TWI713729B - Hollow silicon dioxide particles and manufacturing method thereof - Google Patents

Hollow silicon dioxide particles and manufacturing method thereof Download PDF

Info

Publication number
TWI713729B
TWI713729B TW106113216A TW106113216A TWI713729B TW I713729 B TWI713729 B TW I713729B TW 106113216 A TW106113216 A TW 106113216A TW 106113216 A TW106113216 A TW 106113216A TW I713729 B TWI713729 B TW I713729B
Authority
TW
Taiwan
Prior art keywords
hollow silica
hollow
silica particles
silicon dioxide
particles
Prior art date
Application number
TW106113216A
Other languages
Chinese (zh)
Other versions
TW201738178A (en
Inventor
星田浩樹
Original Assignee
日商花王股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商花王股份有限公司 filed Critical 日商花王股份有限公司
Publication of TW201738178A publication Critical patent/TW201738178A/en
Application granted granted Critical
Publication of TWI713729B publication Critical patent/TWI713729B/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • C01B33/18Preparation of finely divided silica neither in sol nor in gel form; After-treatment thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/08Silica
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/30Particle morphology extending in three dimensions
    • C01P2004/32Spheres
    • C01P2004/34Spheres hollow
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer

Abstract

本發明提供一種可簡便地獲得經降低鹼金屬含量之中空二氧化矽粒子之中空二氧化矽粒子之製造方法。 本發明係關於一種中空二氧化矽粒子之製造方法,其包括下述步驟(1)及(2)。 (1)將於有機鹼水溶液中溶解二氧化矽而成之二氧化矽溶解液進行噴霧乾燥,獲得中空二氧化矽前驅物之步驟。 (2)煅燒上述中空二氧化矽前驅物,獲得中空二氧化矽粒子之步驟。The present invention provides a manufacturing method for easily obtaining hollow silica particles with reduced alkali metal content. The present invention relates to a method for manufacturing hollow silicon dioxide particles, which includes the following steps (1) and (2). (1) The step of spray-drying a silica solution obtained by dissolving silica in an organic alkali aqueous solution to obtain a hollow silica precursor. (2) The step of calcining the above-mentioned hollow silica precursor to obtain hollow silica particles.

Description

中空二氧化矽粒子及其製造方法Hollow silicon dioxide particles and manufacturing method thereof

本發明係關於一種中空二氧化矽粒子及其製造方法。The present invention relates to a hollow silicon dioxide particle and a manufacturing method thereof.

具備形成內部空間之外殼部,且外殼部含有包含二氧化矽之成分之中空二氧化矽粒子由於具有低折射率、低介電常數、低導熱率、低密度等特性,故而可期待作為抗反射材料、低介電材料、隔熱材料、低密度填料之應用,從而引人注目。 作為中空二氧化矽粒子之製造方法,已知有如下方法(模板法):使二氧化矽之前驅物集合、縮合於成為粒子內部之空間之模板粒子(乳化油滴)的表面,於模板粒子之表面形成含有包含二氧化矽之成分之外殼部後,去除模板粒子而製造中空二氧化矽粒子(例如專利文獻1及2)。 進而,作為其他中空二氧化矽粒子之製造方法,已知有如下方法:將矽酸鈉(水玻璃)等鹼金屬矽酸鹽之水溶液進行噴霧乾燥而製作二氧化矽前驅物粒子,對上述二氧化矽前驅物粒子進行酸處理而去除該前驅物粒子中之鹼金屬,製造中空二氧化矽粒子(例如專利文獻3及4)。 [先前技術文獻] [專利文獻] [專利文獻1]日本專利特開2009-203115號公報 [專利文獻2]日本專利特開2011-126761號公報 [專利文獻3]WO2013/121703 [專利文獻4]日本專利特開2015-155373號公報Equipped with a shell part forming an internal space, and the shell part contains a component containing silicon dioxide. Hollow silicon dioxide particles have low refractive index, low dielectric constant, low thermal conductivity, low density and other characteristics, so they can be expected as anti-reflection The application of materials, low-dielectric materials, thermal insulation materials, and low-density fillers has attracted attention. As a method for producing hollow silica particles, the following method (template method) is known: the silica precursor is assembled and condensed on the surface of the template particle (emulsified oil droplet) that becomes the space inside the particle, and the template particle After forming a shell part containing a component containing silica on the surface, the template particles are removed to produce hollow silica particles (for example, Patent Documents 1 and 2). Furthermore, as a method for producing other hollow silica particles, the following method is known: spray drying an aqueous solution of alkali metal silicate such as sodium silicate (water glass) to produce silica precursor particles, and compare the two The silicon oxide precursor particles are acid-treated to remove the alkali metal in the precursor particles to produce hollow silicon dioxide particles (for example, Patent Documents 3 and 4). [Prior Art Document] [Patent Document] [Patent Document 1] Japanese Patent Laid-open No. 2009-203115 [Patent Document 2] Japanese Patent Laid-Open No. 2011-126761 [Patent Document 3] WO2013/121703 [Patent Document 4] Japanese Patent Publication No. 2015-155373

[發明所欲解決之問題] 專利文獻1及2中所揭示之模板法由於步驟較為複雜,為二氧化矽濃度為低濃度下之合成,故而成本較高。 於專利文獻3及4中所揭示之使用水玻璃之噴霧乾燥之製造方法中,與模板法相比可實現低成本,但必須於噴霧乾燥後進行酸處理而去除鹼金屬。而且,於用於電子材料之用途之情形時,謀求鹼金屬之進一步之降低化。 本發明提供一種可簡便地獲得經降低鹼金屬含量之中空二氧化矽粒子之中空二氧化矽粒子之製造方法。 [解決問題之技術手段] 於一態樣中,本發明係關於一種中空二氧化矽粒子之製造方法,其包括下述步驟(1)及(2): (1)將於有機鹼水溶液中溶解二氧化矽而成之二氧化矽溶解液進行噴霧乾燥,獲得中空二氧化矽前驅物之步驟;及 (2)煅燒上述中空二氧化矽前驅物,獲得中空二氧化矽粒子之步驟。 於另一態樣中,本發明係關於一種中空二氧化矽粒子,其係具有形成內部空間之外殼部,且上述外殼部含有包含二氧化矽之成分者,並且上述外殼部具有閉氣孔,上述閉氣孔係於觀察上述外殼部之裂痕剖面時,為針點狀。 於另一態樣中,本發明係關於一種中空二氧化矽粒子,其係具備形成內部空間之外殼部,且上述外殼部含有包含二氧化矽之成分者,並且上述外殼部具有閉氣孔,上述中空二氧化矽粒子之BET比表面積為20 m2 /g以下。 於另一態樣中,本發明係關於一種中空二氧化矽粒子,其係具備形成內部空間之外殼部,且上述外殼部含有包含二氧化矽之成分者,並且上述中空二氧化矽粒子係依序經過將於有機鹼水溶液中溶解二氧化矽而成之二氧化矽溶解液進行噴霧乾燥,獲得中空二氧化矽前驅物之步驟,及煅燒上述中空二氧化矽前驅物之步驟而獲得者,上述外殼部具有閉氣孔。 於另一態樣中,本發明係關於一種本發明之中空二氧化矽粒子於材料中之用途,該材料係選自觸媒載體、酵素載體、吸附材料、分離材料、光學材料、絕緣材料、半導體密封材料、電子材料、低介電常數材料、隔熱材料用材料、遮蔽性材料、建築材料及化妝品用材料中之至少1種。 [發明之效果] 本發明可發揮可簡便地獲得經降低鹼金屬含量之中空二氧化矽粒子之效果。[Problem to be Solved by the Invention] The template method disclosed in Patent Documents 1 and 2 has a relatively high cost due to its complicated steps and low concentration of silicon dioxide. In the manufacturing methods of spray drying using water glass disclosed in Patent Documents 3 and 4, lower costs can be achieved compared with the template method, but it is necessary to perform acid treatment after spray drying to remove alkali metals. Moreover, when used for electronic materials, further reduction in alkali metals is sought. The present invention provides a manufacturing method for easily obtaining hollow silica particles with reduced alkali metal content. [Technical Means to Solve the Problem] In one aspect, the present invention relates to a method for manufacturing hollow silica particles, which includes the following steps (1) and (2): (1) Dissolving in an aqueous organic alkali solution The step of spray drying the silicon dioxide solution made of silicon dioxide to obtain a hollow silicon dioxide precursor; and (2) the step of calcining the hollow silicon dioxide precursor to obtain hollow silicon dioxide particles. In another aspect, the present invention relates to a hollow silica particle having a shell portion forming an inner space, and the shell portion contains a component containing silicon dioxide, and the shell portion has closed pores, The closed pores are pinpoint-shaped when observing the crack section of the shell. In another aspect, the present invention relates to a hollow silica particle, which is provided with an outer shell portion forming an internal space, and the outer shell portion contains a component containing silicon dioxide, and the outer shell portion has closed pores. The BET specific surface area of the hollow silica particles is 20 m 2 /g or less. In another aspect, the present invention relates to a hollow silica particle, which is provided with a shell portion forming an inner space, and the shell portion contains a component containing silicon dioxide, and the hollow silica particle is based on The sequence is obtained by spray drying a silica solution obtained by dissolving silica in an organic alkali aqueous solution to obtain a hollow silica precursor, and calcining the hollow silica precursor, the above The outer shell has closed air holes. In another aspect, the present invention relates to the use of the hollow silica particles of the present invention in materials, which are selected from the group consisting of catalyst carriers, enzyme carriers, adsorption materials, separation materials, optical materials, insulating materials, At least one of semiconductor sealing materials, electronic materials, low dielectric constant materials, materials for heat insulation materials, shielding materials, building materials, and materials for cosmetics. [Effects of the invention] The present invention has the effect of easily obtaining hollow silica particles with reduced alkali metal content.

本發明係基於如下見解:將於有機鹼水溶液中溶解二氧化矽而成之二氧化矽溶解液進行噴霧乾燥,藉此可簡便地獲得經降低鹼金屬含量之中空二氧化矽粒子。 即,於一態樣中,本發明係關於一種中空二氧化矽粒子之製造方法(以下,亦稱為「本發明之製造方法」),其包括下述步驟(1)及(2)。 (1)將於有機鹼水溶液中溶解二氧化矽而成之二氧化矽溶解液進行噴霧乾燥,獲得中空二氧化矽前驅物之步驟。 (2)煅燒上述中空二氧化矽前驅物,獲得中空二氧化矽粒子之步驟。 根據本發明之製造方法,可發揮可簡便地獲得經降低鹼金屬含量之中空二氧化矽粒子之效果。 表現本發明之效果之機制之詳細內容雖不明確,但推定如下。即,於二氧化矽之溶解中使用有機鹼水溶液,藉此可減少噴霧乾燥中使用之二氧化矽溶解液中之鹼金屬含量,可獲得減少鹼金屬含量之中空二氧化矽粒子。進而,認為於煅燒步驟中中空二氧化矽前驅物中之有機鹼消失或蒸發,藉此於外殼部形成微細且均一之閉氣孔,中空二氧化矽粒子之孔隙率提昇。但是,本發明可不限定於該等機制而解釋。 於本發明中,「中空二氧化矽粒子」係指具備形成內部空間之外殼部,且上述外殼部含有包含二氧化矽之成分,並且於藉由外殼部形成之內部空間存在空氣等氣體之中空二氧化矽粒子。於本發明中,「含有包含二氧化矽之成分之外殼部」係指形成外殼部之骨架之主成分為二氧化矽,係指外殼部之成分之較佳為50質量%以上、更佳為70質量%以上、進而較佳為90質量%以上、進而更佳為95質量%以上為二氧化矽。於本發明中,「中空二氧化矽前驅物」係將二氧化矽溶解液進行噴霧乾燥所獲得之粉末粒子,為藉由進行步驟(2)之煅燒而成為中空二氧化矽粒子之粒子。 以下,對上述步驟(1)及(2)之詳細內容及此處使用之各成分等進行說明。 [步驟(1):噴霧乾燥] 本發明之製造方法中之步驟(1)係將於有機鹼水溶液中溶解二氧化矽而成之二氧化矽溶解液進行噴霧乾燥而獲得中空二氧化矽前驅物的噴霧乾燥步驟。認為若將二氧化矽溶解液進行噴霧乾燥,則二氧化矽溶解液之液滴表面乾燥而成為緻密之膜,液滴內部乾燥而成為空腔,可獲得中空結構之前驅物粒子(中空二氧化矽前驅物)。二氧化矽溶解液例如可藉由將二氧化矽與有機鹼水溶液進行混合而製備。因此,本發明之製造方法中之步驟(1)例如可包括將二氧化矽混合於有機鹼水溶液中,將二氧化矽溶解於有機鹼水溶液中而製備二氧化矽溶解液之溶解步驟。 <二氧化矽> 作為二氧化矽溶解液之製備中所使用之二氧化矽,例如可列舉:結晶性二氧化矽、非晶質二氧化矽、煙熏二氧化矽、濕式二氧化矽、膠體二氧化矽等,就二氧化矽溶解液之製造容易性、純度、成本之觀點而言,較佳為非晶質二氧化矽。 與有機鹼水溶液混合之前之二氧化矽之狀態可無特別限定,例如可列舉:粉末狀、溶膠狀或凝膠狀。就用於電子材料之用途之觀點而言,二氧化矽較佳為高純度二氧化矽,更佳為超高純度二氧化矽。 <有機鹼水溶液> 二氧化矽溶解液之製備中所使用之有機鹼水溶液只要為可溶解二氧化矽者即可,例如可列舉pH值11以上之有機鹼水溶液。 作為有機鹼水溶液中所包含之有機鹼,只要為可溶解二氧化矽者即可,就中空二氧化矽粒子之粒子結構之均一化、外殼部之厚度之均一化、穩定之外殼部形成及生產性提昇之觀點而言,例如可列舉:二級胺、三級胺、四級銨鹽等,就二氧化矽溶解液之製造容易性之觀點而言,較佳為四級銨鹽。有機鹼可單獨使用1種或者組合2種以上而使用。 作為四級銨鹽,就中空二氧化矽粒子之粒子結構之均一化、外殼部之厚度之均一化、穩定之外殼部形成及生產性提昇之觀點而言,例如可列舉下述式(I)所表示之包含四級銨陽離子及氫氧化物之鹽。 [化1]

