TWI709263B - 具提升之抗燃燒安全性的鋰電池 - Google Patents

具提升之抗燃燒安全性的鋰電池 Download PDF

Info

Publication number
TWI709263B
TWI709263B TW104121992A TW104121992A TWI709263B TW I709263 B TWI709263 B TW I709263B TW 104121992 A TW104121992 A TW 104121992A TW 104121992 A TW104121992 A TW 104121992A TW I709263 B TWI709263 B TW I709263B
Authority
TW
Taiwan
Prior art keywords
electrochemically active
combustion
reducing agent
active area
compartment
Prior art date
Application number
TW104121992A
Other languages
English (en)
Other versions
TW201607103A (zh
Inventor
丹尼斯J 卡恩茲
艾倫D 英格利
保羅 道格拉斯 柏勒斯
詹姆斯R 胡佛
多娜 琳恩 薇絲歐莉
Original Assignee
美商科慕Fc有限責任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 美商科慕Fc有限責任公司 filed Critical 美商科慕Fc有限責任公司
Publication of TW201607103A publication Critical patent/TW201607103A/zh
Application granted granted Critical
Publication of TWI709263B publication Critical patent/TWI709263B/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4235Safety or regulating additives or arrangements in electrodes, separators or electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/102Primary casings; Jackets or wrappings characterised by their shape or physical structure
    • H01M50/103Primary casings; Jackets or wrappings characterised by their shape or physical structure prismatic or rectangular
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/102Primary casings; Jackets or wrappings characterised by their shape or physical structure
    • H01M50/107Primary casings; Jackets or wrappings characterised by their shape or physical structure having curved cross-section, e.g. round or elliptic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/116Primary casings; Jackets or wrappings characterised by the material
    • H01M50/117Inorganic material
    • H01M50/119Metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/14Primary casings; Jackets or wrappings for protecting against damage caused by external factors
    • H01M50/143Fireproof; Explosion-proof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/30Arrangements for facilitating escape of gases
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/30Arrangements for facilitating escape of gases
    • H01M50/342Non-re-sealable arrangements
    • H01M50/3425Non-re-sealable arrangements in the form of rupturable membranes or weakened parts, e.g. pierced with the aid of a sharp member
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/30Arrangements for facilitating escape of gases
    • H01M50/35Gas exhaust passages comprising elongated, tortuous or labyrinth-shaped exhaust passages
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/30Arrangements for facilitating escape of gases
    • H01M50/375Vent means sensitive to or responsive to temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/30Arrangements for facilitating escape of gases
    • H01M50/383Flame arresting or ignition-preventing means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/30Arrangements for facilitating escape of gases
    • H01M50/394Gas-pervious parts or elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2200/00Safety devices for primary or secondary batteries
    • H01M2200/10Temperature sensitive devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2200/00Safety devices for primary or secondary batteries
    • H01M2200/20Pressure-sensitive devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)
  • Gas Exhaust Devices For Batteries (AREA)
  • Primary Cells (AREA)
  • Sealing Battery Cases Or Jackets (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本發明提供一種包含修改具有電化學活性區域及其外殼的鋰離子電池的方法,該方法包含在該外殼內形成至少一個與該電化學活性區域分開的隔室,將燃燒消減劑置於該隔室內,由此該燃燒消減劑不會與該電化學活性區域接觸,該隔室係對壓力或熱敏感,由此當該電化學活性區域過熱時,該隔室會裂開,從而使該燃燒消減劑與該電化學活性區域接觸,以消減該電化學活性區域之燃燒,其中例示性的燃燒消減劑係包含液體氟聚醚之組合物,並且該具有壓力或熱敏感性的例示性隔室在該隔室之結構材料中包括低熔點的不可燃聚合物,諸如聚乙烯醇。

