WO2024104359A1 - 能量调节系统 - Google Patents

能量调节系统 Download PDF

Info

Publication number
WO2024104359A1
WO2024104359A1 PCT/CN2023/131655 CN2023131655W WO2024104359A1 WO 2024104359 A1 WO2024104359 A1 WO 2024104359A1 CN 2023131655 W CN2023131655 W CN 2023131655W WO 2024104359 A1 WO2024104359 A1 WO 2024104359A1
Authority
WO
WIPO (PCT)
Prior art keywords
storage device
energy storage
voltage value
energy
power
Prior art date
Application number
PCT/CN2023/131655
Other languages
English (en)
French (fr)
Inventor
王镝程
林子闵
Original Assignee
天扬精密科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 天扬精密科技股份有限公司 filed Critical 天扬精密科技股份有限公司
Publication of WO2024104359A1 publication Critical patent/WO2024104359A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R16/00Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for
    • B60R16/02Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements
    • B60R16/03Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements for supply of electrical power to vehicle subsystems or for
    • B60R16/033Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements for supply of electrical power to vehicle subsystems or for characterised by the use of electrical cells or batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering

Definitions

  • the present invention relates to a storage system, and in particular to an energy regulation system.
  • the main concept of the power grid is to integrate the load and power supply into a controllable energy storage system to supply electricity to users.
  • the power conditioning system (PCS) is connected to the power grid to regulate the power of the power grid.
  • the power conditioning system can also solve the problem of unstable renewable energy and low-frequency power outages caused by too low frequency. At the same time, it can also store renewable energy for peak shaving and valley filling.
  • AFC Automatic Frequency Control
  • the power grid system In the power grid system, it has the functions of peak shaving and valley filling, frequency adjustment and rapid adjustment of electric energy, and energy transfer or storage of electric energy output by renewable energy, which is provided to the power grid for dispatching, real and virtual power adjustment and rapid response characteristics between client loads and renewable energy power generation facilities, etc., providing renewable energy output smoothing, adjustment of electric energy
  • the energy storage system mainly uses lithium batteries or lithium iron batteries as the main energy storage system, and the life of lithium batteries or lithium iron batteries can be extended several times.
  • lithium batteries or lithium iron batteries need to absorb or supplement the overload and underload of the power grid or the instantaneous inrush current during startup and charging and discharging, and need to perform large charging and discharging currents of about 2.0C or more and small frequent charging and discharging currents of about 1.0C or less, which affect or consume the service life of lithium batteries or lithium iron batteries. If the maximum power stored in lithium batteries or lithium iron batteries is less than or equal to 70%, they need to be replaced, and the service life of lithium batteries or lithium iron batteries will be less than 5 years.
  • Electric motorcycles or electric vehicles use lithium batteries or lithium iron batteries with fast charging and discharging characteristics as energy storage systems to store braking or low-speed power recovery system electricity or power supply electric motors or electrical devices of electric vehicles. Since lithium batteries or lithium iron batteries need to store or supply overload and underload of electric vehicle power or instantaneous inrush of power during startup and power recovery, they need to perform large charging and discharging currents of approximately greater than or equal to 2.0C and small frequent charging and discharging currents of approximately less than or equal to 1.0C, which affects or consumes the service life of lithium batteries or lithium iron batteries. Based on the standard that lithium batteries or lithium iron batteries need to be replaced when the maximum power stored is less than or equal to 70%, the service life of lithium batteries or lithium iron batteries will be less than 5 years.
  • the energy regulation system disclosed in the present invention is electrically connected to a power source, a load, and a first energy storage device of a lithium battery structure;
  • the energy regulation system includes: the second energy storage device is a capacitor structure, electrically connected to the power source or the load, in a power storage mode, the power source is used as a power source to charge the second energy storage device, or the first energy storage device is charged through the second energy storage device, in a dump mode, the first energy storage device is used as a power source to charge the second energy storage device, or the load is discharged through the second energy storage device; at least one converter is electrically connected between the first energy storage device and the second energy storage device, and in the power storage mode or the dump mode, a An output voltage and an output current; and a controller for detecting a first voltage value, a first current value of a first energy storage device, or a second voltage value of a second energy storage device, wherein the second energy
  • the present invention discloses an energy regulation system, wherein the load is a power regulation system, an electric motor or an electrical device.
  • the present invention discloses an energy regulation system, wherein the power source is a power regulation system, a generator or a power recovery system.
  • the energy regulation system disclosed in the present invention wherein the reference voltage value is a rated working voltage value of the load.
  • the energy regulation system disclosed in the present invention wherein the reference voltage value is greater than or equal to a lower limit working voltage value of the load and less than or equal to an upper limit working voltage value of the load.
  • the energy regulation system disclosed in the present invention wherein the second upper limit voltage value is an upper limit working voltage value of the load minus a margin value, the second lower limit voltage value is a lower limit working voltage value of the load plus the margin value, and the margin value is any value greater than or equal to zero.
  • the energy regulation system disclosed in the present invention wherein, when the power supply charges the second energy storage device, when the controller detects that the second voltage value of the second energy storage device exceeds an upper-limit voltage value between the reference voltage value and the second upper limit voltage, the controller adjusts the converter to allow the power supply to charge the first energy storage device through the second energy storage device.
  • the energy regulation system disclosed in the present invention comprises the following steps: adding the reference voltage value and the second upper limit voltage value and dividing the sum by 2 to obtain the upper middle limit voltage value.
  • the energy regulation system disclosed in the present invention wherein, when the second energy storage device is charged by the power supply, or when the first energy storage device is charged through the second energy storage device, the charging current is between 0C and 1.0C until the first current value of the first energy storage device reaches the first lower limit current value.
  • the energy regulation system disclosed in the present invention wherein the second energy storage device includes a reserved power storage area to provide power storage needs for instantaneous overload of the load, and a pre-stored power area to provide power supply needs for instantaneous underload of the load, thereby avoiding large current charging or discharging of the first energy storage device and extending the life of the first energy storage device.
  • the energy regulation system disclosed in the present invention wherein, in the wake-up stage of the power saving mode, the controller detects that the second voltage value of the second energy storage device is lower than the second lower limit voltage value or a lower intermediate limit voltage value between the reference voltage value and the second lower limit voltage value, enters the dump mode, and the controller controls the converter to allow the first energy storage device to charge the second energy storage device.
  • the energy regulation system disclosed in the present invention comprises the following steps: adding the reference voltage value and the second lower limit voltage value and dividing the sum by 2 to obtain the lower intermediate limit voltage value.
  • the energy regulation system disclosed in the present invention wherein the first energy storage device charges the second energy storage device, and the charging current is between 0C and 2.0C until the second voltage value of the second energy storage device reaches the reference voltage value.
  • FIG1 is a schematic diagram of an energy conditioning system.
  • the energy regulation system 100 disclosed in the present invention provides a combination architecture of a second energy storage device 20 of a capacitor structure, a converter 30 and a controller 40, the energy regulation system 100 is electrically connected to a power source 400, a load 500, and a first energy storage device 10 of a lithium battery structure, wherein the first energy storage device 10 of a lithium battery structure comprises any one or a combination of a lithium (iron) battery, a ternary lithium battery, etc., the second energy storage device 20 of a capacitor structure comprises any one or a combination of a supercapacitor, a supercapacitor group, a capacitor group, etc., the second energy storage device 20 of a capacitor structure is electrically connected to the power source 400 or the load 500, the power source 400 or the load 500 is connected to the converter 30 via the second energy storage device 20 of a capacitor structure and then to the first energy storage device 10 of a lithium battery structure, when the power source 400 is supplying power,
  • the first energy storage device 10 of the lithium battery structure is used to store electricity, that is, the electric energy transmitted by the power source 400 can be recharged to the first energy storage device 10 of the lithium battery structure through the converter 30.
