JP2022103683A - Silica-based hollow particle, method for producing the same, and resin composition - Google Patents

Silica-based hollow particle, method for producing the same, and resin composition Download PDF

Info

Publication number
JP2022103683A
JP2022103683A JP2020218461A JP2020218461A JP2022103683A JP 2022103683 A JP2022103683 A JP 2022103683A JP 2020218461 A JP2020218461 A JP 2020218461A JP 2020218461 A JP2020218461 A JP 2020218461A JP 2022103683 A JP2022103683 A JP 2022103683A
Authority
JP
Japan
Prior art keywords
particles
silica
hollow particles
alkali
based hollow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020218461A
Other languages
Japanese (ja)
Inventor
美紀 江上
Yoshinori Egami
正展 谷口
Masanori Taniguchi
宏忠 荒金
Hirotada Aragane
直幸 榎本
Naoyuki Enomoto
良 村口
Makoto Muraguchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JGC Catalysts and Chemicals Ltd
Original Assignee
JGC Catalysts and Chemicals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JGC Catalysts and Chemicals Ltd filed Critical JGC Catalysts and Chemicals Ltd
Priority to JP2020218461A priority Critical patent/JP2022103683A/en
Priority to CN202180082793.4A priority patent/CN116529321A/en
Priority to KR1020237025396A priority patent/KR20230124715A/en
Priority to PCT/JP2021/047980 priority patent/WO2022145350A1/en
Priority to TW110148603A priority patent/TW202225284A/en
Publication of JP2022103683A publication Critical patent/JP2022103683A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • C01B33/18Preparation of finely divided silica neither in sol nor in gel form; After-treatment thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/22Expanded, porous or hollow particles
    • C08K7/24Expanded, porous or hollow particles inorganic
    • C08K7/26Silicon- containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer

Abstract

To provide a silica-based particle capable of reducing the dielectric constant and dielectric loss tangent of an insulating material and not obstructing the filterability and injectability of a liquid for forming an insulating material in a manufacturing process, and a method for manufacturing the same.SOLUTION: Provided are a silica-based hollow particle having a cavity inside a nonporous outer shell and having an average particle diameter (D50) of 0.1 to 10 μm, in which when suspended in water, floating particles a are 0.5 to 7.0 mass%, suspended particles b are 0 to 4.0 mass%, and precipitated particles c are 89.0 to 99.5 mass%; and a method for producing the same.SELECTED DRAWING: None

Description

本発明は、半導体の絶縁材料のフィラーとして有用なシリカ系中空粒子及びその製造方法、並びに樹脂組成物に関する。 The present invention relates to silica-based hollow particles useful as a filler for an insulating material of a semiconductor, a method for producing the same, and a resin composition.

近年、情報通信におけるデータ通信の大容量化が進んでおり、通信機器の高速処理が求められている。このような通信機器に使用される半導体のプリント配線板における絶縁材料は、高速通信を実現するために、低誘電率化(低Dk化)、及び低誘電正接化(低Df化)が求められている。絶縁材料の誘電率が高いと誘電損失に繋がり、また、絶縁材料の誘電正接が高いと、誘電損失に繋がるだけでなく、発熱量の増大などの問題が生じることがある。 In recent years, the capacity of data communication in information communication has been increasing, and high-speed processing of communication equipment is required. Insulating materials for semiconductor printed wiring boards used in such communication equipment are required to have a low dielectric constant (low Dk) and low dielectric loss tangent (low Df) in order to realize high-speed communication. ing. If the dielectric constant of the insulating material is high, it leads to dielectric loss, and if the dielectric loss tangent of the insulating material is high, not only it leads to dielectric loss, but also problems such as an increase in calorific value may occur.

このような半導体のプリント配線板における絶縁材料においては、低誘電率化、及び低誘電正接化を実現すべく、絶縁材料の主体となる樹脂材料の開発が行われている。このような樹脂材料としては、例えば、エポキシ系樹脂、ポリフェニレンエーテル系樹脂、フッ素系樹脂等が提案されている(例えば、特許文献1~5参照)。 In the insulating material of such a printed wiring board of a semiconductor, a resin material which is a main component of the insulating material is being developed in order to realize a low dielectric constant and a low dielectric loss tangent. As such a resin material, for example, an epoxy resin, a polyphenylene ether resin, a fluororesin and the like have been proposed (see, for example, Patent Documents 1 to 5).

一方、このような樹脂材料には、耐久性(剛性)や耐熱性等の点から、フィラーが配合される。このフィラーとしては、シリカ、窒化ホウ素、タルク、カオリン、クレー、マイカ、アルミナ、ジルコニア、チタニア等の金属酸化物が用いられている(例えば、特許文献3参照)。 On the other hand, such a resin material contains a filler from the viewpoint of durability (rigidity), heat resistance and the like. As this filler, metal oxides such as silica, boron nitride, talc, kaolin, clay, mica, alumina, zirconia, and titania are used (see, for example, Patent Document 3).

WO2009/041137号WO2009 / 041137 特表2006-516297号公報Special Table 2006-516297 特開2017-057352号公報Japanese Unexamined Patent Publication No. 2017-057352 特開2001-288227号公報Japanese Unexamined Patent Publication No. 2001-288227 特開2019-172962号公報Japanese Unexamined Patent Publication No. 2019-172962

上記半導体の絶縁材料に含まれるフィラーの中でも、シリカは、低誘電率及び低誘電正接の点で優れている。しかしながら、データ通信の大容量化及び高速処理化が急速に進む今日においては、さらなる低誘電率化、及び低誘電正接化が求められている。また、半導体の絶縁材料のフィラーは、絶縁材料の製造プロセスでの絶縁材料形成用液の濾過性や注入性を妨げないことも重要である。 Among the fillers contained in the insulating material of the semiconductor, silica is excellent in low dielectric constant and low dielectric loss tangent. However, in today's world where the capacity and high-speed processing of data communication are rapidly increasing, further reduction in dielectric constant and low dielectric loss tangent are required. It is also important that the filler of the insulating material of the semiconductor does not interfere with the filterability and the injectability of the insulating material forming liquid in the manufacturing process of the insulating material.

本発明の課題は、絶縁材料の低誘電率化及び低誘電正接化を可能とし、製造プロセスでの絶縁材料形成用液の濾過性及び注入性を妨げないシリカ系粒子、及びその製造方法を提供することにある。 An object of the present invention is to provide silica-based particles that enable low dielectric constant and low dielectric loss tangent of an insulating material and do not interfere with the filterability and injectability of a liquid for forming an insulating material in a manufacturing process, and a method for manufacturing the same. To do.

本発明者らは、データ通信の大容量化及び高速処理化が急速に進む中、半導体の絶縁材料のフィラーとして有用なシリカ粒子について鋭意研究した結果、粗大粒子を含まない所定条件を満たすシリカ系中空粒子が、絶縁材料の低誘電率化及び低誘電正接化を実現でき、また、その製造プロセスにおける絶縁材料形成用液の濾過性及び注入性を妨げないことを見いだし、本発明を完成するに至った。 As a result of diligent research on silica particles useful as fillers for semiconductor insulating materials while the capacity and high-speed processing of data communication are rapidly increasing, the present inventors have conducted diligent research on silica particles that do not contain coarse particles and satisfy predetermined conditions. We have found that the hollow particles can realize low dielectric constant and low dielectric tangentiality of the insulating material and do not interfere with the filterability and injectability of the insulating material forming liquid in the manufacturing process, and complete the present invention. I arrived.

すなわち、本発明は、無孔質の外殻の内部に空洞を有し、平均粒子径(D50)が0.1~10μmのシリカ系中空粒子であって、水に懸濁した際、浮遊粒子aが0.5~7.0質量%、懸濁粒子bが0~4.0質量%、沈降粒子cが89.0~99.5質量%であることを特徴とするシリカ系中空粒子に関する。 That is, the present invention is a silica-based hollow particle having a cavity inside a non-porous outer shell and having an average particle diameter (D50) of 0.1 to 10 μm, and is a suspended particle when suspended in water. The silica-based hollow particles are characterized in that a is 0.5 to 7.0% by mass, suspended particles b are 0 to 4.0% by mass, and sedimented particles c are 89.0 to 99.5% by mass. ..

また、本発明は、珪酸アルカリ水溶液を熱風気流中で噴霧乾燥して中空粒子を調製する中空粒子調製工程と、調製された中空粒子に含まれるアルカリを酸で中和して除去するアルカリ除去工程と、アルカリ除去された中空粒子を焼成する焼成工程とを有するシリカ系中空粒子の製造方法であって、中空粒子調製工程と焼成工程の間に、中空粒子を分級して粗大粒子を除去する分級工程を有することを特徴とするシリカ系中空粒子の製造方法に関する。 Further, the present invention comprises a hollow particle preparation step of spray-drying an alkaline silicate aqueous solution in a hot air stream to prepare hollow particles, and an alkali removing step of neutralizing and removing the alkali contained in the prepared hollow particles with an acid. A method for producing silica-based hollow particles, which comprises a firing step of calcining hollow particles from which alkali has been removed, in which the hollow particles are classified and coarse particles are removed between the hollow particle preparation step and the firing step. The present invention relates to a method for producing silica-based hollow particles, which comprises a step.