Description

具提升之抗燃燒安全性的鋰電池 【相關申請案之交叉參考】
本申請案主張2014年7月14日申請之美國臨時申請案第62/024,117號及2014年10月7日申請之美國臨時申請案62/060,749之權利,該等案之全文以引用的方式併入本文中。
本發明係關於鋰離子電池之燃燒的消減。
美國專利公開案2014/0065461揭示用於消減鋰離子電池之燃燒的氟化材料。所揭示之氟化材料具有不同的種類和不同的形式(狀態),即固體和半固體。本文揭示有關鋰離子電池氟化材料之各種配置,包括其中使用多種氟化材料之配置。圖1、2、3、4、以及5a、5b、及5c揭示在電池罐體外部的配置,並且圖6揭示在一棱柱型鋰離子電池之金屬箔外殼內部的氟聚合物薄膜的配置。內部配置具有在更靠近鋰離子電池內可導致燃燒之過熱源處提供消減燃燒效果的優勢。
美國專利公開案2011/0262783(頒予Tesla)揭示在呈膠卷組態之一鋰離子電池之電化學活性區域中的中心銷之塗層,該塗層係選擇性地具有一非膨脹性材料覆蓋層之膨脹性材料。美國專利案 8,309,240揭示阻燃材料,其包封於電化學惰性材料中,然後將該包封的球體與電解質或與鋰離子電池的陽極層和/或陰極層混合。或者,將阻燃材料吸收到一多孔心軸(中心銷)的孔中,並塗覆包封材料。因此,包封的阻燃材料係安置於電池的電化學活性區域中。揭示之包封材料係保持阻燃材料不與電解質和電極接觸,直到過熱熔化包封材料,則阻燃材料會從包封中釋放。
需要其他可以讓阻燃劑用在電池內部以消減燃燒之方法和鋰離子電池結構。
本發明提供可讓燃燒消減劑從電池內部用於消減其中之燃燒的方法和鋰離子電池結構。
根據本發明的一個實施例,提供一種方法,其包含修改具有一電化學活性區域及其外殼的鋰離子電池,該方法包含在該外殼內形成至少一個與該電化學活性區域分開的隔室,將燃燒消減劑置於該隔室內,由此該燃燒消減劑不會與該電化學活性區域接觸,該隔室對壓力和/或熱敏感,由此當該電化學活性區域過熱時,該隔室裂開,從而使該燃燒消減劑與該電化學活性區域接觸,以消減該電化學活性區域之燃燒。較佳地,該隔室包括一膜,其提供該隔室對熱和/或壓力的敏感性,由此該膜在該電化學活性區域過熱時會裂開。
本發明另一個實施例係一鋰離子電池,其包含一外殼;將鋰離子電化學活性區域界定位於該外殼內之結構,該結構包括帶相反電荷的電極,其用於將鋰離子從一個電極吸引到另一個電極;將至 少一個隔室界定位於該外殼內並與該鋰離子電化學活性區域分開之結構,該鋰離子電化學活性區域受到該鋰離子電化學活性區域內發生短路所造成之過熱時,該含有燃燒消減劑之隔室仍與該鋰離子電化學活性區域保持分開,該界定含有該燃燒消減劑之隔室的結構包括一膜,該膜會因該過熱而裂開,從而讓該燃燒消減劑釋放到該電化學活性區域中,以消減其內部之燃燒。這個實施例的另一個態樣係一鋰離子電池,其包含一外殼;將鋰離子電化學活性區域界定位於該外殼內之結構,該結構包括帶相反電荷的電極,其用於將鋰離子從一個電極吸引到另一個電極;將至少一個隔室界定位於該外殼內並與該鋰離子電化學活性區域分開之結構,該鋰離子電化學活性區域受到該鋰離子電化學活性區域內發生短路所造成之過熱時,該含有燃燒消減劑之隔室仍與該鋰離子電化學活性區域保持分開,該界定含有該燃燒消減劑之隔室的結構包括一膜,該膜會因該過熱而裂開,從而讓該燃燒消減劑釋放到該電化學活性區域中,以消減其內部之燃燒,但其條件係當該膜包含燃燒消減劑時,該燃燒消減劑係視情況選擇性存在於該隔室中。這個實施例的各態樣中的膜對熱和/或壓力敏感,從而使其能夠受到該電化學活性區域內的過熱而裂開。
所謂燃燒消減或類似表述意指即使鋰離子電池之損壞預期可能會發生失控放熱反應,但仍不會發生燃燒,或者如果燃燒開始,則其強度降低,或者火非常迅速地熄滅。降低之強度意指,當在電池組殼體內存在複數個鋰離子電池時,該燃燒仍傾向於僅限於受損的電池。
對壓力或熱敏感意指熱和/或壓力會導致隔室破裂。這個含義亦適用於受到過熱會裂開的膜。
在上文提及之兩個實施例中,外殼可包含(i)金屬箔,此係當鋰離子電池係棱柱型電池時之情況,或者(ii)一罐體,此係當鋰離子電池之電化學活性區域呈膠卷組態時之情況。因此,電池之外殼將電池與電池外部環境分開。外殼不同於電池殼體,如美國專利公開案2014/0065461中所揭示,電池殼體係用於多個電池之容器。
在兩個實施例中,較佳係讓隔室位於電化學活性區域的外部來分開隔室與電化學活性區域。
在兩個實施例中,燃燒消減劑較佳包含液體氟聚醚。氟聚醚可係與可導致形成半固體之固體材料的混合物。固體材料可係不同的燃燒消減劑和/或簡單的增稠劑。不論呈液態或與可維持液態或導致形成半固體之固體材料之混合物的氟聚醚均可含有分解催化劑。因此,適用於該等方法和鋰離子電池實施例二者之本發明之較佳態樣如下:燃燒消減劑係包含液體氟聚醚之組合物。這種組合物另外包含較佳係顆粒之分解催化劑和/或固體材料。這種固體材料係另外(即除了液體氟聚醚以外)的燃燒消減劑。由這種液體氟聚醚和這種固體材料產生之組合物係半固體。包含液體氟聚醚和分解催化劑之組合物在正常條件下呈液體狀態。在正常條件下的液體狀態及半固體(狀態)係如下文定義。
本發明之鋰離子電池之較佳態樣(方法和產品實施例二者)包括以下各項:該膜會受到導致該膜熔融或該膜破裂之過熱而裂開,諸如被電化學活性區域內之壓力積聚引起之爆裂而裂開。
讓含有燃燒消減劑的隔室位於該外殼與界定鋰離子電化學活性區域之結構之間。
外殼包括一通氣孔,用於在鋰離子電池電化學活性區域內發生過熱時釋放壓力,並且讓含有該燃燒消減劑的隔室位於通氣孔與鋰離子電化學活性區域之間。通氣孔包括一封閉口,其可以打開釋放壓力,打開該通氣孔時同時造成膜破裂。
通氣孔位於該外殼之一端,並且在遠離該通氣孔與鋰離子電化學活性區域之間隔室的位置有另一個隔室,其中包括可因過熱而裂開的膜並且含有燃燒消減劑,由此在過熱時,來自各隔室的燃燒消減劑會釋放到該鋰離子電化學活性區域中,從而消減鋰離子電化學活性區域內之燃燒。
2-2‧‧‧線
2‧‧‧電池
4‧‧‧外殼
6‧‧‧罐體
8‧‧‧電池頂部
10‧‧‧U形絕緣體環;U形聚合物絕緣體環
12‧‧‧圓片
14‧‧‧孔
16‧‧‧備裂圓片;聚醯胺備裂圓片
18‧‧‧夾壓部
20‧‧‧電化學活性區域
22‧‧‧頂部絕緣體;絕緣體;片狀絕緣體
24‧‧‧底部絕緣體;絕緣體
26‧‧‧中心銷;中空中心銷
28‧‧‧隔室
30‧‧‧線
32‧‧‧孔
40‧‧‧電池
42‧‧‧第二隔室;隔室
48‧‧‧多層片材;多層薄膜;層;片材
50‧‧‧底部薄膜;阻燃性聚乙烯醇的薄膜;燃燒消減劑
52‧‧‧頂部薄膜;阻燃性聚乙烯醇薄膜
54‧‧‧隔室
55‧‧‧電池;棱柱形電池
56‧‧‧金屬箔層;層
58‧‧‧陽極集電器層;層;集電器層
60‧‧‧離子活躍層;層;陰極集電器
62‧‧‧陰極集電器層;層
64‧‧‧離子活躍層;層
66‧‧‧多孔隔板層;層
70‧‧‧電池
72‧‧‧罐體;電池罐體
73‧‧‧夾壓部
74‧‧‧頂部絕緣體
76‧‧‧外周
78‧‧‧圓頂中央部
80‧‧‧刻劃線
82‧‧‧凸緣
84‧‧‧通氣孔
86‧‧‧封閉體
88‧‧‧電池頂部
90‧‧‧隔室
圖1係一鋰離子電池之側面剖面示意圖,其示出位於電池之外殼內之隔室的一個實施例,該隔室與電化學活性區域分開,並且含有燃燒消減劑。
圖2係圖1的隔室的可裂開部分的一個實施例中沿線2-2的剖面圖。
圖3係鋰離子電池之側面剖面示意圖,其示出位於鋰離子電池之外殼內,與電化學活性區域分開,並且含有燃燒消減劑之隔室的另一個實施例。
圖4係含有燃燒消減劑之隔室的結構的一個實施例的平面示意圖。
圖5係圖4隔室的端剖面示意圖。
圖6係鋰離子電池之側面剖面示意圖,其中圖4和圖5的隔室位於電池之外殼內部,與電化學活性區域分開。
圖7係存在於一棱柱形鋰離子電池中並且包括與電化學活性區域分開且含有燃燒消減劑的隔室之材料層的等角視野示意圖。
圖8係經修改以例示本發明之另一個實施例的圖1的鋰離子電池的上部的剖面示意圖。
圖9係圖8中所繪示之膜的平面圖。
在圖1中,於內部存在鋰離子電化學活性之鋰離子電池包含一外殼4,其又包含一罐體6及一電池頂部8,電池頂部8係電池之陽極。罐體6係電池之陰極。這兩極藉由一個U形絕緣體環10彼此絕緣,U形絕緣體環10位於陽極與陰極之間彼此鄰近處。位於絕緣體環10之U形內者係其內具有一孔14的一圓片12及形成孔14之一封閉口之一備裂圓片16。為了清楚出示,所示出的元件8、12、及16彼此間隔。實際上,這些元件直接或透過存在之填隙片(未示出),利用如圖所示環繞罐體6之夾壓部18壓在一起。
罐體6的側面及片狀絕緣體22和24界定該形成電化學活性區域之外殼的結構。電化學活性區域20包含一電極總集成,其包括帶相反電荷的電極,用於吸引鋰離子,透過含有電解質之一隔板,從其中一個電極傳遞到其中另一個電極。這種電極總集成係如膠卷一般圍繞一中心銷26捲起,如圖所示,中心銷26係中空。其係界定電化學活性區域20之結構,惟中心銷26延伸超出絕緣體22和24上方和下方的長度分別在電化學活性區域20的外部。膠卷總集成之電極適當地連接到罐體和電池頂部,以提供其陽極性和陰極性。一般而言,絕緣片(未示出)係位於罐體6與電化學活性區域20之間。出於簡單起見,電化學活性區域的細節未示出在圖1(以及圖3和圖6)中。這種電極總集成具有圖7之電池55之層58至66的外觀及分區,但自身捲起(膠卷)。
電池2之包含外殼4(罐體6和電池頂部8)、絕緣體環10、備裂圓片16和頂部絕緣體22的結構組合係界定一隔室28之結構,隔室28與受到短路會造成過熱的電化學活性區域20分開。燃燒消減劑位於並容置於該隔室內,並在圖1和其他圖式中藉由點畫示出。隔室28位於電池的外殼(具體而言為罐體6和電池頂部8)與電化學活性區域20之間,並且覆蓋電化學活性區域20的主要部分且與電化學活性區域20的主要部分共同延伸。較佳地,中心銷26之中空內部不含燃燒消減劑。如果需要,可以封堵中空中心銷26,以防止燃燒消減劑進入中心銷之內部。可藉由控制隔室28中之燃燒消減劑的高度,使其小於延伸到隔室28中之中心銷26的高度來防止燃燒消減劑 進入。頂部絕緣體22作為隔室28之壓力和/或熱敏感性膜。備裂圓片16較佳主要是對壓力敏感。形成隔室28之下側的頂部絕緣體22保持燃燒消減劑不與電化學活性區域接觸,因此而與電化學活性區域分開,直到電化學活性區域過熱而導致頂部絕緣體22裂開,從而讓燃燒消減劑接觸電化學活性區域,以消減燃燒。
由於中心銷26被電極總集成包圍,因此,其係在電化學活性區域內,藉此中心銷(其外表面和其中空內部二者)不會與電化學活性區域20分開。根據本發明在內部位置有燃燒消減劑的隔室實質上與中心銷分開。因此,要藉由燃燒消減劑從隔室28釋放到電化學活性區域20內之電極總集成上來達成消減燃燒效果時,並不一定需要圖1中之中心銷26些微延伸到隔室28中。此外,這種從中心銷26到隔室28中之些微延伸係在電化學活性區域20的外部。
在操作中,當鋰離子電池之電化學活性區域內損壞時,此區域過熱,並且該過熱伴隨壓力增加。該過熱及壓力增加會個別或組合地導致頂部絕緣體22裂開。該裂開會使燃燒消減劑從隔室28釋放到電化學活性區域20中,從而使得該製劑能夠消減該燃燒。電化學活性區域內形成的壓力可足以引起備裂圓片16破裂,藉此由備裂圓片覆蓋的孔14即成為電池釋放壓力的通氣孔。在電化學活性區域內發生過熱所造成該壓力上升時伴隨產生的揮發性氣體可藉由電池頂部8中的開孔(未示出)從電池逸出。