Figure 02_image001
於上述式(I)中,R1 、R2 、R3 及R4 分別獨立地為選自碳數為1以上且22以下之烷基、羥甲基、羥乙基及羥丙基中之至少1種。作為上述烷基之碳數,就中空二氧化矽粒子之粒子結構之均一化、外殼部之厚度之均一化、穩定之外殼部形成及生產性提昇之觀點而言,較佳為1以上且12以下,更佳為1以上且3以下。作為上述烷基,可列舉直鏈狀烷基或支鏈狀烷基,就使外殼部之厚度均一之觀點而言,較佳為直鏈狀烷基。 作為四級銨鹽之具體例,可列舉選自四甲基氫氧化銨(以下,亦稱為TMAH)、四乙基氫氧化銨(以下,亦稱為TEAH)、二甲基雙(2-羥基乙基)氫氧化銨及三甲基乙基氫氧化銨中之至少1種,就中空二氧化矽粒子之粒子結構之均一化、外殼部之厚度之均一化、穩定之外殼部形成及生產性提昇之觀點而言,較佳為TMAH或TEAH。 作為二級胺,例如可列舉:二甲胺、二乙胺、二丙胺、二乙醇胺、二異丙醇胺、己二胺等。 作為三級胺,例如可列舉:三甲胺、三乙胺、三乙醇胺、四甲基己二胺、二甲基胺基己醇、丁基二乙醇胺、四甲基乙二胺等。 <二氧化矽溶解液> 二氧化矽溶解液例如可藉由混合二氧化矽及有機鹼水溶液,使二氧化矽溶解而獲得。溶解方法只要可溶解二氧化矽則並無特別限制,可使用公知之溶解方法。作為溶解方法,例如可列舉:加溫處理、加壓處理或機械粉碎處理等,可組合該等而使用。作為加溫條件,例如可設定為60~200℃。作為加壓條件,例如可設定為0~3 MPa。機械粉碎例如可使用球磨機等而進行。進而,於使二氧化矽溶解於有機鹼水溶液中時,可賦予超音波振動。 就抑制異形粒子之生成之觀點、及生產性提昇之觀點而言,二氧化矽溶解液中之二氧化矽濃度較佳為2質量%以上,更佳為5質量%以上,進而較佳為10質量%以上,而且,較佳為30質量%以下,更佳為25質量%以下,進而較佳為20質量%以下。二氧化矽溶解液中之二氧化矽之含量例如可使用熱重量測定裝置進行測定。 就孔隙率提昇之觀點而言,二氧化矽溶解液中之二氧化矽相對於有機鹼之莫耳比(二氧化矽/有機鹼)較佳為0.5以上,更佳為1.0以上,進而較佳為1.5以上,而且,較佳為3.5以下,更佳為3.0以下,進而較佳為2.5以下。 於本發明中,二氧化矽溶解液可包含水系溶劑。作為水系溶劑,例如可列舉:蒸餾水、離子交換水、超純水等。 <噴霧乾燥法> 作為噴霧乾燥法,例如可列舉:旋轉圓盤法、加壓噴嘴、雙流體噴嘴法、四流體噴嘴法等公知之方法。於噴霧乾燥中,例如可使用市售之噴霧乾燥裝置。 作為上述噴霧乾燥中之熱風之入口溫度,就中空二氧化矽粒子之粒子結構之均一化、外殼部之厚度之均一化、穩定之外殼部形成及生產性提昇之觀點而言,較佳為80℃~250℃,更佳為100℃~220℃,進而較佳為120℃~200℃。就相同之觀點而言,入口溫度較佳為80℃以上,更佳為100℃以上,進而較佳為120℃以上,而且,較佳為250℃以下,更佳為220℃以下,進而較佳為200℃以下。 作為上述噴霧乾燥中之熱風之出口溫度,就相同之觀點而言,較佳為50℃~120℃,更佳為60℃~110℃,進而較佳為70℃~100℃。就相同之觀點而言,出口溫度較佳為50℃以上,更佳為60℃以上,進而較佳為70℃以上,而且,較佳為120℃以下,更佳為110℃以下,進而較佳為100℃以下。出口溫度可藉由控制入口溫度進行調整。 關於上述噴霧乾燥時之噴霧壓力、噴霧量及風量等,根據使用之噴霧乾燥裝置等而適當設定即可。 於步驟(1)中,噴霧乾燥中使用之二氧化矽溶解液(以下,亦稱為「噴霧液」)可於使用時加以稀釋而使用。於將稀釋二氧化矽溶解液而成者作為噴霧液之情形時,於稀釋中,例如可使用蒸餾水、離子交換水、超純水等水系溶劑。就生產性提昇之觀點而言,噴霧液中之二氧化矽濃度較佳為2質量%以上,更佳為5質量%以上,進而較佳為10質量%以上,而且,較佳為30質量%以下,更佳為25質量%以下,進而較佳為20質量%以下。噴霧液中之二氧化矽之含量例如可藉由與上述二氧化矽溶解液相同之方法算出。 於本發明中,於二氧化矽溶解液及噴霧液中,可於無損本發明之效果之範圍內包含其他成分。作為其他成分,例如可列舉:有機黏合劑、活性劑等。 於本發明中,就中空二氧化矽粒子對電子材料用途之應用之觀點而言,較佳為於二氧化矽溶解液及噴霧液中實質上不包含Na、K等鹼金屬。即,就相同之觀點而言,二氧化矽溶解液或噴霧液中之鹼金屬之合計量較佳為0.1質量%以下,更佳為0.01質量%以下,進而較佳為0.005質量%以下。二氧化矽溶解液或噴霧液中之鹼金屬含量例如可藉由與下述中空二氧化矽粒子相同之方法進行測定。 步驟(1)中所獲得之中空二氧化矽前驅物例如可藉由空氣分級而回收。因此,本發明之製造方法可於步驟(1)與下述步驟(2)之間,包括將藉由噴霧乾燥所獲得之中空二氧化矽前驅物進行空氣分級而選擇性地回收之空氣分級步驟。藉由進行空氣分級,可使粒徑均一,可獲得適於使用目的之粒徑之粒子。空氣分級例如可藉由使用氣流式分級機、過濾袋等之公知之方法進行。 [步驟(2):煅燒] 本發明之製造方法中之步驟(2)係煅燒上述步驟(1)中所獲得之中空二氧化矽前驅物的煅燒步驟。藉由該步驟(2),中空二氧化矽前驅物之外殼部中所包含之有機鹼消失或蒸發,故而可獲得具有形成有複數個如圖3所示之因有機鹼所引起之微細之閉氣孔之外殼部的中空二氧化矽粒子。 就適度煅燒細孔之觀點、孔隙率提昇及粒子強度提昇之觀點而言,煅燒溫度較佳為700℃以上,更佳為800℃以上,進而較佳為900℃以上,而且,較佳為1500℃以下,更佳為1300℃以下,進而較佳為1200℃以下。 煅燒例如可使用電爐等進行。煅燒時間根據煅燒溫度等而有所不同,通常可設定為0.5~100小時,就生產性之觀點而言,較佳為0.5~48小時。 [中空二氧化矽粒子] 於一個或複數個實施形態中,藉由本發明之製造方法而獲得之中空二氧化矽粒子係如圖1所示之球狀粒子。而且,於一個或複數個實施形態中,關於藉由本發明之製造方法而獲得之中空二氧化矽粒子,於觀察包含該中空二氧化矽粒子之樹脂裂痕剖面之SEM圖像時,為具有如圖2所示之中空結構之粒子。於圖2之SEM圖像中,圓形狀之黑色部分為粒子內部之空間。即,於一個或複數個實施形態中,本發明係關於一種具有形成內部空間之外殼部,且上述外殼部含有包含二氧化矽之成分之中空二氧化矽粒子(以下,亦稱為「本發明之中空二氧化矽粒子」)。而且,於一個或複數個實施形態中,本發明之中空二氧化矽粒子係依序經過將於有機鹼水溶液中溶解二氧化矽而成之二氧化矽溶解液進行噴霧乾燥,獲得中空二氧化矽前驅物之步驟(1),及煅燒上述中空二氧化矽前驅物之步驟(2)而獲得者。 本發明之中空二氧化矽粒子之外殼部具有閉氣孔。而且,於一個或複數個實施形態中,閉氣孔係於SEM觀察外殼部之裂痕剖面時,為如圖3所示之針點狀。於圖3之SEM圖像中,可視認為黑點之部分為針點狀之閉氣孔。於本發明中,於一個或複數個實施形態中,如上所述,「閉氣孔」係指如圖3所示之因有機鹼所引起之氣孔。於一個或複數個實施形態中,「因有機鹼所引起之氣孔」係於上述步驟(2)之煅燒時,藉由中空二氧化矽前驅物中之有機鹼消失或蒸發而形成者。於一個或複數個實施形態中,SEM觀察外殼部之裂痕剖面時之閉氣孔之大小例如為5 nm以上且100 nm以下。於本發明中,就孔隙率提昇及粒子強度提昇之觀點而言,閉氣孔較佳為於外殼部形成複數個。於本發明中,就孔隙率提昇及粒子強度提昇之觀點而言,外殼部之裂痕剖面每1 μm2 之平均閉氣孔數較佳為30個以上,更佳為50個以上,進而較佳為80個以上,而且,較佳為300個以下,更佳為250個以下,進而較佳為200個以下。平均閉氣孔數例如可藉由實施例中記載之方法進行測定。 根據本發明之中空二氧化矽粒子,可獲得於外殼部具有閉氣孔之中空二氧化矽粒子。認為例如,本發明之中空二氧化矽粒子由於在外殼部具有閉氣孔,故而與平均粒徑及外殼部之厚度相同,且於外殼部不具有閉氣孔之中空二氧化矽粒子相比,可提昇孔隙率,進而,於本發明之中空二氧化矽粒子於外殼部具有大量之閉氣孔之情形時,可進一步提昇孔隙率。進而,認為於本發明之中空二氧化矽粒子中,例如,於形成於外殼部之閉氣孔之大小為微小(例如5~30 nm左右)之情形時,或者於複數個閉氣孔均勻地分散於外殼部之情形時,可抑制因來自外部之衝擊等所引起之龜裂之擴大或使之方向轉換,抑制粒子強度之降低。 本發明之中空二氧化矽粒子之平均粒徑可考慮用途等而適當調整,就將中空二氧化矽粒子用於樹脂添加填料等時之對樹脂之分散性之觀點而言,較佳為0.1 μm以上,更佳為0.5 μm以上,進而更佳為1.0 μm以上,而且,較佳為50 μm以下。平均粒徑例如可使用雷射繞射/散射式粒徑分佈測定裝置(堀場製作所公司製造之「LA-750」)或庫爾特計數器(貝克曼庫爾特公司製造之「Multisizer 3」)進行測定。 就確保中空二氧化矽粒子之外殼部表面之緻密性之觀點而言,本發明之中空二氧化矽粒子之BET比表面積較佳為20 m2 /g以下,更佳為15 m2 /g以下,進而較佳為10 m2 /g以下。「BET比表面積」例如可藉由下述實施例中記載之方法進行測定。 於本發明中,中空二氧化矽粒子之平均粒徑例如可藉由二氧化矽溶解液中之各成分之濃度、噴霧條件、煅燒條件等而適當調整。 就中空二氧化矽粒子之介電常數之降低化及粒子強度提昇之觀點而言,本發明之中空二氧化矽粒子之鬆密度較佳為0.44 g/cm3 以上,更佳為0.66 g/cm3 以上,進而較佳為0.88 g/cm3 以上,而且,較佳為1.98 g/cm3 以下,更佳為1.76 g/cm3 以下,進而較佳為1.54 g/cm3 以下。於本發明中,「鬆密度」例如可藉由氣體比重瓶進行測定。具體而言,可藉由實施例中記載之方法進行測定。 就降低中空二氧化矽粒子之介電常數之觀點、及強度之觀點而言,本發明之中空二氧化矽粒子之孔隙率較佳為10%以上,更佳為20%以上,進而較佳為30%以上,而且,較佳為80%以下,更佳為70%以下,進而較佳為60%以下。孔隙率例如可使用真密度測定裝置並根據下述式算出。具體而言,可藉由實施例中記載之方法進行測定。 孔隙率(%)=[1-(中空二氧化矽粒子之真密度/二氧化矽粒子之真密度)]×100 就電子材料之品質提昇之觀點而言,本發明之中空二氧化矽粒子較佳為實質上不包含Na、K等鹼金屬。即,中空二氧化矽粒子中之鹼金屬之合計含量較佳為0.1質量%以下,更佳為0.01質量%以下,進而較佳為0.005質量%以下。中空二氧化矽粒子中之鹼金屬含量例如可藉由實施例中記載之方法進行測定。 本發明之中空二氧化矽粒子可於可利用中空二氧化矽粒子之各種領域中使用,例如可用作觸媒載體;酵素載體;吸附材料;分離材料;光學材料;電子電路之多層配線結構中所使用之絕緣材料;半導體密封材料;電子材料;低介電膜或低介電膜用塗佈劑等中所使用之低介電常數材料;隔熱材料用材料;遮蔽性材料;建築材料;護膚化妝品、彩妝化妝品、身體護理化妝品、香氛化妝品等化妝品用材料。 本發明進而揭示以下之製造方法、中空二氧化矽粒子或用途。 <1>一種中空二氧化矽粒子之製造方法,其包括下述步驟(1)及(2): (1)將於有機鹼水溶液中溶解二氧化矽而成之二氧化矽溶解液進行噴霧乾燥,獲得中空二氧化矽前驅物之步驟;及 (2)煅燒上述中空二氧化矽前驅物,獲得中空二氧化矽粒子之步驟。 <2>如<1>記載之製造方法,其中步驟(1)包括溶解步驟,其係將二氧化矽混合於有機鹼水溶液中,將二氧化矽溶解於有機鹼水溶液中而製備二氧化矽溶解液。 <3>如<1>或<2>記載之製造方法,其中有機鹼為四級銨鹽。 <4>如<3>記載之製造方法,其中四級銨鹽係下述式(I)所表示之包含四級銨陽離子及氫氧化物之鹽。 [化2]
Figure 02_image003
<5>如<4>記載之製造方法,其中式(I)中,R1 、R2 、R3 及R4 分別獨立地為選自碳數為1以上且22以下之烷基、羥甲基、羥乙基及羥丙基中之至少1種。 <6>如<5>記載之製造方法,其中式(I)中,上述烷基之碳數較佳為1以上且12以下,更佳為1以上且3以下。 <7>如<5>或<6>記載之製造方法,其中式(I)中,上述烷基為直鏈狀烷基或支鏈狀烷基,較佳為直鏈狀烷基。 <8>如<4>記載之製造方法,其中四級銨鹽係選自四甲基氫氧化銨、四乙基氫氧化銨、二甲基雙(2-羥基乙基)氫氧化銨及三甲基乙基氫氧化銨中之至少1種,較佳為四甲基氫氧化銨。 <9>如<1>至<8>中任一項記載之製造方法,其中二氧化矽溶解液中之二氧化矽濃度較佳為2質量%以上,更佳為5質量%以上,進而較佳為10質量%以上。 <10>如<1>至<9>中任一項記載之製造方法,其中二氧化矽溶解液中之二氧化矽濃度較佳為30質量%以下,更佳為25質量%以下,進而較佳為20質量%以下。 <11>如<1>至<10>中任一項記載之製造方法,其中二氧化矽溶解液中之二氧化矽濃度為2質量%以上且30質量%以下。 <12>如<1>至<11>中任一項記載之製造方法,其中二氧化矽溶解液中之二氧化矽相對於有機鹼之莫耳比(二氧化矽/有機鹼)較佳為0.5以上,更佳為1.0以上,進而較佳為1.5以上。 <13>如<1>至<12>中任一項記載之製造方法,其中二氧化矽溶解液中之二氧化矽相對於有機鹼之莫耳比(二氧化矽/有機鹼)較佳為3.5以下,更佳為3.0以下,進而較佳為2.5以下。 <14>如<1>至<13>中任一項記載之製造方法,其中二氧化矽溶解液之鹼金屬之合計量較佳為0.1質量%以下,更佳為0.01質量%以下,進而較佳為0.005質量%以下。 <15>如<1>至<14>中任一項記載之製造方法,其中步驟(1)之噴霧乾燥中之熱風之入口溫度較佳為80℃~250℃,更佳為100℃~220℃,進而較佳為120℃~200℃。 <16>如<1>至<15>中任一項記載之製造方法,其中步驟(1)之噴霧乾燥中之熱風之出口溫度較佳為50℃~120℃,更佳為60℃~110℃,進而較佳為70℃~100℃。 <17>如<1>至<16>中任一項記載之製造方法,其係於步驟(1)與步驟(2)之間,進而包括將藉由噴霧乾燥所獲得之中空二氧化矽前驅物進行空氣分級而選擇性地回收之空氣分級步驟。 <18>如<1>至<17>中任一項記載之製造方法,其中步驟(2)中之煅燒溫度較佳為700℃以上,更佳為800℃以上,進而較佳為900℃以上。 <19>如<1>至<18>中任一項記載之製造方法,其中步驟(2)中之煅燒溫度較佳為1500℃以下,更佳為1300℃以下,進而較佳為1200℃以下。 <20>一種中空二氧化矽粒子,其係具備形成內部空間之外殼部,且上述外殼部含有包含二氧化矽之成分者,並且上述外殼部具有閉氣孔,上述閉氣孔係於觀察上述外殼部之裂痕剖面時,為針點狀。 <21>一種中空二氧化矽粒子,其係具備形成內部空間之外殼部,且上述外殼部含有包含二氧化矽之成分者,並且上述外殼部具有閉氣孔,上述中空二氧化矽粒子之BET比表面積為20 m2 /g以下。 <22>一種中空二氧化矽粒子,其係具備形成內部空間之外殼部,且上述外殼部含有包含二氧化矽之成分者,並且上述中空二氧化矽粒子係依序經過將於有機鹼水溶液中溶解二氧化矽而成之二氧化矽溶解液進行噴霧乾燥,獲得中空二氧化矽前驅物之步驟,及煅燒上述中空二氧化矽前驅物之步驟而獲得者,上述外殼部具有閉氣孔。 <23>如<20>至<22>中任一項記載之中空二氧化矽粒子,其中外殼部之成分之較佳為50質量%以上、更佳為70質量%以上、進而較佳為90質量%以上、進而更佳為95質量%以上為二氧化矽。 <24>如<20>至<23>中任一項記載之中空二氧化矽粒子,其中閉氣孔係因有機鹼所引起之氣孔。 <25>如<20>至<24>中任一項記載之中空二氧化矽粒子,其中中空二氧化矽粒子之BET比表面積較佳為20 m2 /g以下,更佳為15 m2 /g以下,進而較佳為10 m2 /g以下。 <26>如<20>至<25>中任一項記載之中空二氧化矽粒子,其中外殼部之裂痕剖面每1 μm2 之平均閉氣孔數較佳為30個以上,更佳為50個以上,進而較佳為80個以上。 <27>如<20>至<26>中任一項記載之中空二氧化矽粒子,其中外殼部之裂痕剖面每1 μm2 之平均閉氣孔數較佳為300個以下,更佳為250個以下,進而較佳為200個以下。 <28>如<20>至<27>中任一項記載之中空二氧化矽粒子,其中外殼部之裂痕剖面每1 μm2 之平均閉氣孔數為30個以上且300個以下。 <29>如<20>至<28>中任一項記載之中空二氧化矽粒子,其中觀察外殼部之裂痕剖面時之閉氣孔之大小為5 nm以上且100 nm以下。 <30>如<20>至<29>中任一項記載之中空二氧化矽粒子,其中中空二氧化矽粒子之孔隙率較佳為10%以上,更佳為20%以上,進而較佳為30%以上。 <31>如<20>至<30>中任一項記載之中空二氧化矽粒子,其中中空二氧化矽粒子之孔隙率較佳為80%以下,更佳為70%以下,進而較佳為60%以下。 <32>如<20>至<31>中任一項記載之中空二氧化矽粒子,其中中空二氧化矽粒子之孔隙率為10%以上且80%以下。 <33>如<20>至<32>中任一項記載之中空二氧化矽粒子,其中中空二氧化矽粒子之平均粒徑較佳為0.1 μm以上,更佳為0.5 μm以上,進而更佳為1.0 μm以上。 <34>如<20>至<33>中任一項記載之中空二氧化矽粒子,其中中空二氧化矽粒子之平均粒徑為50 μm以下。 <35>如<20>至<34>中任一項記載之中空二氧化矽粒子,其中中空二氧化矽粒子之平均粒徑為0.5 μm以上且50 μm以下。 <36>如<20>至<35>中任一項記載之中空二氧化矽粒子,其中中空二氧化矽粒子之鬆密度較佳為0.44 g/cm3 以上,更佳為0.66 g/cm3 以上,進而較佳為0.88 g/cm3 以上。 <37>如<20>至<36>中任一項記載之中空二氧化矽粒子,其中中空二氧化矽粒子之鬆密度較佳為1.98 g/cm3 以下,更佳為1.76 g/cm3 以下,進而較佳為1.54 g/cm3 以下。 <38>如<20>至<37>中任一項記載之中空二氧化矽粒子,其中中空二氧化矽粒子中之鹼金屬之合計含量較佳為0.1質量%以下,更佳為0.01質量%以下,進而較佳為0.005質量%。 <39>一種如<20>至<38>中任一項記載之中空二氧化矽粒子於材料中之用途,該材料係選自觸媒載體、酵素載體、吸附材料、分離材料、光學材料、絕緣材料、半導體密封材料、電子材料、低介電常數材料、隔熱材料用材料、遮蔽性材料、建築材料及化妝品用材料中之至少1種。 [實施例] 以下,藉由實施例更詳細地說明本發明,但該等為例示性者,本發明並不限制於該等實施例。 1.各參數之測定方法 下述實施例及比較例之粒子之各種測定係藉由以下之方法進行。 [鬆密度之測定] 使用氣體比重瓶(Quantachrome Instruments Japan有限公司製造之「Ultrapyc1200e」),於1分鐘之脫氣處理後進行鬆密度之測定。進行10次該測定,將其平均值作為中空二氧化矽粒子之鬆密度(g/cm3 )。 [孔隙率之測定] 孔隙率係根據使用氣體比重瓶(Quantachrome Instruments Japan有限公司製造之「Ultrapyc1200e」)所測得之密度,根據下述式算出。二氧化矽粒子之真密度為2.2 g/cm3 。 孔隙率(%)=[1-(中空二氧化矽粒子之真密度/二氧化矽粒子之真密度)]×100 [BET比表面積之測定] 使用比表面積測定裝置(島津製作所股份有限公司製造,商品名「Flowsorb III2305」),測定中空二氧化矽粒子之BET比表面積。試樣係進行於200℃下加熱15分鐘之預處理。 [平均粒徑] 中空二氧化矽粒子之平均粒徑係使用雷射繞射/散射式粒度分佈測定裝置(堀場製作所公司製造之「LA-920」 將相對折射率設定為1.4進行測定),以體積基準之中值粒徑(D50)之形式進行測定。進而,中空二氧化矽粒子之平均粒徑係使用庫爾特計數器(Coulter Corporation公司製造,使用50 μm口管)進行測定。 [粒子強度] 粒子強度係使用氧化鋯球(10 mm f ZrO2 ):200 g對粒子:10 g進行粉碎處理(95 rpm,1小時),根據粉碎前後之粒子之比重增加量進行評價。將評價基準示於以下。於比重增加量為0.03 g/cm3 以下之情形時,判斷為粒子強度優異,於比重增加量超過0.03 g/cm3 之情形時,判斷為粒子強度較差。 [鹼金屬含量] 中空二氧化矽粒子中之鹼金屬含量係依據JIS-K0133,使用ICP-MS(安捷倫製造之「7700S」)進行測定。使用藉由氫氟酸使中空二氧化矽粒子完全溶解之水溶液作為試樣。此處,將中空二氧化矽粒子中所包含之Na之含量作為二氧化矽溶解液中之鹼金屬含量。 [中空二氧化矽粒子之裂痕剖面之SEM觀察及外殼部之平均厚度之測定] 將中空粒子混練於環氧樹脂中,進行硬化後,割斷試樣。然後,使用電場發射型掃描電子顯微鏡(SEM)(日立製作所公司製造之「S-4000」),將裂痕剖面擴大至3千倍進行觀察。然後,於照片上測量50~100個中空粒子之外殼部厚度而求出外殼部之平均厚度。 [外殼部之裂痕剖面之SEM觀察及平均閉氣孔數之測定] 將中空粒子混練於環氧樹脂中,進行硬化後,割斷試樣。然後,使用電場發射型掃描電子顯微鏡(SEM)(日立製作所公司製造之「S-4000」),將中空粒子之外殼部之裂痕剖面擴大至5萬倍進行觀察。然後,根據3~10個中空粒子之各裂痕剖面每1 μm2 之閉氣孔之個數求出平均閉氣孔數。 2.中空二氧化矽粒子之製造(實施例1~34及比較例1~4) (實施例1) 中空二氧化矽粒子係經過噴霧乾燥步驟(1)及煅燒步驟(2)2個步驟而製造。 首先,製備噴霧乾燥步驟(1)中使用之二氧化矽溶解液。即,一面於附攪拌機之反應槽(耐壓硝子工業公司製造,TEM-D1500M)中放入二氧化矽(Admatechs公司製造,Admafine SOE2):200 g、四甲基氫氧化銨25%水溶液(Sachem Asia公司製造,pH值14):640 g及離子交換水:160 g並進行攪拌,一面以1小時30分鐘升溫至180℃,其後,於180℃下攪拌1小時,藉此獲得二氧化矽溶解液(二氧化矽濃度:20質量%,莫耳比(二氧化矽/有機鹼):1.9)(溶解步驟)。於180℃下攪拌中之反應槽內之壓力為0.85 MPa。 繼而,將所製備之二氧化矽溶解液直接作為噴霧液,使用噴霧乾燥機(東京理化器械公司製造,SD-1000)進行噴霧乾燥,獲得乾燥粉末(中空二氧化矽前驅物)(噴霧乾燥步驟(1))。使用雙流體噴嘴(試樣噴出孔徑:0.4 mm)作為噴霧乾燥機之噴霧噴嘴。噴霧條件為入口溫度:130℃、出口溫度:98℃、噴霧壓力:250 kPa、風量:0.7 m3 /分鐘、噴霧量:10 mL/分鐘。 繼而,利用電爐(Motoyama公司製造,SK-2535E-OP)將藉由噴霧乾燥所獲得之乾燥粉末(中空二氧化矽前驅物)以100℃/小時升溫至1100℃,其後,於1100℃下保持1小時並進行煅燒,藉此獲得實施例1之中空二氧化矽粒子(煅燒步驟(2))。 將實施例1之中空二氧化矽粒子之物性測定結果示於下述表1。而且,將實施例1之中空二氧化矽粒子之SEM圖像示於圖1。根據圖1可知,實施例1之中空二氧化矽粒子之形狀為球狀。進而,將實施例1之中空二氧化矽粒子之外殼部之裂痕剖面的SEM圖像示於圖3。於圖3中,可目測確認到表示閉氣孔之黑點。即,根據圖3可確認於實施例1之中空二氧化矽粒子之外殼部形成有閉氣孔。 (實施例2~33) 如表1中記載般變更二氧化矽溶解液中之各原料之濃度及噴霧乾燥條件,除此以外,藉由與上述實施例1相同之方法,獲得實施例2~33之中空二氧化矽粒子。將各者之物性測定結果示於表1。 (實施例34) 首先,製備噴霧乾燥步驟(1)中使用之二氧化矽溶解液。即,一面於附攪拌機之反應槽(耐壓硝子工業公司製造,TEM-D1500M)中放入二氧化矽(Admatechs公司製造,Admafine SOE2):200 g、四乙基氫氧化銨20%水溶液(TEAH)(和光純藥工業股份有限公司製造):1287 g並進行攪拌,一面以1小時30分鐘升溫至170℃,其後,於170℃下攪拌1小時,藉此獲得實施例34之二氧化矽溶解液(二氧化矽濃度:13質量%,莫耳比(二氧化矽/有機鹼):1.9)(溶解步驟)。於170℃下攪拌中之反應槽內之壓力為1.20 MPa。 而且,使用實施例34之二氧化矽溶解液作為噴霧液,及如表1中記載般變更噴霧條件,除此以外,藉由與上述實施例1相同之方法,獲得實施例34之中空二氧化矽粒子。將實施例34之中空二氧化矽粒子之物性測定結果示於表1。 (比較例1) 於附攪拌機之反應槽中放入甲醇(和光純藥公司製造):23.9重量份、十二烷基三甲基氯化銨30%水溶液(第一工業製藥公司製造):1.0重量份、己烷(和光純藥公司製造):1.0重量份、25%四甲基氫氧化銨(Sachem Asia公司製造):0.5重量份並進行攪拌,製備溶液A。進而,於另一附攪拌機之反應槽中放入離子交換水:71.6重量份並進行攪拌,製造溶液B。然後,一面攪拌溶液A一面以45秒添加溶液B,其後,於25℃下攪拌10分鐘,藉此獲得O/W型乳化液。 繼而,於O/W型乳化液中以30秒添加四甲氧基矽烷(TMOS,多摩化學製造):2.0重量份(溶液C),其後,於25℃下攪拌10分鐘,獲得白濁液。 繼而,使用5C之濾紙過濾分離所獲得之白濁液,進行水洗後,於100℃下進行乾燥,藉此獲得白色之乾燥粉末。於1100℃下將所獲得之乾燥粉末煅燒1小時,藉此獲得比較例1之中空二氧化矽粒子(模板法)。將比較例1之中空二氧化矽粒子之物性測定結果示於表1。 (比較例2) 使用膠體二氧化矽(日產化學工業公司製造,「Snowtex N」,二氧化矽濃度20質量%)作為二氧化矽,且不將二氧化矽溶解於有機鹼中,除此以外,藉由與上述實施例1相同之方法,獲得比較例2之中空二氧化矽粒子。所獲得之比較例2之中空二氧化矽粒子雖具有中空結構,但孔隙率較低。將比較例2之中空二氧化矽粒子之物性測定結果示於表1。 (比較例3) 使用3號水玻璃(大阪矽酸曹達股份有限公司製造)作為二氧化矽,藉由與上述實施例1相同之方法進行噴霧乾燥。於500℃下將所獲得之乾燥粉末煅燒1小時,獲得比較例4之中空二氧化矽粉末。於將水玻璃作為原料之情形時,因鈉之影響,若於500℃以上之溫度下進行煅燒,則二氧化矽熔解。所獲得之比較例3之二氧化矽粒子具有中空結構。將比較例3之中空二氧化矽粒子之物性測定結果示於表1。而且,將比較例3之中空二氧化矽粒子之外殼部之裂痕剖面的SEM圖像示於圖4。於圖4中,無法確認到表示閉氣孔之黑點。即,根據圖4可知,於比較例3之中空二氧化矽粒子之外殼部未形成閉氣孔。 (比較例4) 將煅燒溫度變更為700℃,除此以外,以與比較例1相同之方式獲得比較例4之中空二氧化矽粒子。比較例4之中空二氧化矽粒子為中孔二氧化矽。關於比較例4之中空二氧化矽粒子,鬆密度為2.20 g/cm3 ,孔隙率為0%,BET比表面積為718 m3 /g。 [表1]