本発明のシリカ系中空粒子は、絶縁材料の低誘電率化及び低誘電正接化を実現でき、ひいては、半導体の伝送速度の高速化や伝送損失の低減を図ることができる。また、本発明のシリカ系中空粒子は、その製造プロセスにおける絶縁材料形成用液の濾過性及び注入性を妨げないものであり、優れた絶縁材料を安定して製造することができる。 The silica-based hollow particles of the present invention can realize low dielectric constant and low dielectric loss tangent of the insulating material, and can increase the transmission speed of the semiconductor and reduce the transmission loss. Further, the silica-based hollow particles of the present invention do not interfere with the filterability and injectability of the insulating material forming liquid in the manufacturing process, and can stably produce an excellent insulating material.

[シリカ系中空粒子]
本発明のシリカ系中空粒子は、無孔質の外殻の内部に空洞を有し、平均粒子径が0.1~10μmである。このシリカ系中空粒子を水に懸濁させたとき、浮遊粒子が0.5~7.0質量%、懸濁粒子が0~4.0質量%、沈降粒子が89.0~99.5質量%である。
[Silica-based hollow particles]
The silica-based hollow particles of the present invention have cavities inside a non-porous outer shell and have an average particle diameter of 0.1 to 10 μm. When these silica-based hollow particles are suspended in water, the suspended particles are 0.5 to 7.0% by mass, the suspended particles are 0 to 4.0% by mass, and the sedimented particles are 89.0 to 99.5% by mass. %.

ここで、シリカ系とは、シリカを主成分とすることを意味し、シリカの他、アルミナ、ジルコニア、チタニア等の無機酸化物を含んでいてもよい。粒子中のシリカの含有量としては、70質量%以上が好ましく、90質量%以上がより好ましく、95質量%以上がさらに好ましく、実質的にシリカのみからなることが特に好ましい。 Here, the silica system means that silica is the main component, and may contain inorganic oxides such as alumina, zirconia, and titania in addition to silica. The content of silica in the particles is preferably 70% by mass or more, more preferably 90% by mass or more, further preferably 95% by mass or more, and particularly preferably composed of substantially only silica.

本発明の粒子は、無孔質の外殻の内部に空洞を有する中空の粒子であり、かつ、水に懸濁した際に浮遊する比重の軽い浮遊粒子(空隙率の高い粒子)を含んでいる。そのため、樹脂組成物に配合した場合に低誘電率化及び低誘電正接化が実現する。また、空隙率の高い中空粒子は、一般的に粒子径が大きいため、この浮遊粒子の量を粒子全体の0.5~7.0質量%に制御することは、粗大粒子の量を制御する(低減する)ことになる。そのため、絶縁材料等の樹脂組成物の製造プロセスにおける樹脂組成物形成用液の濾過性や注入性が向上し、成型後の表面平滑性の向上を図ることができる。このとき、粒子径8.0μmを超える粗大粒子の含有量が、10体積%以下が好ましく、5体積%以下がより好ましく、1体積%以下がさらに好ましい。 The particles of the present invention are hollow particles having cavities inside a non-porous outer shell, and include suspended particles having a light specific density (particles having a high porosity) that float when suspended in water. There is. Therefore, when blended in a resin composition, low dielectric constant and low dielectric loss tangent are realized. Further, since hollow particles having a high void ratio generally have a large particle diameter, controlling the amount of the suspended particles to 0.5 to 7.0% by mass of the whole particles controls the amount of coarse particles. It will be (reduced). Therefore, the filterability and injectability of the resin composition forming liquid in the manufacturing process of the resin composition such as the insulating material are improved, and the surface smoothness after molding can be improved. At this time, the content of coarse particles having a particle diameter of more than 8.0 μm is preferably 10% by volume or less, more preferably 5% by volume or less, and further preferably 1% by volume or less.

なお、水に浮遊する比重の軽い粒子は、粒子径に対する外殻の厚みの比率が小さいため、粒子強度が低い傾向にある。そのため、絶縁材料等の樹脂組成物の製造時に、粒子が割れる恐れがある。この粒子の割れの発生は、低誘電率化及び低誘電正接化の妨げとなると共に、樹脂組成物形成用液の流動性を悪化させて、樹脂組成物(成型物)の均一性を低下させたり、樹脂組成物の内部にボイドを生じさせたりする要因となる。浮遊粒子の量を制御することで、粒子の割れを抑制できる。 The particles having a light specific gravity floating in water tend to have low particle strength because the ratio of the thickness of the outer shell to the particle diameter is small. Therefore, the particles may crack during the production of a resin composition such as an insulating material. The occurrence of cracks in the particles hinders low dielectric constant and low dielectric loss tangent, deteriorates the fluidity of the resin composition forming liquid, and lowers the uniformity of the resin composition (molded product). Or, it becomes a factor that causes voids inside the resin composition. By controlling the amount of suspended particles, cracking of the particles can be suppressed.

本発明では、特に浮遊粒子の量が制御されていることから、空隙率が高い粒子のもつ好ましい特性(特に低誘電率化及び低誘電正接化)を確保しつつ、空隙率の高い粒子のもつ好ましくない特性(特に割れの発生)が問題のない程度に抑制される。また、浮遊粒子は、空隙率が高くとも小径の粒子が存在しており、このような粒子は、製造プロセスにおいて、大径粒子に比べて割れが生じにくく、全体として、空隙率の高い粒子のもつ好ましくない特性を極力抑えることができる。 In the present invention, since the amount of suspended particles is particularly controlled, the particles having a high void ratio have the preferable characteristics (particularly low dielectric constant and low dielectric loss tangent) of the particles having a high void ratio. Undesirable properties (particularly the occurrence of cracks) are suppressed to the extent that there is no problem. Further, as the suspended particles, particles having a small diameter exist even if the porosity is high, and such particles are less likely to be cracked than the particles having a large diameter in the manufacturing process, and the particles having a high porosity as a whole. Unfavorable characteristics can be suppressed as much as possible.

浮遊粒子の含有量は、1.0~5.0質量%が好ましく、1.0質量~4.0質量%がより好ましく、2.0~4.0質量%がさらに好ましい。また、沈降粒子の含有量は、91.0~99.5質量%が好ましく、92.0~99.0質量%がより好ましく、95.0~98.0質量%がさらに好ましい。 The content of the suspended particles is preferably 1.0 to 5.0% by mass, more preferably 1.0% by mass to 4.0% by mass, and even more preferably 2.0 to 4.0% by mass. The content of the precipitated particles is preferably 91.0 to 99.5% by mass, more preferably 92.0 to 99.0% by mass, and even more preferably 95.0 to 98.0% by mass.

水に懸濁した際の浮遊粒子、懸濁粒子及び沈降粒子の割合は、懸濁液からそれぞれの粒子を回収して計量し、その割合を算出する。具体的には、実施例で説明する。 The ratio of suspended particles, suspended particles and sedimented particles when suspended in water is calculated by collecting and weighing each particle from the suspension and calculating the ratio. Specifically, it will be described in Examples.

また、本発明のシリカ系中空粒子の平均粒子径(D50)は、0.1~10μmの範囲にある。平均粒子径が0.1μm未満のものは、噴霧乾燥法を用いて製造することが困難である。また、平均粒子径が10μmを超えるシリカ系粒子は、半導体用途としては不向きである。半導体用途であることを考慮すると、平均粒子径は、0.5~10μmが好ましく、1.0~5.0μmがより好ましい。 Further, the average particle diameter (D50) of the silica-based hollow particles of the present invention is in the range of 0.1 to 10 μm. Those having an average particle size of less than 0.1 μm are difficult to produce by the spray drying method. Further, silica-based particles having an average particle diameter of more than 10 μm are not suitable for semiconductor applications. Considering that it is used for semiconductors, the average particle size is preferably 0.5 to 10 μm, more preferably 1.0 to 5.0 μm.

また、最大粒子径(D100)は50μm以下が好ましく、40μm以下がより好ましく、30μm以下がさらに好ましい。最大粒子径(D100)は、平均粒子径(D50)の10倍以下が好ましく、8倍以下が好ましい。通常は、2倍以上であり、本発明の要件を満たす限り、5倍を超えてもよい。 The maximum particle size (D100) is preferably 50 μm or less, more preferably 40 μm or less, and even more preferably 30 μm or less. The maximum particle size (D100) is preferably 10 times or less, preferably 8 times or less the average particle size (D50). Usually, it is 2 times or more, and may exceed 5 times as long as the requirements of the present invention are satisfied.

平均粒子径(D50)、最大粒子径(D100)及び粗大粒子の含有量は、レーザー回折・散乱法により測定する。具体的には、実施例で説明する。 The average particle size (D50), the maximum particle size (D100), and the content of coarse particles are measured by a laser diffraction / scattering method. Specifically, it will be described in Examples.

