氣基準。例如,死角區域可經歷與超音波傳感器相似或相同的電氣雜訊。因此,藉由從接點316c所收集特定於此雜訊的信號,此信號可與來自接點316b的信號一起處理,來確定歸因於與電氣雜訊相比的聲學行為的接點316b上的信號的貢獻。此處理可包括減法、平均、或其他合適組合。依此方式,可去除諸如寄生電容的雜訊而導致提高的信雜比(SNR)。如在下文針對CMOS晶圓的金屬進一步描述,金屬特徵在頂部鋁層上的均勻圖案分佈也有助於在通過CMOS CMP時保持良好的平面性結果。
在一些實施例中,單元204a到204d各自可具有的尺寸(例如,直徑)在10μm和250μm之間、在175μm和225μm之間、在190 μm和200μm之間、在194μm與198μm之間、在195μm和197μm之間、在25μm和75μm之間、在40μm和60μm之間、在75μm和125μm之間、在75μm和100μm之間、在90μm和102μm之間、在94μm和98之間μm、或在前述範圍內的任何其它合適範圍之間。在一些實施例中,單元204a到204d各自可具有等於196μm的尺寸(例如,直徑)。在一些實施例中,單元可具有非均勻大小,其中的一個或多個單元具有在前述範圍內的大小。
如將理解到,相較於使用每個傳感器有單一更大的接點,對於形成諸如裝置300的裝置的產量可藉由使用每個傳感器有多個接合點316b而更大。此外,針對具有為聲學有效區域358所製造的類似尺寸的僅單一接點,藉由使用多個接合點316b來接觸聲學有效區域358,在任何給定位置處的最相鄰接合點316b和316c之間的距離L可以更短。藉由將距離L保持小(例如,100μm或更小),接合層上的所有特徵的間隔均勻性被最大化,並且可改善超音波裝置300的機械完整性。由於在工程基板302和CMOS晶圓304之間存在間隙(由接合點316a、316b和316c加以跨度),在相鄰超音波傳感器的接合點316b和316c之間的小距離相當於為上懸的工程基板302提供更好的機械支撐。當然,可使用其它接合安排,包括每個傳感器有單一接點。在一些實施例中,可使用大接點和較小接點的組合。例如,可在基板的一部分上使用大接點,並且可在基板的另一部分上使用較小的多個接點。
參考圖3D,顯示沿著圖3A的箭頭“D”所取得的CMOS晶圓304的俯視圖。更具體來說,根據本申請的非限制性實施例,圖3D例示 圖3A和圖3B兩者中的傳導性接點(接合點316a、316b和316c)針對於CMOS晶圓304的金屬區域322的位置。如從圖3D中可看出,CMOS金屬區域322包括對應於由多個接合點316b所接觸的工程基板的各個傳感器單元的較大圓形區域380,對應於由單一接合點316c所接觸的工程基板的死角區域的較小圓形區域382,以及由密封環316a所接觸的區域384。
為如前所述藉由接觸非聲學有效矽並將其保持在設定電位來致能雜訊降低,CMOS金屬322也可被圖案化而以類柵格方式連接區域382。類似地,為將各個傳感器單元群集成為運作超音波元件(例如,一個2×2的超音波元件),CMOS金屬322也可被圖案化以將具有金屬區域380的合組連接一起。在圖3D所示的實例中,具有四個金屬區域380的群組在CMOS晶圓中被彼此電氣連接。同樣如圖所示,金屬區域380進一步被圖案化以在其中心部分具有開口386。開口386是另一個特徵,其可藉由在CMP期間防止在大金屬區域上可能發生的凹陷(dishing)來幫助改善CMOS表面的平坦化(平坦度)。
本申請案的各個觀點可提供一個或多個益處,其中一些已經敘述於本文。已對此些益處的一些非限制性實例加以敘述。應理解到並非所有觀點和實施例都必須提供目前敘述的所有好處。此外,應理解到本申請案的各個觀點可為目前敘述的觀點提供額外益處。
本申請案的各個觀點提供適合於形成單片集成的超音波傳感器和CMOS結構(例如,CMOS IC)或其它電氣基板的製造處理,例如類比IC(其可包括到高速鏈路到數位晶片外電路)、插入件(例如,矽插入件)和印刷電路板。因此,作為超音波裝置(例如,用於超音波成像及/或 高強度聚焦超音波(HIFU))的單一基板裝置得以達成。此些製造處理可以晶圓級(例如藉由鋪設式CMUT設計)、或以裸片級來實行。