隔室28於電化學活性區域20與通氣孔(孔14)之間的位置具有使電池內部釋放壓力與釋放燃燒消減劑到電化學活性區域中用以消減燃燒的偶聯效果(effect of coupling)。
如圖2中所繪示,為促進頂部絕緣體22裂開,在絕緣體22上,從孔32向外延伸刻劃一系列線30,中心銷26則配合通過孔32。該刻劃弱化絕緣體22,從而促進其因應電化學活性區域內電池損壞所產生之熱/壓力而裂開。
端視電化學活性區域內之過熱和壓力積聚的程度,備裂圓片16亦可爆裂,以容許揮發物通過隔室28從電化學活性區域逸出。備裂圓片16係選擇性存在,此乃因頂部絕緣體22之作用在於釋放電化學活性區域內形成的壓力。如果備裂圓片不存在,則孔14將可用於減輕電池內部壓力。然而,備裂圓片16的存在用於保護隔室28,以免在儲存、處理和使用期間有雜質進入。如果有備裂圓片時,可先將燃燒消減劑裝載到隔室28中,然後再安裝備裂圓片16。
備裂圓片16亦可經刻劃,以幫助其破裂。或者,頂部絕緣體22和備裂圓片16中之一者或二者可以是低熔點材料,藉此電化學活性區域內之過熱足以使頂部絕緣體或備裂圓片(視情況而定)熔融。頂部絕緣體22之熔融會使燃燒消減劑釋放到電化學活性區域上,並且備裂圓片16之熔融會使揮發物從電池逸出。來自隔室28的燃燒消減劑會消減電化學活性區域20內之燃燒,當然會緩和該逸出,並且不一定會逸出。在電池損壞時,在電化學活性區域內壓力增加下,頂部絕緣體22之熔融亦有助於其破裂。
可製造頂部絕緣體片22和備裂圓片16之結構材料的實例係烴聚合物,諸如聚乙烯醇,其係低熔點聚合物,熔融溫度係180℃至190℃,具有電絕緣性並且在高於熔融溫度下加熱時會炭化。可製造頂部絕緣體片和備裂圓片之材料的另一實例係聚偏二氟乙烯,其係低熔點聚合物,熔融溫度低至170℃,其係阻燃性並且不會支持燃燒。可使用之較低熔點的電絕緣聚合物係在高於100℃之溫度下熔融的烴聚合物,諸如聚乙烯或聚丙烯。可使用較高熔點的烴聚合物,諸如聚醯胺,其中藉由刻劃達成之壓力敏感性係讓絕緣體22或備裂圓片16裂開之主要機制。較佳地,剛才提到的烴聚合物係阻燃劑,即含有一或多種有效賦予聚合物不可燃性之阻燃劑。阻燃劑的實例包括彼等含有溴者,諸如十溴二苯基醚;彼等含有磷者,諸如甲基膦酸二甲酯;以及礦物質,諸如三水合鋁。較佳地,頂部絕緣體22和備裂圓片16之結構材料具有至少100℃的熔融溫度。較佳地,熔融溫度不高於350℃,更佳不高於200℃。較佳地,至少頂部絕緣體22之結構材料對於在其正常操作中在電化學活性區域內存在之鋰離子電化學活性呈惰性,並且係電絕緣性。或者,備裂圓片可以是經刻劃或者具有橋接孔14之感壓性附件的金屬。
其餘圖式中與圖1編號相同之元件係與圖1中相同。在圖3中,圖1之電池修改為具有一第二隔室42之電池40,第二隔室42在外殼4內,在電池底部,並且由罐體6之底部所界定,且底部絕緣體24係諸如利用墊補片(未示出)而與罐體底部間隔。第二隔室42實際上位於電池之外殼4內,例如在一個末端,即遠離界定電池通 氣孔之孔14和隔室28,例如在電池的相反末端。可先將燃燒消減劑裝載到隔室42中,然後再將電化學活性區域20安裝到罐體6中。隔室42可與隔室28組合或代替其(即無隔室28)存在於電池2中。當燃燒消減劑位於隔室28和42二者中時,揮發物的作用會推向頂部隔室28和孔14,將燃燒消減劑從底部隔室42引出到電化學活性區域20中,從而導致燃燒消減劑從兩個隔室釋放到電化學活性區域中。此舉即消減這個區域內的燃燒。底部絕緣體24可類似圖2所示頂部絕緣體22進行刻劃,並且可以為與頂部絕緣體22相同或不同的結構材料,以作為隔室42的熱和/或壓力敏感性膜。隔室42與電化學活性區域20的主要部分共同延伸。如圖1和圖3中所示,隔室28和42與電化學活性區域20的頂部和底部(即相對端)共同延伸。
圖4係關於提供與電化學活性區域分開並且位於電池之外殼4內的隔室之不同實施例。在圖4中,示出多層片材48,其包含一底部薄膜50以及與該底部薄膜間隔之一頂部薄膜52,以形成如圖5中最佳示出之填充有燃燒消減劑的一隔室54。為形成這個隔室,可在底部薄膜50上施加一層均勻的燃燒消減劑層,保持薄膜50的側邊界淨空(無覆蓋)。然後,可將頂部薄膜52置於製劑層的頂部上,隨後將各薄膜的上覆側邊界熱封在一起。熱封的邊界會比形成隔室54的單獨薄膜層更薄。如果需要,可將與薄膜50和52相同聚合物之條帶(未示出)熱封(接合)到邊界長度,以使邊界區域之厚度與隔室區域相同。可改用黏著劑代替熱封法,將薄膜50和52與薄膜之條帶的重疊邊界黏著在一起。薄膜50和52之結構材料可與形成頂部絕緣體 22之材料相同。因此,薄膜50和52係可藉由電化學活性區域內之過熱裂開,以將燃燒消減劑釋放到電化學活性區域20中的膜。
在圖6中,多層片材48位於鋰離子電池的內部,介於罐體6與形成電化學活性區域20之膠卷總集成之外表面之間。與隔室28和42一樣,隔室54亦位於電池外殼4內,但在電化學活性區域20的外部,並與電化學活性區域20的主要部分共同延伸。此舉提供包圍電化學活性區域20之側部之燃燒消減劑的一圓柱形鞘。如圖6中所示,這個實施例可與將燃燒消減劑置於電化學活性區域20之頂部和底部之圖1和圖3中的實施例組合,從而用含有燃燒消減劑的隔室包圍電化學活性區域。或者,隔室54可僅與隔室28和42中之一者、或不與隔室28和42中之任何一者組合。面對電化學活性區域的薄膜50係隔室54的熱和/或壓力敏感性膜,並且可以經刻劃(未示出),以幫助其因應電化學活性區域20內之過熱而裂開。
界定隔室(諸如隔室28、42、及54)的結構界定一不同於該界定結構之含有燃燒消減劑之空的空間或空隙。該界定結構本身可包括燃燒消減劑,然而,該燃燒消減劑不同於隔室中所含的燃燒消減劑。
圖7示出了本發明之另一個實施例,其中電池係由材料層堆疊構成之棱柱形電池55,具體如下:˙金屬箔56,其形成電池55之頂層和底層,˙多層片材48,其各自形成毗鄰各金屬箔層之填充有燃燒消減劑的一隔室54, ˙毗鄰其中一層48之陽極集電器層58,˙毗鄰陽極集電器層58之離子活躍層60,˙毗鄰另一多層片材48之陰極集電器層62,˙毗鄰陰極集電器層62之離子活躍層64,以及˙位於層60與層64之間的多孔隔板層66。
出於簡單起見,未示出包圍其他層的側部以形成電池55的外殼(袋)的金屬箔層56,並且未示出延伸通過該袋以實現電連接性之陽極集電器和陰極集電器之翼片。
金屬箔層56較佳為鋁,並且出於電絕緣的目的,較佳在兩個表面(頂部和底部)上塗覆(未示出)聚合物。金屬箔層之進一步論述包括這些聚合物塗層較佳存在於金屬箔層之金屬箔上。金屬箔層56之面對電池外部之表面上的聚合物塗層較佳係聚醯胺,並且金屬箔層之面對電池內部之表面的聚合物塗層較佳係聚丙烯。陽極集電器層58較佳為銅,並且陰極集電器62較佳為鋁。多層薄膜48可與其各自的集電器層58和62接觸。多層薄膜48亦可與其各自的金屬箔層56接觸。多層薄膜48可與毗鄰的金屬箔層和/或毗鄰的集電器層分開,即不接合。為幫助理解圖7,即區分由多層薄膜48形成的層與圖7中所示的其他層,多層薄膜48在圖7中繪示為在其各自隔室54中含有燃燒消減劑。離子活躍層60和64較佳是在其各自的集電器層58和62上的塗層。層60之一實例係鋰化石墨和黏結劑,並且層64之一實例係鋰化金屬氧化物和黏結劑。層58與層60以及層62與層64的組合形成電池的電極。多孔隔板層66係含有電解質之一多孔材料,該 等孔允許鋰離子在放電過程中通過。多孔材料隔板可以為聚合的,其中聚合物本身係親水性,或者在隔板的表面(包括其孔)上具有一親水性塗層。電化學活性區域20內之過熱導致構成多層薄膜48之薄膜熔融和/或破裂(藉由爆裂),從而釋放燃燒消減劑以消減電池之燃燒。層58至66代表由電池55之層56所形成外殼內的電化學活性區域20。含有燃燒消減劑的層48位於該外殼內,但在電化學活性區域20的外部,電化學活性區域20的邊界由層58和62界定。因此,在電池的正常操作過程中,燃燒消減劑與電化學活性區域保持分開。
將絕緣體22和絕緣體25(圖1和圖3)分別判定為頂部絕緣體和底部絕緣體,以及毗鄰圖7之棱柱形電池之頂層和底層存在的多層片材48係參照在這些圖示中所繪示之電池的定向來判定。針對此定向和不同的電池定向,頂部位置和底部位置可分別判定為電池之一端和電池之相對端。一旦判定電池的端部,則用於放置含有燃燒消減劑的隔室的其餘位置即可判定為電池的側部。
除了諸如上述隔室28、42、及54的隔室以外,鋰離子電池亦可配備其他安全特徵,諸如電路斷流器。
隔室28、42、及54與電化學活性區域20之主要部分的共同延伸性包括與電化學活性區域之相對表面之主要部分的共同延伸性。較佳地,包括在界定各隔室之結構中的熱和/或壓力敏感性膜係與電化學活性區域20之外表面接觸,並且較佳係電化學惰性,亦即在其正常操作中不會不利地影響電化學活性區域之正常電化學活性。較 佳地,適用於本發明之實施例的鋰離子電池係二次電池,亦即可再充電。這些實施例亦適用於一次鋰離子電池。
圖8的鋰離子電池70體現了這些原理。電池70包含一罐體72,其內含有圍繞中心銷26之電化學活性區域20。頂部絕緣體74位於電化學活性區域20的頂部上,並在罐體72的側部藉由夾壓部73與電化學活性區域20一起夾緊。頂部絕緣體74具有一平坦的外周76和一圓頂中央部78。如圖9中最佳示出,頂部絕緣體係環形形狀,並且圓頂中央部78具有刻劃線80,以在損壞時,在暴露於來自電化學活性區域20的熱和壓力下促進其破裂。
該電池亦具有作為電池之陽極的一電池頂部88。頂部88藉由夾緊在夾壓部73與凸緣82之間而固定就位。頂部88在由一短堆疊(short stack)定邊界的頂部中含有呈一圓柱形開口形式的一通氣孔84。為在短堆疊之頂部中的開口提供一壓力釋放封閉口86,並藉由習知方式(未示出)固定到通氣孔84之短堆疊或頂部88。
頂部絕緣體74或至少圓頂中央部78較佳由燃燒消減劑,諸如對熱不穩定之氟聚合物製成,燃燒消減劑之實例描述於下文,並且其能夠製造到頂端絕緣體結構中。其可作為可藉由電化學活性區域20內之過熱而裂開的膜。該過熱伴隨著由電化學活性區域內損壞所造成該區域內產生之壓力,此等係圖1、3、6、及7的電池實施例之特徵。這導致頂部絕緣體藉由沿刻劃線80破裂而裂開。在圖8的實施例中,沿刻劃線的破裂不僅僅釋放電化學活性區域20內之壓力積聚。由於製造頂部絕緣體74或至少圓頂中央部78之燃燒消減劑(諸 如對熱不穩定之氟聚合物)在損壞條件下會反應耗盡揮發性可燃物,從而促進或達成消減燃燒。在壓力輔助下移除封閉口86時,經由頂部88通過通氣孔84離開電池之所得揮發物係不可燃燒。進一步有助於消減燃燒者係燃燒消減劑(諸如對熱不穩定之氟聚合物)的熔融,從而導致熔融的製劑進入電化學活性區域20,以消減燃燒。
在一個實施例中,頂部絕緣體74或至少圓頂中央部78的厚度提供足夠的燃燒消減劑(諸如對熱不穩定之氟聚合物),以達成消減燃燒。刻劃線80足夠深入該厚度,以能夠因應電化學活性區域20內之過熱而裂開。