本発明のシリカ系中空粒子の空隙率は、5体積%以上が好ましく、8体積%以上がより好ましく、10体積%以上がさらに好ましい。上限側は、50体積%以下が好ましく、35体積%以下がより好ましく、25体積%以下がさらに好ましく、20体積%以下が最も好ましい。このような空隙率により、低誘電率化及び低誘電正接化を図ることができると共に、粒子強度を所定以上に保持して粒子の割れを効果的に抑制することができる。ここで、空隙率は、粒子密度から算出する。具体的には、実施例で説明する。 The porosity of the silica-based hollow particles of the present invention is preferably 5% by volume or more, more preferably 8% by volume or more, still more preferably 10% by volume or more. On the upper limit side, 50% by volume or less is preferable, 35% by volume or less is more preferable, 25% by volume or less is further preferable, and 20% by volume or less is most preferable. With such a porosity, it is possible to reduce the dielectric constant and the dielectric loss tangent, and it is possible to keep the particle strength at a predetermined level or higher and effectively suppress the cracking of the particles. Here, the porosity is calculated from the particle density. Specifically, it will be described in Examples.

本発明のシリカ系中空粒子は、半導体等の電子材料の絶縁材料のフィラーとして用いることが好適である。具体的には、プリント配線板(リジッド基板及びフレキシブル基板を含む)を形成するための銅張積層板、プリプレグ、ビルドアップフィルム等に配合することができる。また、モールド樹脂、モールドアンダーフィル、アンダーフィル等の半導体パッケージ関連材料や、フレキシブル基板用接着剤等に配合することができる。 The silica-based hollow particles of the present invention are preferably used as a filler for an insulating material of an electronic material such as a semiconductor. Specifically, it can be blended in a copper-clad laminate, a prepreg, a build-up film, or the like for forming a printed wiring board (including a rigid substrate and a flexible substrate). Further, it can be blended in semiconductor package-related materials such as mold resin, mold underfill, and underfill, and adhesives for flexible substrates.

[樹脂組成物]
本発明の樹脂組成物には、上述した本発明のシリカ系中空粒子が配合されている。このような樹脂組成物は、半導体等の電子材料の絶縁材料等、上述したシリカ系中空粒子の用途に用いることができる。
[Resin composition]
The resin composition of the present invention contains the above-mentioned silica-based hollow particles of the present invention. Such a resin composition can be used for the above-mentioned silica-based hollow particles such as an insulating material for electronic materials such as semiconductors.

本発明の樹脂組成物(樹脂組成物形成用液)に含まれる樹脂として、一般に半導体等の電子材料に使用されている硬化性樹脂を使用することができる。光硬化樹脂でもよいが、熱硬化樹脂が好ましい。このような硬化性樹脂として、エポキシ系樹脂、ポリフェニレンエーテル系樹脂、フッ素系樹脂、ポリイミド系樹脂、ビスマレイミド系樹脂、アクリル系樹脂、メタクリル系樹脂、シリコーン系樹脂、BTレジン、シアネート系樹脂等を挙げることができる。エポキシ系樹脂として、ビスフェノール型エポキシ樹脂、ノボラック型エポキシ樹脂、トリフェノールアルカン型エポキシ樹脂、ビフェニル骨格を有するエポキシ樹脂、ナフタレン骨格を有するエポキシ樹脂、ジシクロペンタジエンフェノールノボラック樹脂、フェノールアラルキル型エポキシ樹脂、グリシジルエステル型エポキシ樹脂、脂環式エポキシ樹脂、複素環型エポキシ樹脂、ハロゲン化エポキシ樹脂等を具体的に例示することができる。これらの樹脂は、単独で使用しても、2種以上を混合して使用してもよい。 As the resin contained in the resin composition (liquid for forming a resin composition) of the present invention, a curable resin generally used for electronic materials such as semiconductors can be used. A photocurable resin may be used, but a thermosetting resin is preferable. As such curable resins, epoxy resins, polyphenylene ether resins, fluororesins, polyimide resins, bismaleimide resins, acrylic resins, methacrylic resins, silicone resins, BT resins, cyanate resins and the like are used. Can be mentioned. As epoxy resins, bisphenol type epoxy resin, novolak type epoxy resin, triphenol alkane type epoxy resin, epoxy resin having biphenyl skeleton, epoxy resin having naphthalene skeleton, dicyclopentadienephenol novolak resin, phenol aralkyl type epoxy resin, glycidyl Specific examples thereof include an ester type epoxy resin, an alicyclic epoxy resin, a heterocyclic epoxy resin, and a halogenated epoxy resin. These resins may be used alone or in combination of two or more.

本発明の樹脂組成物(樹脂組成物形成用液)中のシリカ系中空粒子の含有量としては、シリカ系中空粒子Aと硬化性樹脂Bの質量比(A/B)が、10/100~95/100が好ましく、30/100~80/100がより好ましい。このような質量比により、流動性等の樹脂組成物形成用液の特性を維持しつつ、フィラーとしての機能を十分に発揮することができる。 The content of the silica-based hollow particles in the resin composition (liquid for forming the resin composition) of the present invention is such that the mass ratio (A / B) of the silica-based hollow particles A and the curable resin B is 10/100 or more. 95/100 is preferable, and 30/100 to 80/100 is more preferable. With such a mass ratio, it is possible to fully exhibit the function as a filler while maintaining the characteristics of the resin composition forming liquid such as fluidity.

本発明の樹脂組成物(樹脂組成物形成用液)は、フェノール化合物、アミン化合物、酸無水物等の硬化剤を含むことが好ましい。硬化性樹脂としてエポキシ樹脂を用いる場合、硬化剤としては、1分子中にフェノール性水酸基を2個以上有する、ビスフェノール型樹脂、ノボラック樹脂、トリフェノールアルカン型樹脂、レゾール型フェノール樹脂、フェノールアラルキル樹脂、ビフェニル型フェノール樹脂、ナフタレン型フェノール樹脂、シクロペンタジエン型フェノール樹脂等のフェノール樹脂や、メチルヘキサヒドロフタル酸、メチルテトラヒドロフタル酸、無水メチルナジック酸等の酸無水物を挙げることができる。 The resin composition (liquid for forming a resin composition) of the present invention preferably contains a curing agent such as a phenol compound, an amine compound, or an acid anhydride. When an epoxy resin is used as the curable resin, the curing agent includes a bisphenol type resin, a novolak resin, a triphenol alkane type resin, a resol type phenol resin, and a phenol aralkyl resin, which have two or more phenolic hydroxyl groups in one molecule. Examples thereof include phenolic resins such as biphenyl-type phenol resins, naphthalene-type phenol resins, and cyclopentadiene-type phenol resins, and acid anhydrides such as methylhexahydrophthalic acid, methyltetrahydrophthalic acid, and methylnadic anhydride.

樹脂組成物(樹脂組成物形成用液)には、必要に応じて、着色剤、応力緩和剤、消泡剤、レベリング剤、カップリング剤、難燃剤、硬化促進剤等の各種添加剤を添加することができる。 Various additives such as colorants, stress relaxation agents, defoaming agents, leveling agents, coupling agents, flame retardants, and curing accelerators are added to the resin composition (resin composition forming liquid) as necessary. can do.

本発明の樹脂組成物は、従来公知の方法で得ることができる。例えば、熱硬化性樹脂、シリカ系中空粒子、硬化剤、添加剤等を混合し、ロールミルなどで混練して塗布液(樹脂組成物形成用液)を調製し、基体に塗布後、熱、紫外線等により硬化させることにより得ることができる。 The resin composition of the present invention can be obtained by a conventionally known method. For example, a thermosetting resin, silica-based hollow particles, a curing agent, an additive, etc. are mixed and kneaded with a roll mill or the like to prepare a coating liquid (resin composition forming liquid), and after coating on a substrate, heat and ultraviolet rays are applied. It can be obtained by curing with or the like.

[シリカ系粒子の製造方法]
本発明のシリカ系中空粒子の製造方法は、珪酸アルカリ水溶液を熱風気流中で噴霧乾燥して中空粒子を調製する中空粒子調製工程と、調製された中空粒子に含まれるアルカリを酸で中和して除去するアルカリ除去工程と、アルカリ除去された中空粒子を焼成する焼成工程とを有し、中空粒子調製工程と焼成工程の間に、中空粒子を分級して粗大粒子を除去する分級工程が設けられている。なお、各工程の間に、乾燥工程等の他の工程を有していてもよい。
[Manufacturing method of silica-based particles]
The method for producing silica-based hollow particles of the present invention comprises a hollow particle preparation step of spray-drying an aqueous alkali silicate solution in a hot air stream to prepare hollow particles, and neutralizing the alkali contained in the prepared hollow particles with an acid. It has an alkali removing step of removing the alkali and a firing step of firing the hollow particles from which the alkali has been removed, and a classification step of classifying the hollow particles and removing coarse particles is provided between the hollow particle preparation step and the firing step. Has been done. In addition, another step such as a drying step may be provided between each step.

本発明の製造方法により、例えば、上記のような本発明のシリカ系中空粒子を製造することができる。すなわち、本発明の製造方法によれば、絶縁材料の低誘電率化及び低誘電正接化が可能となり、また、その製造プロセスにおける絶縁材料形成用液の濾過性及び注入性を妨げないシリカ系粒子を製造することができる。 By the production method of the present invention, for example, the silica-based hollow particles of the present invention as described above can be produced. That is, according to the manufacturing method of the present invention, it is possible to reduce the dielectric constant and the dielectric loss tangent of the insulating material, and the silica-based particles do not interfere with the filterability and injectability of the insulating material forming liquid in the manufacturing process. Can be manufactured.