  • the surge generated by the power source 400 or the load 500, as well as the instantaneous overload or underload will be stored or supplied by the second energy storage device 20 of the capacitor structure.
  • the controller 40 controls the converter 30 to transmit the output voltage V 2crg and the output current I 2crg.
  • the load 500 uses the first energy storage device 10 of the lithium battery structure and the second energy storage device 20 of the capacitor structure as power supply sources, allowing the first energy storage device 10 of the lithium battery structure to discharge the load 500 through the second energy storage device 20 of the capacitor structure, and the first energy storage device 10 of the lithium battery structure provides the second energy storage device 20 of the capacitor structure with power loss due to self-consumption or power supply required by the load 500.
  • the controller 40 of the energy regulation system 100 measures the first voltage value V 1 and the first current value I 1 of the first energy storage device 10 of the lithium battery structure, or the second voltage value V 2 of the second energy storage device 20 of the capacitor structure, respectively, through a voltage measuring device (not shown) and a current measuring device (not shown), wherein the second energy storage device 20 of the capacitor structure is respectively set with a second upper limit voltage value V 2max , a second lower limit voltage value V 2min and a reference voltage value VR , the second upper limit voltage value V 2max is preferably set to the upper limit working voltage value of the load 500, the second lower limit voltage value V 2min is preferably set to the lower limit working voltage value of the load 500, and a margin value may also be reserved, the margin value being any value greater than or equal to zero, the second upper limit voltage value V 2max is set to the upper limit working voltage value of the load 500 minus the margin value, and the second lower limit voltage value V 2min is set to the lower limit working voltage value of the load 500 plus the margin value, but
  • the converter 30 of the energy regulation system 100 includes a shutdown state, a charging control state and a discharging control state.
  • the shutdown state means that the converter 30 does not perform charging or discharging operations.
  • the charging control state means that the power supply 400 is connected to the converter 30 via the second energy storage device 20 with a capacitor structure to charge the first energy storage device 10 with a lithium battery structure.
  • the discharging control state means that the first energy storage device 10 with a lithium battery structure charges the second energy storage device 20 with a capacitor structure via the converter 30.
  • the controller 40 controls the converter 30 to switch between the shutdown state, the charging control state and the discharging control state according to at least one electrical characteristic of the first energy storage device 10 with a lithium battery structure or the second energy storage device 20 with a capacitor structure detected.
  • the present invention provides an energy regulation system 100 for a power grid, wherein a first energy storage device 10 of a lithium battery structure comprises any one or a combination of a lithium (iron) battery, a ternary lithium battery, etc., and the first energy storage device 10 of a lithium battery structure is composed of n lithium batteries connected in series and in parallel, where n is greater than or equal to 1, and a second energy storage device 20 of a capacitor structure comprises any one or a combination of a supercapacitor, a supercapacitor group, a capacitor group, etc., and the second energy storage device 20 of a capacitor structure is composed of m supercapacitors connected in series and in parallel, where m is greater than or equal to 1, and a power source 400 is a power regulation system of a power grid or a renewable energy source or a generator, etc., and a load 500 is a power regulation system of a power grid or an electrical device for a user
  • the second energy storage device 20 serves as a power supply source, allowing the first energy storage device 10 with a lithium battery structure to be connected to the second energy storage device 20 with a capacitor structure through a converter 30 to discharge to the power regulation system or electrical device of the power grid.
  • the first energy storage device 10 with a lithium battery structure provides the second energy storage device 20 with a capacitor structure with power loss caused by self-consumption or the power supply power regulation system or electrical device of the power grid.
  • the occasional instantaneous voltage jump of the power regulation system of the power grid will be absorbed or supplemented by the second energy storage device 20 with a capacitor structure, thereby stabilizing the power supply quality of the power grid.
  • the first energy storage device 10 of the lithium battery structure is composed of 6 groups of 15 lithium battery cells connected in series and connected in parallel.
  • the series and parallel connection of multiple lithium battery cells to form the first energy storage device 10 of the lithium battery structure is only an embodiment of the present invention, and is not a limitation of the scope of the present invention.
  • the first energy storage device 10 of the lithium battery structure of the present invention can be any one of a lithium (iron) battery, a ternary lithium battery, etc., or a series and/or parallel combination thereof.
  • the capacity of the lithium battery cell is 6.0Ahr (ampere-hour)
  • the charging cut-off voltage value is 3.6 volts
  • the rated voltage value is 3.2 volts
  • the discharge cut-off voltage value is 3 volts.
  • the second energy storage device 20 of the capacitor structure takes a supercapacitor group composed of 20 supercapacitor units 450F (Farad) connected in series as an example.
  • the second upper limit voltage value V of the supercapacitor group is set 2max is 54 volts
  • the second lower limit voltage value V 2min of the super capacitor group is 40 volts.
  • the reference voltage value VR of the second energy storage device 20 is greater than or equal to a lower limit working voltage value of the load 500 and less than or equal to an upper limit working voltage value of the load 500, or the reference voltage value VR is the rated working voltage value of the load 500.
  • the load 500 is the rated working voltage value of 42 volts of the power grid power regulation system as an example.
  • the controller 40 detects that the second voltage value V 2 of the second energy storage device 20 is lower than the reference voltage value VR , it enters the dump mode, and the controller 40 controls the converter 30 to allow the first energy storage device 10 to charge the second energy storage device 20. The charging is continued until the second voltage value V2 of the second energy storage device 20 reaches the reference voltage value V R .
  • the energy regulation system 100 of the present invention can not only protect the first energy storage device 10 of the lithium battery structure from the load 500 or the power supply 400 switching on and off or the charging and discharging surge impact, but also design the capacity of the second energy storage device 20 of the capacitor structure appropriately.
  • the reference voltage value VR between the second upper limit voltage value V2max and the second lower limit voltage value V2min of the second energy storage device 20 of the capacitor structure is used for floating charge.
  • the reserved power storage area between the reference voltage value VR and the second upper limit voltage value V2max is used as the second energy storage device 20 of the capacitor structure to store instantaneous charging power, so as to absorb the instantaneous inrush or overload power transmitted by the power regulation system of the power grid or the renewable energy or the generator.
  • the reference voltage value VR and the second lower limit voltage value V2min can be used to store the instantaneous charging power of the second energy storage device 20 of the capacitor structure.
  • the energy stored in the pre-stored power zone is used as the second energy storage device 20 of the capacitor structure to provide instantaneous discharge power demand to supplement the instantaneous underload power of the power regulation system of the power grid.
  • the controller 40 detects that the second voltage value V2 of the second energy storage device 20 of the capacitor structure exceeds an upper-middle limit voltage value between the reference voltage value VR and the second upper limit voltage value V2max , wherein the setting of the upper-middle limit voltage value can make the reference voltage value VR and the second upper limit voltage value V2max 2max are added and divided by 2 to obtain the upper and middle limit voltage values, but the present invention is not limited thereto.
  • the power storage mode is entered to charge the recovered power of the power source 400 on the grid to the first energy storage device 10 of the lithium battery structure.