在至少一些實施例中,該處理可以是可靠的(例如,其特徵在於高產量及/或高裝置可靠性)、可擴展到大量並且執行上相對便宜(由於例如晶圓級集成),從而有助於CUT在商業上可行的製造處理。可避免使用複雜且昂貴的處理技術,例如形成TSV、使用嚴格要求CMP、以及使用低溫氧化物接合的緻密化退火。此外,此些方法可提供小型超音波裝置的製造,便於建立便攜式超音波探針。
本申請案的各個觀點提供用於調諧超音波傳感器的發射及/或接收頻率的能力,從而能夠使用可在不同模式及/或應用中所使用的單一探針。例如,藉由調諧超音波傳感器的發射及/或接收頻率,可以相同的超音波傳感器來實現多個不同的成像模式。依此方式,可消除對於覆蓋全部成像模式(例如,從表層成像到深層成像的醫學成像模型)的多個探針的需要,從而降低成本並且改善探針便攜性。
已經敘述本申請案技術的數個觀點和實施例,要理解到的是本領域技術人員將容易想到各種變化、修改和改善。此變化、修改和改善意旨在本申請案中所述技術的精神和範疇內。
下文例示本申請案記載內容的非限制性觀點和應用。實例1涉及一種設備,包括:單晶片超音波裝置,其包括超音波傳感器基板,超音波傳感器基板具有被設置成鄰近其第一側的多個個別傳感器單元;以及對於至少一個傳感器單元來說,在超音波傳感器基板的第二側和電氣基板之間設置一個或多個傳導性接合連接。
實例2涉及實例1的設備,其中一個或多個傳導性接合連接相對於多個傳感器單元中的一個傳感器單元的區域被實質均勻地分佈。
實例3涉及任何前述實例的設備,其中一個或多個傳導性接合連接包括以下的一個或多個:熱壓縮連接、共晶連接和矽化物連接。
實例4涉及任何前述實例的設備,其中一個或多個傳導性接合連接在其第一端處接觸超音波傳感器基板的矽層的傳導性部分,並且在其第二端處接觸電路基板的金屬層。
實例5涉及任何前述實例的設備,還包括被連接到超音波傳感器基板的多個聲學無效區域中的至少一個聲學無效區域的單一傳導性接合連接,每個單一傳導性接合連接被設置在超音波傳感器基板和積體電路基板之間。
實例6涉及任何前述實例的設備,其中超音波傳感器基板的多個聲學無效區域被設置在相鄰對的個別傳感器單元之間。
實例7涉及任何前述實例的設備,其中藉由在超音波傳感器基板的矽層中所形成的隔離溝槽,多個傳感器單元在矽層的傳導性部分上彼此電氣隔離。
實例8涉及任何前述實例的設備,其中隔離溝槽形成對應於多個傳感器單元的八邊形區域。
實例9涉及任何前述實例的設備,其中聲學無效區域藉由四個相鄰八角形區域之間的邊界來定義。
實例10涉及任何前述實例的設備,其中一個或多個接合連接與最近的相鄰接合連接分開約100微米(μm)或更小的距離。
實例11涉及超音波裝置,其包括:複合基板,其包括第一和第二基板經接合一起以在其間定義多個空腔,每個空腔對應於個別的超音波傳感器單元;以及藉由多個傳導性接合點被接合到複合基板的電氣基板,其中每個傳感器單元具有被設置在超音波傳感器基板和電氣基板之間的多重傳導性接合連接。
實例12涉及實例11的超音波裝置,其中除了用於每個傳感器單元的一個或多個傳導性接合連接,多個傳導性接合連接還包括:被連接到複合基板的多個聲學無效區域中每一者的單一傳導性接合連接;以及圍繞藉由多個超音波傳感器單元所定義的超音波傳感器陣列的一個或多個密封環。
實例13涉及任何前述實例的超音波裝置,其中一個或多個傳導性接合連接包括以下的一個或多個:熱壓連接、共晶連接、焊料連接和矽化物連接。
實例14涉及任何前述實例的超音波裝置,其中:複合基板的第一基板對應於傳感器陣列的膜;複合基板的第二基板藉由多個傳導性接合連接被接合至積體電路基板;並且經由第二基板中與傳感器陣列的底部電極接點電氣隔離的一部分,密封環在第一基板和電氣基板之間提供電氣連接。另外或替代地,密封環可在傳感器陣列的下側周圍產生氣密密封,從而在處理或使用期間防止水分進入,從而有助於製造可靠裝置。
實例15涉及任何前述實例的超音波裝置,其中藉由在矽層中所形成的隔離溝槽,傳感器單元在第二基板的矽層的傳導性部分上彼此電氣隔離。