在另一個實施例中,電池70內的由頂部絕緣體74、電池頂部88、及電池罐體72中之夾壓部73形成(界定)的空隔室90含有燃燒消減劑(未在圖8中示出)。可先將燃燒消減劑添加到隔室90中,然後再將電池頂部88加到電池上。添加到隔室90中的燃燒消減劑的量的範圍可為在組裝頂部88與電池罐體72的過程中在頂部絕緣體74的頂部上提供一層之量到儘可能填滿隔室90之量。存在於隔室90中之燃燒消減劑(但未在圖8中示出)至少補充頂部絕緣體74之消減燃燒效果。
圖8中之隔室90類似於圖1和圖6之電池中之隔室28,一個差異在於,在圖1、圖3及圖6的電池中之隔室28中存在備裂圓片16,但不存在圖8之電池中。如從界定隔室90之結構明顯看出,備裂圓片16可從界定隔室28之結構消除,從而使得揮發物直接從隔室28通向並通過圖1、圖3、及圖6的電池頂部8中之通氣孔 (未示出)。或者,備裂圓片16可併入圖8中之電池70的結構中,從而成為隔室90的頂部。
作為燃燒消減劑之對熱不穩定之氟聚合物本身係可製造底部絕緣體24(圖1、圖3、及圖6)以及薄膜50和52(圖5)的另一種結構材料。
當分別在電池(圖1、圖3、及圖6)之頂部和底部的隔室28和42的各自的絕緣體包含燃燒消減劑(諸如對熱不穩定之氟聚合物)以提供消減燃燒效果時,該等隔室28和42可視情況選用圖8中之空的(即不含燃燒消減劑的)隔室90。絕緣體22和24構成其各自隔室之可因過熱而裂開的膜。因此,當其中任何膜包含燃燒消減劑(諸如對熱不穩定之氟聚合物)時,該隔室中可視情況選用燃燒消減劑。然而,較佳的是,位於電池的頂部和/或底部的隔室含有燃燒消減劑。燃燒消減劑存在於圖4和圖5之實施例的隔室54中。
具有一圓頂中央部78之頂部絕緣體74的設計(如圖8中所示,其覆蓋中心銷26的端部)可用在本發明的其他電池實施例中,諸如在圖1、圖3、及圖6之電池中,替代頂部絕緣體22。這種設計不限於使用對熱不穩定之氟聚合物的結構材料。該結構材料可以是上文描述為用於頂部絕緣體22之結構材料的任何一種材料。燃燒消減劑本身當然為不可燃。
燃燒消減劑可以是單一材料或可為對已損壞的鋰離子電池提供消減燃燒效果之材料的混合物。此類材料在提供消減燃燒效果中可表現出一或多種作用模式,此類作用模式包括:(i)吸熱,(ii)稀釋 可燃物,(iii)變得膨脹,(iv)形成炭,及/或(v)耗盡可燃物。燃燒消減劑能夠依多種作用模式因應鋰離子電池之損壞。
關於作用模式(i),吸熱之製劑藉由自鋰離子電池內之潛在或實際燃燒位點移除熱,而促進燃燒消減。熱驅動燃燒反應。移除該熱即消減燃燒。關於(ii),稀釋可燃物可藉由阻擋原本會支持燃燒過程之諸如氧氣及氫氣之可燃物質的組合來延遲燃燒反應。關於(iii)及(iv),其相關之處在於,炭化效果可為燃燒消減劑在充分加熱時所表現出之膨脹的結果。然而,可在不炭化下達到膨脹。在任一種情況下,均防止外部的氧氣(空氣)擴散或阻止其進入燃燒區中。因此,炭及膨脹結構即形成燃燒障壁。關於(v),由燃燒消減劑排放之不可燃揮發物與諸如氧氣及氫氣之可燃活性物質組合,以使其不可燃。
在一個實施例中,較佳燃燒消減劑係氟聚醚,其在正常條件(15℃到25℃)下,較佳在鋰離子電池之正常操作下(最高80℃之溫度)在一大氣壓下係呈液體。該液體狀態意指,氟聚醚在高達40℃,有時高達50℃,或高達60℃,甚至高達80℃(一大氣壓)之溫度下不會排放揮發物。氟聚醚之沸點溫度較佳為至少80℃,更佳為至少100℃,更通常為至少150℃(一大氣壓)。
液體狀態係由分子量相對低於固體氟聚合物分子量之氟聚醚形成。固體氟聚合物通常具有至少50,000之分子量,而該氟聚醚通常具有800至15,000或1,200至15,000之範圍的分子量。較佳之氟聚醚(FPE)係全氟聚醚(PFPE)。本文中提及之任何氟聚醚(FPE)均包括全氟聚醚(PFPE)。氟聚醚係不同分子量之混合物。在PFPE中,鏈碳 原子上之所有單價取代基均為氟。FPE之特徵在於其鏈結構中,分子主鏈中之氧原子被具有1至3個碳原子之飽和氟碳基團分隔,在PFPE的情況下則較佳係被全氟碳基團分隔。FPE分子中可存在超過一種類型的氟碳基團。代表性結構為:(-CFCF3-CF2-O-)n (I)
(-CF2-CF2-CF2-O-)n (II)
(-CF2-CF2-O-)n-(-CF2-O-)m (III)
(-CF2-CFCF3-O-)n-(-CF2-O-)m (IV)
該等結構由Kasai論述於J.Appl.Polymer Sci.57,797(1995)中,並且其可自市售的特定KRYTOX®及FOMBLIN®潤滑油商品獲得。較佳地,FPE在FPE之鏈結構之一端或兩端具有羧基。對於單羧基FPE,該分子之另一端通常如在PFPE的情況下全氟化,但可含有一個氫原子。無論在一端或兩端具有羧基,FPE具有至少2個醚氧,更佳至少4個醚氧,甚至更佳至少6個醚氧,即上式中的n至少為2、4、或6,並且上式中的m至少為1、2或3。較佳地,至少一個分隔醚氧之氟碳基團,更佳地至少兩個此類氟碳基團具有2個或3個碳原子。甚至更佳地,至少50%的分隔醚氧之氟碳基團具有2個或3個碳原子。而且,較佳地,FPE總共具有至少9個碳原子。上式中之n及m的最大值較佳不超過組合物在正常條件下,較佳在鋰離子電池之正常操作下為液體時的分子量。儘管本發明之半固體組合物中可使用超過一種(包括一種)的FPE,但較佳僅一種此類FPE。FPE係不同分子量之混合物,係一種其中所示之n值或m值係FPE中所存在n及m群組的平均數之組合物。
FPE,尤其是PFPE具有高的熱穩定性。當在FPE中存在熱不穩定端基,諸如羧基時,由損壞之鋰離子電池提供的熱會造成FPE(及PFPE)脫除羧基。該脫除羧基會促進不可燃揮發物消減燃燒。損壞之電池的過熱亦可導致氟聚醚分解,從而排放不可燃揮發物,該等不可燃揮發物與諸如氧氣及氫氣之可燃活性物質組合,使其不可燃(作用模式(v))。液體氟聚醚當在燃燒開始之前即存在於燃燒位點時,可具有防止燃燒發生之額外消減燃燒效果。
可藉由向氟聚醚中摻入分解催化劑來降低液體氟聚醚之熱穩定性。分解催化劑以受熱方式運作,即因應鋰離子電池損壞時發生之氟聚醚之加熱來起作用。分解催化劑會降低氟聚醚之分解溫度,從而使得消減鋰離子電池燃燒的不可燃揮發物提早排放。較佳的分解催化劑係路易斯酸(Lewis acid),諸如AlCl3、BF3、FeCl3及TiCl4。較佳地,這些在鋰離子電池之正常操作條件下係顆粒固體。氟聚醚受到損壞之鋰離子電池加熱時,僅需要少量催化劑即可使氟聚醚有效分解。例如,以氟聚醚的重量計,氟聚醚中的催化劑(諸如路易斯酸)的存在量為0.1重量%至2重量%。
在另一個實施例中,在鋰離子電池之操作條件下,燃燒消減劑可為固體,一般而言呈顆粒形式,並且一般而言係無機化合物。
燃燒消減劑之實例包括彼等可在熱致分解時排放水、氮氣、二氧化氮、二氧化碳、或二氧化硫從而促進作用模式(i)及(ii)之化合物。該等化合物之實例包括水合物、碳酸鹽、碳酸氫鹽、硫酸鹽、 亞硫酸氫鹽及硫酸氫鹽。具體化合物包括Al(OH)3(有時以Al2O3.3H2O為代表)、Mg(OH)2、硼砂(Na2B2O7.10H2O)、硼酸鋅、及海泡石,其係水合矽酸鎂之礦物質。由水合物釋出水即被視為分解。例如,Al(OH)3在加熱至約180℃時會釋出水。
其他可作為燃燒消減劑的化合物包括鹼金屬及鹼土金屬的碳酸鹽、碳酸氫鹽、硫酸鹽、亞硫酸氫鹽、及硫酸氫鹽,諸如鈉、鉀、鈣及鎂的碳酸鹽、碳酸氫鹽、硫酸鹽、亞硫酸氫鹽及硫酸氫鹽。排放氮氣或二氧化氮之化合物的實例包括三聚氰胺及三聚氰胺氰脲酸鹽。
燃燒消減劑在加熱時可變成炭及/或出現膨脹(模式(iii)及(iv)),此類試劑包括矽酸鈉、蛭石及石墨。除石墨以外,該等化合物較佳為無機性。燃燒消減劑可為吸熱固體,諸如碳。碳因不同於上述無機化合物而可簡單地視為單一元素化合物。
燃燒消減劑可為含磷,較佳為無機,諸如聚磷酸銨([NH4PO4]x)、鹼金屬或鹼土金屬的正磷酸鹽或焦磷酸鹽,其藉由作用模式(v)促進消減燃燒。燃燒消減劑可為有機化合物,諸如含溴的有機化合物,其實例為有機含溴化合物,諸如四溴化碳、四溴雙酚A及參(三溴新戊基)磷酸酯。
根據上述內容顯而易見,燃燒消減劑係無機化合物、碳、或有機化合物,並且較佳為非聚合性。該等係除如下文所述對熱不穩定之氟聚合物以外的燃燒消減劑。
在另一個實施例中,燃燒消減劑係固體氟聚合物,其不可燃並且會在損壞之鋰離子電池之過熱下分解,排放消減燃燒之揮發 性物質。較佳地,固體氟聚合物係對熱不穩定,以因應鋰離子電池之損壞提供該分解。這種氟聚合物可具有下文所述之各種種類,其全部呈固體狀態。通常,氟聚合物具有一個碳原子主鏈作為聚合物鏈:例如,-C-C-C-C-C-C-C-C-C-C-Cx-,其中x係為了與聚合物鏈上之取代基一起提供期望的氟聚合物分子量並使氟聚合物呈固體而存在之額外碳原子之數量。分子量至少為50,000(Mn)之氟聚合物為市售商品,從而可在本發明混合物中方便地使用此等呈其對熱不穩定形式之氟聚合物。較佳之氟聚合物係彼等可熔融處理之四氟乙烯共聚物,例如包含至少40至99莫耳%的四氟乙烯(TFE)衍生(藉由聚合)重複單元及1至60莫耳%的衍生自至少一種其他共聚單體之單元。與TFE形成全氟聚合物之較佳共聚單體係具有3至8個碳原子之全氟烯烴,諸如六氟丙烯(HFP),及/或全氟(烷基乙烯基醚)(PAVE),其中直鏈或具支鏈烷基含有1至5個碳原子。該等TFE共聚物及下文所述之TFE共聚物中之較佳PAVE單體係彼等其中烷基含有1個、2個、或3個碳原子者,並且共聚物可使用若干種PAVE單體製備。較佳之TFE共聚物包括FEP(TFE/HFP共聚物及TFE/HFP/PAVE共聚物)以及PFA(TFE/PAVE共聚物),其中PAVE最佳為全氟(乙基乙烯基醚)(PEVE)或全氟(丙基乙烯基醚)(PPVE),或者全氟(甲基乙烯基醚)(PMVE)與PPVE之組合,即TFE/PMVE/PPVE共聚物,在本領域中有時稱為MFA。較不佳之氟聚合物為在聚合物鏈中具有-CH2-單元,例如THV(TFE/HFP/VF2共聚物)。以FEP之總重量計,FEP較佳含有5重量%至17重量%之HFP,其餘部分為TFE,如果存在PAVE,則其含量 為0.2重量%至2重量%。以PFA之總重量計,PFA較佳含有至少2重量%之PAVE,其餘部分為TFE。
以聚合物鏈(不包括端基)之總重量計,氟聚合物為至少50重量%的氟,較佳至少60重量%的氟,更佳至少70重量%的氟。在本發明之一個實施例中,如果氫存在於構成聚合物鏈之重複單元中,則較佳地,在構成聚合物鏈之任何碳原子上或在鍵結至聚合物鏈之任何側基中之氫僅被單取代,此乃因存在-CH2-會損害氟聚合物之不可燃性。較佳地,如果存在任何氫時,以氟聚合物之總重量計,氫含量不超過2重量%,更佳不超過1重量%,最佳不超過0.5重量%。少量沿聚合物鏈上的氫可具有使氟聚合物對熱不穩定之有益效果,從而有助於其消減燃燒效果。在氟聚合物中存在少量氫有助於藉由作用模式(v)消減燃燒。在本發明之另一個實施例中,氟聚合物係全氟聚合物。所謂全氟聚合物意指在形成聚合物之聚合物鏈的碳原子上的單價取代基全部為氟原子,端基可例外。
