TWI705641B - 供電裝置、應用其之飛行工具及其供電方法 - Google Patents

供電裝置、應用其之飛行工具及其供電方法 Download PDF

Info

Publication number
TWI705641B
TWI705641B TW108132220A TW108132220A TWI705641B TW I705641 B TWI705641 B TW I705641B TW 108132220 A TW108132220 A TW 108132220A TW 108132220 A TW108132220 A TW 108132220A TW I705641 B TWI705641 B TW I705641B
Authority
TW
Taiwan
Prior art keywords
secondary battery
fuel cell
aircraft
power supply
voltage
Prior art date
Application number
TW108132220A
Other languages
English (en)
Other versions
TW202011662A (zh
Inventor
周裕福
林和正
Original Assignee
財團法人工業技術研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 財團法人工業技術研究院 filed Critical 財團法人工業技術研究院
Publication of TW202011662A publication Critical patent/TW202011662A/zh
Application granted granted Critical
Publication of TWI705641B publication Critical patent/TWI705641B/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D27/00Arrangement or mounting of power plants in aircraft; Aircraft characterised by the type or position of power plants
    • B64D27/02Aircraft characterised by the type or position of power plants
    • B64D27/24Aircraft characterised by the type or position of power plants using steam or spring force
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04858Electric variables
    • H01M8/04865Voltage
    • H01M8/04888Voltage of auxiliary devices, e.g. batteries, capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U50/00Propulsion; Power supply
    • B64U50/10Propulsion
    • B64U50/19Propulsion using electrically powered motors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M16/00Structural combinations of different types of electrochemical generators
    • H01M16/003Structural combinations of different types of electrochemical generators of fuel cells with other electrochemical devices, e.g. capacitors, electrolysers
    • H01M16/006Structural combinations of different types of electrochemical generators of fuel cells with other electrochemical devices, e.g. capacitors, electrolysers of fuel cells with rechargeable batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/043Processes for controlling fuel cells or fuel cell systems applied during specific periods
    • H01M8/04302Processes for controlling fuel cells or fuel cell systems applied during specific periods applied during start-up
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04858Electric variables
    • H01M8/04895Current
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2200/00Type of vehicles
    • B60L2200/10Air crafts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/0046Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to electric energy storage systems, e.g. batteries or capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/0053Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to fuel cells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/75Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using propulsion power supplied by both fuel cells and batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/40Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for controlling a combination of batteries and fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2250/00Fuel cells for particular applications; Specific features of fuel cell system
    • H01M2250/20Fuel cells in motive systems, e.g. vehicle, ship, plane
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/30The power source being a fuel cell
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Combustion & Propulsion (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Fuel Cell (AREA)
  • Secondary Cells (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

供電裝置配置於飛行器上,以供電給飛行器。飛行器具有平均所需功率值。供電裝置包括二次電池、變壓器及燃料電池。變壓器耦接於二次電池與飛行器之間。燃料電池耦接於飛行器且適於提供第一輸出電流給飛行器。變壓器具有輸出電壓設定值。當燃料電池之第一輸出端電壓低於輸出電壓設定值時,變壓器將二次電池之第二輸出電流提供給飛行器。輸出電壓設定值介於燃料電池之特性曲線之最大功率值與飛行器的平均所需功率值之間的範圍內。