  • the charging current is between 0C and 1.0C or other current values within the rated maximum charging current value of the first energy storage device 10 of the lithium battery structure, where C is used to represent the current used by the battery when charging or discharging, for example: for a battery with a rated capacity of 36 ampere hours, 1.0C is 36 amperes, until the first voltage value V1 of the first energy storage device 10 of the lithium battery structure has reached a first upper limit voltage value V1max set according to demand, preferably set to a charging cut-off voltage value, or until the first current value I1 of the first energy storage device 10 of the lithium battery structure reaches a first lower limit current value I1min ,
  • the controller 40 detects the first When the first current value I1 of the energy storage device 10 reaches a first lower current limit value I1min , the controller 40 provides a control signal CSoff corresponding to the off state to the converter 30, so that the converter 30 switches to the off state and does not perform charging. In this way, overcharging of the first energy storage device 10 with a lithium battery structure can be avoided.
  • the energy regulation system 100 can limit the current input or selectively add an energy consumption device (not shown), such as a resistor, to prevent or consume the energy that cannot be recovered.
  • the energy regulation system 100 of the present invention also includes a sleep power saving mode.
  • the floating charge and discharge current of the second energy storage device 20 of the capacitor structure is less than or equal to a preset current value, such as 50 mA, and enters a wake-up stage of the sleep power saving mode.
  • the controller 40 when the energy regulation system 100 of the present invention supplies power to the power regulation system of the power grid, the controller 40 detects that the second voltage value V2 of the second energy storage device 20 with a capacitor structure is lower than the reference voltage value VR , or when the energy regulation system 100 of the present invention enters the wake-up phase of the sleep power saving mode, the controller 40 detects that the second voltage value V2 of the second energy storage device 20 with a capacitor structure is lower than the second lower limit voltage value V2min or the second voltage value V2 is lower than a lower intermediate voltage value between the reference voltage value VR and the second lower limit voltage value V2min , then the dump mode is entered, the controller 40 controls the converter 30 to allow the first energy storage device 10 with a lithium battery structure to charge the second energy storage device 20 with a capacitor structure, and uses the first energy storage device 10 with a lithium battery structure as a power source, and the controller 40 controls the converter 30 to transmit the output voltage V2crg and the output current I2crg, and discharges and charges with a current
  • the second energy storage device 20 of the capacitor structure and the power of the first energy storage device 10 of the lithium battery structure are discharged together with a current between 0C and 2.0C or other current values within the rated maximum discharge current value of the first energy storage device 10 of the lithium battery structure, to help meet the power demand of the power regulation system of the power grid, so that the discharge current of the first energy storage device 10 of the lithium battery structure can be effectively controlled to extend the life of the first energy storage device 10 of the lithium battery structure.
  • the second embodiment of the present invention is different from the first embodiment.
  • the energy regulation system 100 of the embodiment is substantially the same, and the difference between the two lies only in that the power source 400 is any one or a combination of a generator, a charging station, a mains power supply or a power recovery system of an electric vehicle, and is used to provide the power required by the energy storage system of the electric vehicle, and the load 500 is any one or a combination of an electric motor or an electrical device of the electric vehicle;
  • the second energy storage device 20 of the capacitor structure is directly electrically connected to the generator, the charging station, the mains power supply or the power recovery system and the electric motor or electrical device of the electric vehicle, respectively
  • the converter 30 is located between the first energy storage device 10 of the lithium battery structure and the second energy storage device 20 of the capacitor structure, and is electrically connected to the first energy storage device 10 of the lithium battery structure and the second energy storage device 20 of the capacitor structure, respectively, and the controller 40 controls the converter 30 to transmit
  • the second energy storage device 20 of the capacitor structure is described by taking a super capacitor group as an example, and the super capacitor group is electrically connected to the power recovery system of the electric vehicle or the electric motor or electrical device of the electric vehicle.
  • the controller 40 provides the converter 30 with a control signal CS crg corresponding to the charging control state, and the power recovery system is used as the power source.
  • the electric energy output by the power recovery system is connected to the converter 30 through the super capacitor group and then connected to the first energy storage device 10 of the lithium battery structure.
  • the controller 40 controls the converter 30 to transmit the output voltage V 1crg and the output current I 1crg.
  • the first energy storage device 10 of the lithium battery structure is used to store electricity, that is, the electric energy output by the power recovery system can be directly absorbed and stored by the supercapacitor group, or recharged to the first energy storage device 10 of the lithium battery structure through the converter 30.
  • the controller 40 adjusts the converter 30 to allow the first energy storage device 10 of the lithium battery structure to charge the supercapacitor group, or the electric motor or electrical device of the electric vehicle uses the first energy storage device 10 of the lithium battery structure and the supercapacitor group as the power supply source, allowing the first energy storage device 10 of the lithium battery structure to discharge the electric motor or electrical device of the electric vehicle through the supercapacitor group.
  • the first energy storage device 10 of the lithium battery structure provides the supercapacitor group with the power required for self-consumption or supplying power to the electric motor or electrical device of the electric vehicle.
  • the occasional instantaneous surge or large current load of the electric motor will be stored or supplied by the supercapacitor group to stabilize the power supply quality of the power system.
  • the first energy storage device 10 of the lithium battery structure of the electric vehicle is composed of 6 groups of 15 lithium battery units connected in series and connected in parallel.
  • the first energy storage device 10 of the lithium battery structure composed of multiple lithium battery units connected in series and in parallel is only an embodiment of the present invention and is not a limitation of the scope of the present invention.
  • the first energy storage device 10 of the lithium battery structure of the present invention can be a lithium (iron) battery, a tri- Any one of the lithium batteries or their series and/or parallel combinations, in this embodiment, the charging cut-off voltage value of the lithium battery unit is 4.2 volts, the rated voltage value is 3.6 volts, the discharging cut-off voltage value is 3 volts, and the capacity of each lithium battery group is 4.9Ahr (ampere-hour). "Battery capacity” is a measure of the charge stored in the battery, generally in ampere-hours (ampere-hours, Ahr).
  • the floating charge and discharge current of the supercapacitor group is less than or equal to a preset current value, such as 50 mA, and the system enters the wake-up stage of the sleep power saving mode.
  • the controller 40 detects that the second voltage value V2 of the second energy storage device 20 of the supercapacitor group drops below the reference voltage value VR , or when the energy regulation system 100 of the present invention enters the wake-up phase of the sleep power saving mode, the controller 40 detects that the second voltage value V2 of the second energy storage device 20 of the supercapacitor group is lower than the second lower limit voltage value V2min or the second voltage value V2 is lower than a lower intermediate voltage value between the reference voltage value VR and the second lower limit voltage value V2min , wherein the lower intermediate voltage value can be set by adding the reference voltage value VR and the second lower limit voltage value V2min and dividing the result by 2 to obtain the lower intermediate voltage value, but the present invention is not limited thereto, and enters the dump mode, the controller 40 controls the converter 30 to switch to the discharge control state CS discrg , and uses the first energy storage device 10 of the lithium battery structure as the power source
  • the rated working voltage of the electric motor is 42 volts
  • the second upper limit voltage value V 2max is preferably set to the upper limit working voltage value of the electric motor minus a margin value.
  • the upper limit working voltage value of the electric motor in this example is 52 volts
  • the second lower limit voltage value V 2min is preferably set to the lower limit working voltage value of the electric motor plus the margin value.
  • the reference voltage value V R is greater than or equal to a lower limit working voltage value of the load 500 and less than or equal to an upper limit working voltage value of the load 500, or the reference voltage value VR is the rated working voltage value of the load 500.