與呈液體狀態之氟聚醚燃燒消減劑相反,氟聚合物至少在鋰離子電池所遇到的正常操作條件下,高達40℃,有時高達50℃,及更高,例如高達60℃,及甚至高達80℃,在一大氣壓之壓力下係呈固體狀態。在較高之溫度下,氟聚合物可能熔融。然而,較佳地,氟聚合物之熔融溫度為至少200℃並且不高於315℃。或者,氟聚合物可為一種在加熱時軟化,而非具有明確熔融溫度之氟聚合物。在任一種情況下,該氟聚合物較佳為熔融可流動物。儘管如此,該氟聚合物在鋰離子電池之正常操作條件下仍保持為固體。熔融流動性之特徵可在於其熔融流速(MFR)為至少 0.01g/10min,較佳至少0.1g/10min,更佳至少5g/10min或者至少10g/10min,全部如依據ASTM D 1238,在針對特定氟聚合物所規定之熔融溫度及熔融聚合物重量條件下所測量。對於PFA及FEP,所規定之溫度及重量分別為372℃及5kg。
已知氟聚合物之熱穩定性,尤其係由在氟聚合物中主要的碳原子與氟原子之間的強烈化學鍵結所致。然而,如此聚合的固體氟聚合物通常具有熱不穩定部分體,尤指不穩定端基,其係在聚合反應過程中,由在水性聚合介質中提供自由基之成分所產生。在如此聚合的氟聚合物中,每106個碳原子可存在至多或多於總共至少300個不穩定端基,更通常至少400個此類端基-COOH、-COF、及/或-CONH2。例如,在水性聚合介質中的常見過硫酸鹽聚合引發劑導致在聚合物鏈上形成羧基端基-COOH。該等基團在升高的溫度下分解,從而顯示氟聚合物之熱不穩定性。分解係指羧基端基之分離,留下反應性基團CF2 -,其可導致形成新的不穩定端基(即全氟乙烯基-CF=CF2),從而延伸至聚合物鏈中。製造商提供此類可不穩定化的氟聚合物用於商業用途之前,會使該氟聚合物先經過以穩定端基置換不穩定端基之穩定化處理過程。例如,使FEP在高溫下經過濕熱處理,以穩定的-CF2H端基置換不穩定端基。使FEP及PFA二者均經過氟化處理,以穩定的-CF3端基置換不穩定端基。
在本發明中用作燃燒消減劑之可不穩定化的氟聚合物較佳並非穩定端基,而是在氟聚合物中改用其熱不穩定形式,即對熱不穩定之部分體,諸如不穩定端基。由諸如不當再充電或短路之損壞所 造成之鋰離子電池升溫會導致氟聚合物加熱,從而造成該不穩定部分體分解。該分解導致氟聚合物排放不可燃揮發物。該等揮發物消減燃燒,防止其發生,如果發生則加以限制,或者瞬時滅火。燃燒揮發物至少提供消減燃燒之作用模式(v)。
較佳之可不穩定化氟聚合物係上文所述之FEP,但具有未穩定化之端基,以便具有上文所述之不穩定端基。
對熱不穩定之氟聚合物之另一個實施例係在聚合物鏈中含有少量如上文所述對熱不穩定之基團(諸如CH2-CH2-或-CH2-)的氟聚合物,其提供氟聚合物之熱分解性,而不賦予氟聚合物可燃性。此類熱不穩定性基團可與諸如上文揭示之熱不穩定性端基組合存在。至少含有聚合物(主)鏈熱不穩定性之較佳之對熱不穩定之氟聚合物係TFE、HFP與乙烯的共聚物,其中共聚物中之乙烯的量少,以滿足上述較佳的最大氫含量。TFE/HFP/乙烯共聚物之TFE及HFP含量可與上述FEP二元聚合物(dipolymer)相同。
對熱不穩定之氟聚合物較佳係在由損壞之鋰離子電池提供的加熱下可以流動。在具有熔融溫度之氟聚合物的情況下,此類加熱會超過該熔融溫度。氟聚合物在受到此類加熱時會充分軟化,而變得熔融且可流動,或者熔融變成熔融可流動物。由損壞之電池提供的加熱將氟聚合物自固體狀態變成液體狀態。這種氟聚合物之流動促使過熱電解質所產生之可燃蒸氣排除氧氣,及/或遏制火燄。熔體流動物足以密封原本可能逸出可燃蒸氣之鋰離子電池。
對熱不穩定之氟聚合物可製造到片材中,其可諸如藉由在正好高於氟聚合物之熔融溫度的溫度下壓縮模製,而用作絕緣體,諸如頂部絕緣體22和底部絕緣體24(圖1、圖3、及圖6)以及頂部絕緣體74。
在本發明的另一個實施例中,在本發明中使用之燃燒消減劑係燃燒消減劑的組合。該組合可使損壞之鋰離子電池的發生損壞之電化學活性區域20暴露於用於消減燃燒之多種作用模式。此組合可使用液體氟聚醚燃燒消減劑,但係呈半固體形式,可更方便應用於鋰離子電池內。該從液體狀態到半固體狀態的轉化係藉由將液體氟聚醚與顆粒燃燒消減劑(諸如上文所述者,不論無機化合物、有機化合物、或固體氟聚合物)依有效獲得半固體狀態的量混合來完成。
所謂半固體(狀態)意指組合物在上述溫度及壓力之正常條件下不為液體。較佳地,當電池係可再充電電池時,在鋰離子電池之正常操作(包括再充電)中遇到的較高溫度下仍保持該半固體狀態。電池之正常操作可包括環境溫度(15至25℃)以及高達40℃,有時高達50℃,及甚至更高的較高溫度,例如高達60℃,及甚至高達80℃的溫度,以及為簡化起見,在一大氣壓壓力下。組合物之半固體狀態不同於液體狀態之處在於其在任何該等溫度及壓力條件下均不可流動。反之,液體狀態表示流動性,以便可呈其容器之形狀,同時具有固定的體積。組合物之半固體狀態意指其沒有流動性,反而具有硬度,由此保留在其相對於電池所定位的位置。混合物之半固體狀態的特徵有利於該組合物之這種定位,亦即混合物在壓力下之流動性足以 與電池相關之所需表面緊密接觸,例如填充隔室,諸如隔室28、42、及54。施加的壓力可僅為用於塗覆、鋪展、或裝填半固體以達到所需之接觸或填充之手鏟壓力。在施加並移除壓力後,氟化材料之半固體狀態使得其不會在鋰離子電池之正常條件下自其施加位置流走。半固體之特徵在於該半固體狀態之組合物具有蠟、麵糰、或油灰之稠度,在將氟聚醚與固體添加劑(其可為上文所述之燃燒消減劑)混合在一起時,可例如藉由氟聚醚之分子量、加至所得組合物中使其稠化成為半固體狀態時之固體添加劑用量、及固體添加劑的粒度來控制其硬度。在任何情況下,氟聚醚之分子量低至足使其在正常條件下,較佳在鋰離子電池之正常操作條件下呈液體狀態,由此液體氟聚醚可能會具有高於80℃之沸點溫度(在一大氣壓下)。半固體狀態之特徵在於零之拉伸強度,一般係由於無法形成具有足以供測試拉伸強度之完整性的拉伸測試樣品。
可添加至液體氟聚醚中將其稠化形成具有半固體狀態混合物的另一種固體氟聚合物係低分子量聚四氟乙烯,其通常稱為PTFE微粉末,以便與具有此等高分子量但不會在上述熔融狀態下流動之聚四氟乙烯(PTFE)區分。儘管PTFE微粉末之分子量相對於PTFE較低,但其足以提供固體聚合物。呈固體聚合物之PTFE微粉末可在商品上取得粉末,其藉由不呈油灰狀來保持其粉末狀態,亦即PTFE微粉末不呈半固體狀態。反之,呈粉末狀態形式之PTFE微粉末由足夠硬度的粒子組成,從而使得呈粉末形式的PTFE微粉末可以自由流動。PTFE微粉末之分子量低於PTFE的結果為其在熔融狀態下具有流 動性,即熔融流動性。PTFE微粉末之熔融流動性之特徵在於如依據ASTM D 1238在372℃下,使用5kg重量對熔融聚合物測得之熔融流速(MFR)為至少0.01g/10min,較佳至少0.1g/10min,更佳至少5g/10min,亦更佳至少10g/10min。PTFE微粉末本身不可由熔融物製造,亦即由PTFE微粉末之熔融物模製的物品由於脆度極高而為無用。由於其低子量(相對於不可熔融流動之PTFE),其不具強度。PTFE微粉末擠製成的細絲脆性過高,以致於其在彎曲時會斷裂。
作為材料組合之燃燒消減劑可藉由將材料混合在一起來製備,較佳地,其中該等材料中之一者係液體氟聚醚,並且較佳地,混合物之至少另一種組分係不同之燃燒消減劑,較佳以獲得呈如上所述之半固體狀態的所得組合物。如果組合物中要包含固體氟聚合物及/或分解催化劑時,則該等可包括在混合步驟中。固體氟聚合物粒子可為彼等由製備氟聚合物之聚合過程產生者。例如,水性分散液聚合法一般導致形成如藉由雷射光散射法所測量平均粒度不大於0.5微米之氟聚合物粒子。從水性聚合介質回收氟聚合物粒子導致來自聚合過程之一級粒子聚集,以形成聚集的一級粒子之二級粒子,如藉由雷射光散射法(ASTM D 4464)所測量,二級粒子之平均粒度一般為200至800微米。作為化合物添加之燃燒消減劑、固體氟聚合物、及催化劑之粒度較佳為可與液體氟聚醚產生均勻半固體混合物之有效粒度。較佳地,這些組分之平均粒度(根據ASTM D 4464藉由光散射法)在0.1至800微米之範圍內。
為方便起見,混合步驟可在環境溫度(15至25℃)下進行。可手動或藉由機械裝置進行混合。將組分添加至混合容器中,並進行混合。當顆粒固體較佳與液體混合時,當沒有看到任一種組分集中時,即完成該混合物。反而獲得均勻外觀之混合物,其較佳為半固體。較佳地,在鋰離子電池之壽命期間,在組合物之使用過程中保持均勻性,但當將該組合物應用在與鋰離子電池相關之限制上時,不一定需要這種均勻性。該組合物之限制使得組合物之組分即使分開亦仍存在於限制空間(隔室)內。
在呈組合物含在燃燒消減劑中之組分比例方面,無論除氟聚合物以外的燃燒消減劑或此類燃燒消減劑與氟聚合物(不論對熱不穩定或僅為氟聚合物增稠劑)之組合,其存在於組合物中之顆粒固體材料或單純之顆粒固體的量較佳係可有效地將氟聚醚之液體狀態轉化成半固體狀態。該量取決於氟聚醚之分子量及所存在之固體的粒度及所混合之固體的量。氟聚醚之分子量越高,則其黏度越高,這意味著轉化成半固體狀態所需要之顆粒固體越少。顆粒固體之粒度越小,則完成該轉化所需要之該等固體越少。在作為除氟聚合物以外的燃燒消減劑之顆粒固體方面,較佳地,半固體組合物包含至少70重量%,更佳至少60重量%,最佳至少50重量%的液體氟聚醚,其餘部分由顆粒固體補足總量100重量%。亦較佳地,至少3重量%、4重量%、或5重量%的組合物包含顆粒固體,其餘部分由液體氟聚醚補足總量100重量%,由此液體氟聚醚之最大量分別為97重量%、96重量%、及95重量%。適用之顆粒固體之另外較佳的最小值為至少10重量 %、至少15重量%、至少20重量%、至少25重量%、至少30重量%、至少35重量%、或至少40重量%,其餘部分由液體氟聚醚與顆粒固體之組合補足總量100重量%。在一個實施例中,該等組成範圍適用於液體氟聚醚與呈顆粒固體之除氟聚合物以外的燃燒消減劑之組合,共計100重量%。在另一個實施例中,該等組成範圍適用於液體氟聚醚、以及呈顆粒固體之除氟聚合物以外的燃燒消減劑和/或氟聚合物(無論PTFE微粉末或對熱不穩定之氟聚合物)的組合,此組合與液體氟聚醚一起共計該等組分之組合物之100重量%。根據這個實施例,上述顆粒固體之重量%適用於除氟聚合物以外的燃燒消減劑與氟聚合物之組合。然而,較佳地,液體氟聚醚、除氟聚合物以外的燃燒消減劑、及氟聚合物的組合重量中至少3重量%、4重量%、或5重量%、至少10重量%、至少20重量%、至少25重量%、或至少30重量%係除氟聚合物以外的燃燒消減劑。較佳地,氟聚合物組分包含至少50重量%之對熱不穩定之氟聚合物。如果存在任何分解催化劑,則其在組合物中之含量不包括在該等組成範圍內。催化劑的量係以如上所述之氟聚醚的重量計。
實例 實例1