實例16涉及任何前述實例的超音波裝置,其中隔離溝槽形成對應於個別傳感器單元的八邊形區域。
實例17涉及任何前述實例的超音波裝置,其中聲學無效區域藉由在四個相鄰八角形區域之間的邊界來定義。
實例18涉及任何前述實例的超音波裝置,還包括被形成在第二基板的矽層上的額外隔離溝槽,額外隔離溝槽將由密封環所接觸的第二基板的一部分電氣絕緣於八角形區域。
實例19涉及任何前述實例的超音波裝置,其中用於每個個別傳感器單元的多重傳導性接合連接,被連接到復合基板的多個聲學無效區域中每一個的單一傳導性接合連接,以及密封環在其第一端處接觸複合基板的矽層的傳導性部分,並且在第二端觸接觸電氣基板的金屬層。
實例20涉及任何前述實例的超音波裝置,其中積體電路的金屬層包括:多重傳導性接合連接所連接的第一金屬區域;每個單一傳導性接合連接所連接的第二金屬區域;以及密封環所連接的第三金屬區域。
實例21涉及任何前述實例的超音波裝置,其中第一金屬區域包括圓形區域,具有在其中心部分處所圖案化的開口。
實例22涉及任何前述實例的超音波裝置,其中第一金屬區域的群組經電氣連接一起,以便將個別傳感器單元群集成為單一運作的超音波元件。
實例23涉及任何前述實例的超音波裝置,其中第二金屬區域以柵格方式進行電氣連接。
實例24涉及任何前述實例的超音波裝置,其中每個多重接 合連接與最近的相鄰接合連接分開大約100微米(μm)或更小的距離。
實例25涉及任何前述實例的超音波裝置,其中多重接合連接包括三個接合連接。
實例26涉及一種形成超音波裝置的方法,所述方法包括:將第一和第二基板接合一起以定義在其中具有多個空腔的複合基板,每個空腔對應於超音波傳感器單元;以及使用多個傳導性接合點以將電氣基板接合到複合基板,其中每個傳感器單元具有被設置在述超音波傳感器基板和積體電路基板之間的多重傳導性接合連接。
實例27涉及實例26的方法,除用於每個傳感器單元的多重傳導性接合連接,還包括:形成被連接到複合基板的多個聲學無效區域中的每一個的單一傳導性接合連接;以及形成用以圍繞藉由多個超音波傳感器單元所定義的超音波傳感器陣列的密封環。
實例28涉及任何前述實例的方法,其中形成多重傳導性接合連接包括形成熱壓連接、共晶連接和矽化物連接中的一個或多個。
實例29涉及任何前述實例的方法,還包括:使用多個傳導性接合連接以將複合基板的第二基板接合到電氣基板;以及經由第二基板中與傳感器陣列的底部電極接點電氣隔離的一部分,使用述密封環以在第一基板和積體電路基板之間建立電氣連接,其中複合基板的第一基板對應於傳感器陣列的膜。
實例30涉及任何前述實例的方法,還包括藉由在第二基板的矽層中所形成的隔離溝槽,以使矽層的傳導性部分上的個別傳感器單元彼此電氣隔離。
實例31涉及任何前述實例的方法,其中隔離溝槽形成對應於個別傳感器單元的八邊形區域。
實例32涉及任何前述實例的方法,其中聲學無效區域藉由四個相鄰八邊形區域之間的邊界來定義。
實例33涉及任何前述實例的方法,還包括在第二基板的矽層上形成額外隔離溝槽,額外隔離溝槽將由密封環所接觸的第二基板的一部分電氣絕緣於八角形區域。
實例34涉及任何前述實例的方法,其中每個多重接合連接與最近的相鄰接合連接分離約100微米(μm)或更小的距離。
實例35涉及任何前述實例的方法,其中多重接合連接包括三(3)接合連接。
實例36涉及超音波設備,包括:超音波探針;及被設置在探針內的單晶片超音波裝置,單晶片超音波裝置包括任何前述實例的設備。
作為非限制性實例,已經將各種實施例敘述為包括CMUT。在替代實施例中,可使用壓電微機械超音波傳感器(PMUT)來代替或搭配CMUT。在一些實施例中,本文中所述的製造方法可用於形成包含CMUT以外或替CMUT的PMUT的超音波裝置。此可藉由以下事實來促進:PMUT可以與工程基板302的製造中所使用的溫度相當的溫度來形成。
所要求保護的是:
200‧‧‧單晶片超音波裝置
202‧‧‧超音波傳感器基板
203‧‧‧IC基板
204a、204b、204c、204d‧‧‧超音波傳感器/超音波傳感器單元/單元
206‧‧‧(聲學)死角
208、210‧‧‧接點

