JP7311258B2 - Method for producing spherical particles - Google Patents

Method for producing spherical particles Download PDF

Info

Publication number
JP7311258B2
JP7311258B2 JP2018185666A JP2018185666A JP7311258B2 JP 7311258 B2 JP7311258 B2 JP 7311258B2 JP 2018185666 A JP2018185666 A JP 2018185666A JP 2018185666 A JP2018185666 A JP 2018185666A JP 7311258 B2 JP7311258 B2 JP 7311258B2
Authority
JP
Japan
Prior art keywords
spherical particles
emulsified
droplets
aqueous dispersion
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018185666A
Other languages
Japanese (ja)
Other versions
JP2020055702A (en
Inventor
直幸 榎本
慧 渡邊
郁子 嶋崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JGC Catalysts and Chemicals Ltd
Original Assignee
JGC Catalysts and Chemicals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JGC Catalysts and Chemicals Ltd filed Critical JGC Catalysts and Chemicals Ltd
Priority to JP2018185666A priority Critical patent/JP7311258B2/en
Publication of JP2020055702A publication Critical patent/JP2020055702A/en
Application granted granted Critical
Publication of JP7311258B2 publication Critical patent/JP7311258B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Silicon Compounds (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
  • Glanulating (AREA)

Description

本発明は、無機成分で構成された球状粒子の製造方法に関する。 The present invention relates to a method for producing spherical particles composed of inorganic components.

無機成分の球状粒子はさまざまな産業で利用され、現代の便利な生活を支えている。粒子の大きさや成分は様々であるが、その製造方法も多種多様である。例えば、無機酸化物を含むコロイド液を噴霧乾燥して、平均粒径1~10μmの球状の多孔質シリカ粒子を製造することが知られている(例えば、特許文献1を参照)。また、珪酸アルカリ水溶液を噴霧乾燥して得られた前駆体粒子からアルカリを除去することにより中空シリカ粒子を製造することが知られている(例えば、特許文献2を参照)。さらに、エマルション法により針状突起を有するシリカ粒子を製造することが知られている(例えば、特許文献3を参照)。その他にも、ガラスフリットを火焔中で発泡させガラス微小中空体を製造する方法が知られている(例えば、特許文献4を参照)。 Spherical particles of inorganic components are used in various industries and support modern convenient life. Particles vary in size and composition, and are manufactured in a variety of ways. For example, it is known to spray-dry a colloidal liquid containing an inorganic oxide to produce spherical porous silica particles having an average particle size of 1 to 10 μm (see, for example, Patent Document 1). It is also known to produce hollow silica particles by removing alkali from precursor particles obtained by spray-drying an aqueous alkali silicate solution (see, for example, Patent Document 2). Further, it is known to produce silica particles having acicular projections by an emulsion method (see, for example, Patent Document 3). In addition, a method of producing hollow glass microbodies by foaming glass frit in a flame is known (see, for example, Patent Document 4).

特開昭61-270201号公報JP-A-61-270201 特開2011-256098号公報JP 2011-256098 A 特開2009―242115号公報Japanese Patent Application Laid-Open No. 2009-242115 特開2006―256895号公報JP-A-2006-256895

様々な構造の球状粒子を製造する方法はいろいろと提案されているが、同一構造の球状粒子でも構成成分に応じて異なった方法を適用する必要があった。そこで、本発明の目的は、無機成分からなる球状粒子の構造を比較的容易に制御できる方法を提供することにある。 Various methods for producing spherical particles with various structures have been proposed, but it has been necessary to apply different methods depending on the constituent components even for spherical particles with the same structure. SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a method for relatively easily controlling the structure of spherical particles composed of an inorganic component.

本発明の球状微粒子の製造方法は、無機成分を含んだ水分散液と、乳化剤と、非水系溶媒とを混合して、乳化液滴を含む油中水滴型の乳化液を調製する乳化工程と、前記乳化液を-50~0℃に冷却して乳化液滴を凍結させる凍結工程と、前記凍結工程の後で、前記乳化液滴から水を除去する脱水工程と、を含んでいる。 The method for producing spherical fine particles of the present invention includes an emulsification step of mixing an aqueous dispersion containing an inorganic component, an emulsifier, and a non-aqueous solvent to prepare a water-in-oil emulsion containing emulsified droplets. , a freezing step of cooling the emulsified liquid to −50 to 0° C. to freeze emulsified droplets, and a dehydration step of removing water from the emulsified droplets after the freezing step.

また、凍結工程の条件を調整することにより、粒子内に細孔を有する多孔質構造の球状粒子や、外殻の内部に空洞を有する中空構造の球状粒子を得ることができる。すなわち、-10~0℃の温度域にて乳化液滴を凍結させることにより、中空球状粒子を製造することができる。 Further, by adjusting the conditions of the freezing step, it is possible to obtain porous spherical particles having pores inside the particles or hollow spherical particles having cavities inside the outer shell. That is, hollow spherical particles can be produced by freezing emulsified droplets in a temperature range of -10 to 0°C.

さらに、球状粒子の構成成分を選択することにより、外殻が多孔質の中空球状粒子や外殻が無孔質の中空球状粒子を製造することができる。 Furthermore, hollow spherical particles with porous outer shells and hollow spherical particles with non-porous outer shells can be produced by selecting constituent components of the spherical particles.

本発明の球状粒子の製造方法によれば、無機成分からなる球状粒子の内部構造を比較的に容易に制御できる。具体的には多孔質粒子、外殻が多孔質の中空粒子、外殻が無孔質の中空粒子を製造することができる。 According to the method for producing spherical particles of the present invention, the internal structure of spherical particles made of inorganic components can be controlled relatively easily. Specifically, porous particles, hollow particles with a porous outer shell, and hollow particles with a non-porous outer shell can be produced.

本発明による球状粒子の製造方法は、以下の工程を備えている。まず、無機成分が水に分散された分散液と、乳化剤と、非水系溶媒とを混合し、この混合溶液から乳化液滴を含む油中水滴型の乳化液を調製する(乳化工程)。この乳化液を冷却して乳化液滴を凍結させる(凍結工程)。次に、この乳化液滴から水を除去する(脱水工程)。これにより、水分散液に含まれていた無機成分を主成分として構成された球状粒子が得られる。なお、分散液には、水以外の溶媒を含んでいてもよい。また、乳化剤と非水系溶媒は油中水滴型の乳化液滴を形成するために加えられる。次に、各工程を詳細に説明する。 A method for producing spherical particles according to the present invention comprises the following steps. First, a dispersion in which an inorganic component is dispersed in water, an emulsifier, and a non-aqueous solvent are mixed, and a water-in-oil type emulsion containing emulsified droplets is prepared from this mixed solution (emulsification step). This emulsified liquid is cooled to freeze emulsified droplets (freezing step). Next, water is removed from the emulsified droplets (dehydration step). As a result, spherical particles composed mainly of the inorganic component contained in the aqueous dispersion are obtained. The dispersion liquid may contain a solvent other than water. Also, an emulsifier and a non-aqueous solvent are added to form water-in-oil emulsified droplets. Next, each step will be described in detail.