Description

供電裝置、應用其之飛行工具及其供電方法
本揭露是有關於一種供電裝置、應用其之飛行工具及其供電方法。
一般飛行工具(如多旋翼無人機)通常以可充電電池提供飛行期間所需要的電力。然而,在有限的空間與重量下,可充電電池(例如鋁箔包高分子鋰電池)所能提供的電力僅足以提供數十分鐘的飛行時間,因此近年來開發者努力嘗試在飛行機具上配置燃料電池,以氫氣為燃料,經由燃料電池轉換成大量的電能,提供長時間飛行所需的電能。這樣的優勢是因為:燃料電池使用的氫氣燃料具有能量密度(單位重量所能提供的能量,如Wh/kg)高,能夠提供長時間的電能需求,供應飛行工具擴增飛航行程。
然而,燃料電池的功率密度(單位重量所能提供的功率,如W/kg)低,必須大幅增加燃料電池,以抵抗飛行環境的瞬間變化(如陣風來襲)所需的額外功率需求,導致的問題是重量重,飛行時間短。
因此,如何提出一種有效率的飛行工具供電技術以擴增飛航時間或行程,是本技術領域業者努力目標之一。
本揭露實施例提出一種供電裝置、應用其之飛行工具及其供電方法。
本揭露一實施例提出一種供電裝置。供電裝置配置於一飛行器上,以供電給飛行器。飛行器具有一平均所需功率值。供電裝置包括一二次電池、一第一變壓器及一燃料電池。第一變壓器耦接於二次電池與飛行器之間。燃料電池耦接於飛行器,且適於提供一第一輸出電流給飛行器。第一變壓器具有一輸出電壓設定值。當燃料電池之一第一輸出端電壓低於輸出電壓設定值時,第一變壓器將二次電池之一第二輸出電流提供給飛行器。輸出電壓設定值介於燃料電池之特性曲線之一最大功率值與飛行器的平均所需功率值之間的電壓範圍內。
本揭露另一實施例提出一種飛行工具。飛行工具包括飛行器及一供電裝置。供電裝置配置於飛行器上,以供電給飛行器。飛行器具有一平均所需功率值。供電裝置包括一二次電池、一第一變壓器及一燃料電池。第一變壓器耦接於二次電池與飛行器之間。燃料電池耦接於飛行器,且適於提供一第一輸出電流給飛行器。第一變壓器具有一輸出電壓設定值。當燃料電池之一第一輸出端電壓低於輸出電壓設定值時,第一變壓器將二次電池之一第二輸出電流提供給飛行 器。輸出電壓設定值介於燃料電池之特性曲線之一最大功率值與飛行器的平均所需功率值之間的電壓範圍內。
本揭露另一實施例提出一種供電裝置之供電方法。供電裝置配置在一飛行器上。供電裝置包括一二次電池、一第一變壓器及一燃料電池。二次電池透過第一變壓器耦接於飛行器,且第一變壓器具有一輸出電壓設定值。供電方法包括以下步驟。燃料電池提供一第一輸出電流給飛行器;以及,燃料電池之一第一輸出端電壓低於輸出電壓設定值時,第一變壓器將二次電池之一第二輸出電流提供給飛行器。輸出電壓設定值介於燃料電池之特性曲線之一最大功率值與飛行器的平均所需功率值之間的電壓範圍內。
為了對本揭露之上述及其他方面有更佳的瞭解,下文特舉實施例,並配合所附圖式詳細說明如下:
1、2、3:飛行工具
10:飛行器
100、200、300:供電裝置
110:燃料電池
110a、120a:輸出端
115:二極體
120:二次電池
130:第一變壓器
130a:輸出端
140、340:控制器
230:第二變壓器
Figure 108132220-A0305-02-0023-22
Figure 108132220-A0305-02-0023-23
Figure 108132220-A0305-02-0023-24
Figure 108132220-A0305-02-0023-25
Figure 108132220-A0305-02-0023-26
Figure 108132220-A0305-02-0023-27
:階段
B、C、D、E、A:狀態點
c:節點
C1、C2:曲線
I1:第一輸出電流
I2:第二輸出電流
Ip、IQ:輸出電流
L1:垂直線
R1:第一開關
R2:第二開關
VS1:輸出電壓設定值
VS2:輸入電壓設定值
Va:第一輸出端電壓
Vb:第二輸出端電壓
VF,a、VL,a:操作電壓上限
VL,c:操作電壓下限
Vp、VQ、VP:輸出電壓
△P:範圍
T:一段時間
Vc:節點電壓
VL,b:電壓
P1:第一預設電量
P2:第二預設電量
Pav:平均所需功率值
PU:最高所需功率值
Pmax:最大功率值
PS1:燃料電池輸出功率
第1A圖繪示依照本揭露一實施例之飛行工具的功能方塊圖。
第1B圖繪示第1A圖之飛行工具飛行時的時間與所需功率的關係圖。
第1C圖繪示第1A圖之燃料電池之特性曲線圖。
第2A~2F圖繪示第1A圖之飛行器在飛行時供電裝置的供電模式圖。
第3A圖繪示依照本揭露另一實施例之飛行工具的示意圖。
第3B圖繪示第3A圖之燃料電池之特性曲線的示意圖。
第4A圖繪示依照本揭露另一實施例之飛行工具的示意圖。
第4B圖繪示第4A圖之第一變壓器之輸出電壓設定值及第二變壓器之輸入電壓設定值的設定模式圖。
第4C圖繪示第4A圖之第一變壓器之輸出電壓設定值及第二變壓器之輸入電壓設定值的另一種設定模式圖。
為了對本揭露之上述及其他方面有更佳的瞭解,下文特舉實施例,並配合所附圖式詳細說明如下。
請參照第1A~1C圖,第1A圖繪示依照本揭露一實施例之飛行工具1的功能方塊圖,第1B圖繪示第1A圖之飛行工具1飛行時的時間與所需功率的關係圖,而第1C圖繪示第1A圖之燃料電池110之特性曲線圖。飛行工具1包括供電裝置100及飛行器10。供電裝置100配置於飛行器10上,以供電給飛行器10。飛行器10例如是無人機,然亦可為載貨或載客的交通工具。
如第1A圖所示,供電裝置100包括燃料電池110、二極體115、二次電池120、第一變壓器130、控制器140、第一開關R1及第二開關R2。第一變壓器130耦接二次電池120與飛行器10。燃料電池110耦接於飛行器10,可提供第一輸出電流I1給飛行器10。飛行器10具有平均所需功率值Pav,平均所需功率值Pav依據飛行器10的飛行模式而定,本揭露實施例不加以限定。第一變壓器130具有輸出電壓設定值VS1。當燃料電池110之輸出端110a之第一輸出端電 壓Va低於輸出電壓設定值VS1時,第一變壓器130將二次電池120的第二輸出電流I2提供給飛行器10。
如第1A圖所示,第一開關R1及第二開關R2電性耦接於(如並聯)二次電池120之輸出端120a與燃料電池110之輸出端110a之間。控制器140可藉由控制第一開關R1及第二開關R2同時導通或關閉,來控制燃料電池110是否對二次電池120充電。控制器140電性耦接燃料電池110之輸出端110a及二次電池120的輸出端120a,以偵測第一輸出端電壓Va及第二輸出端電壓Vb。控制器140可判斷燃料電池110的第一輸出端電壓Va與二次電池120的第二輸出端電壓Vb的大小。當燃料電池110之第一輸出端電壓Va等於或大於二次電池120的輸出端120a之第二輸出端電壓Vb時,控制器140可控制第一開關R1及第二開關R2同時導通,使燃料電池110對二次電池120充電。當燃料電池110之第一輸出端電壓Va低於二次電池12之第二輸出端電壓Vb時,控制器140可控制第一開關R1及第二開關R2同時關閉,使燃料電池110無法對二次電池120充電。
此外,二極體115耦接燃料電池110與第一變壓器130之間,可阻擋二次電池120之電流回流至燃料電池110。
燃料電池110的操作(工作)電壓例如是介於輸出電壓設定值VS1(即操作電壓下限)與操作電壓上限VF,a(繪示於第2A圖)之間。在實施例中,燃料電池110例如是由數個燃料電池單元(如質子交換膜)所串聯而成,每個燃料電池單元的操作電壓介於0.608伏特(V)~0.692V之間。以燃料電池110由72個燃料電池單元串聯為例, 燃料電池110可提供介於43.8V(如輸出電壓設定值VS1)~49.8V(如操作電壓上限VF,a)之間的操作電壓。