Claims (14)

  1. 一種超音波設備,其包括:單晶片超音波裝置,其包括超音波傳感器基板,所述超音波傳感器基板具有被設置成鄰近所述超音波傳感器基板之第一側的多個傳感器單元;對於至少一個傳感器單元,一個或多個傳導性接合連接被設置在所述超音波傳感器基板的第二側和電氣基板之間;以及被連接到所述超音波傳感器基板的多個聲學無效區域中的至少一個聲學無效區域的單一傳導性接合連接,每個單一傳導性接合連接被設置在所述超音波傳感器基板和所述電氣基板之間,其中所述超音波傳感器基板中的所述至少一個聲學無效區域被設置在所述多個傳感器單元中的第一對傳感器單元之間。
  2. 根據請求項1所述的設備,其中所述一個或多個傳導性接合連接相對於所述多個傳感器單元中的一個傳感器單元的區域被實質均勻地分佈。
  3. 根據請求項1所述的設備,其中所述一個或多個傳導性接合連接包括以下的一個或多個:熱壓縮連接、共晶連接和矽化物連接。
  4. 根據請求項1所述的設備,其中所述一個或多個傳導性接合連接在其第一端處接觸所述超音波傳感器基板的矽層的傳導性部分,並且在其第二端處接觸所述電氣基板的金屬層。
  5. 根據請求項1所述的設備,其中所述超音波傳感器基板的所述多個聲學無效區域被設置在所述多個傳感器單元中相鄰對的傳感器單元之間。
  6. 根據請求項5所述的設備,其中藉由在所述超音波傳感器基板的矽層中所形成的隔離溝槽,所述多個傳感器單元在所述矽層的傳導性部分上彼 此電氣隔離。
  7. 根據請求項6所述的設備,其中所述隔離溝槽形成對應於所述多個傳感器單元的個別傳感器單元的八邊形區域。
  8. 根據請求項7所述的設備,其中所述聲學無效區域藉由四個相鄰八角形區域之間的邊界來定義。
  9. 根據請求項1所述的設備,其中所述一個或多個接合連接中的每一個與最近的相鄰接合連接分開約100微米(μm)或更小的距離。
  10. 根據請求項1所述的設備,其中所述超音波傳感器基板和所述電氣基板被接合在一起以在它們之間定義多個空腔。
  11. 根據請求項10所述的設備,其中所述多個傳感器單元中的每一個對應於所述多個空腔中的一空腔。
  12. 根據請求項1所述的設備,還包括密封環,其圍繞藉由所述多個傳感器單元所定義的超音波傳感器陣列。
  13. 根據請求項12所述的設備,其中所述密封環在所述超音波傳感器基板和所述電氣基板之間提供電氣連接。
  14. 根據請求項1所述的設備,還包括探針,其中所述單晶片超音波裝置被設置在所述探針之中。
TW106120350A 2016-06-20 2017-06-19 用於微製造超音波傳感器的電接點配置 TWI721183B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201662352394P 2016-06-20 2016-06-20
US62/352,394 2016-06-20