用於鋰圓柱形電池之陰極電極係由LiMn0.33Ni0.33Co0.33O2電極粉末、聚偏二氟乙烯(PVDF)聚合物黏結劑、及於1-甲基-2-吡咯啶酮(NMP)中形成漿物之石墨的混合物製 成。陽極電極係由石墨、PVDF及NMP製成。陰極電極係從漿物在鋁集電器箔上模塑製成,及在銅集電器箔上模塑製成陽極電極。電解質係存於碳酸伸乙酯(EC):碳酸二乙酯(DEC)中之1M LiPF6。在該方法中使用聚丙烯隔板以捲繞電池單元核心。將捲繞的核心元件(膠卷)插入圖1中所示的金屬罐體中,封閉並密封。如圖1中所示的金屬罐體總集成具有一鋼罐體6和一鋼電池頂部8,鋼電池頂部8係電池的陽極。罐體6係電池的陰極。這兩極藉由一U形聚合物絕緣體環10彼此絕緣,U形聚合物絕緣體環10位於陽極與陰極之間彼此鄰近處。位於絕緣體環10之U形內者係其內具有一孔14的一圓片12以及形成孔14之一封閉口之經刻劃的聚醯胺備裂圓片16,其全部如圖所示藉由環繞罐體6之夾壓部18壓在一起。電池內之捲繞的核心元件(電化學活性區域20)坐落於罐體6的絕緣側內,並且片狀絕緣體22和24分別覆蓋捲繞的核心元件之頂部和底部。一中心銷26坐落於捲繞的核心元件的中心。絕緣體22和24二者均係阻燃性聚乙烯醇之片材。頂部絕緣體22與備裂圓片16之間的空間形成含有燃燒消減劑的隔室28。
將組裝的電池單元完全充電,然後使釘子通過罐體的側部,以使釘子穿透到捲繞的核心元件的一半,從而使充電的電池短路,進而導致電池內部的溫度迅速升高。在電池罐體總集成的內部壓力積聚,直到頂部絕緣體22故障而使隔室28中的燃燒消減材料(此例中,為PFPE和Al(OH)3的80:20(以重量計)混合物)曝露於溫度迅速上升超過100℃之捲繞的核心元件。迅速產生煙霧和火焰,推測 火焰係由電池中之短路過程發生弧光而引發。燃燒消減材料迅速熄滅火焰,並且捲繞的核心元件開始冷卻。在幾分鐘內,整個電池單元總集成的溫度降至100℃以下,並未造成火災。
在該實例的實驗中以及在其餘實例的實驗中使用的PFPE係在美國專利公開案2014/0065461的實例1中使用的PFPE(氟化組合物)。
實例2
捲繞的核心元件(膠卷)與實例1相同。將捲繞的核心元件(膠卷)插入圖1中所示的一金屬罐體中,封閉並密封。如圖1中所示的金屬罐體總集成具有一鋼罐體6和一鋼電池頂部8,鋼電池頂部8係電池的陽極。罐體6係電池的陰極。這兩極藉由一U形聚合物絕緣體環10彼此絕緣,U形聚合物絕緣體環10位於陽極與陰極之間彼此鄰近處。位於絕緣體環10之U形內者係其內具有一孔14的一圓片12以及形成孔14之一封閉口之經刻劃的聚醯胺備裂圓片16,其全部如圖所示藉由環繞罐體6之夾壓部18壓在一起。電池內的捲繞的核心元件(電化學活性區域20)坐落於罐體6的絕緣側內,並且片狀絕緣體22和24分別覆蓋捲繞的核心元件的頂部和底部。一中心銷26坐落於捲繞的核心元件之中心。絕緣體22和24二者均係阻燃性聚乙烯醇之片材。包括另一隔室42,並且其填充有與隔室28相同的燃燒消減劑。
將組裝的電池單元完全充電,然後使釘子通過罐體的側部,以使釘子穿透到捲繞的核心元件的一半,從而使充電的電池短路,進而導致電池內部的溫度迅速升高。在電池罐體總集成的內部壓力積聚,直到頂部絕緣體22和底部絕緣體24故障而使隔室28和42中的燃燒消減材料(此例中,為PFPE和Al(OH)3的80:20(以重量計)混合物)曝露於溫度迅速上升超過100℃之捲繞的核心元件。迅速產生煙霧和火焰,推測火焰係由電池中之短路過程發生弧光而引發。燃燒消減材料迅速熄滅火焰,並且捲繞的核心元件開始冷卻。在幾分鐘內,整個電池單元總集成的溫度降至100℃以下,並未造成火災。
實例3
捲繞的核心元件(膠卷)與實例1相同。將捲繞的核心元件(膠卷)插入圖3中所示的金屬罐體中,惟隔室28係空的並且不含任何燃燒消減劑,封閉並密封。燃燒消減劑僅位於隔室42中。如圖3中所示的金屬罐體總集成具有一鋼罐體6和一鋼電池頂部8,鋼電池頂部8係電池的陽極。罐體6係電池的陰極。這兩極藉由一U形聚合物絕緣體環10彼此絕緣,U形聚合物絕緣體環10位於陽極與陰極之間彼此鄰近處。位於絕緣體環10之U形內者係其內具有一孔14的一圓片12以及形成孔14之一封閉口之經刻劃的聚醯胺備裂圓片16,其全部如圖所示藉由環繞罐體6之夾壓部18壓在一起。電池內之捲繞的核心元件(電化學活性區域20)坐落於罐體6的絕緣側內,並且片狀絕緣體22和24分別覆蓋捲繞的核心元件之頂部和底部。一中心銷26 坐落於捲繞的核心元件之中心。絕緣體22和24二者均係阻燃性聚乙烯醇之片材。
將組裝的電池單元完全充電,然後使釘子通過罐體的側部,以使釘子穿透到捲繞的核心元件的一半,從而使充電的電池短路,進而導致電池內部的溫度迅速升高。在電池罐體總集成的內部壓力積聚,直到頂部絕緣體22和底部絕緣體24故障而使隔室42中的燃燒消減材料(此例中,為PFPE和Al(OH)3的80:20(以重量計)混合物)曝露於溫度迅速上升超過100℃之捲繞的核心元件。在備裂圓片16故障後,在隔室28中形成部分真空,並且氣體開始通過電池罐體之頂部逸出,從而有助於引出隔室42中之燃燒劑,與電化學活性區域20中之捲繞的核心元件接觸。迅速產生煙霧和火焰,推測火焰係由電池中之短路過程發生弧光而引發。燃燒消減材料迅速熄滅火焰,並且捲繞的核心元件開始冷卻。在幾分鐘內,整個電池單元總集成的溫度降至100℃以下,並未造成火災。
實例4
捲繞的核心元件(膠卷)與實例1相同。將捲繞的核心元件(膠卷)插入圖1中所示的金屬罐體中,但是隔室28係空的並且不含任何燃燒消減劑,封閉並密封。將如圖4和圖5中所示的含有燃燒消減劑之多層片材48環繞捲繞的核心元件放置,然後插入罐體中,隨後將罐體封閉並密封。片材48由薄膜50和52製成,薄膜50和52係阻燃性聚乙烯醇,並且隔室54填充有燃燒消減劑。整個電池單元具 有一鋼罐體6和一鋼電池頂部8,鋼電池頂部8係電池的陽極。罐體6係電池的陰極。這兩極藉由一U形聚合物絕緣體環10彼此絕緣,U形聚合物絕緣體環10位於陽極與陰極之間彼此鄰近處。位於絕緣體環10之U形內者係其內具有一孔14的一圓片12以及形成孔14之一封閉口之經刻劃的聚醯胺備裂圓片16,其全部如圖所示藉由環繞罐體6之夾壓部18壓在一起。電池內的捲繞的核心元件(電化學活性區域20)坐落於罐體6的絕緣側內,並且片狀絕緣體22和24分別覆蓋捲繞的核心元件的頂部和底部。一中心銷26坐落於捲繞的核心元件的中心。絕緣體22和24二者均係阻燃性聚乙烯醇之片材。
將組裝的電池單元完全充電,然後使釘子通過罐體的側部,以使釘子穿透到捲繞的核心元件的一半,從而使充電的電池短路,進而導致電池內部的溫度迅速升高。在電池罐體總集成的內部溫度和壓力升高,直到頂部絕緣體22和底部絕緣體24以及阻燃性聚乙烯醇的薄膜50和52故障而使燃燒消減劑50(此例中,為PFPE和Al(OH)3的80:20(以重量計)混合物)曝露於溫度迅速上升超過100℃之捲繞的核心元件。在備裂圓片16故障後,在隔室28中形成部分真空,並且氣體開始通過電池罐體之頂部逸出,從而有助於引出燃燒劑,與電化學活性區域20中之捲繞的核心元件接觸。迅速產生煙霧和火焰,推測火焰係由電池中之短路過程發生弧光而引發。燃燒消減材料迅速熄滅火焰,並且捲繞的核心元件開始冷卻。在幾分鐘內,整個電池單元總集成的溫度降至100℃以下,並未造成火災。
實例5
捲繞的核心元件(膠卷)與實例1相同。將捲繞的核心元件(膠卷)插入圖1中所示的金屬罐體中,封閉並密封。如圖1中所示的金屬罐體總集成具有一鋼罐體6和一鋼電池頂部8,鋼電池頂部8係電池的陽極。罐體6係電池的陰極。這兩極藉由一U形聚合物絕緣體環10彼此絕緣,U形聚合物絕緣體環10位於陽極與陰極之間彼此鄰近處。位於絕緣體環10之U形內者係其內具有一孔14的一圓片12以及形成孔14之一封閉口之經刻劃的聚醯胺備裂圓片16,其全部如圖所示藉由環繞罐體6之夾壓部18壓在一起。電池內的捲繞的核心元件(電化學活性區域20)坐落於罐體6的絕緣側內,並且片狀絕緣體22和24分別覆蓋捲繞的核心元件的頂部和底部。一中心銷26坐落於捲繞的核心元件的中心。絕緣體22和24二者均係阻燃性聚乙烯醇之片材。頂部絕緣體22與備裂圓片16之間的空間形成含有燃燒消減劑的隔室28。
將組裝的電池單元完全充電,然後使釘子通過罐體的側部,以使釘子穿透到捲繞的核心元件的一半,從而使充電的電池短路,進而導致電池內部的溫度迅速升高。在電池罐體總集成的內部壓力積聚,直到頂部絕緣體22故障而使隔室28中的燃燒消減材料(此例中,為PFPE和Al(OH)3的80:20(以重量計)混合物以及少量均勻分散於該混合物中之路易斯酸BF3)曝露於溫度迅速上升超過100℃之捲繞的核心元件。迅速產生煙霧和火焰,推測火焰係由電池中之短路過程發生弧光而引發。燃燒消減材料迅速熄滅火焰,並且捲繞的核 心元件開始冷卻。在幾分鐘內,整個電池單元總集成的溫度降至100℃以下,並未造成火災。
實例6
捲繞的核心元件(膠卷)與實例1相同。將捲繞的核心元件(膠卷)插入圖1中所示的金屬罐體中,封閉並密封。如圖1中所示的金屬罐體總集成具有一鋼罐體6和一鋼電池頂部8,鋼電池頂部8係電池的陽極。罐體6係電池的陰極。這兩極藉由一U形聚合物絕緣體環10彼此絕緣,U形聚合物絕緣體環10位於陽極與陰極之間彼此鄰近處。位於絕緣體環10之U形內者係其內具有一孔14的一圓片12以及形成孔14之一封閉口之經刻劃的聚醯胺備裂圓片16,其全部如圖所示藉由環繞罐體6之夾壓部18壓在一起。電池內的捲繞的核心元件(電化學活性區域20)坐落於罐體6的絕緣側內,並且片狀絕緣體22和24分別覆蓋捲繞的核心元件的頂部和底部。一中心銷26坐落於捲繞的核心元件的中心。絕緣體22和24二者均係阻燃性聚乙烯醇之片材。頂部絕緣體22與備裂圓片16之間的空間形成含有燃燒消減劑的隔室28。
將組裝的電池單元完全充電,然後使釘子通過罐體的側部,以使釘子穿透到捲繞的核心元件的一半,從而使充電的電池短路,進而導致電池內部的溫度迅速升高。在電池罐體總集成的內部壓力積聚,直到頂部絕緣體22故障而使隔室28中的燃燒消減材料(此例中,為PFPE和對熱不穩定之氟聚合物(即其端基未經穩定化因而 對熱不穩定之FEP)的60:40(以重量計)混合物)曝露於溫度迅速上升超過100℃之捲繞的核心元件。迅速產生煙霧和火焰,推測火焰係由電池中之短路過程發生弧光而引發。燃燒消減材料迅速熄滅火焰,並且捲繞的核心元件開始冷卻。在幾分鐘內,整個電池單元總集成的溫度降至100℃以下,並未造成火災。
實例7
捲繞的核心元件(膠卷)的組成以及電極/隔板結構與實例1相同,惟將膠卷平坦化成一棱柱形電池之一般形狀。將平坦化的捲繞的核心元件(電化學活性區域20)插入由如繪示於圖4和圖5中之一多層片材48構成之袋中,封閉並密封。片材48之薄膜52係鋁箔,其具有聚醯胺外層及在內部的聚丙烯層,隔室54含有燃燒消減劑。薄膜50係阻燃性聚乙烯醇,其面對形成電化學活性區域之捲繞的核心元件並與其接觸。對於「棱柱形」電池之陽極和陰極,將單獨的金屬翼片連接到捲繞的核心元件,並單獨延伸到袋的外部。
將組裝的電池單元完全充電,然後使釘子通過袋的側部,以使釘子穿透到捲繞的核心元件的一半,從而使充電的電池短路,進而導致電池內部的溫度迅速升高。隨著電池袋總集成內部的溫度和壓力升高,阻燃性聚乙烯醇薄膜52裂開,從而暴露燃燒消減劑(此例中,為PFPE和Al(OH)3的80:20(以重量計)混合物)。迅速產生煙霧和火焰,推測火焰係由電池中之短路過程發生弧光而引發。 燃燒消減劑迅速熄滅火焰,並且捲繞的核心元件開始冷卻。在幾分鐘內,整個電池單元總集成的溫度降至100℃以下,並未造成火災。
在前述實例中之實驗中,當其中使用之燃燒消減劑分別改用以下組合物代替時,獲得基本上相同的結果:(a)95重量%之PFPE和5重量%之水合矽酸鎂,以及(b)67重量%之PFPE和33重量%之在實例6中使用的對熱不穩定之氟聚合物。