また、通常、焼成粒子を製造する際に分級処理を行う場合には、最終粒子を整えるために、焼成後の最終段階で行うことが好ましいと考えられるが、本発明の製造方法においては、あえて焼成工程前に行う。分級処理を行わずに焼成工程を行うと、本来取り除かれるべき高空隙率の粗大粒子が存在してしまう。この高空隙率の粗大粒子は割れやすいため、加熱による収縮のストレスで割れるおそれがある。そして、この割れにより生じた破片は、粒子径が小さくなるため、その後の分級工程で取り除くことができず、また、空隙もない緻密なシリカであるため、低誘電率化・低誘電正接化の妨げとなる。本発明の製造方法のように、分級処理を焼成前に行うことにより、このような不都合は回避され、製造した粒子の低誘電率化・低誘電正接化をより確実に実現でき、近時のデータ通信の高速化に対応した粒子が得られる。 Further, usually, when the classification treatment is performed when producing the calcined particles, it is considered preferable to perform the classification treatment at the final stage after the calcining in order to prepare the final particles, but in the production method of the present invention, it is intentionally performed. Perform before the firing process. If the firing step is performed without the classification treatment, coarse particles having a high porosity that should be originally removed will be present. Since the coarse particles having a high porosity are easily cracked, they may be cracked by the stress of shrinkage due to heating. Since the particle size of the debris generated by this crack is small, it cannot be removed in the subsequent classification step, and since it is a dense silica with no voids, it has a low dielectric constant and a low dielectric loss tangent. It becomes a hindrance. By performing the classification treatment before firing as in the manufacturing method of the present invention, such inconveniences can be avoided, and low dielectric constant and low dielectric loss tangent can be more reliably realized in the manufactured particles. Particles corresponding to high-speed data communication can be obtained.

(中空粒子調製工程)
中空粒子調製工程では、珪酸アルカリ水溶液を熱風気流中で噴霧乾燥して中空粒子を調製する。
(Hollow particle preparation process)
In the hollow particle preparation step, the alkaline aqueous solution of silicate is spray-dried in a hot air stream to prepare hollow particles.

珪酸アルカリとして、通常、水に可溶の珪酸ナトリウム、珪酸カリウムが用いられるが、珪酸ナトリウムが好ましい。珪酸アルカリのSiO/MOモル比(但し、Mはアルカリ金属を示す。)としては、1~5が好ましく、2~4がより好ましい。珪酸アルカリのSiO/MOモル比が1未満の場合は、アルカリ量が多すぎるためにアルカリ除去工程における酸洗浄が困難となるだけでなく、噴霧乾燥品の潮解性が顕著となるために所望のシリカ系中空粒子が得られない場合がある。珪酸アルカリのSiO/MOモル比が5を超えると、珪酸アルカリの可溶性が低下し、水溶液の調製が困難であり、水溶液を調製できたとしても、噴霧乾燥により所望のシリカ系中空粒子が得られない場合がある。 As the alkali silicate, sodium silicate and potassium silicate, which are soluble in water, are usually used, but sodium silicate is preferable. The SiO 2 / M 2 O molar ratio of alkali silicate (where M indicates an alkali metal) is preferably 1 to 5, and more preferably 2 to 4. When the SiO 2 / M 2 O molar ratio of alkali silicate is less than 1, not only is it difficult to perform acid cleaning in the alkali removal step because the amount of alkali is too large, but also the deliquescent property of the spray-dried product becomes remarkable. In some cases, the desired silica-based hollow particles may not be obtained. When the SiO 2 / M 2 O molar ratio of alkali silicate exceeds 5, the solubility of alkali silicate decreases and it is difficult to prepare an aqueous solution. Even if an aqueous solution can be prepared, the desired silica-based hollow particles are spray-dried. May not be obtained.

珪酸アルカリ水溶液のSiOとしての濃度は、1~30質量%が好ましく、5~28質量%が好ましい。1質量%未満としても製造は可能であるが、生産性が著しく低下する。30質量%を超えると、珪酸アルカリ水溶液としての安定性が著しく低下して高粘性になり噴霧乾燥が困難となる場合があり、また噴霧乾燥できたとしても、粒子径分布、外殻の厚さ等が極めて不均一になるおそれがあり、最終的な粒子の用途が制限される場合がある。 The concentration of the aqueous alkali silicate solution as SiO 2 is preferably 1 to 30% by mass, preferably 5 to 28% by mass. Although it can be manufactured even if it is less than 1% by mass, the productivity is significantly reduced. If it exceeds 30% by mass, the stability as an aqueous alkali silicate solution may be significantly reduced and the viscosity may become high, making spray drying difficult. Even if spray drying is possible, the particle size distribution and the thickness of the outer shell may be difficult. Etc. may become extremely non-uniform, which may limit the use of the final particles.

噴霧乾燥方法としては、例えば、回転ディスク法、加圧ノズル法、2流体ノズル法等の従来公知の方法を採用することができる。ここでは、2流体ノズル法が好適である。 As the spray drying method, for example, a conventionally known method such as a rotary disk method, a pressure nozzle method, or a two-fluid nozzle method can be adopted. Here, the two-fluid nozzle method is suitable.

噴霧乾燥において、噴霧乾燥器における入口温度は、300~600℃が好ましく、350~550℃がより好ましい。また、出口温度は、120~300℃が好ましく、130~250℃がより好ましい。入口温度及び出口温度が上記範囲にあることにより、内部に空洞を有する中空粒子を安定して得ることができる。 In spray drying, the inlet temperature in the spray dryer is preferably 300 to 600 ° C, more preferably 350 to 550 ° C. The outlet temperature is preferably 120 to 300 ° C, more preferably 130 to 250 ° C. When the inlet temperature and the outlet temperature are in the above ranges, hollow particles having cavities inside can be stably obtained.

(アルカリ除去工程)
アルカリ除去工程では、調製された中空粒子に含まれるアルカリを酸で中和して除去する。
(Alkali removal process)
In the alkali removal step, the alkali contained in the prepared hollow particles is neutralized with an acid and removed.

酸としては、塩酸、硝酸、硫酸等の鉱酸、酢酸、酒石酸、リンゴ酸等の有機酸等を用いることができる。これらの中でも、塩酸、硝酸、硫酸等の鉱酸が好適に用いられ、価数の点から、硫酸が特に好ましい。 As the acid, mineral acids such as hydrochloric acid, nitric acid and sulfuric acid, organic acids such as acetic acid, tartaric acid and malic acid can be used. Among these, mineral acids such as hydrochloric acid, nitric acid, and sulfuric acid are preferably used, and sulfuric acid is particularly preferable from the viewpoint of valence.

本工程の処理としては、酸を用いた処理であれば特に制限されるものではなく、酸の溶液に、調製された中空粒子を浸漬する処理が好ましい。 The treatment in this step is not particularly limited as long as it is a treatment using an acid, and a treatment in which the prepared hollow particles are immersed in an acid solution is preferable.

中空粒子を酸水溶液に浸漬する際の中空粒子中のMOモル数(Msp)と酸のモル数(Ma)とのモル比(Ma)/(Msp)は、0.6~4.7が好ましく、1~4.5が好ましい。このモル比が0.6未満の場合は、MOに対して酸の量が少なすぎるために、アルカリの除去とともに起きると考えられるケイ酸のシリカ骨格化が進行せず、中空粒子が部分的に溶解したり、溶解した珪酸アルカリがゲル化する場合がある。モル比が4.7を超えてもさらにシリカ骨格化が進むことはなく、酸が過剰であり経済的でない。 The molar ratio (Ma) / (Msp) of the number of moles of M 2 O (Msp) and the number of moles of acid (Ma) in the hollow particles when the hollow particles are immersed in the acid aqueous solution is 0.6 to 4.7. Is preferable, and 1 to 4.5 is preferable. When this molar ratio is less than 0.6, the amount of acid is too small for M 2 O, and the silica skeletonization of silicic acid, which is thought to occur with the removal of alkali, does not proceed, and the hollow particles are partially formed. In some cases, the dissolved alkali silicate may gel. Even if the molar ratio exceeds 4.7, silica skeletonization does not proceed further, and the acid is excessive, which is not economical.

また、酸水溶液に浸漬した際の中空粒子の濃度は、SiOとして1~30質量%が好ましく、5~25質量%が好ましい。1質量%未満の場合は、アルカリ除去や洗浄性に問題はないが、製造効率が低下する。30質量%を超えると、濃度が濃すぎてアルカリ除去、洗浄効率が低下する場合がある。 The concentration of the hollow particles when immersed in the acid aqueous solution is preferably 1 to 30% by mass, preferably 5 to 25% by mass, as SiO 2 . If it is less than 1% by mass, there is no problem in alkali removal and detergency, but the production efficiency is lowered. If it exceeds 30% by mass, the concentration may be too high and the alkali removal and cleaning efficiency may decrease.

酸水溶液への浸漬処理の条件としては、アルカリを所望の量まで除去できれば特に制限はなく、通常、処理温度が5~100℃であり、処理時間が0.5~24時間である。浸漬処理の後、従来公知の方法で洗浄することが好ましい。例えば、純水にて濾過洗浄すればよい。なお、必要に応じて、上記酸処理及び洗浄を繰り返し行ってもよい。 The conditions for the immersion treatment in the acid aqueous solution are not particularly limited as long as the alkali can be removed to a desired amount, and the treatment temperature is usually 5 to 100 ° C. and the treatment time is 0.5 to 24 hours. After the dipping treatment, it is preferable to wash by a conventionally known method. For example, it may be filtered and washed with pure water. If necessary, the acid treatment and washing may be repeated.