[乳化工程]
はじめに、無機成分の水分散液を用意する。このとき、水分散液の固形分濃度が0.5~80%の範囲になるように調整することが好ましい。一般的に、固形分濃度が80%を超えると、分散液の粘度が高くなり、乳化液滴の均一性が得られないおそれがある。固形分濃度が0.5%未満だと、希薄すぎて球状粒子としての形が整わなくなる。
[Emulsification process]
First, an aqueous dispersion of inorganic components is prepared. At this time, it is preferable to adjust the solid content concentration of the aqueous dispersion to be in the range of 0.5 to 80%. In general, when the solid content concentration exceeds 80%, the viscosity of the dispersion increases, and there is a risk that uniformity of emulsified droplets cannot be obtained. If the solid content concentration is less than 0.5%, the particles are too dilute and the spherical particles are not shaped properly.

この水分散液と非水系溶媒と乳化剤を混合する。非水系溶媒は、乳化のために必要であり、水と相溶しないものであればよい。非水系溶媒には一般的な炭化水素溶媒を用いることができる。乳化剤は、油中水滴型の乳化液滴を形成できるものであればよい。乳化剤として界面活性剤が適している。界面活性剤のHLB値は1~10の範囲が好ましい。非水系溶媒の極性に応じて、最適なHLB値を選択すればよい。HLB値は特に1~5の範囲が好ましい。また、異なるHLB値の界面活性剤を組み合わせてもよい。 This aqueous dispersion is mixed with a non-aqueous solvent and an emulsifier. The non-aqueous solvent is necessary for emulsification and should be incompatible with water. Common hydrocarbon solvents can be used as non-aqueous solvents. Any emulsifier may be used as long as it can form water-in-oil emulsified droplets. Surfactants are suitable as emulsifiers. The HLB value of the surfactant is preferably in the range of 1-10. An optimum HLB value may be selected according to the polarity of the non-aqueous solvent. The HLB value is particularly preferably in the range of 1-5. Also, surfactants with different HLB values may be combined.

次に、この混合溶液を乳化装置により乳化させる。このとき、所望の平均径の乳化液滴を含んだ乳化液が得られるように、乳化条件を設定する。乳化液滴の平均径は、球状粒子の平均径にほぼ対応する。そのため、乳化工程では、一般的に平均径が10nm~1000μmの乳化液滴を含む乳化液を調製する。乳化装置には、一般的な高速せん断装置を用いることができる。この他、より微細な乳化液滴が得られる高圧乳化装置、より均一な乳化液滴が得られる膜乳化装置、マイクロチャネル乳化装置などの公知の装置を目的に応じて選択できる。 Next, this mixed solution is emulsified by an emulsifier. At this time, emulsification conditions are set so as to obtain an emulsified liquid containing emulsified droplets of a desired average diameter. The mean diameter of the emulsified droplets approximately corresponds to the mean diameter of the spherical particles. Therefore, in the emulsification step, an emulsified liquid containing emulsified droplets having an average diameter of 10 nm to 1000 μm is generally prepared. A common high-speed shearing device can be used for the emulsifying device. In addition, known devices such as a high-pressure emulsifier capable of obtaining finer emulsified droplets, a membrane emulsifier capable of obtaining more uniform emulsified droplets, and a microchannel emulsifier can be selected depending on the purpose.

なお、平均径10nm未満の乳化液滴を含む乳化液を調製することは、工業的に困難である。一方、平均径1000μmを超える乳化液滴を調製することは容易であるが、現状では、1000μmを超える球状粒子の工業的な応用例は余り見当たらない。 It is industrially difficult to prepare an emulsified liquid containing emulsified droplets with an average diameter of less than 10 nm. On the other hand, although it is easy to prepare emulsified droplets with an average diameter exceeding 1000 μm, there are not many examples of industrial application of spherical particles exceeding 1000 μm at present.

[凍結工程]
次に、乳化工程で得られた乳化液を-50~0℃の範囲で冷却する。これにより、液滴中の水を凍結させた凍結乳化物が得られる。ここで、凍結温度が-50℃~-10℃の場合は、氷の結晶が急速に成長するのに伴い、液滴中の無機成分が排斥される。そのため、多孔性の球状粒子を調製することができる。-10~0℃の場合は、氷の結晶が緩慢に成長するのに伴い、液滴中の無機成分が液滴の外周に排斥される。そのため、外殻の内部に空洞を有する中空構造の球状粒子を調製することができる。
[Freezing process]
Next, the emulsified liquid obtained in the emulsification step is cooled in the range of -50 to 0°C. As a result, a frozen emulsion is obtained by freezing the water in the droplets. Here, when the freezing temperature is -50° C. to -10° C., the inorganic components in the droplets are expelled as the ice crystals grow rapidly. Therefore, porous spherical particles can be prepared. In the case of −10 to 0° C., the inorganic component in the droplet is expelled to the periphery of the droplet as ice crystals grow slowly. Therefore, it is possible to prepare hollow-structured spherical particles having cavities inside the outer shell.

なお、乳化液滴を凍結させると約1割体積が膨張するが、後述の脱水工程で脱水しても凍結乳化液滴の粒子径を維持した球状粒子が得られる。 When the emulsified droplets are frozen, their volume expands by about 10%, but spherical particles that maintain the particle diameter of the frozen emulsified droplets can be obtained even after dehydration in the dehydration step described later.

[脱水工程]
凍結工程の後、乳化液を脱水処理する。脱水処理により、乳化液滴から水が除去され、所望の粒子径の球状粒子を含む非水系溶媒分散液が得られる。
[Dehydration process]
After the freezing step, the emulsion is dehydrated. The dehydration treatment removes water from the emulsified droplets to obtain a non-aqueous solvent dispersion containing spherical particles with a desired particle size.