  • the second embodiment takes the load 500 as the rated working voltage value of 42 volts of the electric motor as an example, as the reference voltage value VR of the supercapacitor group, that is, the floating charge voltage value, when the controller 40 detects that the second voltage value V2 of the second energy storage device 20 is lower than the reference voltage value VR , it enters the dump mode, and the controller 40 controls the converter 30 to allow the first energy storage device 10 to charge the second energy storage device 20 until the second voltage value V2 of the second energy storage device 20 reaches the reference voltage value VR .
  • the power recovery system of the electric vehicle recovers electricity and the supercapacitor group stores the recovered electricity of the power recovery system
  • the power recovery system is used as the power source to charge the supercapacitor group to store the recovered power in the reserved power storage area.
  • V2max the second upper limit voltage value
  • the controller 40 simultaneously turns off the power recovery function of the electric motor.
  • the voltage of the supercapacitor group decreases, for example, less than or equal to 49 volts, the power recovery function of the electric motor is restarted.
  • the power storage mode is entered to charge the recovered power of the power recovery system to the first energy storage device 10 of the lithium battery structure, and the controller 40 is triggered to issue an instruction to adjust the converter 30 to allow the power recovery system
  • the charging current is between 0C and 1.0C or other currents within the rated maximum charging current value of the first energy storage device 10 of the lithium battery structure.
  • the converter 30 has a boost charging current of about 0.5C, until the first voltage value V1 of the first energy storage device 10 of the lithium battery structure has reached the first upper limit voltage value V1max set to be higher than the first lower limit voltage value V1min according to the demand, preferably set to the charging cut-off voltage value of the lithium battery structure, or until the first current value I1 of the first energy storage device 10 of the lithium battery structure reaches a first lower limit current value I1min , the first lower limit current value I1min can be set to 0.2C, but the present invention is not limited thereto.
  • the controller 40 detects that the first current value I1 of the first energy storage device 10 of the lithium battery structure reaches a first lower limit current value I1min , and the controller 40 provides a control signal CS corresponding to the shutdown state. off to the converter 30, so that the converter 30 switches to the off state and does not perform charging action, so as to avoid overcharging of the first energy storage device 10 with a lithium battery structure.
  • the energy regulation system 100 can selectively add a mechanical brake or an energy consumption device (not shown), such as a resistor, to consume the energy that cannot be recovered.
  • the energy regulation system 100 can supply the electric motor of the electric vehicle with a discharge current of, for example, 2.0C through the first energy storage device 10 of the lithium battery structure.
  • the reserved power storage area can absorb the surge current generated during the startup or operation of the electric motor.
  • the second energy storage device 20 of the capacitor structure is composed of a supercapacitor group with 20 supercapacitors of 400 farads connected in parallel, the supercapacitor group rises from the floating charge reference voltage value VR to the second upper limit voltage value V2max.
  • the power recovery system can recover about 0.1 kilowatt-hours of electricity, which is a power recovery rate of more than 6%.
  • the energy regulation system 100 of the present invention when the floating charge and discharge current of the supercapacitor group is less than or equal to 50 mA or other current, the energy regulation system 100 enters the sleep power saving mode, wakes up 10 milliseconds per second or other in the wake-up phase of the sleep power saving mode, when the second voltage value V2 of the second energy storage device 20 of the supercapacitor group is lower than a lower intermediate voltage value between the reference voltage value VR and the second lower voltage value V2min , the setting of the lower intermediate voltage value can be to add the reference voltage value VR and the second lower voltage value V2min and divide by 2 to obtain the lower intermediate voltage value, or to set the second lower voltage value V2min as the lower intermediate voltage value, but the present invention is not limited to this.
  • the energy regulation system 100 is awakened to perform floating charge.
  • the energy regulation system 100 of the present invention in the floating charge mode, uses the storage space of the reserved power storage area between the reference voltage value VR of the supercapacitor group and the second upper limit voltage value V2max as the supercapacitor group to store instantaneous charging power, so as to store the instantaneous power transmitted by the power recovery system, and at the same time uses the energy stored in the pre-stored power area between the reference voltage value VR of the supercapacitor group and the second lower limit voltage value V2min as the supercapacitor group to provide the power required for instantaneous discharge, so as to supplement the instantaneous load power of the electric motor or electrical device of the electric vehicle.
  • the first energy storage device 10 of the lithium battery structure is used to store and provide power
  • the supercapacitor group is used as a surge absorption device when the electric vehicle starts, brakes and recovers power to protect the first energy storage device 10 of the lithium battery structure. Therefore, the energy regulation system 100 of the present invention has the functions of providing instantaneous surge current when the electric motor is turned on, storing the charging current recovered by the power recovery system, and reducing the instantaneous acceleration power supply current of the first energy storage device 10 of the lithium battery structure by about 2.0C or more.
  • the energy regulating system 100 disclosed in the present invention is used to store, balance and transfer power between the first energy storage device 10 of the lithium battery structure and the power source 400 or the load 500. Since the energy regulating system 100 has a built-in charging and discharging mechanism of the controller 40 and the converter 30, the functions of the energy regulating system 100 of the present invention include absorbing the startup inrush current of the power source 400 or the load 500, storing the inrush current or charging current of the power source 400, and under the instantaneous large current auxiliary power supply of the second energy storage device 20 of the capacitor structure, The instantaneous discharge current of the first energy storage device 10 of the lithium battery structure is effectively reduced by about 2.0C or above, and the first energy storage device 10 of the lithium battery structure is prevented from being charged or discharged with a large current, thereby achieving the purpose of protecting the first energy storage device 10 of the lithium battery structure.
  • the application of the energy regulation system 100 disclosed in the present invention is not limited to the power regulation systems of electric locomotives, electric vehicles, and power grids, and the energy regulation system 100 itself can be combined with the first energy storage device 10 of the lithium battery structure to become an independent battery device, so as to protect and extend the service life of the first energy storage device 10 of the lithium battery structure.