Figure 106113216-A0304-0001
如上述表1所示,於實施例1~34中,可簡便地製造實質上不包含鹼金屬之中空二氧化矽粒子。 進而,將實施例1~2、11、28~29、33之中空二氧化矽粒子之外殼部之平均厚度及平均閉氣孔數、以及比較例1~3之中空二氧化矽粒子之外殼部之平均閉氣孔數示於表2。進而,於表2中亦示出自表1摘錄一部分中空二氧化矽粒子之物性者。 [表2]
Figure 106113216-A0304-0002
如上述表2所示,實施例1~2、11、28~29、33之中空二氧化矽粒子係於外殼部形成有複數個閉氣孔之中空二氧化矽粒子。另一方面,比較例1~3之中空二氧化矽粒子係於外殼部未形成閉氣孔之中空二氧化矽粒子。 [產業上之可利用性] 根據本發明,例如於對可利用中空二氧化矽粒子之觸媒載體、吸附劑、物質分離劑、酵素或功能性有機化合物之固定載體、電子材料等進行處理之領域中較為有用。The present invention is based on the insight that the silica solution obtained by dissolving silica in an organic alkali aqueous solution is spray-dried, whereby hollow silica particles with reduced alkali metal content can be easily obtained. That is, in one aspect, the present invention relates to a method for manufacturing hollow silica particles (hereinafter also referred to as "the manufacturing method of the present invention"), which includes the following steps (1) and (2). (1) The step of spray-drying a silica solution obtained by dissolving silica in an organic alkali aqueous solution to obtain a hollow silica precursor. (2) The step of calcining the above-mentioned hollow silica precursor to obtain hollow silica particles. According to the manufacturing method of the present invention, the effect of easily obtaining hollow silica particles with reduced alkali metal content can be achieved. Although the details of the mechanism for expressing the effects of the present invention are not clear, it is estimated as follows. That is, the use of an organic alkali aqueous solution in the dissolution of silica can reduce the alkali metal content in the silica dissolving solution used in spray drying, and can obtain hollow silica particles with reduced alkali metal content. Furthermore, it is believed that the organic alkali in the hollow silica precursor disappears or evaporates during the calcination step, thereby forming fine and uniform closed pores in the outer shell, and the porosity of the hollow silica particles is increased. However, the present invention may not be limited to these mechanisms for interpretation. In the present invention, "hollow silica particles" refer to a shell part that forms an inner space, and the shell part contains a component containing silicon dioxide, and there is a gas such as air in the inner space formed by the shell part. Silica particles. In the present invention, "the shell part containing a component containing silicon dioxide" means that the main component of the skeleton forming the shell part is silicon dioxide, and it means that the composition of the shell part is preferably 50% by mass or more, more preferably 70% by mass or more, more preferably 90% by mass or more, and still more preferably 95% by mass or more, are silica. In the present invention, the "hollow silica precursor" refers to powder particles obtained by spray-drying a silica solution, and is a particle that becomes hollow silica particles by calcination in step (2). Hereinafter, the details of the above steps (1) and (2) and the components used here will be described. [Step (1): Spray Drying] The step (1) in the manufacturing method of the present invention is to spray-dry a silica solution obtained by dissolving silica in an organic alkali aqueous solution to obtain a hollow silica precursor The spray drying step. It is believed that if the silica solution is spray-dried, the surface of the droplet of the silica solution is dried to become a dense film, and the inside of the droplet is dried to become a cavity, and the precursor particles of the hollow structure (hollow dioxide Silicon precursor). The silica dissolving liquid can be prepared, for example, by mixing silica and an organic alkali aqueous solution. Therefore, the step (1) in the manufacturing method of the present invention may include, for example, mixing silica in an organic alkali aqueous solution, and dissolving the silica in the organic alkali aqueous solution to prepare a dissolving solution of silica. <Silicon dioxide> As the silicon dioxide used in the preparation of the silicon dioxide solution, for example, crystalline silicon dioxide, amorphous silicon dioxide, smoked silicon dioxide, wet silicon dioxide, The colloidal silica, etc., from the viewpoints of ease of manufacture, purity, and cost of the silica solution, is preferably amorphous silica. The state of silica before mixing with the organic alkali aqueous solution is not particularly limited, and examples thereof include powder, sol, or gel. From the viewpoint of the use of electronic materials, the silicon dioxide is preferably high-purity silicon dioxide, and more preferably ultra-high-purity silicon dioxide. <Organic Alkali Aqueous Solution> The organic alkali aqueous solution used in the preparation of the silica dissolving solution may be any one that can dissolve silica. For example, an organic alkali aqueous solution with a pH of 11 or higher can be mentioned. As the organic alkali contained in the organic alkali aqueous solution, it is sufficient as long as it can dissolve silica. The uniformity of the particle structure of the hollow silica particles, the uniformity of the thickness of the shell, and the formation and production of a stable shell From the viewpoint of performance improvement, for example, secondary amines, tertiary amines, and quaternary ammonium salts can be cited. From the viewpoint of ease of production of the silica dissolving liquid, quaternary ammonium salts are preferred. An organic base can be used individually by 1 type or in combination of 2 or more types. As the quaternary ammonium salt, in terms of the uniformity of the particle structure of the hollow silica particles, the uniformity of the thickness of the outer shell, the formation of stable outer shell and the improvement of productivity, for example, the following formula (I) The indicated salt contains quaternary ammonium cations and hydroxides. [化1]
Figure 02_image001
In the above formula (I), R 1 , R 2 , R 3 and R 4 are each independently selected from alkyl groups having 1 to 22 carbon atoms, hydroxymethyl, hydroxyethyl, and hydroxypropyl At least one. As the carbon number of the above-mentioned alkyl group, from the viewpoints of the uniformity of the particle structure of the hollow silica particles, the uniformity of the thickness of the shell portion, the formation of stable shell portion and the improvement of productivity, it is preferably 1 or more and 12 Below, it is more preferably 1 or more and 3 or less. As said alkyl group, a linear alkyl group or a branched chain alkyl group can be mentioned, and a linear alkyl group is preferable from a viewpoint of making the thickness of a shell part uniform. Specific examples of quaternary ammonium salts include those selected from tetramethylammonium hydroxide (hereinafter also referred to as TMAH), tetraethylammonium hydroxide (hereinafter also referred to as TEAH), dimethylbis(2- At least one of hydroxyethyl)ammonium hydroxide and trimethylethylammonium hydroxide, for the uniformity of the particle structure of the hollow silica particles, the uniformity of the thickness of the outer shell, and the formation and production of a stable outer shell From the viewpoint of sexual improvement, TMAH or TEAH is preferred. Examples of secondary amines include dimethylamine, diethylamine, dipropylamine, diethanolamine, diisopropanolamine, and hexamethylenediamine. Examples of tertiary amines include trimethylamine, triethylamine, triethanolamine, tetramethylhexamethylenediamine, dimethylaminohexanol, butyldiethanolamine, and tetramethylethylenediamine. <Silica Dioxide Dissolving Liquid> The silica dissolving liquid can be obtained, for example, by mixing silicon dioxide and an organic alkali aqueous solution to dissolve silicon dioxide. The dissolution method is not particularly limited as long as the silica can be dissolved, and a known dissolution method can be used. As the dissolution method, for example, heating treatment, pressure treatment, mechanical pulverization treatment, etc., can be used in combination. As heating conditions, it can be set to 60-200 degreeC, for example. As the pressurization conditions, for example, it can be set to 0 to 3 MPa. Mechanical pulverization can be performed using, for example, a ball mill or the like. Furthermore, when silica is dissolved in an aqueous organic alkali solution, ultrasonic vibration can be imparted. From the viewpoint of suppressing the generation of special-shaped particles and the viewpoint of productivity improvement, the concentration of silica in the silica solution is preferably 2% by mass or more, more preferably 5% by mass or more, and still more preferably 10 % By mass or more, more preferably 30% by mass or less, more preferably 25% by mass or less, and still more preferably 20% by mass or less. The content of silicon dioxide in the silicon dioxide solution can be measured using a thermogravimetric device, for example. From the viewpoint of porosity improvement, the molar ratio of silica to organic alkali (silica/organic alkali) in the silica solution is preferably 0.5 or more, more preferably 1.0 or more, and more preferably It is 1.5 or more, and is preferably 3.5 or less, more preferably 3.0 or less, and still more preferably 2.5 or less. In the present invention, the silica dissolving liquid may include an aqueous solvent. As an aqueous solvent, distilled water, ion-exchange water, ultrapure water, etc. are mentioned, for example. <Spray drying method> Examples of the spray drying method include known methods such as a rotating disk method, a pressurized nozzle, a two-fluid nozzle method, and a four-fluid nozzle method. In spray drying, for example, a commercially available spray drying device can be used. As the inlet temperature of the hot air in the above-mentioned spray drying, from the viewpoints of the uniformity of the particle structure of the hollow silica particles, the uniformity of the thickness of the shell portion, stable shell portion formation and productivity improvement, it is preferably 80 ℃~250℃, more preferably 100℃~220℃, still more preferably 120℃~200℃. From the same viewpoint, the inlet temperature is preferably 80°C or higher, more preferably 100°C or higher, still more preferably 120°C or higher, more preferably 250°C or lower, more preferably 220°C or lower, and still more preferably Below 200°C. As for the outlet temperature of the hot air in the spray drying, from the same viewpoint, it is preferably 50°C to 120°C, more preferably 60°C to 110°C, and still more preferably 70°C to 100°C. From the same viewpoint, the outlet temperature is preferably 50°C or higher, more preferably 60°C or higher, still more preferably 70°C or higher, more preferably 120°C or lower, more preferably 110°C or lower, and still more preferably Below 100°C. The outlet temperature can be adjusted by controlling the inlet temperature. Regarding the spray pressure, spray