脱水処理は、さまざまな方法で行うことができる。例えば、凍結乳化液を常温まで昇温した後、常圧または減圧下での加熱により、水を蒸発させることができる。これにより、球状粒子を含む非水系溶媒分散液が得られる。常圧下の加熱脱水法では、冷却管を備えたセパラブルフラスコを加熱し、非水系溶媒を回収しながら、脱水を行う。また、減圧下の加熱脱水法では、ロータリーエバポレーターや、蒸発缶など用いて減圧加熱し、非水系溶媒を回収しながら、脱水を行う。 Dehydration can be done in various ways. For example, after heating the frozen emulsion to room temperature, water can be evaporated by heating under normal pressure or reduced pressure. As a result, a non-aqueous solvent dispersion containing spherical particles is obtained. In the heat dehydration method under normal pressure, a separable flask equipped with a cooling tube is heated, and dehydration is performed while recovering the non-aqueous solvent. In the heat dehydration method under reduced pressure, dehydration is performed by heating under reduced pressure using a rotary evaporator, an evaporator, or the like, while recovering the non-aqueous solvent.

あるいは、乳化液を固液分離する際に、乳化液滴を脱水することができる。すなわち、凍結工程で得られた凍結乳化液を常温まで昇温した後、公知の濾過、遠心分離などの方法で固形分を分離する。これにより、非水系溶媒とともに乳化液滴の水も除去できる。このようにして、球状粒子のケーキ状物質が得られる。さらに、ケーキ状物質を常圧または減圧下で加熱すること(乾燥工程)により、非水系溶媒とともに水も蒸発し、球状粒子の乾燥粉体が得られる。 Alternatively, the emulsified liquid droplets can be dehydrated during the solid-liquid separation of the emulsified liquid. That is, after raising the temperature of the frozen emulsion obtained in the freezing step to room temperature, the solid content is separated by a known method such as filtration or centrifugation. As a result, the water of the emulsified droplets can be removed together with the non-aqueous solvent. A cake of spherical particles is thus obtained. Furthermore, by heating the cake-like substance under normal pressure or under reduced pressure (drying step), water is evaporated together with the non-aqueous solvent to obtain a dry powder of spherical particles.

また、必要に応じてケーキ状物質を洗浄して、界面活性剤を低減することができる。球状粒子に対して、界面活性剤の残留量を500ppm以下とすることが好ましい。これにより、球状粒子を乳化物等の液体製剤に配合した場合の長期安定性が向上する。界面活性剤を低減させるためには、有機溶媒を用いて洗浄することが好ましい。 Also, if necessary, the cake-like substance can be washed to reduce the surfactant. It is preferable that the residual amount of the surfactant is 500 ppm or less with respect to the spherical particles. This improves the long-term stability when the spherical particles are incorporated into a liquid formulation such as an emulsion. In order to reduce surfactant, it is preferable to wash with an organic solvent.

なお、球状粒子を水分散液の形態で得たい場合は、固液分離処理により得られたケーキ状物質を水に置換する。これにより、球状粒子の水分散液が得られる。 When it is desired to obtain spherical particles in the form of an aqueous dispersion, water is substituted for the cake-like substance obtained by the solid-liquid separation treatment. Thereby, an aqueous dispersion of spherical particles is obtained.

本発明で用いる無機成分として、ケイ素、アルミニウム、チタン、鉄、亜鉛、ストロンチウム、ジルコニウム、バリウム、およびセリウムの少なくとも一つ元素を含む化合物が挙げられる。 Inorganic components used in the present invention include compounds containing at least one element of silicon, aluminum, titanium, iron, zinc, strontium, zirconium, barium, and cerium.

これら無機成分は水に分散される必要がある。すなわち、水溶性無機化合物を水に分散させた分散液、固体が予め水に分散したゾル、酸化チタンなどの粉末を水に分散させた分散液を用いる。また、これらを組み合わせて用いてもよい。 These inorganic ingredients must be dispersed in water. That is, a dispersion obtained by dispersing a water-soluble inorganic compound in water, a sol obtained by previously dispersing a solid in water, or a dispersion obtained by dispersing a powder of titanium oxide or the like in water is used. Moreover, you may use these in combination.

珪酸液などの水溶性無機化合物を用いて調製された乳化液を-10~0℃の範囲で冷却して製造すると、無孔質の外殻を有する中空球状粒子が得られる。 Hollow spherical particles having a non-porous outer shell can be obtained by cooling an emulsified liquid prepared using a water-soluble inorganic compound such as a silicic acid liquid in the range of -10 to 0°C.

水溶性無機化合物としては、アルカリ金属塩、有機アルカリ金属塩、ペルオキソ化合物および、その塩が挙げられる。アルカリ金属塩として、珪酸ナトリウム、チタン酸カリウム、及び、これらを陽イオン交換樹脂で処理して脱アルカリ(アルカリイオンの除去等)したものを例示できる。また、有機アルカリ金属塩として、第4級アンモニウムシリケート、及びこれを陽イオン交換樹脂で処理して脱アルカリ(アルカリイオンの除去等)したものを例示できる。また、ペルオキソ化合物として、チタンまたはジルコニウムのペルオキソ化合物を例示できる。 Water-soluble inorganic compounds include alkali metal salts, organic alkali metal salts, peroxo compounds, and salts thereof. Examples of alkali metal salts include sodium silicate, potassium titanate, and those treated with a cation exchange resin to dealkalize (remove alkali ions, etc.). Examples of organic alkali metal salts include quaternary ammonium silicates and quaternary ammonium silicates treated with a cation exchange resin to dealkalize (remove alkali ions, etc.). Further, examples of peroxo compounds include titanium or zirconium peroxo compounds.

固体が予め水に分散したゾルとしては、シリカゾル、アルミナゾル、チタニアゾル、酸化鉄ゾル、酸化亜鉛ゾル、酸化ストロンチウムゾル、酸化ジルコニウムゾル、硫酸バリウムゾル、および酸化セリウムゾル等が挙げられる。また、各種粒子の平均粒子径dは、2nm~100μmが好ましい。平均粒子径が100μmを超えると球状粒子が得られないことがある。平均粒子径が2nm未満の場合は、粒子としての安定性が低く、工業的な側面で好ましくない。10nm~10μmの範囲が特に望ましい。 Examples of sols in which solids are previously dispersed in water include silica sols, alumina sols, titania sols, iron oxide sols, zinc oxide sols, strontium oxide sols, zirconium oxide sols, barium sulfate sols, and cerium oxide sols. Also, the average particle diameter d3 of various particles is preferably 2 nm to 100 μm. If the average particle size exceeds 100 μm, spherical particles may not be obtained. When the average particle size is less than 2 nm, the stability as particles is low, which is not preferable from an industrial point of view. A range of 10 nm to 10 μm is particularly desirable.