二次電池120例如是鋰電池,其操作電壓介於操作電壓下限VL,c(繪示於第2A圖)與操作電壓上限VL,a(繪示於第2A圖)之間。在實施例中,二次電池120例如是由數個二次電池單元(如鋰鎳錳鈷(NMC)電池)所串聯而成,每個二次電池單元的操作電壓介於3.65V~4.15V之間。以二次電池120由12個二次電池單元串聯為例,二次電池120可提供介於43.8V(如操作電壓下限VL,c)~49.8V(如操作電壓上限VL,a)之間的操作電壓。
在實施例中,二次電池120的操作電壓上限VL,a與燃料電池110的操作電壓上限VF,a大致上相等,而二次電池120的操作電壓下限VL,c與燃料電池110的輸出電壓設定值VS1(如操作電壓下限)大致上相等。在另一實施例中,二次電池120的操作電壓上限VL,a與燃料電池110的操作電壓上限VF,a相異,且二次電池120的操作電壓下限VL,c例如與燃料電池110的輸出電壓設定值VS1相異。
第一變壓器130可偵測燃料電池110與飛行器10之間連線的節點c的節點電壓Vc。由於燃料電池110之輸出端110a與節點c之間的壓損可忽略不計,因此第一變壓器130所偵測到之節點電壓Vc大致上等於燃料電池110之輸出端110a之第一輸出端電壓Va。換言之,當第一變壓器130所偵測到之節點電壓Vc低於輸出電壓設定值VS1,意即等同於燃料電池110之第一輸出端電壓Va低於輸出電壓設定值VS1時,第一變壓器130將二次電池120的第二輸出電流I2 提供給飛行器10。此外,第一變壓器130例如是降壓器。如此,當二次電池120之第二輸出端電壓Vb高於輸出電壓設定值VS1時,第一變壓器130可將二次電池120之第二輸出端電壓Vb降壓至輸出電壓設定值VS1。在實施例中,第一變壓器130例如是直流轉直流(DC/DC)型變壓器。
一般來說,第一變壓器130的效率低於100%,因此第二輸出電流I2經過第一變壓器130後無可避免地會發生電能耗損。由於在燃料電池110之第一輸出端電壓Va低於輸出電壓設定值VS1的情況下,二次電池120才經過第一變壓器130提供第二輸出電流I2給飛行器10,而燃料電池110之第一輸出端電壓Va不低於輸出電壓設定值VS1時,二次電池120便不提供電流給飛行器10,因此可減少電流經過第一變壓器130的損耗量,也可以減少二次電池120的耗電量。
如第1B圖所示,曲線C1表示飛行器10運作(如起飛過程、在空中飛行過程、下降過程)的時間與功率之關係曲線,其中Pav表示平均所需功率值,而PU表示最高所需功率值。在飛行器10運作的一段時間T內,平均所需功率值Pav由燃料電池110提供,而平均所需功率值Pav與最高所需功率值PU之間的瞬間功率需求則由二次電池120提供。換言之,二次電池120補足了飛行器10所需的瞬間大功率(如飛行器轉彎或抵抗陣風來襲等需要高功率的情況)。依據曲線C1,以功率(功/單位時間)來看,燃料電池110所提供的功率佔供電裝置100所提供的總功率約70%,而二次電池120所提供的功率 佔供電裝置100所提供的總功率約30%。在一實施例中,飛行器10運轉的一段時間T例如是500秒,運轉期間供電裝置100所提供的總功率約2300瓦特(W),其中燃料電池110所提供的功率約1600W,而二次電池120所提供的功率約700W。
在本實施例中,以能量(功,即曲線C1以下的積分面積)來看,燃料電池110所提供的功佔供電裝置100所提供的總功約93.75%,而二次電池120所提供的功佔供電裝置100所提供的總功約6.25%。在一實施例中,飛行器10在運作期間的總功約320Wh,其中燃料電池110所提供的功約300Wh,而二次電池120所提供的功約20Wh。如第一變壓器130的效率以95%為例,二次電池120所提供的功在經過第一變壓器130的耗損後,降低至19Wh(20Wh×0.95)。由於燃料電池110所提供的功不經過第一變壓器130,因此可視為不耗損(視為效率100%),即燃料電池110提供給飛行器10的功大致上可視為300Wh。如此,以供電裝置100之整體來看,整體電能傳送效率高達99.7%(計算式:(300×100%+20×95%)/320=99.7%)。
綜上可知,由於燃料電池110在第一輸出端電壓Va等於或低於輸出電壓設定值VS1的情況下,二次電池120才提供第二輸出電流I2給飛行器10,且燃料電池110同時提供第一輸出電流I1給飛行器10。而燃料電池110之第一輸出端電壓Va不低於輸出電壓設定值VS1時,二次電池120便不提供電流給飛行器10(不發生電流經過第一變壓器130所導致的耗損),因此能提升供電裝置100的整體電能傳送效率。
在本實施例中,適於應用在基礎負載比例高的情形下使用,例如基礎負載比例高於50%時,由於燃料電池110具有高能量密度的優點,故可作為主要供電者,提供基礎負載的供電需求,但是燃料電池110具有無法瞬間拉高功率供電的缺點,當負載需求瞬間增加時,則由具有高功率密度的二次電池120提供額外的電力需求。
以下說明輸出電壓設定值VS1的決定方式。
第1C圖繪示燃料電池110的特性曲線,其包含電流與電壓的關係(如電壓曲線所示)及功率曲線。如圖所示,輸出電壓設定值VS1為特性曲線中電壓曲線的其中一點數值。輸出電壓設定值VS1例如是介於燃料電池110之特性曲線之最大功率值Pmax與飛行器10的平均所需功率值Pav之間的範圍△P內所對應的電壓值。在燃料電池輸出功率PS1大於飛行器10平均所需功率值Pav的情況下,如果飛行器10在某時間點飛行功率需求低於平均所需功率值Pav,燃料電池110除了供應飛行需求之外,仍有剩餘電力可以回充到二次電池120,填補二次電池120在飛行器10功率需求大於燃料電池輸出功率PS1時二次電池120的電量消耗,以備在接下來的飛行時間提供飛行器10瞬間功率需求再次大於燃料電池輸出功率PS1時,二次電池120仍然有充裕的電量,可以提供燃料電池110不足的功率。
如第1C圖所示,垂直線L1為通過最大功率值Pmax的垂直線,此操作對應燃料電池輸出電壓VP及輸出電流IP。當輸出電壓設定值VS1往右愈接近垂直線L1時,則燃料電池110的耗損愈大且效率愈低。在處於平均所需功率值Pav時,燃料電池110輸出電壓 為VQ,而輸出電流為IQ,前述輸出電壓設定值VS1是介於電壓VP與電壓VQ之間。當輸出電壓設定值VS1往左愈遠離垂直線L1時,輸出電壓愈高,燃料電池效率愈高,但輸出電流愈低,而輸出功率PS1也愈低。在此特性下,燃料電池110用於提供飛行器10功率需求後所剩餘可以回充二次電池120的電力就愈少,因此在二次電池120提供給飛行器10電力後,需要更久的時間才能把二次電池120的電量補充回到期望的安全準位。在考量飛行期間二次電池120必須能夠應付使用環境與情境的變化,必須保留一定的裕度可以連續供應飛行器10持續的高功率需求(例如連續爬升或加速飛行),因此如果燃料電池110輸出功率PS1愈小,電量儲存愈慢,就需要使用較大的二次電池120,以便給燃料電池110較多的時間可以把二次電池120的電量充回期望的安全準位。
請參照第2A~2F圖,其繪示第1A圖之飛行器10在飛行時供電裝置100的供電模式圖。圖示的橫軸表示二次電池120的電壓狀態,而縱軸表示燃料電池110的電壓狀態。燃料電池110的第一輸出端電壓Va的變化以粗虛線表示,而二次電池120的第二輸出端電壓Vb的變化以粗實線表示。
如第2A圖所示,當飛行器10未起飛時,燃料電池110的第一輸出端電壓Va處於點A的初始狀態,而二次電池120的第二輸出端電壓Vb處於點A的初始狀態。在初始狀態,由於燃料電池110尚未啟動,因此燃料電池110a的第一輸出端電壓Va為0。如圖所示,在初始狀態,二次電池120的初始電壓為VL,a,其中初始電壓VL,a例 如是二次電池120的滿電電壓或滿電電壓的90%以上。
如第2A圖所示,在啟動階段
Figure 108132220-A0305-02-0014-1