volume, and air volume at the time of spray drying mentioned above, it may be appropriately set according to the spray drying device used. In step (1), the silica dissolving liquid used in spray drying (hereinafter, also referred to as "spray liquid") can be diluted during use. In the case of diluting the silica dissolving liquid as a spray liquid, for the dilution, for example, an aqueous solvent such as distilled water, ion exchange water, and ultrapure water can be used. From the viewpoint of productivity improvement, the silica concentration in the spray liquid is preferably 2% by mass or more, more preferably 5% by mass or more, still more preferably 10% by mass or more, and more preferably 30% by mass Hereinafter, it is more preferably 25% by mass or less, and still more preferably 20% by mass or less. The content of silica in the spray liquid can be calculated, for example, by the same method as the silica dissolving liquid described above. In the present invention, in the silica dissolving liquid and spray liquid, other ingredients may be included in the range that does not impair the effect of the present invention. Examples of other components include organic binders and activators. In the present invention, from the viewpoint of the application of hollow silica particles to electronic materials, it is preferable that the silica dissolving liquid and the spray liquid do not substantially contain alkali metals such as Na and K. That is, from the same viewpoint, the total amount of alkali metals in the silica dissolving liquid or spray liquid is preferably 0.1% by mass or less, more preferably 0.01% by mass or less, and still more preferably 0.005% by mass or less. The alkali metal content in the silica dissolving liquid or spraying liquid can be measured, for example, by the same method as the following hollow silica particles. The hollow silicon dioxide precursor obtained in step (1) can be recovered by air classification, for example. Therefore, the manufacturing method of the present invention can include an air classification step of selectively recovering the hollow silica precursor obtained by spray drying between step (1) and the following step (2). . By air classification, the particle size can be made uniform, and particles with a particle size suitable for the purpose of use can be obtained. Air classification can be performed, for example, by a known method using an airflow classifier, a filter bag, or the like. [Step (2): Calcination] Step (2) in the manufacturing method of the present invention is a calcination step of calcining the hollow silicon dioxide precursor obtained in the above step (1). Through this step (2), the organic base contained in the outer shell of the hollow silica precursor disappears or evaporates, so it is possible to obtain a plurality of fine occlusions caused by organic bases as shown in Figure 3 Hollow silica particles in the outer shell of the hole. From the viewpoint of moderately calcined pores, porosity enhancement and particle strength enhancement, the calcining temperature is preferably 700°C or higher, more preferably 800°C or higher, still more preferably 900°C or higher, and more preferably 1500 °C or less, more preferably 1300 °C or less, and still more preferably 1200 °C or less. Firing can be performed using an electric furnace or the like, for example. The calcination time varies depending on the calcination temperature and the like, but it can usually be set to 0.5 to 100 hours, and from the viewpoint of productivity, it is preferably 0.5 to 48 hours. [Hollow silica particles] In one or more embodiments, the hollow silica particles obtained by the manufacturing method of the present invention are spherical particles as shown in FIG. 1. Moreover, in one or more embodiments, regarding the hollow silica particles obtained by the manufacturing method of the present invention, when observing the SEM image of the resin crack section containing the hollow silica particles, it is shown as 2 shows a particle with a hollow structure. In the SEM image of Figure 2, the black part of the circle is the space inside the particle. That is, in one or more embodiments, the present invention relates to an outer shell portion that forms an inner space, and the outer shell portion contains hollow silicon dioxide particles containing silicon dioxide (hereinafter, also referred to as "the present invention Hollow silica particles"). Moreover, in one or more embodiments, the hollow silica particles of the present invention are sequentially spray-dried with a silica dissolving solution obtained by dissolving silica in an organic alkali aqueous solution to obtain hollow silica Obtained from step (1) of precursor and step (2) of calcining the above-mentioned hollow silica precursor. The outer shell of the hollow silica particles of the present invention has closed pores. Moreover, in one or more embodiments, the closed pores are in the shape of needles as shown in FIG. 3 when the crack section of the shell is observed by SEM. In the SEM image of Figure 3, it can be seen that the black dots are pinpoint-shaped closed pores. In the present invention, in one or more embodiments, as described above, "closed pores" refer to pores caused by organic alkali as shown in FIG. 3. In one or more embodiments, the "pores caused by organic alkali" are formed by the disappearance or evaporation of the organic alkali in the hollow silica precursor during the calcination in step (2) above. In one or more embodiments, the size of the closed pores when observing the crack section of the shell by SEM is, for example, 5 nm or more and 100 nm or less. In the present invention, in terms of porosity improvement and particle strength improvement, it is preferable to form a plurality of closed pores in the outer shell. In the present invention, from the viewpoint of porosity improvement and particle strength improvement, the average number of closed pores per 1 μm 2 of the crack section of the shell is preferably 30 or more, more preferably 50 or more, and more preferably 80 or more, more preferably 300 or less, more preferably 250 or less, and still more preferably 200 or less. The average number of closed pores can be measured, for example, by the method described in the examples. According to the hollow silicon dioxide particles of the present invention, hollow silicon dioxide particles with closed pores in the outer shell can be obtained. It is believed that, for example, the hollow silica particles of the present invention have closed pores in the outer shell, so they are the same as the average particle size and the thickness of the outer shell. Compared with hollow silica particles without closed pores in the outer shell, it can improve The porosity, furthermore, when the hollow silica particles of the present invention have a large number of closed pores in the outer shell, the porosity can be further improved. Furthermore, it is considered that in the hollow silica particles of the present invention, for example, when the size of the closed pores formed in the outer shell portion is small (for example, about 5 to 30 nm), or when a plurality of closed pores are uniformly dispersed in In the case of the outer shell, it can suppress the expansion or change the direction of cracks caused by external impacts, and suppress the reduction of particle strength. The average particle size of the hollow silica particles of the present invention can be appropriately adjusted in consideration of the application, etc. From the viewpoint of the dispersibility of the hollow silica particles to the resin when the hollow silica particles are used for resin addition and the like, it is preferably 0.1 μm Above, it is more preferably 0.5 μm or more, still more preferably 1.0 μm or more, and more preferably 50 μm or less. The average particle size can be measured using, for example, a laser diffraction/scattering particle size distribution measuring device ("LA-750" manufactured by Horiba) or a Coulter counter ("Multisizer 3" manufactured by Beckman Coulter). Determination. From the viewpoint of ensuring the compactness of the surface of the outer shell of the hollow silica particles, the BET specific surface area of the hollow silica particles of the present invention is preferably 20 m 2 /g or less, more preferably 15 m 2 /g or less , More preferably 10 m 2 /g or less. The "BET specific surface area" can be measured, for example, by the method described in the following Examples. In the present invention, the average particle diameter of the hollow silica particles can be appropriately adjusted by, for example, the concentration of each component in the silica solution, spraying conditions, calcination conditions, and the like. From the viewpoint of reducing the dielectric constant of the hollow silica particles and increasing the particle strength, the bulk density of the hollow silica particles of the present invention is preferably 0.44 g/cm 3 or more, more preferably 0.66 g/cm 3 or more, more preferably 0.88 g/cm 3 or more, more preferably 1.98 g/cm 3 or less, more preferably 1.76 g/cm 3 or less, and still more preferably 1.54 g/cm 3 or less. In the present invention, the "bulk density" can be measured by, for example, a gas pycnometer. Specifically, it can be measured by the method described in the examples. From the viewpoint of reducing the dielectric constant of the hollow silica particles and the viewpoint of strength, the porosity of the hollow silica particles of the present invention is preferably 10% or more, more preferably 20% or more, and more preferably 30% or more, more preferably 80% or less, more preferably 70% or less, and still more preferably 60% or less. The porosity can be calculated according to the following formula using a true density measuring device, for example. Specifically, it can be measured by the method described in the examples. Porosity (%)=[1-(True density of hollow silica particles/True density of silica particles)]×100 From the viewpoint of improving the quality of electronic materials, the hollow silica particles of the present invention are more Preferably, it does not substantially contain alkali metals such as Na and K. That is, the total content of alkali metals in the hollow silica particles is preferably 0.1% by mass or less, more preferably 0.01% by mass or less, and still more preferably 0.005% by mass or less. The alkali metal content in the hollow silica particles can be measured, for example, by the method described in the examples. The hollow silica particles of the present invention can be used in various fields where hollow silica particles can be used, such as catalyst carriers; enzyme carriers; adsorption materials; separation materials; optical materials; multilayer wiring structures of electronic circuits Insulating materials used; semiconductor sealing materials; electronic materials; low-dielectric constant materials used in low-dielectric films or coating agents for low-dielectric films; materials for heat insulation materials; shielding materials; building materials; Skin care cosmetics, color cosmetics, body care cosmetics, fragrance cosmetics and other cosmetic materials. The present invention further discloses the following manufacturing methods, hollow silica particles or uses. <1> A method for manufacturing hollow silica particles, which includes the following steps (1) and (2): (1) Spray drying the silica solution obtained by dissolving silica in an organic alkali aqueous solution , The step of obtaining a hollow silicon dioxide precursor; and (2) the step of calcining the above hollow silicon dioxide precursor to obtain hollow silicon dioxide particles. <2> The manufacturing method as described in <1>, wherein step (1) includes a dissolving step, which is to mix silica in an organic alkali aqueous solution and dissolve the silica in the organic alkali aqueous solution to prepare silica dissolving liquid. <3> The production method as described in <1> or <2>, wherein the organic base is a quaternary ammonium salt. <4> The production method as described in <3>, wherein the quaternary ammonium salt is a salt containing a quaternary ammonium cation and a hydroxide represented by the following formula (I). [化2]