粉末を水に分散する場合は、粉末を水に加えた後に液中分散機、例えば高速回線せん断型攪拌機、コロイドミル、ロールミル、高圧噴射式分散機、超音波分散機、容積駆動型ミル、媒体撹拌ミル等を用いて分散させることが好ましい。分散後の各種粒子の平均粒子径dは、2nm~100μmが好ましい。 When dispersing the powder in water, after adding the powder to the water, a submerged disperser such as a high-speed line shearing stirrer, colloid mill, roll mill, high-pressure jet disperser, ultrasonic disperser, volumetric drive mill, medium It is preferable to disperse using a stirring mill or the like. The average particle diameter d3 of various particles after dispersion is preferably 2 nm to 100 μm.

なお、無機成分として、アルカリ金属塩、有機アルカリ金属塩、ペルオキソ化合物塩を用いた場合は、脱水工程の後に脱塩操作を行う必要がある。塩がアルカリ成分の場合は、鉱産、有機酸、炭酸等で中和する。塩が酸成分の場合は、アルカリ、有機塩基等で中和する。中和の後、水洗により精製することが望ましい。 When an alkali metal salt, an organic alkali metal salt, or a peroxo compound salt is used as the inorganic component, it is necessary to perform a desalting operation after the dehydration step. When the salt is an alkaline component, it is neutralized with a mineral, organic acid, carbonic acid, or the like. When the salt is an acid component, it is neutralized with an alkali, an organic base, or the like. After neutralization, it is desirable to purify by washing with water.

以下、本発明の実施例を具体的に説明する。 Examples of the present invention will be specifically described below.

[実施例1]
はじめに、無機成分の水分散液を準備する。本実施例では、シリカゾル(日揮触媒化成製のCataloid SI-30、固形分濃度30%)1667gに純水3333gを加え、固形分濃度10%の水分散液を調製した。
[Example 1]
First, an aqueous dispersion of inorganic components is prepared. In this example, 3333 g of pure water was added to 1667 g of silica sol (Cataloid SI-30 manufactured by Nikki Shokubai Kasei Co., Ltd., solid concentration: 30%) to prepare an aqueous dispersion with a solid concentration of 10%.

この水分散液と非水溶性溶媒と界面活性剤を混合する。本実施例では、水分散液200gをヘプタン(関東化学社製)3346gと界面活性剤AO-10V(花王社製)25gの混合溶液中に加えた。乳化分散機(プライミクス社製T.K.ロボミックス)を使用して、この混合溶液を10000rpmで10分間撹拌し、乳化させた。このようにして得られた乳化液を、-25℃の恒温槽中で72時間静置し、乳化液滴中の水を凍結させた。その後、常温まで昇温した。さらに、ブフナー漏斗(関谷理化硝子器械社製3.2L)を用いて定量濾紙(アドバンテック東洋社製No.2)で濾過した。この濾過法によれば乳化液滴の水が除去される。その後、ヘプタンで繰り返し洗浄し、界面活性剤を除去した。これにより得られたケーキ状物質を、120℃で12時間乾燥した。この乾燥処理によっても、乳化液滴内の水が除去される。得られた乾燥粉体を、500℃で4時間焼成した、この焼成粉体を、250mesh篩(JIS試験用規格篩)でふるいにかけ、球状粒子の粉体を得た。 This aqueous dispersion, a water-insoluble solvent and a surfactant are mixed. In this example, 200 g of the aqueous dispersion was added to a mixed solution of 3346 g of heptane (manufactured by Kanto Chemical Co., Ltd.) and 25 g of surfactant AO-10V (manufactured by Kao Corporation). This mixed solution was stirred at 10000 rpm for 10 minutes to emulsify using an emulsifying disperser (TK Robomix manufactured by Primix). The emulsified liquid thus obtained was allowed to stand in a constant temperature bath at -25°C for 72 hours to freeze the water in the emulsified droplets. After that, the temperature was raised to room temperature. Furthermore, it was filtered with quantitative filter paper (No. 2, manufactured by Advantech Toyo Co., Ltd.) using a Buchner funnel (3.2 L, manufactured by Sekiya Rika Glass Instruments Co., Ltd.). This filtration method removes water from the emulsified droplets. After that, washing was repeated with heptane to remove the surfactant. The resulting cake-like material was dried at 120° C. for 12 hours. This drying process also removes the water in the emulsified droplets. The obtained dried powder was calcined at 500° C. for 4 hours, and the calcined powder was sieved with a 250-mesh sieve (JIS test standard sieve) to obtain a powder of spherical particles.

球状粒子の調製条件を表1に示す。また、球状粒子の粉体の物性を以下の方法で測定した。その結果を表2に示す。 Table 1 shows the preparation conditions of the spherical particles. Further, the physical properties of the powder of spherical particles were measured by the following methods. Table 2 shows the results.

(1)各粒子の平均粒子径
レーザー回折法を用いて、各粒子の粒度分布を測定した。この粒度分布からメジアン値を求め、平均粒子径とした。このようにして、球状粒子の平均粒子径d、無機成分の平均粒子径dを求めた。ここでは、レーザー回折/散乱式粒子径分布測定装置LA-950v2(堀場製作所社製)を用いて粒度分布を測定した。但し、実施例10、実施例11の平均粒子径dは、マイクロトラックUPA(日機装社製)を用いて、動的光散乱法により粒度分布を測定した。
(1) Average Particle Size of Each Particle The particle size distribution of each particle was measured using a laser diffraction method. The median value was obtained from this particle size distribution and used as the average particle size. Thus, the average particle size d 1 of the spherical particles and the average particle size d 3 of the inorganic component were determined. Here, the particle size distribution was measured using a laser diffraction/scattering particle size distribution analyzer LA-950v2 (manufactured by HORIBA, Ltd.). However, for the average particle size d1 of Examples 10 and 11, the particle size distribution was measured by the dynamic light scattering method using Microtrac UPA (manufactured by Nikkiso Co., Ltd.).

(2)超音波分散前後の平均粒子径比
レーザー回折/散乱式粒子径分布測定装置(LA-950v2)で、分散条件を「超音波60分間」に設定し、分散させた。分散後の球状粒子の粒度分布を測定した。この粒度分布のメジアン値を超音波分散後の平均粒子径dとした。これから超音波分散前後の平均粒子径の比(d/d)を求めた。
(2) Average Particle Size Ratio Before and After Ultrasonic Dispersion Dispersion was carried out using a laser diffraction/scattering particle size distribution analyzer (LA-950v2) with the dispersion condition set to "ultrasonic for 60 minutes". The particle size distribution of spherical particles after dispersion was measured. The median value of this particle size distribution was defined as the average particle size d2 after ultrasonic dispersion. From this, the ratio (d 2 /d 1 ) of the average particle size before and after ultrasonic dispersion was determined.