Claims (13)

  1. 一種改性一鋰離子電池的方法,該鋰離子電池具有一電化學活性區域及其外殼,該方法包含在該外殼內形成至少一個與該電化學活性區域分開的隔室,將燃燒消減劑置於該隔室內,由此該燃燒消減劑不與該電化學活性區域接觸,且其中該燃燒消減劑係包含液體氟聚醚、分解催化劑和/或固體材料之組合物,該隔室係對壓力和/或熱敏感,由此當該電化學活性區域過熱時,該隔室會裂開,從而使該燃燒消減劑與該電化學活性區域接觸,以消減該電化學活性區域之燃燒。
  2. 如請求項1之方法,其中該外殼包含金屬箔。
  3. 如請求項1之方法,其中該外殼係一罐體。
  4. 如請求項1之方法,其中該固體材料係一額外的燃燒消減劑。
  5. 如請求項1之方法,其中由該液體氟聚醚和該固體材料產生之該組合物係半固體。
  6. 一種鋰離子電池,其包含:一外殼,界定位於該外殼內之鋰離子電化學活性區域之結構,該結構包括帶相反電荷的電極,其用於將鋰離子從一個該電極吸引到另一個該電極, 界定至少一個位於該外殼內與該鋰離子電化學活性區域分開之隔室的結構,該鋰離子電化學活性區域會受到該鋰離子電化學活性區域內所發生短路造成之過熱,該含有燃燒消減劑之隔室與該鋰離子電化學活性區域保持分開,且其中該燃燒消減劑係包含液體氟聚醚、分解催化劑和/或固體材料之組合物,該界定含有該燃燒消減劑之該隔室的結構包括一膜,該膜可因該過熱而裂開,從而讓該燃燒消減劑釋放到該電化學活性區域中,以消減其內之燃燒,但條件係當該膜包含燃燒消減劑時,該燃燒消減劑可選擇性存在於該隔室中。
  7. 如請求項6之鋰離子電池,其中該膜可因導致該膜破裂之該過熱而裂開。
  8. 如請求項6之鋰離子電池,其中該膜可因導致該膜熔融之該過熱而裂開。
  9. 如請求項6之鋰離子電池,其中該膜對在該鋰離子電化學活性區域內發生之鋰離子電化學活性呈惰性。
  10. 如請求項6之鋰離子電池,其中該含有該燃燒消減劑的隔室位於該外殼與界定該鋰離子電化學活性區域之該結構之間。
  11. 如請求項6之鋰離子電池,其中該外殼包括用於在該鋰離子電池電化學活性區域內發生該過熱時釋放壓力之一通氣孔,並且含有該燃燒消減劑的該隔室位於該通氣孔與該鋰離子電化學活性區域之間。
  12. 如請求項11之鋰離子電池,其中該通氣孔包括可以打開容許該壓力釋放之一封閉口,該通氣孔打開時即伴隨該膜之破裂。
  13. 如請求項11之鋰離子電池,其中該通氣孔位於該外殼之一端處,並且另一個包括可因該過熱而開裂的一膜且含有燃燒消減劑的隔室之位置遠離位於該通氣孔與該鋰離子電化學活性區域之間的該隔室,由此在該過熱時,來自各該等隔室的該燃燒消減劑會釋放到該鋰離子電化學活性區域中,從而消減該鋰離子電化學活性區域內之燃燒。
TW104121992A 2014-07-14 2015-07-07 具提升之抗燃燒安全性的鋰電池 TWI709263B (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201462024117P 2014-07-14 2014-07-14
US62/024,117 2014-07-14
US201462060749P 2014-10-07 2014-10-07
US62/060,749 2014-10-07