  • the energy regulation system 100 meets the requirements of power storage, voltage regulation and large current, wherein the second energy storage device 20 of the capacitor structure performs voltage regulation to make the power supply 400 or the load 500 more efficient and stable.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

本发明提供一种能量调节系统,电性连接电源、负载,以及锂电池结构的第一储能装置;能量调节系统包含第二储能装置、至少一转换器以及控制器:其中第二储能装置为电容结构,与电源或负载电性连接;转换器电性连接于第一储能装置与第二储能装置之间,传递输出电压以及输出电流;控制器用以检测所述第一储能装置的第一电压值、第一电流值,或者第二储能装置的第二电压值,当第二储能装置的第二电压值小于参考电压值时,以第一储能装置作为电力来源,对第二储能装置进行充电至参考电压值,控制器控制转换器传递输出电压以及输出电流。

Description

能量调节系统 技术领域
本发明涉及一种存储系统,尤其涉及一种能量调节系统。
背景技术
电网主要的概念是将负载与电源整合成一个可控制的储能系统來供应电能给使用者,目前随着再生能源装置量日渐增加,绿电价格竞争力逐渐上升,然而绿能的间歇性特性,还需要储能系统来存储多余的电力,才能顺利调度电力与电网的稳定性及输出平滑化,功率调节系统(Power Conditioning System,以下简称PCS)则是并在电网上,用来调控电网的电力,功率调节系统除了紧急备援用电外,也可解决再生能源不稳定,因频率过低而造成的低频跳电问题,同时还可以存储再生能源,用于削峰填谷;基于传统电力系统将面临大量再生能源并入电网后造成的不稳定性,电力公司引进储能自动频率控制调频服务(Automatic Frequency Control,以下简称AFC),利用储能系统具有快速充放电的特性,通过主动调整充放电动作调节电力系统频率,可帮助维持电力系统因负载波动造成的频率飘移,极适宜作为再生能源高占比下的系统稳定因应方案,其实际用途为吸收或补充电网上的短时间过载及欠载,在电网系统具备削峰填谷、频率调整与快速调节电能,并进行能量转移或存储再生能源输出的电能,提供给电网进行调度、客户端负载与再生能源发电设施间的实、虚功率调节快速反应特性等多样化功能,提供再生能源的输出平滑化、调整电网频率、备用电源等不同的服务,以协助电网达到稳定供电的责任,由于铅酸电池寿命短,因此储能系统大部分采用锂电瓶或锂铁电瓶担任,理论上锂电瓶或锂铁电瓶的寿命可延长数倍,但是锂电瓶或锂铁电瓶因为要吸收或补充电网上的过载及欠载或开机与充放电的瞬间突流,而需要执行约大于等于2.0C的大充放电流以及约小于等于1.0C的小频繁充放电流,而影响或消耗掉锂电瓶或锂铁电瓶使用寿命,以锂电瓶或锂铁电瓶存储最大电量小于等于70%即需更换为标准,锂电瓶或锂铁电瓶使用寿命将低于5年。
电动机车或电动车利用具有快速充放电的特性的锂电瓶或锂铁电瓶作为储能系统,存储剎车或低速的动力回收系统电能或供电电动车的电动马达或电气装置等电力需求,由于锂电瓶或锂铁电瓶因为要存储或供应电动车电力的过载及欠载或启动与动力回收的瞬间突流,而需要执行约大于等于2.0C的大充放电流以及约小于等于1.0C的小频繁充放电流,而影响或消耗掉锂电瓶或锂铁电瓶使用寿命,以锂电瓶或锂铁电瓶存储最大电量小于等于70%即需更换为标准,锂电瓶或锂铁电瓶使用寿命将低于5年。
发明内容
有鉴于上述缺失,并为达成上述改善目的,本发明所揭能量调节系统,电性连接一电源、一负载,以及锂电池结构的第一储能装置;所述能量调节系统包含:第二储能装置为一电容结构,与所述电源或所述负载电性连接,在一储电模式,以所述电源作为电力来源,对第二储能装置进行充电,或经过第二储能装置对第一储能装置进行充电,在一转储模式,以第一储能装置作为电力来源,对第二储能装置进行充电,或经过第二储能装置对负载进行放电;至少一转换器,电性连接于第一储能装置与第二储能装置之间,于储电模式或转储模式中,传递一输出电压以及一输出电流;以及一控制器,用以检测第一储能装置的第一电压值、第一电流值,或者第二储能装置的第二电压值,其中,第二储能装置分别设定第二上限电压值、第二下限电压值以及一参考电压值,所述参考电压值介于第二上限电压值与第二下限电压值之间,第二储能装置的第二电压值小于所述参考电压值时,以第一储能装置作为电力来源,对第二储能装置进行充电至所述参考电压值,控制器控制转换器传递输出电压以及输出电流,避免锂电池结构的第一储能装置大电流充电或放电,达到保护锂电池结构的第一储能装置的目的。
为了达成上述目的,本发明所揭能量调节系统,其中,所述负载为一功率调节系统、一电动马达或一电气装置。
为了达成上述目的,本发明所揭能量调节系统,其中,所述电源为一功率调节系统、一发电机或一动力回收系统。
为了达成上述目的,本发明所揭能量调节系统,其中,所述参考电压值为所述负载的一额定工作电压值。
为了达成上述目的,本发明所揭能量调节系统,其中,所述参考电压值系大于等于负载的一下限工作电压值且小于等于负载的一上限工作电压值。
为了达成上述目的,本发明所揭能量调节系统,其中,所述第二上限电压值为所述负载的一上限工作电压值减去一裕度值,所述第二下限电压值为所述负载的一下限工作电压值加上所述裕度值,所述裕度值为大于等于零的任一数值。
为了达成上述目的,本发明所揭能量调节系统,其中,当电源对第二储能装置进行充电时,控制器检测第二储能装置的第二电压值超过介于所述参考电压值与第二上限电压之间的一上中限电压值时,控制器调节转换器允许电源经过第二储能装置对第一储能装置进行充电。
为了达成上述目的,本发明所揭能量调节系统,其中,将所述参考电压值与第二上限电压值相加后除以2,得到所述上中限电压值。
为了达成上述目的,本发明所揭能量调节系统,其中,以所述电源对所述第二储能装置进行充电,或经过所述第二储能装置对第一储能装置进行充电时,充电电流介于0C与1.0C之间,直到第一储能装置的第一电流值达到第一下限电流值。
为了达成上述目的,本发明所揭能量调节系统,其中,所述第二储能装置包含一预留储电区,提供负载瞬间过载的电力存储需求,与一预存电力区,提供负载瞬间欠载的电力供应需求,避免所述第一储能装置大电流充电或放电,延长所述第一储能装置的寿命。
为了达成上述目的,本发明所揭能量调节系统,其中,于省电模式的唤醒阶段,控制器检测第二储能装置的第二电压值低于所述第二下限电压值或介于所述参考电压值与第二下限电压值之间的一下中限电压值,进入转储模式,控制器控制转换器允许第一储能装置对第二储能装置进行充电。
为了达成上述目的,本发明所揭能量调节系统,其中,将所述参考电压值与第二下限电压值相加后除以2,得到所述下中限电压值。
为了达成上述目的,本发明所揭能量调节系统,其中,第一储能装置对第二储能装置进行充电,充电电流介于0C与2.0C之间,直到第二储能装置的第二电压值达到所述参考电压值。
有关本发明所揭能量调节系统的详细构造、特点、组装或使用方式,将 于后续的实施方式详细说明中予以描述。然而,在本发明领域技术人员应能了解,所述等详细说明以及实施本发明所列举的特定实施例,仅系用于说明本发明,并非用以限制本发明的权利要求。
附图说明