アルカリ除去工程終了後のアルカリ(M)の残存量(質量割合)は、300ppm以下が好ましく、200ppm以下がより好ましく、100ppm以下がさらに好ましく、50ppm以下が特に好ましい。本工程で十分にアルカリを除去することにより、後の工程での粒子の合着を防止して、焼成工程での焼結粒子の発生を防ぐことができる。また、アルカリの残存量(含有量)は、誘電特性に影響を及ぼすことが知られている。本工程において十分にアルカリを除去することにより、原料に珪酸アリカリ水溶液を用いた場合でも、低誘電率化及び低誘電正接化を可能とするシリカ系中空粒子を得ることができる。 The residual amount (mass ratio) of the alkali (M) after the completion of the alkali removing step is preferably 300 ppm or less, more preferably 200 ppm or less, further preferably 100 ppm or less, and particularly preferably 50 ppm or less. By sufficiently removing the alkali in this step, it is possible to prevent the coalescence of particles in the subsequent step and prevent the generation of sintered particles in the firing step. Further, it is known that the residual amount (content) of alkali affects the dielectric property. By sufficiently removing the alkali in this step, silica-based hollow particles that enable low dielectric constant and low dielectric loss tangent can be obtained even when an aqueous solution of alikari silicate is used as a raw material.

なお、最終製品(シリカ系中空粒子)のアルカリ量も上述の範囲が好ましく、通常、最終製品のアルカリ量はアルカリ除去工程後のアルカリ量と同等になる。 The amount of alkali in the final product (silica-based hollow particles) is also preferably in the above range, and the amount of alkali in the final product is usually the same as the amount of alkali after the alkali removal step.

アルカリ残存量は、粒子を酸で溶解させたものを試料とし、原子吸光光度計を用いてNa又はKを測定する。珪酸ナトリウムを用いた場合はNaを測定し、珪酸カリウムを用いた場合はKを測定する。具体的には、実施例で説明する。 For the residual amount of alkali, Na or K is measured using an atomic absorption spectrophotometer using a sample obtained by dissolving particles with an acid. When sodium silicate is used, Na is measured, and when potassium silicate is used, K is measured. Specifically, it will be described in Examples.

(焼成工程)
焼成工程は、アルカリ除去された中空粒子を焼成する工程である。焼成温度は、600~1200℃が好ましく、900~1100℃が好ましい。焼成温度が600℃未満の場合は、SiOH基の残存量が多く、粒子の誘電正接が高くなり、樹脂に配合した場合にも、誘電正接低減効果が得られにくい。焼成温度が1200℃を超える場合は、中空粒子同士が焼結しやすく、異形状の粒子や、粗大粒子となるため、樹脂組成物形成用液の濾過性や、注入性が低下する原因となる。
(Baking process)
The firing step is a step of firing the hollow particles from which the alkali has been removed. The firing temperature is preferably 600 to 1200 ° C, preferably 900 to 1100 ° C. When the firing temperature is less than 600 ° C., the residual amount of SiOH groups is large and the dielectric loss tangent of the particles becomes high, and it is difficult to obtain the effect of reducing the dielectric loss tangent even when the particles are blended with the resin. When the firing temperature exceeds 1200 ° C., the hollow particles tend to sinter with each other and become irregularly shaped particles or coarse particles, which causes deterioration of the filterability and injectability of the resin composition forming liquid. ..

(分級工程)
分級工程では、中空粒子を分級して粗大粒子を除去する。この分級工程は、中空粒子調製工程と焼成工程の間で行われる。中空粒子調製後に分級処理を行う場合には、中空粒子が吸湿(潮解)して凝集・合着することを防止するために造粒後直ちに分級処理をする必要がある。したがって、実際の製造上は、分級処理は、アルカリ除去工程後に行うことが好ましい。また、アルカリ除去工程後に分級処理を行う場合、分級処理は、アルカリ除去処理に続けて行ってもよいし、アルカリ除去処理の後に乾燥処理を行った後に行ってもよい。本発明の効果をより享受するには、乾燥処理の後に行うことが好ましい。
(Classification process)
In the classification step, hollow particles are classified to remove coarse particles. This classification step is performed between the hollow particle preparation step and the firing step. When the classification treatment is performed after the hollow particles are prepared, it is necessary to perform the classification treatment immediately after the granulation in order to prevent the hollow particles from absorbing (deliquezing) and aggregating / coalescing. Therefore, in actual production, it is preferable that the classification treatment is performed after the alkali removing step. When the classification treatment is performed after the alkali removal step, the classification treatment may be performed after the alkali removal treatment or after the drying treatment after the alkali removal treatment. In order to further enjoy the effects of the present invention, it is preferable to carry out after the drying treatment.

分級工程では、粒子径8.0μmを超える粗大粒子の量を10体積%以下とすることが好ましく、5体積%以下とすることがより好ましく、1体積%以下とすることがさらに好ましい。この分級工程により、本発明のシリカ系中空粒子の浮遊粒子割合を所定範囲に制御することができる。 In the classification step, the amount of coarse particles having a particle diameter of more than 8.0 μm is preferably 10% by volume or less, more preferably 5% by volume or less, and further preferably 1% by volume or less. By this classification step, the ratio of suspended particles of the silica-based hollow particles of the present invention can be controlled within a predetermined range.

本発明の分級工程での分級とは、粉体の粒度を揃えることを目的に、粒子径によって粉体を分ける粒度分級を意味する。この粒度分級の操作としては、流体分級を挙げることができ、流体分級は乾式分級と湿式分級に分類することができる。湿式分級は、粒子を水に懸濁した状態で分級処理を行う必要があり、粒子表面にSiOH基が生じ、誘電特性に悪影響を及ぼすおそれがあるため、乾式分級が好ましい。 The classification in the classification step of the present invention means the particle size classification in which the powder is divided according to the particle size for the purpose of making the particle size of the powder uniform. As the operation of this particle size classification, fluid classification can be mentioned, and fluid classification can be classified into dry classification and wet classification. In the wet classification, it is necessary to perform the classification treatment in a state where the particles are suspended in water, and SiOH groups are generated on the surface of the particles, which may adversely affect the dielectric properties. Therefore, the dry classification is preferable.

乾式分級に用いられる分級機を原理的に分類すると、重力分級機、慣性分級機、遠心分級機に大別することができ、本発明の目的を達成できる範囲でいずれの分級機を用いてもよいが、より精密な分級が可能な点から、粒子の慣性力を利用して分級する慣性分級機や、遠心分級機を用いることが好ましい。特に、本発明の中空粒子は軽く、粒子に遠心力が掛かりにくいため、そのような粒子でも特性を発揮する分級機が好ましい。このような分級機としては、例えば、日鉄鉱業株式会社製エルボージェット、日本スリーエム株式会社製SGセパレーター、日清エンジニアリング株式会社製エアロファインクラシファイア、日本ニューマチック工業株式会社マイクロスピン等を挙げることができる。これらの中でも、軽い中空粒子を精密に分級できることから、日鉄鉱業株式会社製エルボージェット、日清エンジニアリング株式会社製エアロファインクラシファイアが好ましい。 The classifiers used for dry classification can be roughly classified into gravity classifiers, inertial classifiers, and centrifugal classifiers, and any classifier can be used as long as the object of the present invention can be achieved. However, from the viewpoint of enabling more precise classification, it is preferable to use an inertial classifier or a centrifugal classifier that classifies by utilizing the inertial force of the particles. In particular, since the hollow particles of the present invention are light and centrifugal force is not easily applied to the particles, a classifier that exhibits the characteristics even with such particles is preferable. Examples of such a classifier include an elbow jet manufactured by Nittetsu Mining Co., Ltd., an SG separator manufactured by Nippon Three M Co., Ltd., an aerofine classifier manufactured by Nittetsu Engineering Co., Ltd., and a microspin manufactured by Nippon Pneumatic Industries Co., Ltd. can. Among these, elbow jets manufactured by Nittetsu Mining Co., Ltd. and aerofine classifiers manufactured by Nittetsu Engineering Co., Ltd. are preferable because they can precisely classify light hollow particles.

(乾燥工程)
本発明の製造方法においては、適宜、乾燥工程を設けることができる。乾燥工程は、例えば、アルカリ除去工程と分級工程の間や、分級工程と焼成工程の間や、その両方に設けることができる。必要に応じて複数回設けてもよい。
(Drying process)
In the production method of the present invention, a drying step can be appropriately provided. The drying step can be provided, for example, between the alkali removing step and the classification step, and between the classification step and the firing step, or both. It may be provided multiple times as needed.

乾燥方法としては、加熱乾燥が好ましい。乾燥温度は、50~400℃が好ましく、50~200℃がより好ましい。具体的には、50~200℃程度の低温で時間をかけて乾燥させる方法や、温度を徐々に上昇させて乾燥させる方法や、温度を何段階かに分けて変更して乾燥させる方法を挙げることができる。 As a drying method, heat drying is preferable. The drying temperature is preferably 50 to 400 ° C, more preferably 50 to 200 ° C. Specific examples include a method of drying at a low temperature of about 50 to 200 ° C. over a long period of time, a method of gradually increasing the temperature to dry, and a method of changing the temperature in several stages to dry. be able to.