(3)球状粒子の真球度
透過型電子顕微鏡(日立製作所社製、H-8000)により、2000倍から25万倍の倍率で撮影し、写真投影図を得る。この写真投影図から、任意の50個の粒子を選び、それぞれの最大径DLと、これに直交する短径DSを測定し、比(DS/DL)を求めた。それらの平均値を真球度とした。
(3) Sphericality of Spherical Particles Using a transmission electron microscope (manufactured by Hitachi, Ltd., H-8000), photographs are taken at a magnification of 2000 to 250,000 times to obtain photographic projections. Arbitrarily selected 50 particles from this photographic projection, the maximum diameter DL and the short diameter DS perpendicular thereto were measured to obtain the ratio (DS/DL). Their average value was taken as the degree of sphericity.

(4)球状粒子の比表面積
球状粒子の粉体を磁性ルツボ(B-2型)に約30ml採取し、105℃で2時間乾燥後、デシケーターに入れて室温まで冷却した。次に、試料を1g取り、全自動表面積測定装置(湯浅アイオニクス社製、マルチソーブ12型)を用いて、比表面積(m/g)をBET法にて測定した。球状粒子に配合したI型結晶性セルロースの密度(1.5g/cm)でこれを換算し、単位体積当たりの比表面積を求めた。実施例10、実施例11の球状粒子の水分散液については、この分散液を120℃、12時間乾燥した後の粉体を試料として使用した。
(4) Specific Surface Area of Spherical Particles About 30 ml of the powder of spherical particles was collected in a magnetic crucible (B-2 type), dried at 105° C. for 2 hours, placed in a desiccator and cooled to room temperature. Next, 1 g of the sample was taken, and the specific surface area (m 2 /g) was measured by the BET method using a fully automatic surface area measuring device (manufactured by Yuasa Ionics, Multisorb Model 12). The density (1.5 g/cm 3 ) of the type I crystalline cellulose blended in the spherical particles was converted into a specific surface area per unit volume. As for the aqueous dispersions of spherical particles of Examples 10 and 11, the powder obtained by drying the dispersions at 120° C. for 12 hours was used as a sample.

(5)球状粒子の細孔容積、細孔径
球状粒子の粉体10gをルツボに取り、105℃で1時間乾燥後、デシケーターに入れて室温まで冷却した。次いで、洗浄したセルに0.15gの試料を取り、Belsorp miniII(日本ベル社製)を使用して真空脱気しながら試料に窒素ガスを吸着させ、その後、脱着させる。得られた吸着等温線から、BJH法により平均細孔径を算出する。また、「細孔容積(ml/g)=(0.001567×(V-Vc)/W)」という式から細孔容積を算出した。ここで、Vは圧力735mmHgにおける標準状態の吸着量(ml)、Vcは圧力735mmHgにおけるセルブランクの容量(ml)、Wは試料の質量(g)を表す。また、窒素ガスと液体窒素の密度の比を0.001567とした。また、実施例10、実施例11の球状粒子の水分散液については、この分散液を120℃、12時間乾燥した後の粉体を試料として使用した。
(5) Pore Volume and Pore Diameter of Spherical Particles 10 g of powder of spherical particles was placed in a crucible, dried at 105° C. for 1 hour, placed in a desiccator and cooled to room temperature. Next, a 0.15 g sample is placed in the cleaned cell, and nitrogen gas is adsorbed onto the sample while vacuum deaeration is performed using Belsorp mini II (manufactured by Bell Japan), followed by desorption. From the obtained adsorption isotherm, the average pore diameter is calculated by the BJH method. Also, the pore volume was calculated from the formula “pore volume (ml/g)=(0.001567×(V−Vc)/W)”. Here, V is the standard adsorption amount (ml) at a pressure of 735 mmHg, Vc is the cell blank capacity (ml) at a pressure of 735 mmHg, and W is the mass of the sample (g). Also, the density ratio of nitrogen gas to liquid nitrogen was set to 0.001567. As for the aqueous dispersions of spherical particles of Examples 10 and 11, the powder obtained by drying the dispersions at 120° C. for 12 hours was used as a sample.

(6)乳化液滴の平均径
レーザー回折法を用いて、乳化液滴の粒度分布を測定した。この粒度分布からメジアン値を求め、平均径とした。このようにして、乳化液滴の平均径を求めた。ここでは、レーザー回折/散乱式粒子径分布測定装置SALD-2000(島津製作所社製)を用いて粒度分布を測定した。但し、実施例10、実施例11の乳化液滴の平均径は、ELS-Z(大塚電子社製)を用いて、動的光散乱法により粒度分布を測定した。
(6) Average Diameter of Emulsified Droplets Using a laser diffraction method, the particle size distribution of emulsified droplets was measured. A median value was obtained from this particle size distribution and used as an average diameter. Thus, the average diameter of emulsified droplets was obtained. Here, the particle size distribution was measured using a laser diffraction/scattering particle size distribution analyzer SALD-2000 (manufactured by Shimadzu Corporation). However, for the average diameter of the emulsified droplets in Examples 10 and 11, the particle size distribution was measured by the dynamic light scattering method using ELS-Z (manufactured by Otsuka Electronics Co., Ltd.).

[実施例2]
実施例1と同様に乳化液を調製した。この乳化液を-5℃の冷凍庫中で72時間静置した。これ以降も実施例1と同様にして、球状粒子を調製し、物性を測定した。
[Example 2]
An emulsion was prepared in the same manner as in Example 1. This emulsion was allowed to stand in a freezer at -5°C for 72 hours. After that, spherical particles were prepared in the same manner as in Example 1, and their physical properties were measured.

本実施例で得られた球状粒子の構造を調べた。粉体0.1gをエポキシ樹脂約1g(BUEHLHER社製EPO-KWICK)に均一に混合して常温で硬化させた後、FIB加工装置(日立製作所社製、FB-2100)を用いて、試料を作製した。透過型電子顕微鏡(日立製作所社製、HF-2200)を用いて、加速電圧200kVの条件下で、この試料のSEM像を撮影した。その結果、外殻の内部に空洞が形成された中空構造の粒子であった。このSEM像から、外殻の厚さTと外径ODを計測し、外殻の厚さ比(T/OD)を求めた。 The structure of the spherical particles obtained in this example was investigated. After uniformly mixing 0.1 g of powder with about 1 g of epoxy resin (EPO-KWICK manufactured by BUEHLHER) and curing at room temperature, the sample was processed using an FIB processing device (FB-2100 manufactured by Hitachi, Ltd.). made. Using a transmission electron microscope (HF-2200, manufactured by Hitachi, Ltd.), an SEM image of this sample was taken under the condition of an acceleration voltage of 200 kV. As a result, the particles had a hollow structure in which a cavity was formed inside the outer shell. From this SEM image, the thickness T and the outer diameter OD of the outer shell were measured to obtain the outer shell thickness ratio (T/OD).