图1为能量调节系统的示意图。
附图标号说明
10:第一储能装置;
20:第二储能装置;
30:转换器;
40:控制器;
100:能量调节系统;
400:电源;
500:负载。
具体实施方式
以下,配合各附图列举对应的较佳实施例来对本发明所揭能量调节系统的组成构件、步骤及达成功效来作说明,然各附图中能量调节系统的构件、尺寸及外观仅用来说明本发明的技术特征,而非对本发明构成限制。
此外,在本文中所使用的用词“包含”、“包括”、“具有”、“含有”等等,均为开放性的用语,即意指“包含但不限于”。此外,本文中所使用的“和/或”,包含相关列举项目中一或多个项目的任意一个以及其所有组合。
参考图1所示能量调节系统100的示意图,本发明所揭能量调节系统100提供电容结构的第二储能装置20、转换器30和控制器40的组合架构,能量调节系统100电性连接电源400、负载500,以及锂电池结构的第一储能装置10,其中锂电池结构的第一储能装置10包含锂(铁)电池、三元锂电池等任一项或其组合,电容结构的第二储能装置20包含超级电容、超级电容组、电容组等任一项或其组合,电容结构的第二储能装置20与电源400或负载500电性连接,电源400或负载500经由电容结构的第二储能装置20连接至转换器30后再连接至锂电池结构的第一储能装置10,当电源400供电时,即在一储 电模式,以所述电源400作为电力来源,对电容结构的第二储能装置20进行充电,或着通过控制器40控制转换器30传递输出电压V1crg以及输出电流I1crg,使电源400经过电容结构的第二储能装置20及转换器30对锂电池结构的第一储能装置10进行充电,锂电池结构的第一储能装置10用来存储电量,亦即,电源400传输的电能得以经由转换器30回充至锂电池结构的第一储能装置10,电源400或负载500产生的突波,以及瞬间的过载或欠载将由电容结构的第二储能装置20存储或供应,当电容结构的第二储能装置20缺电时或需供电给负载500时,即在一转储模式,以锂电池结构的第一储能装置10作为电力来源,通过控制器40控制转换器30传递输出电压V2crg以及输出电流I2crg,允许锂电池结构的第一储能装置10对电容结构的第二储能装置20进行充电,或者负载500以锂电池结构的第一储能装置10以及电容结构的第二储能装置20作为电力供电来源,允许锂电池结构的第一储能装置10经过电容结构的第二储能装置20对负载500进行放电,锂电池结构的第一储能装置10提供电容结构的第二储能装置20因自耗电损失或供电负载500所需求的电量。
能量调节系统100的控制器40通过电压测量器(图未示)以及电流测量器(图未示)分别测量锂电池结构的第一储能装置10的第一电压值V1、第一电流值I1,或者电容结构的第二储能装置20的第二电压值V2,其中,电容结构的第二储能装置20分别设定第二上限电压值V2max、第二下限电压值V2min以及一参考电压值VR,第二上限电压值V2max较佳为设定至负载500的上限工作电压值,第二下限电压值V2min较佳为设定至负载500的下限工作电压值,亦可保留一裕度值,所述裕度值为大于等于零的任一数值,将第二上限电压值V2max设定至负载500的上限工作电压值减去所述裕度值,将第二下限电压值V2min设定至负载500的下限工作电压值加上所述裕度值,但本发明并不以此为限,所述参考电压值VR介于第二上限电压值V2max与第二下限电压值V2min之间,其中锂电池结构的第一储能装置10的第一电压值V1、第一电流值I1以及电容结构的第二储能装置20的第二电压值V2分别提供控制器40,控制器40藉以调节转换器30的输出电压以及输出电流,使所述电容结构的第二储能装置20的所述第二电压值V2维持在所述参考电压值VR进行充电或放电,避免锂电池结构的第一储能装置10大电流充电或放电,达到保护锂电池 结构的第一储能装置10的目的。
能量调节系统100的转换器30包含一关闭状态、一充电控制状态以及一放电控制状态,关闭状态为转换器30不进行充电或放电动作,充电控制状态为电源400经由电容结构的第二储能装置20连接到转换器30对锂电池结构的第一储能装置10充电,放电控制状态为锂电池结构的第一储能装置10经由转换器30对电容结构的第二储能装置20充电,控制器40依据检测的锂电池结构的第一储能装置10或电容结构的第二储能装置20的至少一电性特性,控制转换器30于关闭状态、充电控制状态以及放电控制状态间切换。
以上说明本发明的能量调节系统100的组成,随后,详述本发明的能量调节系统100的运作及功效。
参考图1所示第一实施例,以电网为例,本发明提供一种能量调节系统100用于电网,其中锂电池结构的第一储能装置10包含锂(铁)电池、三元锂电池等任一项或其组合,锂电池结构的第一储能装置10是由n个锂电池串并聯所组成,n大于等于1,电容结构的第二储能装置20包含超级电容、超级电容组、电容组等任一项或其组合,电容结构的第二储能装置20是由m个超级电容串并聯所组成,m大于等于1,电源400为电网的功率调节系统或再生能源或发电机等,负载500为电网的功率调节系统或为用户负载的电气装置,当电网供电或有瞬间欠载时,即在一储电模式,控制器40提供转换器30对应于充电控制状态的控制信号CScrg,电容结构的第二储能装置20电性连接至电网的功率调节系统,以电网的功率调节系统作为电力来源,对电容结构的第二储能装置20进行充电,或者,通过控制器40控制转换器30传递一输出电压V1crg以及一输出电流I1crg,电网的功率调节系统经由电容结构的第二储能装置20连接至转换器30对锂电池结构的第一储能装置10进行充电,锂电池结构的第一储能装置10用来存储电量,亦即,电网的功率调节系统输出的电能得以经由转换器30回充至锂电池结构的第一储能装置10;当电网缺电或有瞬间过载时,即在一转储模式,控制器40控制转换器30切换至放电控制状态CSdiscrg,以锂电池结构的第一储能装置10作为电力来源,通过控制器40控制转换器30传递输出电压V2crg以及输出电流I2crg,控制器40调节转换器30允许锂电池结构的第一储能装置10对电容结构的第二储能装置20进行充电,或者以锂电池结构的第一储能装置10以及电容结构的第 二储能装置20作为电力供电来源,允许锂电池结构的第一储能装置10经过转换器30连接电容结构的第二储能装置20对电网的功率调节系统或电气装置进行放电,锂电池结构的第一储能装置10提供电容结构的第二储能装置20因自耗电或电网的供电功率调节系统或电气装置造成的电量损失,电网功率调节系统偶发的瞬间电压跳动将由电容结构的第二储能装置20吸收或补充,稳定电网的供电质量。
在第一实施例中,以电网为例,锂电池结构的第一储能装置10通过6组15颗串联的锂电池单元以并联电性连接组成为例,多个锂电池单元的串联及并联组成锂电池结构的第一储能装置10仅为本发明一实施例,并非本发明权利范围的限制,本发明的锂电池结构的第一储能装置10可以是锂(铁)电池、三元锂电池等任一项或其串联和/或并联组合,此实施例中,锂电池单元的容量为6.0Ahr(安时),充电截止电压值3.6伏特,额定电压值3.2伏特,放电截止电压值3伏特,因此锂电池结构的第一储能装置10充电截止电压值为3.6伏特×15=54伏特,锂电池结构的第一储能装置10额定电压值为3.2伏特×15=48伏特,锂电池结构的第一储能装置10放电截止电压值为2.8伏特×15=42伏特,锂电池结构的第一储能装置10电池容量为6.0Ahr(安时)×6=36Ahr(安时),目前超级电容单元的容量可以做到很大,从几法拉到数千法拉甚至万法拉,但单一单元的电压较低,电容结构的第二储能装置20以20颗超级电容单元450F(法拉(Farad))串联电性连接所组成超级电容组为例,超级电容单元额定电压值为3.0伏特,超级电容组额定电压值为3.0伏特×20=60伏特,以电网功率调节系统的工作电压范围介于40伏特与54伏特之间,额定工作电压为42伏特为例,设定超级电容组的第二上限电压值V2max为54伏特,超级电容组的第二下限电压值V2min为40伏特,在一浮充模式下,所述第二储能装置20的所述参考电压值VR系大于等于负载500的一下限工作电压值且小于等于负载500的一上限工作电压值,或者,所述参考电压值VR为负载500的额定工作电压值,第一实施例以负载500为电网功率调节系统的额定工作电压值42伏特为例说明,作为超级电容组的参考电压值VR,也就是浮充电压值,所述控制器40检测所述第二储能装置20的所述第二电压值V2低于所述参考电压值VR时,进入所述转储模式,所述控制器40控制所述转换器30允许所述第一储能装置10对所述第二储能装置20进 行充电,直到所述第二储能装置20的所述第二电压值V2达到所述参考电压值VR