(篩分け工程)
乾燥工程及び/又は焼成工程後に粒子塊を篩分けする篩分け工程を設けることが好ましい。なお、粒子塊とは、例えば、粒径が50μmを超えるような異物をいい、本工程では、このような粒子塊を取り除けるような目開き(メッシュ数)の篩を適宜用いる。
(Sieving process)
It is preferable to provide a sieving step for sieving the particle mass after the drying step and / or the firing step. The particle mass means, for example, a foreign substance having a particle size of more than 50 μm, and in this step, a sieve having an opening (number of meshes) capable of removing such a particle mass is appropriately used.

以下、本発明の実施例を具体的に説明する。 Hereinafter, embodiments of the present invention will be specifically described.

[実施例1]
水ガラス水溶液(SiO/NaOモル比3.2、SiO濃度24質量%)30000gを用い、2流体ノズルの一方に0.62kg/hrの流量で、他方のノズルに空気を31800L/hr(空/液体積比63600)の流量で、入口温度400℃の熱風に噴霧してシリカ中空粒子を得た。この時、出口温度は150℃であった(中空粒子調製工程)。
[Example 1]
Using 30000 g of a water glass aqueous solution (SiO 2 / Na 2 Omolar ratio 3.2, SiO 2 concentration 24% by mass), a flow rate of 0.62 kg / hr to one of the two fluid nozzles and 31800 L / L of air to the other nozzle. Silica hollow particles were obtained by spraying with hot air having an inlet temperature of 400 ° C. at a flow rate of hr (empty / liquid volume ratio 63600). At this time, the outlet temperature was 150 ° C. (hollow particle preparation step).

ついで、シリカ中空粒子5000gを濃度10質量%の硫酸水溶液32000gに浸漬して15時間撹拌した。この時、固形分(SiO)濃度は10.2質量%、分散液の温度は35℃、pHは3.0であった。また、酸のモル数(Ma)とのモル比(Ma)/(Msp)は1.2であった。浸漬処理後、純水にて濾過洗浄を行った(アルカリ除去工程)。 Then, 5000 g of the silica hollow particles were immersed in 32000 g of a sulfuric acid aqueous solution having a concentration of 10% by mass and stirred for 15 hours. At this time, the solid content (SiO 2 ) concentration was 10.2% by mass, the temperature of the dispersion liquid was 35 ° C., and the pH was 3.0. The molar ratio (Ma) / (Msp) with the number of moles (Ma) of the acid was 1.2. After the dipping treatment, it was filtered and washed with pure water (alkali removal step).

ついで、乾燥機にて、120℃で24時間乾燥処理した(乾燥工程)。乾燥後、解砕して目開き75μmの篩にかけて粗大粒子を除去した。 Then, it was dried in a dryer at 120 ° C. for 24 hours (drying step). After drying, the particles were crushed and sieved through a sieve having an opening of 75 μm to remove coarse particles.

ついで、自社製サイクロンを用いて、粉体輸送ラインの流速を5m/sとして、乾式遠心分級処理を行った(分級工程)。サイクロンに捕集されずに通過した粒子をバグフィルターで回収した。 Then, using an in-house cyclone, a dry centrifugal classification treatment was performed at a flow velocity of 5 m / s on the powder transport line (classification step). Particles that passed without being collected by the cyclone were collected by a bag filter.

最後に、分級した粒子を1000℃で10時間加熱処理することで目的の実施例に係るシリカ系中空粒子(A1)を得た(焼成工程)。なお、焼成後、目開き150μmの篩で粒子塊(異物)を取り除いた。 Finally, the classified particles were heat-treated at 1000 ° C. for 10 hours to obtain silica-based hollow particles (A1) according to the target embodiment (calcination step). After firing, particle lumps (foreign matter) were removed with a sieve having an opening of 150 μm.

また、製造したシリカ系中空粒子(A1)を、新日本理化株式会社製液状酸無水物「リカシッドMH700」、四国化成株式会社製イミダゾール系エポキシ樹脂硬化剤「2PHZ-PW」と共に、日鉄ケミカル&マテリアル社製液状エポキシ樹脂「ZX-1059」に配合して、遊星ミルで予備混錬後、三本ロールで混練し、樹脂組成物形成用液を調製した。なお、「ZX-1059」が100質量部、「リカシッドMH700」が86質量部、「2PHZ-PWが1質量部の割合で配合した。また、シリカ系中空粒子(A1)は、樹脂組成物中の割合が35体積%になるように配合した。この調製した樹脂組成物形成用液を170℃で2時間加熱して硬化し、50mm×50mm×1mmの実施例に係る板状樹脂組成物(A1R)を得た。 In addition, the manufactured silica-based hollow particles (A1) are mixed with the liquid acid anhydride "Ricacid MH700" manufactured by Shin Nihon Rika Co., Ltd. and the imidazole-based epoxy resin curing agent "2PHZ-PW" manufactured by Shikoku Kasei Co., Ltd. It was blended with a liquid epoxy resin "ZX-1059" manufactured by Material Co., Ltd., pre-kneaded with a planetary mill, and then kneaded with three rolls to prepare a liquid for forming a resin composition. In addition, "ZX-1059" was blended in a proportion of 100 parts by mass, "Ricacid MH700" in a proportion of 86 parts by mass, and "2PHZ-PW in a proportion of 1 part by mass. The silica-based hollow particles (A1) were contained in the resin composition. The prepared resin composition-forming liquid was heated at 170 ° C. for 2 hours to cure, and the plate-shaped resin composition according to the example of 50 mm × 50 mm × 1 mm ( A1R) was obtained.

[実施例2]
分級工程以外は、実施例1と同様に行い、実施例に係るシリカ系中空粒子(A2)及び板状樹脂組成物(A2R)を製造した。分級工程では、日鉄鉱業株式会社製エルボージェット(EJ-15)を用いて乾式慣性分級処理を行った。この装置では、分級によって、粉をF粉(微粉)、M粉(細粉)、G粉(粗粉)の3種類に分けることができるが、この内の、F粉(微粉)に含まれる8.0μmを超える粗大粒子が5体積%以下となるようにFエッジ距離を調整し、バグフィルターにて回収し、以降の工程に用いた。
[Example 2]
Except for the classification step, the same procedure as in Example 1 was carried out to produce the silica-based hollow particles (A2) and the plate-shaped resin composition (A2R) according to the examples. In the classification step, a dry inertial classification process was performed using an elbow jet (EJ-15) manufactured by Nittetsu Mining Co., Ltd. In this device, the powder can be divided into three types, F powder (fine powder), M powder (fine powder), and G powder (coarse powder), depending on the classification, and among these, F powder (fine powder) is included. The F-edge distance was adjusted so that the coarse particles exceeding 8.0 μm were 5% by volume or less, and the particles were collected by a bag filter and used in the subsequent steps.

[実施例3]
実施例2において、分級工程で、F粉(微粉)に含まれる8.0μmを超える粗大粒子が1体積%以下となるようにFエッジ距離を調整したこと以外は同様にして、実施例に係るシリカ系中空粒子(A3)及び板状樹脂組成物(A3R)を製造した。
[Example 3]
In the second embodiment, the same applies to the embodiment except that the F edge distance is adjusted to be 1% by volume or less of the coarse particles exceeding 8.0 μm contained in the F powder (fine powder) in the classification step. Silica-based hollow particles (A3) and a plate-shaped resin composition (A3R) were produced.

[実施例4]
実施例1において、分級工程で、日清エンジニアリング株式会社製エアロファインクラシファイアを用いて乾式遠心(半自由渦)分級処理を行ったこと以外は同様にして、実施例に係るシリカ系中空粒子(A4)及び板状樹脂組成物(A4R)を製造した。分級は、回収粉に含まれる8.0μmを超える粗大粒子が1体積%以下となるように、羽根の角度等を調整して行った。
[Example 4]
In the first embodiment, the silica-based hollow particles (A4) according to the embodiment were similarly classified except that the dry centrifugal (semi-free vortex) classification treatment was performed using an aerofine classifier manufactured by Nisshin Engineering Co., Ltd. in the classification step. ) And the plate-shaped resin composition (A4R) were produced. The classification was performed by adjusting the angle of the blades and the like so that the coarse particles exceeding 8.0 μm contained in the recovered powder were 1% by volume or less.

[比較例1]
実施例1において、アルカリ除去工程で、浸漬撹拌時間を15時間から1.5時間に変更し、分級処理(分級工程)を行わないこと以外は同様にして、比較例に係るシリカ系中空粒子(B1)及び板状樹脂組成物(B1R)を製造した。
[Comparative Example 1]
In Example 1, the silica-based hollow particles according to the comparative example were prepared in the same manner except that the immersion stirring time was changed from 15 hours to 1.5 hours in the alkali removing step and the classification treatment (classification step) was not performed. B1) and a plate-shaped resin composition (B1R) were produced.