Figure 02_image003
<5> The production method as described in <4>, wherein in formula (I), R 1 , R 2 , R 3 and R 4 are each independently selected from alkyl groups having 1 to 22 carbon atoms, hydroxymethyl At least one of hydroxy, hydroxyethyl, and hydroxypropyl. <6> The production method as described in <5>, wherein in formula (I), the carbon number of the alkyl group is preferably 1 or more and 12 or less, more preferably 1 or more and 3 or less. <7> The production method as described in <5> or <6>, wherein in formula (I), the alkyl group is a linear alkyl group or a branched alkyl group, preferably a linear alkyl group. <8> The manufacturing method as described in <4>, wherein the quaternary ammonium salt is selected from the group consisting of tetramethylammonium hydroxide, tetraethylammonium hydroxide, dimethylbis(2-hydroxyethyl)ammonium hydroxide and tri At least one of methyl ethyl ammonium hydroxide is preferably tetramethyl ammonium hydroxide. <9> The production method as described in any one of <1> to <8>, wherein the concentration of silica in the silica solution is preferably 2% by mass or more, more preferably 5% by mass or more, and more Preferably, it is 10% by mass or more. <10> The production method as described in any one of <1> to <9>, wherein the concentration of silica in the silica solution is preferably 30% by mass or less, more preferably 25% by mass or less, and more Preferably, it is 20% by mass or less. <11> The production method described in any one of <1> to <10>, wherein the concentration of silica in the silica solution is 2% by mass or more and 30% by mass or less. <12> The manufacturing method described in any one of <1> to <11>, wherein the molar ratio of silica to organic base (silica/organic base) in the silicon dioxide solution is preferably 0.5 or more, more preferably 1.0 or more, and still more preferably 1.5 or more. <13> The manufacturing method described in any one of <1> to <12>, wherein the molar ratio of silica to organic base (silica/organic base) in the silicon dioxide solution is preferably 3.5 or less, more preferably 3.0 or less, and still more preferably 2.5 or less. <14> The production method as described in any one of <1> to <13>, wherein the total amount of alkali metal in the silicon dioxide solution is preferably 0.1% by mass or less, more preferably 0.01% by mass or less, and more Preferably, it is 0.005 mass% or less. <15> The manufacturing method described in any one of <1> to <14>, wherein the inlet temperature of the hot air in the spray drying of step (1) is preferably 80°C to 250°C, more preferably 100°C to 220 °C, more preferably 120°C to 200°C. <16> The manufacturing method described in any one of <1> to <15>, wherein the outlet temperature of the hot air in the spray drying of step (1) is preferably 50°C to 120°C, more preferably 60°C to 110 °C, more preferably 70 °C to 100 °C. <17> The manufacturing method as described in any one of <1> to <16>, which is between step (1) and step (2), and further includes the hollow silica precursor obtained by spray drying The air classification step in which materials are classified by air and selectively recovered. <18> The manufacturing method described in any one of <1> to <17>, wherein the calcination temperature in step (2) is preferably 700°C or higher, more preferably 800°C or higher, and still more preferably 900°C or higher . <19> The manufacturing method described in any one of <1> to <18>, wherein the calcination temperature in step (2) is preferably 1500°C or less, more preferably 1300°C or less, and still more preferably 1200°C or less . <20> A hollow silica particle having a shell portion forming an internal space, and the shell portion contains a component containing silicon dioxide, and the shell portion has closed pores, and the closed pores are used to observe the shell portion When the crack section is in the shape of a pin point. <21> A hollow silica particle having an outer shell portion forming an internal space, and the outer shell portion contains a component containing silica, and the outer shell portion has closed pores, the BET ratio of the hollow silica particle The surface area is 20 m 2 /g or less. <22> A hollow silica particle, which is provided with an outer shell portion forming an internal space, and the outer shell portion contains a component containing silicon dioxide, and the hollow silica particles are sequentially passed through the organic alkali aqueous solution The silicon dioxide solution obtained by dissolving silicon dioxide is spray-dried to obtain a hollow silicon dioxide precursor, and obtained by the step of calcining the hollow silicon dioxide precursor, the shell portion has closed pores. <23> The hollow silica particles described in any one of <20> to <22>, wherein the component of the outer shell part is preferably 50% by mass or more, more preferably 70% by mass or more, and more preferably 90 The mass% or more, and more preferably 95 mass% or more are silicon dioxide. <24> As described in any one of <20> to <23>, the hollow silica particles, in which closed pores are pores caused by organic alkali. <25> The hollow silica particles as described in any one of <20> to <24>, wherein the BET specific surface area of the hollow silica particles is preferably 20 m 2 /g or less, more preferably 15 m 2 / g or less, more preferably 10 m 2 /g or less. <26> The hollow silica particles described in any one of <20> to <25>, wherein the average number of closed pores per 1 μm 2 of the crack section of the shell part is preferably 30 or more, more preferably 50 Above, more preferably 80 or more. <27> As described in any one of <20> to <26>, the average number of closed pores per 1 μm 2 of the crack section of the shell is preferably 300 or less, more preferably 250 Below, more preferably 200 or less. <28> The hollow silica particles described in any one of <20> to <27>, wherein the average number of closed pores per 1 μm 2 of the crack section of the shell part is 30 or more and 300 or less. <29> The hollow silica particles described in any one of <20> to <28>, wherein the size of the closed pores when observing the crack section of the shell part is 5 nm or more and 100 nm or less. <30> The hollow silica particles described in any one of <20> to <29>, wherein the porosity of the hollow silica particles is preferably 10% or more, more preferably 20% or more, and more preferably More than 30%. <31> Hollow silica particles as described in any one of <20> to <30>, wherein the porosity of the hollow silica particles is preferably 80% or less, more preferably 70% or less, and more preferably Less than 60%. <32> The hollow silica particles are described in any one of <20> to <31>, wherein the porosity of the hollow silica particles is 10% or more and 80% or less. <33> Hollow silica particles as described in any one of <20> to <32>, wherein the average particle size of the hollow silica particles is preferably 0.1 μm or more, more preferably 0.5 μm or more, and even more preferably It is 1.0 μm or more. <34> The hollow silica particles described in any one of <20> to <33>, wherein the average particle diameter of the hollow silica particles is 50 μm or less. <35> The hollow silica particles described in any one of <20> to <34>, wherein the average particle diameter of the hollow silica particles is 0.5 μm or more and 50 μm or less. <36> The hollow silica particles described in any one of <20> to <35>, wherein the bulk density of the hollow silica particles is preferably 0.44 g/cm 3 or more, more preferably 0.66 g/cm 3 Above, it is more preferably 0.88 g/cm 3 or more. <37> Hollow silica particles as described in any one of <20> to <36>, wherein the bulk density of the hollow silica particles is preferably 1.98 g/cm 3 or less, more preferably 1.76 g/cm 3 Hereinafter, it is more preferably 1.54 g/cm 3 or less. <38> The hollow silica particles described in any one of <20> to <37>, wherein the total content of alkali metals in the hollow silica particles is preferably 0.1% by mass or less, more preferably 0.01% by mass Hereinafter, it is more preferably 0.005 mass%. <39> A use of hollow silica particles as described in any one of <20> to <38> in a material, the material is selected from catalyst carriers, enzyme carriers, adsorbent materials, separation materials, optical materials, At least one of insulating materials, semiconductor sealing materials, electronic materials, low dielectric constant materials, materials for heat insulation materials, shielding materials, building materials, and materials for cosmetics. [Examples] Hereinafter, the present invention will be described in more detail with examples, but these are illustrative, and the present invention is not limited to these examples. 