,飛行器10開始運轉,由二次電池120提供第二輸出電流I2給飛行器10,以供飛行器10運轉初期(如開始轉動葉片等)的所需電能(負載),此導致二次電池120的第二輸出端電壓Vb下降(電存量(SOC)下降),如從狀態點A的電壓VL,a下降至狀態點B的電壓VL,b。在啟動階段
Figure 108132220-A0305-02-0014-2
,燃料電池120開始運作,因此其第一輸出端電壓Va持續上升,如從狀態點A的初始接近0的電壓上升至狀態點B的電壓VS1。然由於燃料電池110處於第一輸出端電壓Va(運作初期電壓)低於第一變壓器130的節點電壓(輸出電壓)Vc,此時二極體115處於逆向偏壓狀態,因此第一輸出電流I1尚無法通過二極體115(而無法提供給飛行器10)。換言之,在啟動階段
Figure 108132220-A0305-02-0014-3
,飛行器10所需的電能只由二次電池120提供。
如第2B圖所示,在二次電池120不供電階段
Figure 108132220-A0305-02-0014-4
,當燃料電池110的第一輸出端電壓Va持續上升至超過輸出電壓設定值VS1(對應狀態點B)時,第一變壓器130停止對飛行器10提供第二輸出電流I2,以停止二次電池120對飛行器10的電流輸出,且免去電流經過第一變壓器130所造成的電流耗損。在二次電池120不供電階段
Figure 108132220-A0305-02-0014-5
,二次電池120的第二輸出端電壓Vb可維持在狀態點B的電壓VL,b,而燃料電池110的第一輸出端電壓Va可依據飛行器10的所需電能的高低變化而改變,如二次電池不供電階段
Figure 108132220-A0305-02-0014-6
所示的上、向下箭頭變化。
例如,如第2B圖之二次電池不供電階段
Figure 108132220-A0305-02-0014-8
的向上箭頭 所示,由於飛行器10的所需電能不大(如尚在暖機),因此燃料電池110所產生的電能除了可提供飛行器10的所需電能外,還可使本身的第一輸出端電壓Va保持上升。如第2B圖之二次電池不供電階段
Figure 108132220-A0305-02-0015-9
的向下箭頭所示,當飛行器10的所需電能增加(如準備起飛,因此葉片快速轉動),使燃料電池110提供給飛行器10的第一輸出電流I1增加,進而導致燃料電池110的第一輸出端電壓Va下降。
如第2C圖之二次電池輔助供電階段
Figure 108132220-A0305-02-0015-11
所示,由於飛行器10所需電能升高(如在空中需要瞬間大電能進行轉彎或抵抗陣風等),燃料電池110的第一輸出端電壓Va下降至輸出電壓設定值VS1。此時,燃料電池110的供電已不足飛行器10使用,因此二次電池120所產生的第二輸出電流I2透過第一變壓器130提供給飛行器10,以填補燃料電池110不足的供電。在二次電池輔助供電階段
Figure 108132220-A0305-02-0015-12
,燃料電池110及二次電池120同時供電給飛行器10,以提供飛行器10的所需電能。
如第2D圖所示,在二次電池不供電階段
Figure 108132220-A0305-02-0015-14
,當飛行器10的所需電能在上升後下降回基礎用電(如在空中穩定懸飛)時,燃料電池110提供給飛行器10的第一輸出電流I1減少,導致本身的第一輸出端電壓Va上升,如第2D圖之向上箭頭所示。當燃料電池110的第一輸出端電壓Va上升至與二次電池120的第二輸出端電壓Vb相同時(即狀態點C),燃料電池110開始對二次電池120充電,如第2E圖之充電階段
Figure 108132220-A0305-02-0015-15
。如第2D圖所示,曲線C2表示燃料電池110的第一輸出端電壓Va與二次電池120的第二輸出端電壓Vb相同,狀態 點C位於曲線C2上。
在實施例中,對二次電池120的充電步驟可由控制器140決定。例如,控制器140(繪示於第1A圖)用以:(1)判斷燃料電池110的第一輸出端電壓Va是否等於或大於二次電池120的第二輸出端電壓Vb;(2)若是,控制第一開關R1及第二開關R2同時導通,使燃料電池110可對二次電池120充電。
如第2E圖所示,在充電階段
Figure 108132220-A0305-02-0016-16
,由於飛行器10的所需電能低(如在空中仍保持穩定懸飛),因此燃料電池110的第一輸出端電壓Va及二次電池120的第二輸出端電壓Vb持續上升,直到二次電池120的電量已達飽和狀態,如到達狀態點E,此時燃料電池110停止對二次電池120充電;或者,當二次電池120的第二輸出端電壓Vb到達狀態點D時,若飛行器10所需電能瞬間升高(如在空中需要大電能進行轉彎或抵抗陣風等),則燃料電池110須對飛行器10增加電流的供應,造成燃料電池110的第一輸出端電壓Va下降,如第2F圖之二次電池不供電階段
Figure 108132220-A0305-02-0016-17
的向下箭頭所示。在二次電池不供電階段
Figure 108132220-A0305-02-0016-19
,燃料電池110停止對二次電池120供電,以提供更多的電流給飛行器10。
在實施例中,對二次電池120的停止充電步驟可由控制器140完成。例如,控制器140(繪示於第1A圖)用以:(1)判斷第二開關R2的電流方向,是否是由Vb朝向Va的方向(二次電池放電的方向);(2)若是,控制第一開關R1及第二開關R2同時關閉,以停止對二次電池120充電。
如第2F圖之在二次電池不供電階段
Figure 108132220-A0305-02-0017-21
的向上箭頭所示,當飛行器10的所需電能再次下降(如飛行器10在空中回復到穩定懸飛或降落)時,燃料電池110提供給飛行器10的電流減少,導致燃料電池110的第一輸出端電壓Va上升。
綜上可知,當燃料電池110的第一輸出端電壓Va大致上等於或高於輸出電壓設定值VS1時,二次電池120可不提供電流給飛行器10,避免消耗二次電池120的電量,同時也可減少電流經過第一變壓器130的耗損。直到燃料電池110的輸出功率不足飛行器10的需求時,二次電池120方供電給飛行器10。例如,當燃料電池110的第一輸出端電壓Va低於輸出電壓設定值VS1時,二次電池120提供第二輸出電流I2給飛行器10,以補充飛行器10的所需電能。隨飛行器10的所需電能的高低變化,燃料電池110的第一輸出端電壓Va也隨之高低變化。當燃料電池110的第一輸出端電壓Va上升至大致上等於二次電池120的第二輸出端電壓Vb時,燃料電池110對二次電池120充電,直到二次電池120的電存量達到一預設電存量(如二次電池120之滿電量的90%以上,然本實施例不受此限)或飛行器10的所需電能瞬間增加而導致燃料電池110的第一輸出端電壓Va下降,燃料電池110方停止對二次電池120充電。
請參照第3A及3B圖,第3A圖繪示依照本揭露另一實施例之飛行工具2的示意圖,而第3B圖繪示第3A圖之燃料電池110之特性曲線的示意圖。飛行工具2包括供電裝置200及飛行器10。供電裝置200配置於飛行器10上,以供電給飛行器10。
如第3A圖所示,供電裝置200包括燃料電池110、二極體115、二次電池120、第一變壓器130及第二變壓器230。第一變壓器130耦接於飛行器10與二次電池120之輸出端120a之間,第二變壓器230耦接於燃料電池110之輸出端110a與二次電池120之輸出端120a之間。飛行器10耦接於燃料電池110的輸出端110a及第一變壓器130的輸出端130a,以接收燃料電池110及第一變壓器130的供電。