Publications (2)

Publication Number Publication Date
TW201808786A TW201808786A (zh) 2018-03-16
TWI721183B true TWI721183B (zh) 2021-03-11

Family

ID=60659817

Family Applications (1)

Application Number Title Priority Date Filing Date
TW106120350A TWI721183B (zh) 2016-06-20 2017-06-19 用於微製造超音波傳感器的電接點配置

Country Status (9)

Country Link
US (3) US10497856B2 (zh)
EP (1) EP3471897B1 (zh)
JP (1) JP7026111B2 (zh)
KR (1) KR20190022644A (zh)
CN (2) CN113857023B (zh)
AU (1) AU2017281280B2 (zh)
CA (1) CA3026157A1 (zh)
TW (1) TWI721183B (zh)
WO (1) WO2017222969A1 (zh)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA3026157A1 (en) * 2016-06-20 2017-12-28 Butterfly Network, Inc. Electrical contact arrangement for microfabricated ultrasonic transducer
US10676349B1 (en) 2016-08-12 2020-06-09 Sitime Corporation MEMS resonator
US11515465B2 (en) * 2018-02-26 2022-11-29 Invensense, Inc. EMI reduction in piezoelectric micromachined ultrasound transducer array
EP3788798B1 (en) 2018-05-03 2023-07-05 BFLY Operations, Inc. Ultrasonic transducers with pressure ports
EP3793752A4 (en) * 2018-05-14 2021-12-29 Exo Imaging Inc. Integration techniques for micromachined pmut arrays and electronics using thermocompression bonding, eutectic bonding, and solder bonding
AU2019297412A1 (en) * 2018-07-06 2021-01-28 Butterfly Network, Inc. Methods and apparatuses for packaging an ultrasound-on-a-chip
US11087582B2 (en) * 2018-10-19 2021-08-10 Igt Electronic gaming machine providing enhanced physical player interaction
US11498096B2 (en) 2018-11-06 2022-11-15 Siemens Medical Solutions Usa, Inc. Chip-on-array with interposer for a multidimensional transducer array
AU2019392906A1 (en) 2018-12-07 2021-07-22 Octant, Inc. Systems for protein-protein interaction screening
US11766696B2 (en) 2019-02-07 2023-09-26 Bfly Operations, Inc. Bi-layer metal electrode for micromachined ultrasonic transducer devices
US11383269B2 (en) 2019-06-10 2022-07-12 Bfly Operations, Inc. Curved micromachined ultrasonic transducer membranes
US11292715B2 (en) * 2019-06-27 2022-04-05 Taiwan Semiconductor Manufacturing Company, Ltd. Conductive bond structure to increase membrane sensitivity in MEMS device
US11684951B2 (en) 2019-08-08 2023-06-27 Bfly Operations, Inc. Micromachined ultrasonic transducer devices having truncated circle shaped cavities
US11289377B2 (en) * 2019-10-01 2022-03-29 Qorvo Us, Inc. Semiconductor chip suitable for 2.5D and 3D packaging integration and methods of forming the same
US20210138506A1 (en) * 2019-11-12 2021-05-13 Siemens Medical Solutions Usa, Inc. Interposer for an Ultrasound Transducer Array
US11440051B2 (en) 2020-02-26 2022-09-13 General Electric Company Capacitive micromachined ultrasonic transducer (CMUT) devices and methods of manufacturing
IT202000004777A1 (it) 2020-03-06 2021-09-06 St Microelectronics Srl Trasduttore ultrasonico microlavorato piezoelettrico
EP3909692A1 (en) * 2020-05-14 2021-11-17 Koninklijke Philips N.V. An ultrasound transducer and a tiled array of ultrasound transducers
EP3909691A1 (en) * 2020-05-14 2021-11-17 Koninklijke Philips N.V. An ultrasound transducer and a tiled array of ultrasound transducers
CN111884647B (zh) * 2020-08-13 2023-09-29 中国工程物理研究院电子工程研究所 一种压电微机械声波换能器阵列耦合隔离方法
TWI835661B (zh) * 2023-05-29 2024-03-11 友達光電股份有限公司 換能器及其製造方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150137285A1 (en) * 2013-11-20 2015-05-21 Samsung Electronics Co., Ltd. Capacitive micromachined ultrasonic transducer and method of fabricating the same
US20160009544A1 (en) * 2015-03-02 2016-01-14 Butterfly Network, Inc. Microfabricated ultrasonic transducers and related apparatus and methods