进一步说明第一实施例具体运作方式,本发明能量调节系统100不仅能保护锂电池结构的第一储能装置10而不受负载500或电源400开关机或充放电突波冲击,而且设计适当电容结构的第二储能装置20的容量,并且在所述浮充模式下,于电容结构的第二储能装置20的第二上限电压值V2max以及第二下限电压值V2min之间的参考电压值VR进行浮充,利用参考电压值VR与第二上限电压值V2max之间的预留储电区作为电容结构的第二储能装置20存储瞬间的充电电力之用,以吸收电网的功率调节系统或再生能源或发电机等所传输的瞬间突流或过载电力,同时可利用参考电压值VR与第二下限电压值V2min之间的预存电力区所存储的能量作为电容结构的第二储能装置20提供瞬间放电电力需求,以补充电网的功率调节系统的瞬间欠载电力之用,也因为绝大部分电网的功率调节系统的瞬间过载电力由电容结构的第二储能装置20吸收后存储,之后再补充电能回电网的功率调节系统,当电容结构的第二储能装置20存储电网上电源400的回收电力时,以电网的功率调节系统或再生能源或发电机等作为电力来源,对电容结构的第二储能装置20进行充电时,控制器40检测电容结构的第二储能装置20的第二电压值V2超过介于所述参考电压值VR与第二上限电压值V2max之间的一上中限电压值时,其中,上中限电压值的设定,可以将所述参考电压值VR与第二上限电压值V2max相加后除以2,得到所述上中限电压值,但本发明不限于此,进入储电模式,将电网上电源400的回收电力充电至锂电池结构的第一储能装置10,通过触动控制器40下指令调节转换器30允许电网的电源400的回收电力经过电容结构的第二储能装置20对锂电池结构的第一储能装置10进行充电时,充电电流介于0C与1.0C之间或锂电池结构的第一储能装置10的额定最大充电电流值内的其他电流值,其中C用来表示电池在充电或放电时所用的电流,例如:额定容量36安培小时的电池,1.0C即为36安培,直到锂电池结构的第一储能装置10的所述第一电压值V1已达依需求设定的第一上限电压值V1max,较佳为设定至充电截止电压值,或者,直到锂电池结构的第一储能装置10的所述第一电流值I1达到一第一下限电流值I1min,第一下限电流值I1min可以设定为0.2C,但本发明并不以此为限,控制器40检测锂电池结构的第一 储能装置10的第一电流值I1达到一第一下限电流值I1min,由控制器40提供对应于关闭状态的控制信号CSoff给转换器30,使转换器30切换至关闭状态,不进行充电动作,如此可以避免锂电池结构的第一储能装置10过度充电,若锂电池结构的第一储能装置10回收不及或已达第一上限电压值V1max,导致电容结构的第二储能装置20的第二电压值V2持续上升至第二上限电压值V2max,能量调节系统100可以限制电流输入或选择性加入能耗装置(图未示),例如:电阻器,以阻止或消耗回收不及的能量。
本发明的能量调节系统100,还包含一休眠省电模式,在第一实施例中,当本发明能量调节系统100供电给电网的功率调节系统,电容结构的第二储能装置20的浮充放电电流小于等于一预设电流值,例如50毫安,即进入休眠省电模式的一唤醒阶段。
在第一实施例中,当本发明能量调节系统100供电给电网的功率调节系统,控制器40检测电容结构的第二储能装置20的第二电压值V2低于所述参考电压值VR时,或者,当本发明能量调节系统100进入休眠省电模式的唤醒阶段,控制器40检测电容结构的第二储能装置20的第二电压值V2低于第二下限电压值V2min或第二电压值V2低于介于所述参考电压值VR与第二下限电压值V2min之间的一下中限电压值时,进入转储模式,控制器40控制转换器30允许锂电池结构的第一储能装置10对电容结构的第二储能装置20进行充电,以锂电池结构的第一储能装置10作为电力来源,控制器40控制转换器30传递输出电压V2crg以及输出电流I2crg,以电流介于0C与2.0C之间或锂电池结构的第一储能装置10的额定最大放电电流内的其他电流值放电供电及充电,直到电容结构的第二储能装置20的第二电压值V2达到所述参考电压值VR,避免锂电池结构的第一储能装置10大电流放电,达到保护锂电池结构的第一储能装置10,或者,由电容结构的第二储能装置20的预存电力区所存储的能量以及锂电池结构的第一储能装置10电力以电流介于0C与2.0C之间或锂电池结构的第一储能装置10的额定最大放电电流值内的其他电流值共同放电,协助满足电网的功率调节系统电力需求,如此可有效管控锂电池结构的第一储能装置10放电电流,达到延长锂电池结构的第一储能装置10寿命。
参考图1所示第二实施例,以电动车为例,本发明第二实施例与第一实 施例的能量调节系统100大致相同,两者的差异处仅在于:电源400为发电机、充电站、市电或电动车的动力回收系统等任一项或其组合,用于提供电动车的储能系统所需电量,负载500为电动车的电动马达或电气装置等任一项或其组合;电容结构的第二储能装置20分别直接电性连接至发电机、充电站、市电或动力回收系统与电动车的电动马达或电气装置,转换器30位于锂电池结构的第一储能装置10与电容结构的第二储能装置20之间,并且分别电性连接锂电池结构的第一储能装置10与电容结构的第二储能装置20,控制器40控制转换器30传递输出电压以及输出电流。
在第二实施例中,电容结构的第二储能装置20系以超级电容组为例说明,利用超级电容组电性连接至电动车的动力回收系统或电动车的电动马达或电气装置,当动力回收系统输出电能时,即在一储电模式,控制器40提供转换器30对应于充电控制状态的控制信号CScrg,以动力回收系统作为电力来源,动力回收系统输出的电能经由超级电容组连接至转换器30后再连接至锂电池结构的第一储能装置10,通过控制器40控制转换器30传递输出电压V1crg以及输出电流I1crg,对超级电容组进行充电,或经过超级电容组对锂电池结构的第一储能装置10进行充电,锂电池结构的第一储能装置10用来存储电量,亦即,动力回收系统输出的电能得以直接由超级电容组吸收存储,或是经由转换器30回充至锂电池结构的第一储能装置10,当超级电容组缺电时或需供电电动车的电动马达或电气装置时,即在一转储模式,以锂电池结构的第一储能装置10作为电力来源,控制器40调节转换器30允许锂电池结构的第一储能装置10对超级电容组进行充电,或者电动车的电动马达或电气装置以锂电池结构的第一储能装置10以及超级电容组作为电力供电来源,允许锂电池结构的第一储能装置10经过超级电容组对电动车的电动马达或电气装置进行放电,锂电池结构的第一储能装置10提供超级电容组因自耗电或供电给电动车的电动马达或电气装置所需的电量,电动马达偶发的瞬间突流或大电流拉载将由超级电容组存储或供应,以稳定电力系统的供电质量。