在本實施例中,第二變壓器230具有一輸入電壓設定值VS2,當燃料電池110之第一輸出端電壓Va低於第一變壓器130之輸出電壓設定值VS1時,二次電池120的第二輸出電流I2透過第一變壓器130提供給飛行器10。當燃料電池110之第一輸出端電壓Va等於或高於第二變壓器230之輸入電壓設定值VS2時,燃料電池110對二次電池120充電。在實施例中,輸入電壓設定值VS2可高於輸出電壓設定值VS1
在本實施例中,二次電池120的操作電壓高於燃料電池110的操作電壓,因此第二變壓器230例如是升壓器,以對燃料電池110的第一輸出端電壓Va升壓而能對二次電池120充電,且第一變壓器130例如是降壓器,以對二次電池120的第二輸出端電壓Vb降壓,以符合第一變壓器130的輸出電壓設定值VS1。在實施例中,第二變壓器230例如是直流轉直流(DC/DC)型變壓器。
在本實施例中,燃料電池110的輸出電壓設定值VS1(即操作電壓下限)大致上等於或低於二次電池120的操作電壓下限,而二 次電池120的操作電壓上限高於燃料電池110的操作電壓上限。舉例來說,燃料電池110例如是由數個燃料電池單元所串聯而成,每個燃料電池單元的操作電壓介於0.625V~0.65V之間。以燃料電池110由72個燃料電池單元串聯為例,燃料電池110可提供介於45V(輸出電壓設定值VS1)~46.8V(操作電壓上限)之間的操作電壓。二次電池120例如是由數個二次電池單元所串聯而成,每個二次電池單元的操作電壓介於3.2V~4.15V之間。以二次電池120由14個二次電池單元串聯為例,二次電池120可提供介於44.8V(操作電壓下限)~58.1V(如操作電壓上限)之間的操作電壓。
本實施例之第一變壓器130之輸出電壓設定值VS1的決定方式類似前述輸出電壓設定值VS1,於此不再贅述。以下說明第二變壓器230之輸入電壓設定值VS2的決定方式。
如第3B圖所示,輸入電壓設定值VS2為特性曲線之電壓曲線的其中一點數值。輸入電壓設定值VS2例如是介於燃料電池110之特性曲線之最大功率值Pmax與飛行器10的平均所需功率值Pav之間的範圍△P內,且輸入電壓設定值VS2大於輸出電壓設定值VS1。當燃料電池110的第一輸出端電壓Va介於輸出電壓設定值VS1與輸入電壓設定值VS2之間變化時,飛行器10的所需電能僅由燃料電池110提供,二次電池120不供電給飛行器10;當燃料電池110的第一輸出端電壓Va上升至輸入電壓設定值VS2時,表示當飛行器10的所需電能(負載)降低,此時燃料電池110方對二次電池120充電;當燃料電池110的第一輸出端電壓Va下降至輸出電壓設定值VS1時,表示燃 料電池110的供電少於飛行器10的所需電能,此時二次電池120方供電給飛行器10,以補充燃料電池110的不足供電。
請參照第4A及4B圖,第4A圖繪示依照本揭露另一實施例之飛行工具3的示意圖,而第4B圖繪示第4A圖之第一變壓器130之輸出電壓設定值VS1及第二變壓器230之輸入電壓設定值VS2的設定模式圖。飛行工具3包括供電裝置300及飛行器10。供電裝置300配置於飛行器10上,以供電給飛行器10。
如第4A圖所示,供電裝置300包括燃料電池110、二極體115、二次電池120、第一變壓器130、第二變壓器230及控制器340。第一變壓器130耦接於飛行器10與二次電池120之輸出端120a之間,第二變壓器230耦接於燃料電池110之輸出端110a與二次電池120之輸出端120a之間。飛行器10耦接於燃料電池110的輸出端110a及第一變壓器130的輸出端130a,以接收燃料電池110及第一變壓器130的供電。控制器340電性耦接於二次電池120、第一變壓器130及第二變壓器230。在本實施例中,控制器340可依據二次電池120的電存量改變輸出電壓設定值VS1及輸入電壓設定值VS2
如第4B圖所示,第二預設電量P2高於第一預設電量P1,當二次電池120的電存量低於第一預設電量P1時,表示二次電池120處於低電存量狀態,為了減少二次電池的耗電速率,控制器340可降低輸出電壓設定值VS1,以減少二次電池120供電給飛行器10的頻率,即二次電池120供電給飛行器10的機率或時間減少,進而延 長二次電池120的使用時間。此外,控制器340降低輸出電壓設定值VS1,可增加燃料電池110供電給飛行器10的頻率,即燃料電池110供電給飛行器10的機率或時間增加,使燃料電池110對飛行器10輸出更高功率,以彌補二次電池120對飛行器10所減少的供電。當二次電池120的電存量高於第二預設電量P2時,表示二次電池120處於充足或高電存量狀態,因此控制器340可增加輸入電壓設定值VS2,減少燃料電池110對二次電池120充電的頻率,即燃料電池110對二次電池120充電的機率或時間減少,以增加燃料電池110操作在比較高效率(高輸出電壓)區間的機率或時間。
在一實施例中,當二次電池120的電存量位於第二預設電量P2時,輸入電壓設定值VS2例如是46.8V,而當二次電池120的電存量為100%時,輸入電壓設定值VS2例如是47.8V,在46.8V與47.8V之間的變化可以是線性變化。此外,二次電池120的電存量位於0%~第二預設電量P2之間時,輸入電壓設定值VS2可保持常數。
在一實施例中,當二次電池120的電存量位於第一預設電量P1時,輸出電壓設定值VS1例如是45V,而當二次電池120的電存量為0%時,輸出電壓設定值VS1例如是44V,在45V與44V之間的變化可以是線性變化。此外,二次電池120的電存量位第一預設電量P1~100%之間時,輸出電壓設定值VS1可保持常數。
請參照第4C圖,其繪示第4A圖之第一變壓器之輸出電壓設定值VS1及第二變壓器之輸入電壓設定值VS2的另一種設定模式圖。要注意的是,在第4C圖之設定模式中,二次電池120的電存 量介於第二預設電量P2~100%之間時,輸出電壓設定值VS1隨電存量增加而上升。詳言之,當二次電池120的電存量大致上等於或高於第二預設電量P2時,由於二次電池120的電存量足夠多,因此允許第一變壓器130增加二次電池120供電給飛行器10的頻率,即二次電池120供電給飛行器10的機率或時間增加,且二次電池120之電存量愈高,則輸出電壓設定值VS1也愈高,使二次電池120供電給飛行器10的頻率隨二次電池120之電存量的增加而增加。
此外,要注意的是,在第4C圖之設定模式中,當二次電池120的電存量介於0%~第一預設電量P1之間時,輸入電壓設定值VS2隨電存量減少而降低。詳言之,當二次電池120的電存量大致上等於或低於第一預設電量P1時,表示二次電池120處於低電存量狀態,因此控制器340可降低輸入電壓設定值VS2,增加燃料電池110對二次電池120充電的頻率,即燃料電池110對二次電池120充電的機率或時間增加,且二次電池120之電存量愈低,則輸入電壓設定值VS2也愈低,使燃料電池110對二次電池120充電的頻率隨二次電池120之電存量的降低而增加。
在一實施例中,第一預設電量P1例如是30%,而第二預設電量P2例如是70%,然本揭露實施例不受此限。由於二次電池120的特性,二次電池120的電存量過低或過高都會有損二次電池120的壽命。由於本揭露實施例之二次電池120的電存量可透過前述方式控制在一適當範圍,如介於第一預設電量P1與第二預設電量P2之間的範圍,因此可延長二次電池120的使用壽命。
綜上所述,雖然本揭露已以實施例揭露如上,然其並非用以限定本揭露。本揭露所屬技術領域中具有通常知識者,在不脫離本揭露之精神和範圍內,當可作各種之更動與潤飾。因此,本揭露之保護範圍當視後附之申請專利範圍所界定者為準。
1:飛行工具
10:飛行器
100:供電裝置
110:燃料電池
110a、120a:輸出端
115:二極體
120:二次電池
130:第一變壓器
140:控制器
c:節點
I1:第一輸出電流
I2:第二輸出電流
R1:第一開關
R2:第二開關
VS1:輸出電壓設定值
Va:第一輸出端電壓
Vb:第二輸出端電壓
Vc:節點電壓