Family Cites Families (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6262946B1 (en) 1999-09-29 2001-07-17 The Board Of Trustees Of The Leland Stanford Junior University Capacitive micromachined ultrasonic transducer arrays with reduced cross-coupling
US6430109B1 (en) 1999-09-30 2002-08-06 The Board Of Trustees Of The Leland Stanford Junior University Array of capacitive micromachined ultrasonic transducer elements with through wafer via connections
US6551248B2 (en) * 2001-07-31 2003-04-22 Koninklijke Philips Electronics N.V. System for attaching an acoustic element to an integrated circuit
US6958255B2 (en) 2002-08-08 2005-10-25 The Board Of Trustees Of The Leland Stanford Junior University Micromachined ultrasonic transducers and method of fabrication
US7321181B2 (en) 2004-04-07 2008-01-22 The Board Of Trustees Of The Leland Stanford Junior University Capacitive membrane ultrasonic transducers with reduced bulk wave generation and method
TW200704283A (en) * 2005-05-27 2007-01-16 Lamina Ceramics Inc Solid state LED bridge rectifier light engine
US7615834B2 (en) 2006-02-28 2009-11-10 The Board Of Trustees Of The Leland Stanford Junior University Capacitive micromachined ultrasonic transducer(CMUT) with varying thickness membrane
US7910385B2 (en) 2006-05-12 2011-03-22 Micron Technology, Inc. Method of fabricating microelectronic devices
US20080315331A1 (en) * 2007-06-25 2008-12-25 Robert Gideon Wodnicki Ultrasound system with through via interconnect structure
JP5511260B2 (ja) * 2009-08-19 2014-06-04 キヤノン株式会社 容量型電気機械変換装置、及びその感度調整方法
KR101593994B1 (ko) * 2009-09-04 2016-02-16 삼성전자주식회사 고출력 초음파 트랜스듀서
US8345508B2 (en) * 2009-09-20 2013-01-01 General Electric Company Large area modular sensor array assembly and method for making the same
JP5404335B2 (ja) * 2009-11-17 2014-01-29 キヤノン株式会社 電気機械変換装置及びその作製方法
US8922021B2 (en) * 2011-12-30 2014-12-30 Deca Technologies Inc. Die up fully molded fan-out wafer level packaging
JP5603739B2 (ja) 2010-11-02 2014-10-08 キヤノン株式会社 静電容量型電気機械変換装置
US8659148B2 (en) * 2010-11-30 2014-02-25 General Electric Company Tileable sensor array
CN103501922B (zh) 2011-03-22 2016-08-17 皇家飞利浦有限公司 具有至衬底的受抑声耦合的超声波cmut
US9293690B2 (en) * 2011-06-27 2016-03-22 Koninklijke Philips N.V. Ultrasound transducer assembly and method of manufacturing the same
KR101894393B1 (ko) 2011-12-28 2018-09-04 삼성전자주식회사 초음파 변환기 구조물, 초음파 변환기 및 초음파 변환기의 제조 방법
KR101851568B1 (ko) * 2012-08-29 2018-04-24 삼성전자주식회사 초음파 변환기 및 그 제조방법
KR20140033992A (ko) * 2012-09-11 2014-03-19 삼성전자주식회사 초음파 변환기
US9368438B2 (en) 2012-12-28 2016-06-14 Taiwan Semiconductor Manufacturing Company, Ltd. Package on package (PoP) bonding structures
US9533873B2 (en) 2013-02-05 2017-01-03 Butterfly Network, Inc. CMOS ultrasonic transducers and related apparatus and methods
CA2905040C (en) 2013-03-15 2021-10-19 Butterfly Network, Inc. Complementary metal oxide semiconductor (cmos) ultrasonic transducers and methods for forming the same
KR20150065067A (ko) 2013-12-04 2015-06-12 삼성전자주식회사 정전용량 미세가공 초음파 변환기 및 그 제조방법
US9630832B2 (en) 2013-12-19 2017-04-25 Taiwan Semiconductor Manufacturing Company, Ltd. Semiconductor device and method of manufacturing
US9505030B2 (en) * 2014-04-18 2016-11-29 Butterfly Network, Inc. Ultrasonic transducers in complementary metal oxide semiconductor (CMOS) wafers and related apparatus and methods
US9067779B1 (en) * 2014-07-14 2015-06-30 Butterfly Network, Inc. Microfabricated ultrasonic transducers and related apparatus and methods
WO2017025598A1 (en) 2015-08-11 2017-02-16 Koninklijke Philips N.V. Capacitive micromachined ultrasonic transducers with increased patient safety
CA3026157A1 (en) 2016-06-20 2017-12-28 Butterfly Network, Inc. Electrical contact arrangement for microfabricated ultrasonic transducer
US20180180724A1 (en) * 2016-12-26 2018-06-28 Nxp Usa, Inc. Ultrasonic transducer integrated with supporting electronics
US10242967B2 (en) * 2017-05-16 2019-03-26 Raytheon Company Die encapsulation in oxide bonded wafer stack
AU2018289454A1 (en) * 2017-06-21 2019-12-05 Butterfly Network, Inc. Microfabricated ultrasonic transducer having individual cells with electrically isolated electrode sections
AU2019392906A1 (en) * 2018-12-07 2021-07-22 Octant, Inc. Systems for protein-protein interaction screening