Publications (2)

Publication Number Publication Date
TW201607103A TW201607103A (zh) 2016-02-16
TWI709263B true TWI709263B (zh) 2020-11-01

Family

ID=53540895

Family Applications (1)

Application Number Title Priority Date Filing Date
TW104121992A TWI709263B (zh) 2014-07-14 2015-07-07 具提升之抗燃燒安全性的鋰電池

Country Status (7)

Country Link
US (3) US10566592B2 (zh)
EP (1) EP3170215A1 (zh)
JP (1) JP6847032B2 (zh)
KR (2) KR102528809B1 (zh)
CN (1) CN107078232B (zh)
TW (1) TWI709263B (zh)
WO (1) WO2016010722A1 (zh)

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9819053B1 (en) 2012-04-11 2017-11-14 Ionic Materials, Inc. Solid electrolyte high energy battery
WO2016197098A1 (en) 2015-06-04 2016-12-08 Ionic Materials, Inc. Solid state bipolar battery
US11251455B2 (en) 2012-04-11 2022-02-15 Ionic Materials, Inc. Solid ionically conducting polymer material
US11145857B2 (en) 2012-04-11 2021-10-12 Ionic Materials, Inc. High capacity polymer cathode and high energy density rechargeable cell comprising the cathode
US10559827B2 (en) 2013-12-03 2020-02-11 Ionic Materials, Inc. Electrochemical cell having solid ionically conducting polymer material
US11152657B2 (en) 2012-04-11 2021-10-19 Ionic Materials, Inc. Alkaline metal-air battery cathode
US11319411B2 (en) 2012-04-11 2022-05-03 Ionic Materials, Inc. Solid ionically conducting polymer material
CN111341979A (zh) 2013-12-03 2020-06-26 离子材料公司 固体离子传导性聚合物材料及其应用
CN108352565A (zh) 2015-06-04 2018-07-31 离子材料公司 具有固体聚合物电解质的锂金属电池
US11342559B2 (en) 2015-06-08 2022-05-24 Ionic Materials, Inc. Battery with polyvalent metal anode
CN108140882A (zh) * 2015-06-08 2018-06-08 离子材料公司 具有铝阳极和固体聚合物电解质的电池
CN107665964B (zh) * 2016-07-29 2020-11-06 比亚迪股份有限公司 一种复合防爆阀、盖板组件及电池
JP2019531575A (ja) * 2016-07-29 2019-10-31 ビーワイディー カンパニー リミテッド 複合防爆弁、蓋板アセンブリ、およびバッテリー
KR102127307B1 (ko) * 2016-10-31 2020-06-26 주식회사 엘지화학 이차전지
KR20190111056A (ko) 2017-01-26 2019-10-01 아이오닉 머터리얼스, 인코퍼레이션 고체 폴리머 전해질을 갖는 알카라인 배터리 캐소드
JP7249286B2 (ja) 2017-03-30 2023-03-30 ドナルドソン カンパニー,インコーポレイティド リリーフ弁を備えたベント
GB2565131B (en) 2017-08-04 2021-07-28 Ge Aviat Systems Ltd Modular power system and method of mitigating failure propagation between a plurality of modules in a modular power system
US20200028134A1 (en) * 2018-07-18 2020-01-23 Sf Motors, Inc. Battery cell for an electric vehicle battery pack
CN113424356A (zh) * 2019-03-29 2021-09-21 三井化学株式会社 锂离子电池用外部包装膜、锂离子电池、及锂离子电池组
US20200403201A1 (en) * 2019-06-21 2020-12-24 All Cell Technologies, Llc Apparatus and method for thermal runaway propagation prevention
CN112018459B (zh) * 2020-07-17 2021-09-14 清华大学 电池系统热失效扩散的抑制结构及其确定方法、电池系统
CN113140863B (zh) * 2021-03-10 2022-08-02 浙江吉利控股集团有限公司 一种电池阻燃盖板、锂离子电池及车辆
CN114335878B (zh) * 2021-12-28 2023-11-03 孚能科技(赣州)股份有限公司 防爆膜片、防爆阀、电池包和无模组电池包
DE102022129101A1 (de) 2022-11-03 2024-05-08 Audi Aktiengesellschaft Batteriesystem sowie Kraftfahrzeug

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090098443A1 (en) * 2007-10-15 2009-04-16 Sony Corporation Battery pack and method for producing the same
CN103269755A (zh) * 2011-01-10 2013-08-28 3M创新有限公司 作为灭火组合物的氟化环氧化物以及使用其灭火的方法

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5726214A (en) * 1996-12-26 1998-03-10 E. I. Du Pont De Nemours And Company Self-foaming fluoropolymer composition
JPH10263099A (ja) * 1997-03-24 1998-10-06 Ngk Insulators Ltd アルカリ金属火災の消火剤組成物及び消火方法
US6159631A (en) * 1998-08-27 2000-12-12 Polystor Corporation Overcharge safety vents on prismatic cells
US7563535B2 (en) * 2002-02-06 2009-07-21 Sony Corporation Battery pack with insulating film sheath material and method of producing the same
KR20040017094A (ko) * 2002-08-20 2004-02-26 삼성에스디아이 주식회사 안전변을 구비한 파우치형 이차전지
KR100509747B1 (ko) * 2003-06-07 2005-08-25 주식회사 이글피쳐코캄 리튬 이차 전지
JP4499680B2 (ja) * 2005-03-30 2010-07-07 三星エスディアイ株式会社 円筒形リチウムイオン二次電池
JP5072235B2 (ja) * 2006-02-23 2012-11-14 三菱重工業株式会社 非水電解質二次電池及び非水電解質二次電池を用いた電力貯蔵装置
US20080292950A1 (en) 2007-05-24 2008-11-27 Sanyo Electric Co., Ltd. Battery module
JP5029210B2 (ja) * 2007-08-20 2012-09-19 ソニー株式会社 難燃剤およびその製造方法、ならびに樹脂組成物およびその製造方法
US8227103B2 (en) * 2008-02-27 2012-07-24 Quallion Llc Battery pack having batteries in a porous medium
US8309240B1 (en) * 2009-02-28 2012-11-13 Hrl Laboratories, Llc Encapsulated fire-retardant materials to improve battery safety
US20110262783A1 (en) 2010-04-27 2011-10-27 Tesla Motors, Inc. Battery Cell with Center Pin Comprised of an Intumescent Material
US20120171529A1 (en) * 2010-07-13 2012-07-05 Yasunari Sugita Battery pack
US8999563B2 (en) * 2011-04-07 2015-04-07 Samsung Sdi Co., Ltd. Secondary battery
KR101335285B1 (ko) * 2011-05-31 2013-12-02 주식회사 엘지화학 신규한 구조의 캡 어셈블리 및 이를 포함하고 있는 원통형 전지
US9196920B2 (en) 2011-10-18 2015-11-24 Johnson Controls Technology Llc Electrochemical cell having a safety device
JP2014011095A (ja) * 2012-07-02 2014-01-20 Shin Kobe Electric Mach Co Ltd リチウムイオン電池
US10454078B2 (en) * 2012-08-30 2019-10-22 The Chemours Company Fc, Llc Li-ion battery having improved safety against combustion
US20140060859A1 (en) 2012-08-30 2014-03-06 Ei Du Pont De Nemours And Company Mixture for Abating Combustion by a Li-ion Battery
FR2995273A1 (fr) 2012-09-12 2014-03-14 Peugeot Citroen Automobiles Sa Systeme de batteries de vehicule comportant une protection antichoc
KR20150089464A (ko) * 2014-01-28 2015-08-05 주식회사 엘지화학 전지모듈
US20170125759A1 (en) 2014-05-30 2017-05-04 Navitas Systems, Llc Methods for preventing or containing thermal runaway in a battery pack
JP7272745B2 (ja) 2014-07-14 2023-05-12 ザ ケマーズ カンパニー エフシー リミテッド ライアビリティ カンパニー リチウムイオン電池の燃焼を抑制するための組成物

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090098443A1 (en) * 2007-10-15 2009-04-16 Sony Corporation Battery pack and method for producing the same
CN103269755A (zh) * 2011-01-10 2013-08-28 3M创新有限公司 作为灭火组合物的氟化环氧化物以及使用其灭火的方法

Also Published As

Publication number Publication date
KR20220142543A (ko) 2022-10-21
US20240021952A1 (en) 2024-01-18
US20160365553A1 (en) 2016-12-15
KR20170030595A (ko) 2017-03-17
CN107078232B (zh) 2021-03-26
TW201607103A (zh) 2016-02-16
US11799166B2 (en) 2023-10-24
KR102528809B1 (ko) 2023-05-08
CN107078232A (zh) 2017-08-18
JP6847032B2 (ja) 2021-03-24
US10566592B2 (en) 2020-02-18
JP2017525108A (ja) 2017-08-31
WO2016010722A1 (en) 2016-01-21
EP3170215A1 (en) 2017-05-24
US20200052266A1 (en) 2020-02-13

Similar Documents

Publication Publication Date Title
TWI709263B (zh) 具提升之抗燃燒安全性的鋰電池
US11374276B2 (en) Li-ion battery having improved safety against combustion
EP2891197B1 (en) Mixture for abating combustion by a li-ion battery
JP5894264B2 (ja) 新規な構造のキャップアセンブリー及びこれを備えた円筒形電池
JP2020524374A (ja) 二次電池用絶縁板及びその製造方法
TWI674291B (zh) 用以減少鋰電池燃燒的組合物
JP2016058180A (ja) リチウムイオン二次電池
WO2016021513A1 (ja) リチウムイオン二次電池
JP2017126484A (ja) リチウムイオン二次電池