Claims (18)

  1. 一種供電裝置,配置於一飛行器上,以供電給該飛行器,該飛行器具有一平均所需功率值,該供電裝置包括:一二次電池;一第一變壓器,電性耦接於該二次電池與該飛行器之間的線路;以及一燃料電池,電性耦接於該飛行器,且適於提供一第一輸出電流給該飛行器;其中,該第一變壓器具有一輸出電壓設定值;當該燃料電池之一第一輸出端電壓等於或低於該輸出電壓設定值時,該第一變壓器將該二次電池之一第二輸出電流提供給該飛行器;其中,該輸出電壓設定值介於該燃料電池之特性曲線之一最大功率值與該飛行器的該平均所需功率值之間的範圍內。
  2. 如申請專利範圍第1項所述的供電裝置,其中當該飛行器處於一啟動階段時,該燃料電池不提供電流給該飛行器,而該二次電池提供該第二輸出電流給該飛行器。
  3. 如申請專利範圍第1項所述的供電裝置,其中當該燃料電池所提供之該第一輸出端電壓不低於該輸出電壓設定值時,該二次電池不提供電流給該飛行器。
  4. 如申請專利範圍第1項所述的供電裝置,其中當該燃料電池之一輸出端之該第一輸出端電壓等於或高於該二次電池之一輸出端之一第二輸出端電壓時,該燃料電池對該二次電池充電。
  5. 如申請專利範圍第4項所述的供電裝置,更包括:一開關,電性耦接於該二次電池之該輸出端與該燃料電池之該輸出端之間的線路;其中,當該第一輸出端電壓等於或高於該第二輸出端電壓時,該開關導通,使該燃料電池對該二次電池充電。
  6. 如申請專利範圍第5項所述的供電裝置,其中當該二次電池的電存量到達一預設電存量時,該開關關閉,使該燃料電池停止對該二次電池充電。
  7. 如申請專利範圍第1項所述的供電裝置,其中當該燃料電池之該第一輸出端電壓等於或低於該輸出電壓設定值時,該二次電池提供該第二輸出電流,且該燃料電池同時提供該第一輸出電流給該飛行器。
  8. 如申請專利範圍第1項所述的供電裝置,更包括:一第二變壓器,電性耦接於該燃料電池與該二次電池之間的線路,具有一輸入電壓設定值,該輸入電壓設定值高於該第一變壓器的該輸出電壓設定值;其中,當該燃料電池之該第一輸出端電壓等於或高於該輸入電壓設定值時,該燃料電池對該二次電池充電。
  9. 如申請專利範圍第8項所述的供電裝置,其中當該二次電池的電存量低於一第一預設電量時,該第一變壓器的該輸出電壓設定值係降低;當該二次電池的電存量高於一第二預設電量時,該第二 變壓器的該輸入電壓設定值係增加,其中該第二預設電量高於該第一預設電量。
  10. 一種飛行工具,包括:一飛行器;以及一如申請專利範圍第1~9項之任一項所述的供電裝置,配置於該飛行器上,以供電給該飛行器。
  11. 一種供電裝置之供電方法,該供電裝置配置在一飛行器上,該供電裝置包括一二次電池、一第一變壓器及一燃料電池,該二次電池透過該第一變壓器電性耦接於該飛行器,且該第一變壓器具有一輸出電壓設定值;該供電方法包括:該燃料電池提供一第一輸出電流給該飛行器;以及當該燃料電池之一第一輸出端電壓等於或低於該輸出電壓設定值時,該第一變壓器將該二次電池之一第二輸出電流提供給該飛行器;其中,該輸出電壓設定值介於該燃料電池之特性曲線之一最大功率值與該飛行器的該平均所需功率值之間的範圍內。
  12. 如申請專利範圍第11項所述的供電方法,更包括:當該燃料電池所提供之該第一輸出端電壓不低於該輸出電壓設定值時,該二次電池不提供電流給該飛行器。
  13. 如申請專利範圍第11項所述的供電方法,更包括:當該燃料電池的輸出端的一第一輸出端電壓等於或高於該二次電池的一輸出端的一第二輸出端電壓時,該燃料電池對該二次電池充電。
  14. 如申請專利範圍第13項所述的供電方法,其中該供電裝置更包括一開關,該開關電性耦接於該二次電池之該輸出端與該燃料電池之該輸出端之間的線路;該供電方法更包括:當該第一輸出端電壓等於或高於該第二輸出端電壓時,該開關導通,使該燃料電池對該二次電池充電。
  15. 如申請專利範圍第14項所述的供電方法,更包括:當該二次電池的電存量到達一預設電存量時,該開關關閉,使該燃料電池停止對該二次電池充電。
  16. 如申請專利範圍第11項所述的供電方法,更包括:當該燃料電池之該第一輸出端電壓等於或低於該輸出電壓設定值時,該二次電池提供該第二輸出電流,且該燃料電池同時提供該第一輸出電流給該飛行器。
  17. 如申請專利範圍第11項所述的供電方法,其中該供電裝置更包括一第二變壓器,該第二變壓器具有一輸入電壓設定值,該輸入電壓設定值高於該第一變壓器的該輸出電壓設定值;該供電方法更包括:當該燃料電池之該第一輸出端電壓等於或高於該輸入電壓設定值時,該燃料電池對該二次電池充電。
  18. 如申請專利範圍第17項所述的供電方法,更包括:當該二次電池的電存量低於一第一預設電量時,降低該第一變壓器的該輸出電壓設定值; 當該二次電池的電存量高於一第二預設電量時,增加該第二變壓器的該輸入電壓設定值;其中,該第二預設電量高於該第一預設電量。
TW108132220A 2018-09-06 2019-09-06 供電裝置、應用其之飛行工具及其供電方法 TWI705641B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201862727599P 2018-09-06 2018-09-06
US62/727,599 2018-09-06