1. Measurement methods of various parameters Various measurements of particles in the following examples and comparative examples were performed by the following methods. [Measurement of Bulk Density] A gas pycnometer ("Ultrapyc1200e" manufactured by Quantachrome Instruments Japan Co., Ltd.) was used to measure the bulk density after 1 minute of degassing. This measurement was performed 10 times, and the average value was used as the bulk density (g/cm 3 ) of the hollow silica particles. [Measurement of Porosity] The porosity is calculated from the density measured using a gas pycnometer ("Ultrapyc1200e" manufactured by Quantachrome Instruments Japan Co., Ltd.) and calculated according to the following formula. The true density of silicon dioxide particles is 2.2 g/cm 3 . Porosity (%)=[1-(True density of hollow silica particles/True density of silica particles)]×100 [Measurement of BET specific surface area] Using a specific surface area measuring device (manufactured by Shimadzu Corporation, Trade name "Flowsorb III2305"), to measure the BET specific surface area of hollow silica particles. The sample was pretreated by heating at 200°C for 15 minutes. [Average particle size] The average particle size of the hollow silica particles is measured using a laser diffraction/scattering particle size distribution measuring device (the "LA-920" manufactured by Horiba Manufacturing Co., Ltd. is measured with a relative refractive index of 1.4). Measured in the form of volume-based median diameter (D50). Furthermore, the average particle diameter of the hollow silica particles was measured using a Coulter counter (manufactured by Coulter Corporation, using a 50 μm mouth tube). [Particle strength] The particle strength was evaluated by using zirconia balls (10 mm f ZrO 2 ): 200 g and particles: 10 g to be crushed (95 rpm, 1 hour) based on the increase in the specific gravity of the particles before and after crushing. The evaluation criteria are shown below. When the increase in specific gravity is 0.03 g/cm 3 or less, the particle strength is judged to be excellent, and when the increase in specific gravity exceeds 0.03 g/cm 3 , it is judged that the particle strength is poor. [Alkali metal content] The alkali metal content in the hollow silica particles is measured by ICP-MS (“7700S” manufactured by Agilent) in accordance with JIS-K0133. An aqueous solution in which hollow silica particles are completely dissolved by hydrofluoric acid is used as a sample. Here, the content of Na contained in the hollow silicon dioxide particles is taken as the content of alkali metal in the silicon dioxide solution. [SEM observation of the crack section of the hollow silica particles and the measurement of the average thickness of the outer shell] The hollow particles are kneaded in epoxy resin, and after curing, the sample is cut. Then, using a field emission scanning electron microscope (SEM) ("S-4000" manufactured by Hitachi, Ltd.), the crack section was enlarged to 3,000 times for observation. Then, measure the thickness of the outer shell of 50-100 hollow particles on the photograph to obtain the average thickness of the outer shell. [SEM observation of the crack section of the shell part and measurement of the average number of closed pores] The hollow particles are kneaded in epoxy resin, and after curing, the sample is cut. Then, using a field emission scanning electron microscope (SEM) ("S-4000" manufactured by Hitachi, Ltd.), the crack section of the outer shell of the hollow particle was enlarged to 50,000 times for observation. Then, the average number of closed pores per 1 μm 2 of each crack section of 3-10 hollow particles was calculated. 2. Manufacture of hollow silica particles (Examples 1 to 34 and Comparative Examples 1 to 4) (Example 1) Hollow silica particles were processed through two steps: spray drying step (1) and calcination step (2) manufacture. First, prepare the silica solution used in the spray drying step (1). That is, put silicon dioxide (manufactured by Admatechs, Admafine SOE2): 200 g, 25% aqueous solution of tetramethylammonium hydroxide (Sachem) in a reaction tank (manufactured by Pressure Glass Industry Co., Ltd., TEM-D1500M) with a mixer. Made by Asia, pH 14): 640 g and ion-exchanged water: 160 g and stirring, while raising the temperature to 180°C for 1 hour and 30 minutes, then stirring at 180°C for 1 hour to obtain silica Dissolving solution (silica concentration: 20% by mass, molar ratio (silica/organic base): 1.9) (dissolving step). The pressure in the reaction tank while stirring at 180°C is 0.85 MPa. Then, the prepared silica dissolving liquid was directly used as a spray liquid, and spray-dried using a spray dryer (manufactured by Tokyo Rikaki Co., Ltd., SD-1000) to obtain a dry powder (hollow silica precursor) (spray drying step) (1)). Use a two-fluid nozzle (sample ejection aperture: 0.4 mm) as the spray nozzle of the spray dryer. The spray conditions are inlet temperature: 130°C, outlet temperature: 98°C, spray pressure: 250 kPa, air volume: 0.7 m 3 /min, spray volume: 10 mL/min. Then, the dry powder (hollow silica precursor) obtained by spray drying was heated up to 1100°C at 100°C/hour using an electric furnace (made by Motoyama, SK-2535E-OP), and then at 1100°C It was kept for 1 hour and calcined, thereby obtaining the hollow silica particles of Example 1 (calcination step (2)). The measurement results of the physical properties of the hollow silica particles of Example 1 are shown in Table 1 below. Moreover, the SEM image of the hollow silica particles of Example 1 is shown in FIG. 1. According to FIG. 1, it can be seen that the shape of the hollow silica particles in Example 1 is spherical. Furthermore, the SEM image of the crack cross section of the outer shell part of the hollow silica particles of Example 1 is shown in FIG. 3. In Fig. 3, the black spots indicating closed stomata can be visually confirmed. That is, according to FIG. 3, it can be confirmed that closed pores are formed in the outer shell of the hollow silica particles of Example 1. (Examples 2 to 33) Except for changing the concentration of each raw material in the silica dissolving solution and spray drying conditions as described in Table 1, the same method as in Example 1 above was used to obtain Examples 2 to 33 hollow silicon dioxide particles. Table 1 shows the measurement results of the physical properties of each. (Example 34) First, the silica solution used in the spray drying step (1) was prepared. That is, put silicon dioxide (manufactured by Admatechs, Admafine SOE2): 200 g, tetraethylammonium hydroxide 20% aqueous solution (TEAH) in a reaction tank (manufactured by Pressure Glass Industry Co., Ltd., TEM-D1500M) with a mixer ) (Manufactured by Wako Pure Chemical Industries Co., Ltd.): 1287 g and stirring, the temperature was raised to 170°C in 1 hour and 30 minutes, and then stirred at 170°C for 1 hour, thereby obtaining the silicon dioxide of Example 34 Dissolving solution (silica concentration: 13% by mass, molar ratio (silica/organic base): 1.9) (dissolving step). The pressure in the reaction tank while stirring at 170°C is 1.20 MPa. Furthermore, the silica dissolving liquid of Example 34 was used as the spraying liquid, and the spraying conditions were changed as described in Table 1, except that the same method as in Example 1 above was used to obtain the hollow dioxide of Example 34 Silicon particles. Table 1 shows the measurement results of the physical properties of the hollow silica particles of Example 34. (Comparative Example 1) Methanol (manufactured by Wako Pure Chemical Industries, Ltd.): 23.9 parts by weight, a 30% aqueous solution of dodecyltrimethylammonium chloride (manufactured by Daiichi Kogyo Pharmaceutical Co., Ltd.): 1.0 Parts by weight, hexane (manufactured by Wako Pure Chemical Industries, Ltd.): 1.0 part by weight, 25% tetramethylammonium hydroxide (manufactured by Sachem Asia): 0.5 parts by weight, and stirred to prepare a solution A. Furthermore, ion-exchange water: 71.6 parts by weight was put into another reaction tank with a stirrer, and it stirred, and the solution B was produced. Then, while stirring the solution A, the solution B was added for 45 seconds, and thereafter, it was stirred at 25°C for 10 minutes to obtain an O/W type emulsion. Then, tetramethoxysilane (TMOS, manufactured by Tama Chemicals): 2.0 parts by weight (solution C) was added to the O/W type emulsion for 30 seconds, and then stirred at 25° C. for 10 minutes to obtain a cloudy liquid. Then, the obtained white turbid liquid was separated by filtration using 5C filter paper, washed with water, and dried at 100°C to obtain a white dry powder. The obtained dry powder was calcined at 1100° C. for 1 hour, thereby obtaining hollow silica particles of Comparative Example 1 (template method). Table 1 shows the measurement results of the physical properties of the hollow silica particles in Comparative Example 1. (Comparative Example 2) Colloidal silica (manufactured by Nissan Chemical Industry Co., Ltd., "Snowtex N", silica concentration 20% by mass) was used as silica, and the silica was not dissolved in organic alkali. , By the same method as the above-mentioned Example 1, the hollow silica particles of Comparative Example 2 were obtained. Although the obtained hollow silica particles of Comparative Example 2 have a hollow structure, the porosity is low. Table 1 shows the measurement results of the physical properties of the hollow silica particles in Comparative Example 2. (Comparative Example 3) Water glass No. 3 (manufactured by Osaka Silicate Soda Co., Ltd.) was used as silica, and spray-dried in the same manner as in Example 1 above. The obtained dry powder was calcined at 500° C. for 1 hour to obtain the hollow silica powder of Comparative Example 4. When water glass is used as a raw material, due to the influence of sodium, if calcination is performed at a temperature above 500°C, silica will melt. The obtained silica particles of Comparative Example 3 have a hollow structure. Table 1 shows the measurement results of the physical properties of the hollow silica particles in Comparative Example 3. In addition, the SEM image of the crack section of the outer shell part of the hollow silica particle of Comparative Example 3 is shown in FIG. 4. In Fig. 4, the black spots indicating closed stomata cannot be confirmed. That is, according to FIG. 4, it can be seen that in Comparative Example 3, closed pores are not formed in the outer shell of the hollow silica particles. (Comparative Example 4) Except that the calcination temperature was changed to 700°C, the hollow silica particles of Comparative Example 4 were obtained in the same manner as in Comparative Example 1. The hollow silica particles of Comparative Example 4 are mesoporous silica. Regarding the hollow silica particles of Comparative Example 4, the bulk density was 2.20 g/cm 3 , the porosity was 0%, and the BET specific surface area was 718 m 3 /g. [Table 1]
Figure 106113216-A0304-0001
As shown in Table 1 above, in Examples 1 to 34, hollow silica particles containing substantially no alkali metal can be easily produced. Furthermore, the average thickness and average number of closed pores of the outer shell of the hollow silica particles of Examples 1 to 2, 11, 28 to 29, 33, and the outer shell of the hollow silica particles of Comparative Examples 1 to 3 The average number of closed stomata is shown in Table 2. Furthermore, Table 2 also shows a part of the physical properties of hollow silica particles extracted from Table 1. [Table 2]
Figure 106113216-A0304-0002
As shown in Table 2 above, the hollow silica particles of Examples 1 to 2, 11, 28 to 29, and 33 are formed with a plurality of closed-pore hollow silica particles in the outer shell. On the other hand, the hollow silica particles of Comparative Examples 1 to 3 are hollow silica particles with no closed pores formed in the outer shell. [Industrial Applicability] According to the present invention, for example, in the treatment of catalyst carriers, adsorbents, material separation agents, enzymes or functional organic compounds fixed carriers, electronic materials, etc., which can be used with hollow silica particles More useful in the field.