[実施例3]
実施例1で用いた無機成分の水分散液の代わりに、日揮触媒化成社製のUSBB-120(固形分濃度10%)を使用した。そのため、本実施例の無機成分はシリカアルミナである。これ以外は、実施例1と同様にして球状粒子を調製し、物性を測定した。
[Example 3]
USBB-120 (solid concentration: 10%) manufactured by Nikki Shokubai Kasei Co., Ltd. was used instead of the aqueous dispersion of inorganic components used in Example 1. Therefore, the inorganic component in this example is silica alumina. Except for this, spherical particles were prepared in the same manner as in Example 1, and their physical properties were measured.

[実施例4]
本実施例では、FINEX―50(堺化学工業社製)500gを純水4500gに懸濁し、この懸濁液をマイクロフルイダイザー(マイクロフルイデックス社製M-7250-30)に10回通過させて、固形分濃度10%の水分散液を調製した。これを無機成分の水分散液として用いて、実施例1と同様に球状粒子を調製し、物性を測定した。
[Example 4]
In this example, 500 g of FINEX-50 (manufactured by Sakai Chemical Industry Co., Ltd.) was suspended in 4500 g of pure water, and this suspension was passed through a microfluidizer (M-7250-30, manufactured by Microfluidex Co., Ltd.) 10 times. , an aqueous dispersion having a solid content concentration of 10% was prepared. Using this as an aqueous dispersion of an inorganic component, spherical particles were prepared in the same manner as in Example 1, and their physical properties were measured.

[実施例5]
実施例1で用いた無機成分の水分散液の代わりに、日揮触媒化成社製のネオサンベールPW―1010A―20(固形分濃度10%)を使用した。これ以外は、実施例1と同様にして球状粒子を調製し、物性を測定した。
[Example 5]
In place of the aqueous dispersion of inorganic components used in Example 1, Neosanver PW-1010A-20 (solid concentration: 10%) manufactured by Nikki Shokubai Kasei Co., Ltd. was used. Except for this, spherical particles were prepared in the same manner as in Example 1, and their physical properties were measured.

[実施例6]
実施例1で用いた無機成分の水分散液の代わりに、日揮触媒化成社製のネオサンベールA(固形分濃度10%)を使用した。これ以外は、実施例1と同様にして球状粒子を調製し、物性を測定した。
[Example 6]
In place of the aqueous dispersion of inorganic components used in Example 1, Neosanver A (solid concentration: 10%) manufactured by Nikki Shokubai Kasei Co., Ltd. was used. Except for this, spherical particles were prepared in the same manner as in Example 1, and their physical properties were measured.

[実施例7]
実施例1で用いた無機成分の水分散液の代わりに、日揮触媒化成社製のネオサンベールF(固形分濃度10%)を使用した。これ以外は、実施例1と同様にして球状粒子を調製し、物性を測定した。
[Example 7]
In place of the aqueous dispersion of inorganic components used in Example 1, Neosanver F (solid concentration: 10%) manufactured by Nikki Shokubai Kasei Co., Ltd. was used. Except for this, spherical particles were prepared in the same manner as in Example 1, and their physical properties were measured.

[実施例8]
本実施例では、堺化学工業社製のBF―20FW(固形分濃度58%)862gに純水4138gを加え、固形分濃度10%の水分散液を調製した。これを無機成分の水分散液として用いて、実施例1と同様に球状粒子を調製し、物性を測定した。
[Example 8]
In this example, 4138 g of pure water was added to 862 g of BF-20FW (solid concentration: 58%) manufactured by Sakai Chemical Industry Co., Ltd. to prepare an aqueous dispersion with a solid concentration of 10%. Using this as an aqueous dispersion of an inorganic component, spherical particles were prepared in the same manner as in Example 1, and their physical properties were measured.

[実施例9]
本実施例では、堺化学工業社製のSZR-W(固形分濃度30%)1667gに純水3333gを加え、固形分濃度10%の水分散液を調製した。これを無機成分の水分散液として用いて、実施例1と同様に球状粒子を調製し、物性を測定した。
[Example 9]
In this example, 3333 g of pure water was added to 1667 g of SZR-W (solid concentration: 30%) manufactured by Sakai Chemical Industry Co., Ltd. to prepare an aqueous dispersion with a solid concentration of 10%. Using this as an aqueous dispersion of an inorganic component, spherical particles were prepared in the same manner as in Example 1, and their physical properties were measured.

[実施例10]
無機成分の水分散液として珪酸液(固形分濃度4.5%)を使用した。この珪酸液200gを、ヘプタン(関東化学社製)3346gと界面活性剤AO-10V(花王社製)25gの混合溶液中に加えた。この混合溶液を、100MPaの圧力でマイクロフルイダイザーを3回通液させた。これにより乳化され、乳化液滴を含む乳化液が得られた。このようにして得られた乳化液を、-25℃の恒温槽中で72時間静置し、乳化液滴中の水を凍結させた。その後、常温まで昇温した。さらに、10000Gで10分間遠心分離処理を行って、固液分離した。得られた沈降物を再度ヘプタンに分散させ、遠心分離処理を行った。この操作を3回繰り返し、界面活性剤を除去した。さらに、得られた沈降物をエタノールに分散させ、10000Gで10分間遠心分離処理を行って、固液分離した。得られた沈降物を再度エタノールに分散させ、遠心分離処理を行った。この操作を5回繰り返した。さらに、得られた沈降物を純水に分散させ、10000Gで10分間遠心分離処理を行って、固液分離した。得られた沈降物を再度純水に分散させ、遠心分離処理を行った。この操作を10回繰り返して、球状粒子の水分散液を得た。この球状粒子の水分散液の物性を測定した。
[Example 10]
A silicic acid solution (solid concentration: 4.5%) was used as an aqueous dispersion of inorganic components. 200 g of this silicic acid solution was added to a mixed solution of 3346 g of heptane (manufactured by Kanto Chemical Co., Ltd.) and 25 g of surfactant AO-10V (manufactured by Kao Corporation). This mixed solution was passed through a microfluidizer three times at a pressure of 100 MPa. This resulted in an emulsified liquid containing emulsified droplets. The emulsified liquid thus obtained was allowed to stand in a constant temperature bath at -25°C for 72 hours to freeze the water in the emulsified droplets. After that, the temperature was raised to room temperature. Furthermore, centrifugation treatment was performed at 10000 G for 10 minutes to separate solid and liquid. The sediment thus obtained was again dispersed in heptane and centrifuged. This operation was repeated three times to remove the surfactant. Further, the obtained sediment was dispersed in ethanol and centrifuged at 10000 G for 10 minutes for solid-liquid separation. The sediment thus obtained was again dispersed in ethanol and centrifuged. This operation was repeated 5 times. Further, the obtained sediment was dispersed in pure water and subjected to centrifugal separation at 10000 G for 10 minutes to separate solid and liquid. The sediment thus obtained was again dispersed in pure water and subjected to centrifugal separation. This operation was repeated 10 times to obtain an aqueous dispersion of spherical particles. Physical properties of an aqueous dispersion of the spherical particles were measured.