Publications (2)

Publication Number Publication Date
TW202011662A TW202011662A (zh) 2020-03-16
TWI705641B true TWI705641B (zh) 2020-09-21

Family

ID=69105669

Family Applications (1)

Application Number Title Priority Date Filing Date
TW108132220A TWI705641B (zh) 2018-09-06 2019-09-06 供電裝置、應用其之飛行工具及其供電方法

Country Status (5)

Country Link
US (1) US11444301B2 (zh)
EP (1) EP3620324B1 (zh)
JP (1) JP6923114B2 (zh)
CN (1) CN110877741B (zh)
TW (1) TWI705641B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11811114B2 (en) 2020-12-30 2023-11-07 Industrial Technology Research Institute Power supply device and method thereof for fuel cell

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102020004102A1 (de) 2020-07-08 2022-01-13 Cellcentric Gmbh & Co. Kg Verfahren zum Betreiben eines elektrischen Antriebssystems
CN112060983B (zh) * 2020-08-13 2022-07-05 西北工业大学 一种新能源无人机混合电源架构评估方法
CN112297956B (zh) * 2020-11-10 2022-02-15 武汉格罗夫氢能汽车有限公司 一种燃料电池氢能汽车soc校准和电芯均衡控制装置
IL278777A (en) * 2020-11-17 2022-06-01 Hevendrones Ltd Battery controller for drones
TWI792133B (zh) * 2020-12-30 2023-02-11 財團法人工業技術研究院 用於燃料電池的供電裝置及其供電方法
TWI793489B (zh) 2020-12-31 2023-02-21 財團法人工業技術研究院 燃料電池電堆的控制系統與方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103576651A (zh) * 2013-11-01 2014-02-12 南京三一光伏科技有限公司 一种电源控制柜系统及其运行方法
CN103847970A (zh) * 2014-03-28 2014-06-11 北京理工大学 一种基于功率跟随的混合动力无人机能源控制方法
WO2017113338A1 (en) * 2015-12-31 2017-07-06 SZ DJI Technology Co., Ltd. Uav hybrid power systems and methods
EP3210817A1 (en) * 2016-02-23 2017-08-30 University of Hertfordshire Higher Education Corporation Fuel cell hybrid power system
TW201832444A (zh) * 2017-02-14 2018-09-01 日商山葉發動機股份有限公司 供電電路