圖1係實施例1之中空二氧化矽粒子之SEM圖像之一例。 圖2係包含實施例1之中空二氧化矽粒子之樹脂裂痕剖面之SEM圖像的一例。 圖3係實施例1之中空二氧化矽粒子之外殼部之裂痕剖面之SEM圖像的一例。 圖4係比較例3之中空二氧化矽粒子之外殼部之裂痕剖面之SEM圖像的一例。FIG. 1 is an example of the SEM image of the hollow silica particles of Example 1. FIG. 2 is an example of an SEM image of the resin crack section of the hollow silica particles of Example 1. FIG. 3 is an example of the SEM image of the crack section of the outer shell of the hollow silica particles of Example 1. FIG. 4 is an example of the SEM image of the crack section of the outer shell of the hollow silica particle of Comparative Example 3.

Claims (14)

一種中空二氧化矽粒子之製造方法,其包括下述步驟(1)及(2):(1)將於有機鹼水溶液中溶解二氧化矽而成之二氧化矽溶解液進行噴霧乾燥,獲得中空二氧化矽前驅物之步驟,其中上述二氧化矽溶解液中之二氧化矽相對於有機鹼之莫耳比(二氧化矽/有機鹼)為0.5以上;及(2)煅燒上述中空二氧化矽前驅物,獲得中空二氧化矽粒子之步驟。 A method for manufacturing hollow silicon dioxide particles, which includes the following steps (1) and (2): (1) Spray drying a silicon dioxide solution obtained by dissolving silicon dioxide in an organic alkali aqueous solution to obtain a hollow The step of silicon dioxide precursor, wherein the molar ratio of silicon dioxide in the silicon dioxide solution to the organic base (silica dioxide/organic base) is 0.5 or more; and (2) calcining the hollow silicon dioxide The precursor, the step of obtaining hollow silica particles. 如請求項1之中空二氧化矽粒子之製造方法,其中上述步驟(1)包括溶解步驟,其係將二氧化矽混合於有機鹼水溶液中,將二氧化矽溶解於有機鹼水溶液中而製備二氧化矽溶解液。 As claimed in claim 1, the method for producing hollow silica particles, wherein the above step (1) includes a dissolving step, which is to mix silica in an organic alkali aqueous solution and dissolve the silica in an organic alkali aqueous solution to prepare two Silica solution. 如請求項1或2之中空二氧化矽粒子之製造方法,其中上述有機鹼為四級銨鹽。 Such as Claim 1 or 2 of the method for producing hollow silica particles, wherein the organic base is a quaternary ammonium salt. 如請求項3之中空二氧化矽粒子之製造方法,其中上述四級銨鹽係選自四甲基氫氧化銨、四乙基氫氧化銨、二甲基雙(2-羥基乙基)氫氧化銨及三甲基乙基氫氧化銨中之至少1種。 For example, claim 3, a method for producing hollow silica particles, wherein the quaternary ammonium salt is selected from tetramethylammonium hydroxide, tetraethylammonium hydroxide, dimethylbis(2-hydroxyethyl)hydroxide At least one of ammonium and trimethylethylammonium hydroxide. 如請求項1或2之中空二氧化矽粒子之製造方法,其中上述二氧化矽溶解液中之二氧化矽濃度為2質量%以上且30質量%以下。 Such as Claim 1 or 2 of the method for manufacturing hollow silica particles, wherein the silica concentration in the silica dissolving solution is 2% by mass or more and 30% by mass or less. 如請求項1或2之中空二氧化矽粒子之製造方法,其係於上述步驟(1) 與上述步驟(2)之間,進而包括將藉由噴霧乾燥所獲得之中空二氧化矽前驅物進行空氣分級而選擇性地回收之空氣分級步驟。 Such as claim 1 or 2 of the manufacturing method of hollow silicon dioxide particles, which is in the above step (1) Between the above step (2), an air classification step of selectively recovering the hollow silica precursor obtained by spray drying is further included. 如請求項1或2之中空二氧化矽粒子之製造方法,其中上述步驟(2)中之煅燒溫度為700℃以上。 According to claim 1 or 2, the method for producing hollow silica particles, wherein the calcination temperature in the above step (2) is 700°C or higher. 一種中空二氧化矽粒子,其係具備形成內部空間之外殼部,且上述外殼部含有包含二氧化矽之成分者,並且上述外殼部具有閉氣孔,上述閉氣孔係於觀察上述外殼部之裂痕剖面時,為針點狀,上述中空二氧化矽粒子中之鹼金屬之合計含量為0.1質量%以下。 A hollow silica particle is provided with a shell portion forming an internal space, and the shell portion contains a component containing silicon dioxide, and the shell portion has closed pores, and the closed pores are used to observe the crack section of the shell portion When it is pinpointed, the total content of alkali metal in the hollow silica particles is 0.1% by mass or less. 一種中空二氧化矽粒子,其係具備形成內部空間之外殼部,且上述外殼部含有包含二氧化矽之成分者,並且上述外殼部具有閉氣孔,上述中空二氧化矽粒子之BET比表面積為20m2/g以下,上述中空二氧化矽粒子中之鹼金屬之合計含量為0.1質量%以下。 A hollow silica particle is provided with a shell portion forming an internal space, and the shell portion contains a component containing silicon dioxide, and the shell portion has closed pores, and the BET specific surface area of the hollow silica particle is 20m 2 /g or less, the total content of alkali metals in the hollow silica particles is 0.1% by mass or less. 如請求項8或9之中空二氧化矽粒子,其中上述閉氣孔係因有機鹼所引起之氣孔。 Such as claim 8 or 9 hollow silica particles, wherein the above-mentioned closed pores are caused by organic alkali. 如請求項8或9之中空二氧化矽粒子,其中上述外殼部之裂痕剖面每1μm2之平均閉氣孔數為30個以上且300個以下。 Such as claim 8 or 9 hollow silica particles, wherein the average number of closed pores per 1 μm 2 of the crack section of the outer shell part is 30 or more and 300 or less. 如請求項8或9之中空二氧化矽粒子,其中觀察上述外殼部之裂痕剖面時之閉氣孔之大小為5nm以上且100nm以下。 Such as claim 8 or 9 hollow silica particles, wherein the size of the closed pores when observing the crack section of the above-mentioned shell part is 5 nm or more and 100 nm or less. 如請求項8或9之中空二氧化矽粒子,其中中空二氧化矽粒子之孔隙率為10%以上且80%以下。 Such as claim 8 or 9 hollow silicon dioxide particles, wherein the hollow silicon dioxide particles have a porosity of 10% or more and 80% or less. 如請求項8或9之中空二氧化矽粒子,其中中空二氧化矽粒子之平均粒徑為0.1μm以上且50μm以下。 Such as claim 8 or 9 hollow silica particles, wherein the average particle size of the hollow silica particles is 0.1 μm or more and 50 μm or less.
TW106113216A 2016-04-20 2017-04-20 Hollow silicon dioxide particles and manufacturing method thereof TWI713729B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016084437A JP6255053B2 (en) 2016-04-20 2016-04-20 Hollow silica particles and method for producing the same
JP??2016-084437 2016-04-20