[実施例11]
本実施例では、珪酸液(固形分濃度4.5%)22gに純水178gを加えて、固形分濃度0.5%の無機成分の水分散液とした。こ水分散液200gを、ヘプタン(関東化学社製)3346gと界面活性剤AO-10V(花王社製)25gの混合溶液中に加えた。この混合溶液を、170MPaの圧力で、マイクロフルイダイザーに10回通液させた。これ以降は実施例10と同様にして球状粒子の水分散液を調製し、物性を測定した。本実施例では、実施例10に比べて固形分濃度を低くし、マイクロフルイダイザーの条件を変更したために、小さい球状粒子が得られた。
[Example 11]
In this example, 178 g of pure water was added to 22 g of a silicic acid solution (solid concentration: 4.5%) to prepare an aqueous dispersion of inorganic components with a solid concentration of 0.5%. 200 g of this aqueous dispersion was added to a mixed solution of 3346 g of heptane (manufactured by Kanto Chemical Co., Ltd.) and 25 g of surfactant AO-10V (manufactured by Kao Corporation). This mixed solution was passed through a microfluidizer 10 times at a pressure of 170 MPa. Thereafter, an aqueous dispersion of spherical particles was prepared in the same manner as in Example 10, and its physical properties were measured. In this example, since the solid content concentration was lower than in Example 10 and the conditions of the microfluidizer were changed, small spherical particles were obtained.

[実施例12]
乳化条件を100rpm、10分間とした以外は実施例1と同様にして球状粒子を調製し、物性を測定した。
[Example 12]
Spherical particles were prepared in the same manner as in Example 1, except that the emulsification conditions were 100 rpm for 10 minutes, and their physical properties were measured.

[実施例13]
乳化条件を2000rpm、10分間とした以外は実施例1と同様にして球状粒子を調製し、物性を測定した。
[Example 13]
Spherical particles were prepared in the same manner as in Example 1, except that the emulsification conditions were 2000 rpm for 10 minutes, and their physical properties were measured.

[実施例14]
実施例1で用いたシリカゾル(Cataloid SI-30)を希釈せずに、固形分濃度30%のまま、無機成分の水分散液として使用した。これ以外は実施例1と同様にして球状粒子を調製し、物性を測定した。
[Example 14]
The silica sol (Cataloid SI-30) used in Example 1 was used as an aqueous dispersion of an inorganic component without diluting it at a solid concentration of 30%. Except for this, spherical particles were prepared in the same manner as in Example 1, and their physical properties were measured.

[実施例15]
無機成分の水分散液として珪酸液(固形分濃度4.5%)を使用した。これ以外は実施例1と同様に球状粒子を調製し、物性を測定した。
[Example 15]
A silicic acid solution (solid concentration: 4.5%) was used as an aqueous dispersion of inorganic components. Except for this, spherical particles were prepared in the same manner as in Example 1, and their physical properties were measured.

[実施例16]
無機成分の水分散液として珪酸液(固形分濃度4.5%)を使用した。これ以外は実施例2と同様に球状粒子を調製し、物性を測定した。
[Example 16]
A silicic acid solution (solid concentration: 4.5%) was used as an aqueous dispersion of inorganic components. Spherical particles were prepared in the same manner as in Example 2 except for this, and their physical properties were measured.

[比較例1]
実施例1と同様に乳化液を調製した。この乳化液をガラスビーカーに入れ、それをデュワー瓶に入れた液体窒素(-196℃)に1分間漬けて凍結させた。その後、常温まで昇温した。さらに、ブフナー漏斗(関谷理化硝子器械社製3.2L)を用いて定量濾紙(アドバンテック東洋社製No.2)で濾過した。その後、ヘプタンで繰り返し洗浄し界面活性剤を除去した。これにより得られたケーキ状物質を、120℃で12時間乾燥した。この乾燥処理により乳化液滴内の水分が除去された。この乾燥粉体を、500℃で4時間焼成した、この焼成粉体を、250mesh篩(JIS試験用規格篩)でふるいにかけ、無機粒子の粉体を得た。この無機粒子の物性を測定した。
[Comparative Example 1]
An emulsion was prepared in the same manner as in Example 1. This emulsion was placed in a glass beaker and frozen by immersing it in liquid nitrogen (-196° C.) in a Dewar bottle for 1 minute. After that, the temperature was raised to room temperature. Furthermore, it was filtered with quantitative filter paper (No. 2, manufactured by Advantech Toyo Co., Ltd.) using a Buchner funnel (3.2 L, manufactured by Sekiya Rika Glass Instruments Co., Ltd.). After that, washing was repeated with heptane to remove the surfactant. The resulting cake-like material was dried at 120° C. for 12 hours. Moisture in the emulsified droplets was removed by this drying process. The dried powder was calcined at 500° C. for 4 hours, and the calcined powder was sieved with a 250-mesh sieve (JIS test standard sieve) to obtain a powder of inorganic particles. Physical properties of the inorganic particles were measured.

Figure 0007311258000001
Figure 0007311258000001

Figure 0007311258000002
Figure 0007311258000002

Claims (4)