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150137285A1 (en) * 2013-11-20 2015-05-21 Samsung Electronics Co., Ltd. Capacitive micromachined ultrasonic transducer and method of fabricating the same
US20160009544A1 (en) * 2015-03-02 2016-01-14 Butterfly Network, Inc. Microfabricated ultrasonic transducers and related apparatus and methods

Also Published As

Publication number Publication date
TW201808786A (zh) 2018-03-16
US10497856B2 (en) 2019-12-03
CN113857023B (zh) 2022-08-02
EP3471897C0 (en) 2023-08-02
AU2017281280B2 (en) 2022-01-06
EP3471897B1 (en) 2023-08-02
WO2017222969A1 (en) 2017-12-28
US20200066966A1 (en) 2020-02-27
EP3471897A4 (en) 2020-01-15
US11672179B2 (en) 2023-06-06
CN113857023A (zh) 2021-12-31
CN109414727B (zh) 2021-09-28
US20240122073A1 (en) 2024-04-11
JP7026111B2 (ja) 2022-02-25
CN109414727A (zh) 2019-03-01
JP2019522449A (ja) 2019-08-08
KR20190022644A (ko) 2019-03-06
CA3026157A1 (en) 2017-12-28
EP3471897A1 (en) 2019-04-24
AU2017281280A1 (en) 2018-12-06
US20170365774A1 (en) 2017-12-21

Similar Documents

Publication Publication Date Title
TWI721183B (zh) 用於微製造超音波傳感器的電接點配置
US9120126B2 (en) Electro-acoustic transducer and method of manufacturing the same
JP7307076B2 (ja) Cmos上におけるpmutのモノリシック集積
US11426143B2 (en) Vertical packaging for ultrasound-on-a-chip and related methods
JP6664374B2 (ja) 微細加工超音波変換器ならびに関連する装置および方法
JP5734878B2 (ja) 低温ウエハ接合によって作製されるモノリシック集積型cmutの作製方法
US20180369862A1 (en) Microfabricated ultrasonic transducer having individual cells with electrically isolated electrode sections
US7781238B2 (en) Methods of making and using integrated and testable sensor array
KR101894393B1 (ko) 초음파 변환기 구조물, 초음파 변환기 및 초음파 변환기의 제조 방법
KR20200130375A (ko) 초음파 트랜스듀서 디바이스들 및 초음파 트랜스듀서 디바이스들을 제조하기 위한 방법들
JP2015109634A (ja) 静電容量微細加工超音波変換器及びその製造方法
US9475092B2 (en) Electro-acoustic transducer and method of manufacturing the same
JP6267787B2 (ja) 超音波トランスデューサ及びその製造方法、並びに超音波検査装置
WO2013089648A1 (en) Capacitive micromachined ultrasonic transducer arrangement and method of fabricating the same
Zhang et al. Fabrication of capacitive micromachined ultrasonic transducers with through-glass-via interconnects
Midtbø et al. High-frequency CMUT arrays with phase-steering for in vivo ultrasound imaging