Publications (2)

Publication Number Publication Date
TW201738178A TW201738178A (en) 2017-11-01
TWI713729B true TWI713729B (en) 2020-12-21

Family

ID=60116803

Family Applications (1)

Application Number Title Priority Date Filing Date
TW106113216A TWI713729B (en) 2016-04-20 2017-04-20 Hollow silicon dioxide particles and manufacturing method thereof

Country Status (5)

Country Link
JP (1) JP6255053B2 (en)
KR (1) KR102052893B1 (en)
CN (1) CN109071239B (en)
TW (1) TWI713729B (en)
WO (1) WO2017183657A1 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7181286B2 (en) 2017-09-11 2022-11-30 ビーエーエスエフ ソシエタス・ヨーロピア Microspheres, including polydisperse polymeric nanospheres, and porous metal oxide microspheres
MX2020002742A (en) 2017-09-11 2020-10-01 Harvard College Porous metal oxide microspheres.
JP6905446B2 (en) * 2017-10-24 2021-07-21 花王株式会社 Method for producing hollow silica particles
JP7132827B2 (en) * 2018-11-12 2022-09-07 花王株式会社 Hollow silica particles and method for producing the same
JP7261570B2 (en) * 2018-11-30 2023-04-20 花王株式会社 Hollow silica particles and method for producing the same
JP2020084128A (en) * 2018-11-30 2020-06-04 花王株式会社 Sealant for electronic material
JP7433022B2 (en) * 2019-11-13 2024-02-19 日鉄ケミカル&マテリアル株式会社 Hollow silica particles, their manufacturing method, resin composite compositions and resin composites using the same
KR20210072200A (en) 2019-12-06 2021-06-17 삼성디스플레이 주식회사 Display device
JP2022103683A (en) * 2020-12-28 2022-07-08 日揮触媒化成株式会社 Silica-based hollow particle, method for producing the same, and resin composition
JPWO2022210919A1 (en) * 2021-03-31 2022-10-06
KR20230164008A (en) * 2021-03-31 2023-12-01 니끼 쇼꾸바이 카세이 가부시키가이샤 Powder and method for producing the same, and method for producing the resin composition
CN117615994A (en) * 2021-07-07 2024-02-27 Agc株式会社 Light-scattering silica particles and method for producing light-scattering silica particles

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101528603A (en) * 2006-10-31 2009-09-09 花王株式会社 Mesoporous silica particles

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2210837A1 (en) * 1972-03-07 1973-09-20 Bayer Ag PROCESS FOR THE MANUFACTURING OF SHAPED FOAM BODIES
DE60033766T2 (en) * 1999-06-14 2007-12-06 Kao Corp. GRANULES AS A SUPPORTING MATERIAL FOR SURFACTANTS AND METHOD FOR THE PRODUCTION THEREOF
JP4822576B2 (en) * 2000-05-30 2011-11-24 京セラ株式会社 Inorganic hollow powder and method for producing the same
JP2004224673A (en) * 2003-01-27 2004-08-12 Hitachi Chem Co Ltd Method of producing aggregate of hollow particulate, and aggregate of hollow particulate
JP4643314B2 (en) * 2005-03-10 2011-03-02 独立行政法人科学技術振興機構 Regularly arranged nanoparticulate silica and method for producing the same
JP5148971B2 (en) * 2007-11-05 2013-02-20 日揮触媒化成株式会社 Spherical silica particles and method for producing the same
JP5364276B2 (en) 2008-02-28 2013-12-11 花王株式会社 Hollow silica particles and method for producing the same
JP2011041869A (en) * 2009-08-19 2011-03-03 Nagasaki Prefecture Hollow inorganic body, and method for manufacturing the same
JP5603063B2 (en) * 2009-12-21 2014-10-08 花王株式会社 Method for producing composite silica particles
JP5762120B2 (en) 2010-05-11 2015-08-12 日揮触媒化成株式会社 Method for producing silica-based particles
KR102104097B1 (en) 2012-02-13 2020-04-23 가부시키가이샤 도쿠야마 Silica balloon material having novel characteristic profiles
CN103468030B (en) * 2013-08-23 2016-05-18 确成硅化学股份有限公司 A kind of preparation method of Aerosil 200

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101528603A (en) * 2006-10-31 2009-09-09 花王株式会社 Mesoporous silica particles

Also Published As

Publication number Publication date
KR20180134848A (en) 2018-12-19
CN109071239A (en) 2018-12-21
WO2017183657A1 (en) 2017-10-26
KR102052893B1 (en) 2019-12-06
JP6255053B2 (en) 2017-12-27
CN109071239B (en) 2020-07-31
TW201738178A (en) 2017-11-01
JP2017193462A (en) 2017-10-26

Similar Documents

Publication Publication Date Title
TWI713729B (en) Hollow silicon dioxide particles and manufacturing method thereof
TWI516447B (en) Aerogel and method for manufacture thereof
JP5457179B2 (en) Method for producing hollow particles
US8889044B2 (en) Method for producing mesoporous silica particles
TWI829911B (en) Coating fluids, composite materials and coating films
WO2019131658A1 (en) Method for producing hollow silica particles
JP6474212B2 (en) Method for producing hollow silica particles and hollow silica particles
JP6905446B2 (en) Method for producing hollow silica particles
JP6008642B2 (en) Flat crystalline alumina composite oxide fine particle aggregate, crystalline alumina composite oxide particle comprising flat crystalline alumina composite oxide fine particle aggregate, flat crystalline alumina composite oxide fine particle aggregate, and crystalline alumina Method for producing composite oxide particles
JP6032591B2 (en) Method for producing silica nano hollow particles
JPWO2019017486A1 (en) Porous membrane for membrane distillation, membrane module and membrane distillation apparatus
JP7261570B2 (en) Hollow silica particles and method for producing the same
JP2014055083A (en) Method for producing hollow silica particle
JP5974683B2 (en) Particle having void inside particle and method for producing the same
JP7132827B2 (en) Hollow silica particles and method for producing the same
JP2014055082A (en) Method for producing hollow silica particle
TWI310321B (en) Mesoporous inorganic nanoparticle, inorganic nanoparticle/polymer composite and transparent substrate
KR20080085464A (en) A spherical shape silica nano paticle and method for manufacturing thereof
JP7290289B2 (en) Method for producing core-shell type porous silica particles
JP7311258B2 (en) Method for producing spherical particles
JP2011157245A (en) Method for producing spherical calcium carbonate
JP2005047722A (en) Production method for particulate mesoporous silica
TW201918529A (en) Coating solution, method for producing coating film, and coating film
US11964253B2 (en) Production method for core-shell porous silica particles
JP5374131B2 (en) Method for producing mesoporous silica particle powder