固形分濃度が0.5~80%となるように無機成分を含む水分散液と、乳化剤と、非水系溶媒とを含む混合液を乳化して、前記水分散液を内包する乳化液滴を含む油中水滴型の乳化液を調製する乳化工程と、
前記乳化液を-50~0℃に冷却し、前記乳化液滴内の氷の結晶成長に伴って前記無機成分を排斥させることにより、前記乳化液滴から球状粒子を形成する凍結工程と、
前記凍結工程の後で、前記乳化液滴を常温に戻してから水を除去する脱水工程と、を含むことを特徴とする球状粒子の製造方法。
A mixed liquid containing an aqueous dispersion containing an inorganic component, an emulsifier, and a non-aqueous solvent is emulsified so that the solid content concentration is 0.5 to 80%, to form emulsified droplets encapsulating the aqueous dispersion. an emulsification step of preparing a water-in-oil emulsion containing
a freezing step of forming spherical particles from the emulsified droplets by cooling the emulsified liquid to −50 to 0° C. to expel the inorganic component as ice crystals grow in the emulsified droplets;
a dehydration step of returning the emulsified droplets to room temperature after the freezing step and removing water from the emulsified droplets.
前記凍結工程で乳化液を-50℃以上-10℃未満に冷却して前記乳化液滴を凍結させることにより、粒子内に細孔を有する多孔質の球状粒子を製造することを特徴とする請求項1に記載の球状粒子の製造方法。 In the freezing step, the emulsified liquid is cooled to −50° C. or more and less than −10° C. to freeze the emulsified liquid droplets, thereby manufacturing porous spherical particles having pores in the particles. Item 1. A method for producing spherical particles according to item 1 . 前記凍結工程で乳化液を-10~0℃に冷却して前記乳化液滴を凍結させることにより、外殻の内部に空洞を有する中空構造の球状粒子を製造することを特徴とする請求項1に記載の球状粒子の製造方法。 1. The method according to claim 1 , wherein in the freezing step, the emulsified liquid is cooled to -10 to 0.degree. 3. The method for producing spherical particles according to 1 . 前記無機成分が、ケイ素、アルミニウム、チタン、鉄、亜鉛、ストロンチウム、ジルコニウム、バリウム、およびセリウムの少なくとも一つの元素を含む化合物であることを特徴とする請求項1~のいずれか一項に記載の球状粒子の製造方法。 4. A compound according to any one of claims 1 to 3 , characterized in that said inorganic component is a compound containing at least one element of silicon, aluminum, titanium, iron, zinc, strontium, zirconium, barium, and cerium. A method for producing spherical particles of
JP2018185666A 2018-09-28 2018-09-28 Method for producing spherical particles Active JP7311258B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018185666A JP7311258B2 (en) 2018-09-28 2018-09-28 Method for producing spherical particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018185666A JP7311258B2 (en) 2018-09-28 2018-09-28 Method for producing spherical particles

Publications (2)

Publication Number Publication Date
JP2020055702A JP2020055702A (en) 2020-04-09
JP7311258B2 true JP7311258B2 (en) 2023-07-19

Family

ID=70106425

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018185666A Active JP7311258B2 (en) 2018-09-28 2018-09-28 Method for producing spherical particles

Country Status (1)

Country Link
JP (1) JP7311258B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230161426A (en) * 2021-03-31 2023-11-27 니끼 쇼꾸바이 카세이 가부시키가이샤 Powder and method for producing the same, and method for producing the resin composition

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006225226A (en) 2005-02-21 2006-08-31 Asahi Glass Co Ltd Spherical silica and its manufacturing method
CN101077974A (en) 2007-07-05 2007-11-28 清华大学 Method of preparing nano-level sphere cerium activated yttrium aluminum garnet phosphor powder
JP2014200710A (en) 2013-04-02 2014-10-27 株式会社豊田自動織機 Silicon simple substance-containing emulsion, microcapsule and active material particle, as well as production method of them
JP2015113277A (en) 2013-12-16 2015-06-22 旭硝子株式会社 Method for manufacturing spherical silica
JP2015120618A (en) 2013-12-24 2015-07-02 旭硝子株式会社 Method of producing spherical particles
CN107176610A (en) 2017-05-05 2017-09-19 浙江理工大学 A kind of silicon dioxide hollow microsphere and preparation method thereof
CN108507926A (en) 2018-04-16 2018-09-07 天津工业大学 Carry the preparation of water colo(u)r silicon dioxide microsphere

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61204033A (en) * 1985-03-05 1986-09-10 Ngk Spark Plug Co Ltd Granulating method for powder of inorganic raw material
JPS61220726A (en) * 1985-03-27 1986-10-01 Ngk Spark Plug Co Ltd Granulation method for powdered inorganic material

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006225226A (en) 2005-02-21 2006-08-31 Asahi Glass Co Ltd Spherical silica and its manufacturing method
CN101077974A (en) 2007-07-05 2007-11-28 清华大学 Method of preparing nano-level sphere cerium activated yttrium aluminum garnet phosphor powder
JP2014200710A (en) 2013-04-02 2014-10-27 株式会社豊田自動織機 Silicon simple substance-containing emulsion, microcapsule and active material particle, as well as production method of them
JP2015113277A (en) 2013-12-16 2015-06-22 旭硝子株式会社 Method for manufacturing spherical silica
JP2015120618A (en) 2013-12-24 2015-07-02 旭硝子株式会社 Method of producing spherical particles
CN107176610A (en) 2017-05-05 2017-09-19 浙江理工大学 A kind of silicon dioxide hollow microsphere and preparation method thereof
CN108507926A (en) 2018-04-16 2018-09-07 天津工业大学 Carry the preparation of water colo(u)r silicon dioxide microsphere

Also Published As

Publication number Publication date
JP2020055702A (en) 2020-04-09

Similar Documents

Publication Publication Date Title
KR102052893B1 (en) Hollow silica particles and preparation method thereof
US5492870A (en) Hollow ceramic microspheres by sol-gel dehydration with improved control over size and morphology
US11124419B2 (en) Method for producing a micron-size spherical silica aerogel
JP2020172435A (en) Individualized inorganic particles
JP7401627B2 (en) Method for producing hollow silica particles
JP7311258B2 (en) Method for producing spherical particles
WO2022154014A1 (en) Porous spherical silica and method for producing same
US4778667A (en) Spheroidal silica
JP6905446B2 (en) Method for producing hollow silica particles
US11964253B2 (en) Production method for core-shell porous silica particles
JP2002274835A (en) Porous silica foam and method for producing the same
JP4737922B2 (en) Method for producing particulate mesoporous silica
KR100450225B1 (en) Fabrication method of nanoscale-porous body
JP4044350B2 (en) Nonporous spherical silica and method for producing the same
Naskar et al. Emulsion-based synthesis of NaA zeolite nanocrystals and its integration towards NaA membranes
WO2022172978A1 (en) Method for producing core-shell porous silica particles, and core-shell porous silica particles
Das et al. Influence of process parameters on the formation of Silicalite-1 zeolite particles
KR20240138085A (en) Porous spherical silica, catalyst carrier, cosmetics, analytical column, abrasive, resin composition, and method for producing porous spherical silica
WO2024185656A1 (en) Porous spherical silica, catalyst carrier, cosmetic, analysis column, polishing agent, resin composition, and method for producing porous spherical silica
JP2023150797A (en) Porous aggregate production method
WO2021251440A1 (en) Spherical silica particle, and method for producing same
JP2022187264A (en) Hydrophobic silica aerogel, and production method of aqueous paste composition
KR20160108976A (en) Mesoporous nanoparticle manufaturing method by ultrasonic emulsification method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210924

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220613

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220705

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20220901

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221104

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230228

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20230427

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230616

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230704

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230706

R150 Certificate of patent or registration of utility model

Ref document number: 7311258

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150