[比較例2]
実施例1において、中空粒子調製工程において、噴霧乾燥器の入口温度を250℃とし、分級工程を行わなかったこと以外は同様にして、比較例に係るシリカ系中空粒子(B2)及び板状樹脂組成物(B2R)を製造した。
[Comparative Example 2]
In Example 1, the silica-based hollow particles (B2) and the plate-like resin according to the comparative example were obtained in the same manner except that the inlet temperature of the spray dryer was set to 250 ° C. and the classification step was not performed in the hollow particle preparation step. The composition (B2R) was produced.

[比較例3]
実施例1において、分級工程を焼成工程後に行った以外は同様にして(分級条件も同じにして)、比較例に係るシリカ系中空粒子(B3)及び板状樹脂組成物(B3R)を製造した。
[Comparative Example 3]
In Example 1, the silica-based hollow particles (B3) and the plate-shaped resin composition (B3R) according to the comparative example were produced in the same manner except that the classification step was performed after the firing step (with the same classification conditions). ..

上記製造した実施例及び比較例に係るシリカ系中空粒子及び樹脂組成物について、その特性を評価した。各評価は以下のように行った。 The characteristics of the silica-based hollow particles and the resin composition according to the manufactured Examples and Comparative Examples were evaluated. Each evaluation was performed as follows.

(1)シリカ系中空粒子の平均粒子径(D50)、最大粒子径(D100)、及び粗大粒子量
レーザー回折・散乱法により測定した。
具体的に、装置は、株式会社セイシン企業社製レーザーマイクロンサイザー(LMS-3000)を用い、乾式で測定した。
粗大粒子量は、8.0μmを超える粒子の体積比率として算出した。
(1) Average particle diameter (D50), maximum particle diameter (D100), and coarse particle amount of silica-based hollow particles The particles were measured by a laser diffraction / scattering method.
Specifically, the apparatus was measured by a dry method using a laser micron sizer (LMS-3000) manufactured by Seishin Corporation.
The amount of coarse particles was calculated as a volume ratio of particles exceeding 8.0 μm.

(2)シリカ系中空粒子のNa残存量
原子吸光分析法により測定した。
具体的に、Na残存量は、シリカ系中空粒子を硫酸・弗化水素酸で前処理した後、塩酸に溶解させ、原子吸光光度計(日立製Z-2310)を用いてNa量を測定した。
(2) Residual amount of Na in silica-based hollow particles The amount was measured by atomic absorption spectroscopy.
Specifically, the residual amount of Na was measured by pretreating silica-based hollow particles with sulfuric acid and hydrofluoric acid, dissolving them in hydrochloric acid, and using an atomic absorption spectrophotometer (Z-2310 manufactured by Hitachi). ..

(3)シリカ系中空粒子の粒子密度
ガスピクノメーター法により測定した。
具体的に、粒子密度は、Quantachrome Instruments社製Ultrapyc1200eを用いて、測定した。ガスは窒素ガスを用いた。
(3) Particle density of silica-based hollow particles The particle density was measured by the gas pycnometer method.
Specifically, the particle density was measured using Ultrapyc1200e manufactured by Quantachrome Instruments. Nitrogen gas was used as the gas.

(4)シリカ系中空粒子の空隙率
上記粒子密度から算出した。
具体的に、空隙率は、シリカの密度=2.2g/cmを用い、下記式(1)を用いて算出した。
空隙率(%)=[2.2-(シリカ系中空粒子の粒子密度)]/2.2×100・・・式(1)
(4) Porosity of silica-based hollow particles Calculated from the above particle density.
Specifically, the porosity was calculated using the following formula (1) using silica density = 2.2 g / cm 3 .
Porosity (%) = [2.22- (particle density of silica-based hollow particles)] /2.2 × 100 ... Equation (1)

(5)シリカ系中空粒子の誘電率(Dk)及び誘電正接(Df)
空洞共振器摂動法により測定した。
具体的に、シリカ系粒子の誘電率(Dk)及び誘電正接(Df)は、ネットワークアナライザー(アンリツ社製、MS46122B)と空洞共振器(1GHz)を用いて測定した。この測定はASTMD2520(JIS C2565)に準拠して行った。
(5) Dielectric constant (Dk) and dielectric loss tangent (Df) of silica-based hollow particles
It was measured by the cavity resonator perturbation method.
Specifically, the permittivity (Dk) and the dielectric loss tangent (Df) of the silica-based particles were measured using a network analyzer (MS46122B, manufactured by Anritsu) and a cavity resonator (1 GHz). This measurement was performed according to ASTMD2520 (JIS C2565).

(6)水に懸濁した際の浮遊粒子a、懸濁粒子b及び沈降粒子cの割合
懸濁液からそれぞれの粒子を回収して計量し、その割合を算出した。
具体的には、まず、0.5質量%となるようにシリカ系中空粒子と水を混合し、10分間の超音波処理を行うことにより分散液を調製した。この分散液を25℃にて24時間静置した後、浮遊粒子a、懸濁粒子b及び沈降粒子cをそれぞれ回収した。続いて、各粒子を105℃で24時間乾燥した後に計量し、その割合を算出した。
(6) Ratio of Suspended Particles a, Suspended Particles b and Precipitated Particles When Suspended in Water Each particle was recovered from the suspension and weighed, and the ratio was calculated.
Specifically, first, a dispersion liquid was prepared by mixing silica-based hollow particles and water so as to be 0.5% by mass and performing ultrasonic treatment for 10 minutes. After allowing this dispersion to stand at 25 ° C. for 24 hours, the suspended particles a, the suspended particles b and the settled particles c were recovered. Subsequently, each particle was dried at 105 ° C. for 24 hours and then weighed, and the ratio was calculated.

(7)樹脂組成物形成用液の濾過性
ロキテクノ社製フィルター(SHPタイプ:30μm)を用い、フィルター目詰まりまでの単位面積あたりの通液量で評価した。
(7) Filtration of Liquid for Forming Resin Composition Using a filter manufactured by Loki Techno Co., Ltd. (SHP type: 30 μm), the amount of liquid flowing per unit area until the filter was clogged was evaluated.

評価基準は、以下の通りである。
◎:≧1g/cm
〇:0.5g/cm以上1.0g/cm未満
△:0.3g/cm以上0.5g/cm未満
×:<0.3g/cm
The evaluation criteria are as follows.
⊚: ≧ 1 g / cm 2
〇: 0.5 g / cm 2 or more and less than 1.0 g / cm 2 Δ: 0.3 g / cm 2 or more and less than 0.5 g / cm 2 ×: <0.3 g / cm 2

(8)樹脂組成物形成用液の注入性
20μmのギャップを有するガラス板間に対する注入を行い、25mm充填するのに要する時間で評価した。
(8) Injection property of resin composition forming liquid Injection was performed between glass plates having a gap of 20 μm, and the time required for filling 25 mm was evaluated.

評価基準は、以下の通りである。
◎:200秒以内
〇:200秒を超えて400秒以内
△:400秒を超えて600秒以内
×:600秒超え
The evaluation criteria are as follows.
⊚: Within 200 seconds
〇: Over 200 seconds and within 400 seconds △: Over 400 seconds and within 600 seconds ×: Over 600 seconds

(9)樹脂組成物の誘電率(Dk)及び誘電正接(Df)
50mm×50mm×1mmの板状成型体(樹脂組成物)の誘電率(Dk)及び誘電正接(Df)は、ネットワークアナライザー(アンリツ社製、MS46122B)と同軸共振器を用いて、9.4GHzで測定した。
(9) Dielectric constant (Dk) and dielectric loss tangent (Df) of the resin composition
The permittivity (Dk) and dielectric loss tangent (Df) of a plate-shaped molded body (resin composition) of 50 mm × 50 mm × 1 mm are 9.4 GHz using a network analyzer (MS46122B manufactured by Anritsu) and a coaxial resonator. It was measured.

評価は、シリカ系中空粒子(フィラー)を配合していない樹脂組成物との比較で行った。評価基準は、以下の通りである。 The evaluation was performed by comparison with a resin composition containing no silica-based hollow particles (filler). The evaluation criteria are as follows.

誘電率(Dk)の低減率(%)=(フィラー添加なしの誘電率-フィラー添加ありの誘電率)/フィラー添加なしの誘電率×100 Reduction rate of dielectric constant (Dk) (%) = (dielectric constant without filler addition-dielectric constant with filler addition) / dielectric constant without filler addition x 100

〇:低減率>0
△:低減率=0
×:低減率<0
〇: Reduction rate> 0
Δ: Reduction rate = 0
×: Reduction rate <0

誘電正接(Df)の低減率(%)=(フィラー添加なしの誘電正接-フィラー添加ありの誘電正接)/フィラー添加なしの誘電正接×100 Reduction rate of dielectric loss tangent (Df) (%) = (dielectric loss tangent without filler addition-dielectric loss tangent with filler addition) / dielectric loss tangent without filler addition x 100

◎:低減率50%以上
〇:低減率30%以上50%未満
△:低減率20%以上30%未満
×:低減率20%未満
⊚: Reduction rate 50% or more 〇: Reduction rate 30% or more and less than 50% Δ: Reduction rate 20% or more and less than 30% ×: Reduction rate less than 20%

以上の結果を表1に示す。 The above results are shown in Table 1.