Family Cites Families (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3470996B2 (ja) * 1997-12-26 2003-11-25 松下電器産業株式会社 燃料電池発電装置の操作方法
US6369461B1 (en) * 2000-09-01 2002-04-09 Abb Inc. High efficiency power conditioner employing low voltage DC bus and buck and boost converters
CN1346759A (zh) * 2001-10-25 2002-05-01 财团法人工业技术研究院 一种复合式燃料电池电动车辆的电力输出控制系统
JP4583010B2 (ja) 2003-08-19 2010-11-17 パナソニック株式会社 電源装置の制御方法
TWI276240B (en) 2003-11-26 2007-03-11 Ind Tech Res Inst Fuel cell power supply device
JP2006310246A (ja) * 2004-08-06 2006-11-09 Sanyo Electric Co Ltd 燃料電池システム
CN101123310B (zh) * 2004-08-06 2010-10-13 三洋电机株式会社 燃料电池系统
US20060029845A1 (en) * 2004-08-06 2006-02-09 Masaaki Konoto Fuel cell system
JP2006049175A (ja) * 2004-08-06 2006-02-16 Sanyo Electric Co Ltd 燃料電池システム
TWI274454B (en) 2005-03-04 2007-02-21 Ind Tech Res Inst A power management method and system of a hybrid power supply
CN100452504C (zh) * 2005-03-30 2009-01-14 三洋电机株式会社 燃料电池系统
CN100377466C (zh) * 2005-08-18 2008-03-26 财团法人工业技术研究院 混成供电装置及其电源管理方法
JP4919634B2 (ja) * 2005-08-26 2012-04-18 アクアフェアリー株式会社 燃料電池システム
CN1928580A (zh) * 2005-09-09 2007-03-14 思柏科技股份有限公司 燃料电池电力感测方法及其应用
CN101188298B (zh) * 2006-11-16 2010-05-12 南亚电路板股份有限公司 免浓度侦测装置的直接甲醇燃料电池系统
JP5157163B2 (ja) * 2006-12-27 2013-03-06 トヨタ自動車株式会社 燃料電池システム及び燃料電池システム搭載移動体
JP5441310B2 (ja) * 2007-02-07 2014-03-12 ソニー株式会社 電源システム
TWI445240B (zh) 2007-08-30 2014-07-11 Yamaha Motor Co Ltd 燃料電池系統及其控制方法
JP4591721B2 (ja) * 2007-11-21 2010-12-01 トヨタ自動車株式会社 燃料電池システム
CN101515723A (zh) * 2008-02-19 2009-08-26 思柏科技股份有限公司 多电源之混合电力装置
JP5434197B2 (ja) * 2009-03-31 2014-03-05 トヨタ自動車株式会社 燃料電池システムおよび燃料電池システムを搭載した電動車両
TWI364128B (en) * 2009-04-06 2012-05-11 Young Green Energy Co Power supply system and curcuit control method thereof
JP4764499B2 (ja) 2009-08-05 2011-09-07 本田技研工業株式会社 Dc/dcコンバータ及びそのdc/dcコンバータを備えた電力供給システム
US20110071706A1 (en) * 2009-09-23 2011-03-24 Adaptive Materials, Inc. Method for managing power and energy in a fuel cell powered aerial vehicle based on secondary operation priority
CN102136586A (zh) * 2010-01-26 2011-07-27 扬光绿能股份有限公司 燃料电池系统及其电源管理方法
JP5531742B2 (ja) * 2010-04-09 2014-06-25 トヨタ自動車株式会社 燃料電池システム及び燃料電池システムの制御方法
TWI429121B (zh) 2010-09-27 2014-03-01 Chung Shan Inst Of Science 無電源轉換器之燃料電池混合電力系統
KR101403713B1 (ko) * 2012-04-30 2014-06-05 엘아이지넥스원 주식회사 쿼드로터에 전원을 공급하기 위한 dmfc 연료전지 시스템 및 그 방법
US20140197681A1 (en) * 2012-07-30 2014-07-17 The Boeing Company Electric system stabilizing system for aircraft
US10040370B2 (en) * 2015-09-19 2018-08-07 Ningbo Wise Digital Technology Co., Ltd Container comprising a battery, transportation system comprising the same and method thereof
CN107154506A (zh) * 2016-03-04 2017-09-12 杭州聚力氢能科技有限公司 基于液态氢源和燃料电池的智能电源系统及供电方法
JP6361686B2 (ja) 2016-04-22 2018-07-25 トヨタ自動車株式会社 燃料電池システム
KR101904225B1 (ko) * 2016-06-23 2018-10-05 (주)자이언트드론 하이브리드 컨트롤러를 구비한 수소연료전지 드론
CN106183855B (zh) * 2016-07-25 2018-10-16 北京新能源汽车股份有限公司 电动汽车动力电池系统及控制方法
CN108163214A (zh) * 2016-12-07 2018-06-15 中国科学院大连化学物理研究所 一种电动飞机用燃料电池和锂电池混合动力系统
KR102474508B1 (ko) * 2016-12-16 2022-12-05 현대자동차주식회사 연료전지 시스템의 운전 제어 방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103576651A (zh) * 2013-11-01 2014-02-12 南京三一光伏科技有限公司 一种电源控制柜系统及其运行方法
CN103847970A (zh) * 2014-03-28 2014-06-11 北京理工大学 一种基于功率跟随的混合动力无人机能源控制方法
WO2017113338A1 (en) * 2015-12-31 2017-07-06 SZ DJI Technology Co., Ltd. Uav hybrid power systems and methods
EP3210817A1 (en) * 2016-02-23 2017-08-30 University of Hertfordshire Higher Education Corporation Fuel cell hybrid power system
TW201832444A (zh) * 2017-02-14 2018-09-01 日商山葉發動機股份有限公司 供電電路

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11811114B2 (en) 2020-12-30 2023-11-07 Industrial Technology Research Institute Power supply device and method thereof for fuel cell

Also Published As

Publication number Publication date
JP2020045094A (ja) 2020-03-26
JP6923114B2 (ja) 2021-08-18
US11444301B2 (en) 2022-09-13
EP3620324B1 (en) 2024-02-21
CN110877741A (zh) 2020-03-13
TW202011662A (zh) 2020-03-16
US20200083550A1 (en) 2020-03-12
EP3620324A1 (en) 2020-03-11
CN110877741B (zh) 2022-01-25

Similar Documents

Publication Publication Date Title
TWI705641B (zh) 供電裝置、應用其之飛行工具及其供電方法
US11031805B2 (en) Power controller, power supply system and device and control method thereof
US9093845B2 (en) Electrical energy store and method for closed-loop control of such energy store
Artal et al. Autonomous mobile robot with hybrid PEM fuel-cell and ultracapacitors energy system. Dedalo 2.0
CN112751376B (zh) 一种混合电源系统的能量管理方法
KR102456811B1 (ko) 에너지 저장 장치의 히터 구동 방법
JP2015195674A (ja) 蓄電池集合体制御システム
CN110829464A (zh) 一种基于直流侧的光伏储能电池调频系统和方法
CN114899913A (zh) 一种混合储能逆变器离网模式下电池充放电电流控制方法
CN106159980B (zh) 发电系统和能量管理方法
KR20180090673A (ko) 하이브리드 에너지 저장 시스템
US20100045112A1 (en) Hybrid electrical power source
JP2016140164A (ja) 双方向インバータおよびそれを用いた蓄電システム
US20160105030A1 (en) Bus conditioner for an aircraft power system
CN109193885B (zh) 光伏储能逆变器的控制系统
CN105932745A (zh) 一种多模块并联充电的电池限流控制方法
CN113224743B (zh) 一种混合储能的直流供电系统脱网暂态控制方法
TWI793489B (zh) 燃料電池電堆的控制系統與方法
KR102463396B1 (ko) 에너지 저장 시스템
CN108574289A (zh) 一种有关微网孤岛运行的基于集中控制的阶梯式调频方法
CN103595255A (zh) 一种用于质子交换膜燃料电池备用电源系统中dc/dc变换的硬件控制系统
Adeleke et al. Vanadium Redox & Lithium Ion Based Multi-Battery Hybrid Energy Storage System for Microgrid
WO2024104359A1 (zh) 能量调节系统
US20230216307A1 (en) Power supply device and power supplying method
JP4495138B2 (ja) 電源システム、電源システムの制御方法および電源システムの制御プログラム