Figure 2022103683000001
Figure 2022103683000001

表1に示すように、実施例に係るシリカ系中空粒子及びこれを配合した樹脂組成物は、低誘電率化及び低誘電正接化が図られる。また、実施例に係るシリカ系中空粒子を配合した樹脂組成物形成用液は、濾過性及び注入性にも優れている。 As shown in Table 1, the silica-based hollow particles and the resin composition containing the silica-based hollow particles according to the examples have a low dielectric constant and a low dielectric loss tangent. Further, the resin composition forming liquid containing the silica-based hollow particles according to the examples is also excellent in filterability and injectability.

本発明のシリカ系中空粒子は、半導体の絶縁材料のフィラーとして用いることができることから、産業上有用である。

Since the silica-based hollow particles of the present invention can be used as a filler for an insulating material of a semiconductor, they are industrially useful.

Claims (7)

無孔質の外殻の内部に空洞を有し、平均粒子径(D50)が0.1~10μmのシリカ系中空粒子であって、
水に懸濁した際、浮遊粒子が0.5~7.0質量%、懸濁粒子が0~4.0質量%、沈降粒子が89.0~99.5質量%であることを特徴とするシリカ系中空粒子。
Silica-based hollow particles having cavities inside a non-porous outer shell and having an average particle diameter (D50) of 0.1 to 10 μm.
When suspended in water, the suspended particles are 0.5 to 7.0% by mass, the suspended particles are 0 to 4.0% by mass, and the sedimented particles are 89.0 to 99.5% by mass. Silica-based hollow particles.
粒子径8.0μmを超える粗大粒子の含有量が、10体積%以下であることを特徴とする請求項1記載のシリカ系中空粒子。 The silica-based hollow particles according to claim 1, wherein the content of coarse particles having a particle diameter of more than 8.0 μm is 10% by volume or less. 請求項1又は2記載のシリカ系中空粒子を含むことを特徴とする樹脂組成物。 A resin composition comprising the silica-based hollow particles according to claim 1 or 2. 珪酸アルカリ水溶液を熱風気流中で噴霧乾燥して中空粒子を調製する中空粒子調製工程と、
前記調製された中空粒子に含まれるアルカリを酸で中和して除去するアルカリ除去工程と、
前記アルカリ除去された中空粒子を焼成する焼成工程と、
を有するシリカ系中空粒子の製造方法であって、
前記中空粒子調製工程と前記焼成工程の間に、中空粒子を分級して粗大粒子を除去する分級工程を有することを特徴とするシリカ系中空粒子の製造方法。
A hollow particle preparation process for preparing hollow particles by spray-drying an alkaline silicate aqueous solution in a hot air stream, and
An alkali removing step of neutralizing and removing the alkali contained in the prepared hollow particles with an acid, and
The firing step of firing the hollow particles from which the alkali has been removed, and
It is a method for producing silica-based hollow particles having
A method for producing silica-based hollow particles, which comprises a classification step of classifying hollow particles and removing coarse particles between the hollow particle preparation step and the firing step.
前記アルカリ除去工程において、中空粒子に含まれるアルカリ量を200ppm以下に低減することを特徴とする請求項4記載のシリカ系中空粒子の製造方法。 The method for producing silica-based hollow particles according to claim 4, wherein in the alkali removing step, the amount of alkali contained in the hollow particles is reduced to 200 ppm or less. 前記分級工程が、アルカリ除去された中空粒子を乾燥した後に行われることを特徴とする請求項4又は5記載のシリカ系中空粒子の製造方法。 The method for producing silica-based hollow particles according to claim 4 or 5, wherein the classification step is performed after the alkali-removed hollow particles are dried. 前記分級工程の分級処理が、乾式分級処理であることを特徴とする請求項4~6のいずれか一項に記載のシリカ系中空粒子の製造方法。

The method for producing silica-based hollow particles according to any one of claims 4 to 6, wherein the classification treatment in the classification step is a dry classification treatment.

JP2020218461A 2020-12-28 2020-12-28 Silica-based hollow particle, method for producing the same, and resin composition Pending JP2022103683A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2020218461A JP2022103683A (en) 2020-12-28 2020-12-28 Silica-based hollow particle, method for producing the same, and resin composition
CN202180082793.4A CN116529321A (en) 2020-12-28 2021-12-23 Hollow particle, method for producing same, and resin composition
KR1020237025396A KR20230124715A (en) 2020-12-28 2021-12-23 Hollow particle and manufacturing method thereof, and resin composition
PCT/JP2021/047980 WO2022145350A1 (en) 2020-12-28 2021-12-23 Hollow particle and method for producing same, and resin composition
TW110148603A TW202225284A (en) 2020-12-28 2021-12-24 Hollow particle and method for producing same, and resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020218461A JP2022103683A (en) 2020-12-28 2020-12-28 Silica-based hollow particle, method for producing the same, and resin composition

Publications (1)

Publication Number Publication Date
JP2022103683A true JP2022103683A (en) 2022-07-08

Family

ID=82259407

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020218461A Pending JP2022103683A (en) 2020-12-28 2020-12-28 Silica-based hollow particle, method for producing the same, and resin composition

Country Status (5)

Country Link
JP (1) JP2022103683A (en)
KR (1) KR20230124715A (en)
CN (1) CN116529321A (en)
TW (1) TW202225284A (en)
WO (1) WO2022145350A1 (en)

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001288227A (en) 2000-02-04 2001-10-16 Daikin Ind Ltd Tetrafluoroethylene resin molding material excellent in high-frequency electrical properties
US7413791B2 (en) 2003-01-28 2008-08-19 Matsushita Electric Works, Ltd. Poly (phenylene ether) resin composition, prepreg, and laminated sheet
WO2009040921A1 (en) 2007-09-27 2009-04-02 Panasonic Electric Works Co., Ltd. Epoxy resin composition and, produced therewith, prepreg and metal clad laminate
JP5822663B2 (en) * 2011-11-11 2015-11-24 日揮触媒化成株式会社 Silica-based particles having moisture resistance and a method for producing the same, a resin composition for encapsulating a semiconductor containing the particles, and a substrate on which a coating film is formed by the resin composition
JP6623640B2 (en) 2015-09-18 2019-12-25 三菱瓦斯化学株式会社 Prepreg
JP2017071526A (en) * 2015-10-06 2017-04-13 株式会社トクヤマシルテック Silica balloon material having excellent suspension profile for solvent
JP6255053B2 (en) * 2016-04-20 2017-12-27 花王株式会社 Hollow silica particles and method for producing the same
US11926753B2 (en) 2018-03-26 2024-03-12 Daikin Industries, Ltd. Fluororesin material, fluororesin material for high frequency transmission, and covered electric wire for high-frequency transmission
JPWO2021172294A1 (en) * 2020-02-27 2021-09-02

Also Published As

Publication number Publication date
KR20230124715A (en) 2023-08-25
CN116529321A (en) 2023-08-01
TW202225284A (en) 2022-07-01
WO2022145350A1 (en) 2022-07-07

Similar Documents

Publication Publication Date Title
CN109320998B (en) Method for modifying surface of submicron silicon micropowder
EP3112424B1 (en) Polyarylene sulfide resin powder/grain composition and method for producing same
CN114621543B (en) High-frequency prepreg, high-frequency copper-clad plate and preparation method of high-frequency prepreg and high-frequency copper-clad plate
CN109689788A (en) The manufacturing method of polyarylene sulfide resin bulk material mixture and three-D moulding object
KR20230164008A (en) Powder and method for producing the same, and method for producing the resin composition
CN110606698B (en) Microwave composite dielectric substrate with high uniformity and low thermal expansion coefficient and preparation process thereof
CN113754928A (en) Low dielectric silica powder, resin composition containing the same, and method for producing low dielectric silica powder
JP2022103683A (en) Silica-based hollow particle, method for producing the same, and resin composition
CA1142696A (en) Aftertreatment of thermally pretreated tetrafluoroethylene polymers and the polymer powders obtained
KR20230161426A (en) Powder and method for producing the same, and method for producing the resin composition
JP7001609B2 (en) Flaky glass and resin composition
WO2012026127A1 (en) Resin composition and granular flaky glass
JP2023150838A (en) Powder and method for producing the same, and method for producing resin composition
TW202248354A (en) Low dielectric loss resin composition, method for producing same, molded body for high frequency devices, and high frequency device
JP2023151180A (en) Silica-based hollow particle and method for manufacturing the same
WO2023218949A1 (en) Silica particle dispersion liquid
EP2213633B1 (en) Process for producing flaky-glass granule, flaky-glass granule, and resin composition containing the same
WO2023243572A1 (en) Method for producing spherical silica powder
TW202408935A (en) Method for manufacturing spherical silicon oxide powder
JP2023181991A (en) Method for producing spherical silica powder
KR20230113158A (en) Low Dielectric and Amorphous Silica Powder and Method for Producing the Same, and Surface-Treated Low Dielectric Silica Powder, Silica Slurry, Silica-Containing Resin Composition, Silica-Containing Prepreg and Printed Wiring Board
KR20220158736A (en) Composite particles, method for producing composite particles, liquid composition, method for producing a laminate, and method for producing a film
TW202229197A (en) Low dielectric substrate for high-speed millimeter-wave communication
TW202330409A (en) Hollow silica particles and method for producing same
WO2023218948A1 (en) Silica particle dispersion liquid

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20231222