在第二实施例中,以电动车锂电池结构的第一储能装置10通过6组15颗串联的锂电池单元以并联电性连接组成为例,多个锂电池单元的串联及并联组成锂电池结构的第一储能装置10仅为本发明一实施例,并非本发明权利范围的限制,本发明的锂电池结构的第一储能装置10可以是锂(铁)电池、三 元锂电池等任一项或其串联和/或并联组合,此实施例中,锂电池单元的充电截止电压值4.2伏特,额定电压值3.6伏特,放电截止电压值3伏特,每组锂电池容量4.9Ahr(安时),“电池容量”由电池所存储的电荷的度量,一般以安培小时(安时,Ahr),因此锂电池结构的第一储能装置10充电截止电压值为4.2伏特×15=63伏特,锂电池结构的第一储能装置10额定电压值为3.6伏特×15=54伏特,锂电池结构的第一储能装置10放电截止电压值为2.8伏特×15=42伏特,锂电池结构的第一储能装置10电池容量为4.9Ahr(安时)×6=29.4Ahr(安时)。
本发明能量调节系统100,在第二实施例中,当本发明能量调节系统100供电给电动车的电动马达或电气装置时,超级电容组的浮充放电电流小于等于一预设电流值,例如50毫安,即进入休眠省电模式的唤醒阶段。
当本发明能量调节系统100供电给电动车的电动马达或电气装置时,控制器40检测超级电容组的的第二储能装置20第二电压值V2下降至低于所述参考电压值VR时,或者,当本发明能量调节系统100进入休眠省电模式的唤醒阶段,控制器40检测超级电容组的第二储能装置20的第二电压值V2低于所述第二下限电压值V2min或第二电压值V2低于介于所述参考电压值VR与第二下限电压值V2min之间的一下中限电压值,其中下中限电压值的设定,可以将所述参考电压值VR与第二下限电压值V2min相加后除以2,得到所述下中限电压值,但本发明不限于此,进入转储模式,控制器40控制转换器30切换至放电控制状态CSdiscrg,以锂电池结构的第一储能装置10作为电力来源,允许锂电池结构的第一储能装置10连接转换器30对超级电容组进行充电,即通过控制器40控制转换器30传递输出电压V2crg以及输出电流I2crg,对超级电容组进行充电至所述参考电压值VR,将电力预先存储至超级电容组的第二储能装置20的预存电力区,锂电池结构的第一储能装置10,以电流介于0C与2.0C之间或锂电池结构的第一储能装置10的额定最大放电电流内的其他电流值放电供电及充电超级电容组,或者,由超级电容组的预存电力区所存储的能量,以及锂电池结构的第一储能装置10以电流介于0C与2.0C之间或锂电池结构的第一储能装置10的额定最大放电电流内的其他电流值共同放电,协助满足电动车的电动马达或电气装置的电力需求,经由转换器30以充电电流介于.0C与2.0C之间放电浮充超级电容组及供电电动车的电动马达 或电气装置,避免锂电池结构的第一储能装置10大电流放电,达到延长锂电池结构的第一储能装置10寿命。
本发明能量调节系统100,在第二实施例中,以电动马达的工作电压42伏特±10伏特为例,电动马达的额定工作电压为42伏特,第二上限电压值V2max较佳设定为电动马达的上限工作电压值减去一裕度值,例如本范例电动马达的上限工作电压值为52伏特,裕度值为1伏特,因此第二上限电压值V2max为52伏特-1伏特=51伏特,第二下限电压值V2min较佳设定为电动马达的下限工作电压值加上所述裕度值,例如本范例电动马达的下限工作电压值为32伏特,裕度值为1伏特,因此第二下限电压值V2min为32伏特+1伏特=33伏特,以超级电容组为电容结构的第二储能装置20为例,在一浮充模式下,所述第二储能装置20的所述参考电压值VR大于等于负载500的一下限工作电压值且小于等于负载500的一上限工作电压值,或者,所述参考电压值VR为负载500的额定工作电压值,第二实施例以负载500为电动马达的额定工作电压值42伏特为例说明,作为超级电容组的参考电压值VR,也就是浮充电压值,所述控制器40检测所述第二储能装置20的所述第二电压值V2低于所述参考电压值VR时,进入所述转储模式,所述控制器40控制所述转换器30允许所述第一储能装置10对所述第二储能装置20进行充电,直到所述第二储能装置20的所述第二电压值V2达到所述参考电压值VR
当电动车动力回收系统回收电力,超级电容组存储动力回收系统的回收电力时,以动力回收系统作为电力来源,对超级电容组进行充电存储回收的动力至预留储电区,当超级电容组电压持续上升至第二上限电压值V2max,即本实施例的51伏特时,可识别为机械式剎车介入始点,控制器40同时关掉电动马达的动力回收功能,当超级电容组电压降低后,例如小于等于49伏特,重启电动马达的动力回收功能;另一实施方式为,当控制器40检测超级电容组的第二储能装置20的第二电压值V2超过介于所述参考电压值VR与第二上限电压值V2max之间的一上中限电压值时,其中,上中限电压值的设定,可以将所述参考电压值VR与第二上限电压值V2max相加后除以2,得到所述上中限电压值,于此实施例中可设定为(42+51)/2=46.5伏特,但本发明不限于此,进入储电模式,将动力回收系统的回收电力充电至锂电池结构的第一储能装置10,通过触动控制器40下指令调节转换器30允许动力回收系统的 回收电力经过超级电容组对锂电池结构的第一储能装置10进行充电时,充电电流介于0C与1.0C之间或锂电池结构的第一储能装置10的额定最大充电电流值内的其他电流,以转换器30有升压充电实质约0.5C充电电流为例,直到锂电池结构的第一储能装置10的所述第一电压值V1已达依需求设定至较第一下限电压值V1min高的第一上限电压值V1max,较佳为设定至锂电池结构的充电截止电压值,或者,直到锂电池结构的第一储能装置10的所述第一电流值I1达到一第一下限电流值I1min,第一下限电流值I1min可以设定为0.2C,但本发明并不以此为限,控制器40检测锂电池结构的第一储能装置10的第一电流值I1达到一第一下限电流值I1min,由控制器40提供对应于关闭状态的控制信号CSoff给转换器30,使转换器30切换至关闭状态,不进行充电动作,如此可以避免锂电池结构的第一储能装置10过度充电,若锂电池结构的第一储能装置10仍回收不及导致超级电容组的第二储能装置20的第二电压值V2持续上升至第二上限电压值V2max,能量调节系统100可以选择性加入机械式剎车或能耗装置(图未示),例如:电阻器,以消耗回收不及的能量。
当电容结构的第二储能装置20由超级电容组以1个串联20颗400F超级电容并联所组成时,超级电容组于42伏特浮充下已经暂时存储于预存电力区的能量有400F/20×(42伏特–33伏特)=180AS(安秒),另外,能量调节系统100可经由锂电池结构的第一储能装置10以例如2.0C的放电电流可再供应给电动车的电动马达瞬间加速下可输出的电流为2×29.4安培=58.8安培,如此,能量调节系统100在超级电容组降至第二下限电压值V2min的33伏特的工作截止电压值前,可由预存电力区与2.0C放电供应共约180+58.8=238.8AS(安秒)的能量足够支撑电动马达于2秒以内到达4.0C=4×29.4=118安培的加速需求,可有效降低锂电池结构的第一储能装置10瞬间放电电流至少约2.0C或以上,达到延长锂电池结构的第一储能装置10寿命。虽然电动马达放电瞬间有突流,但因能量调节系统100浮充设计,预留储电区可以吸收电动马达开机或运转过程中所产生的突流。
当电容结构的第二储能装置20由超级电容组以1个串联20颗400法拉的超级电容并联所组成时,超级电容组由浮充的参考电压值VR上升至第二上限电压值V2max可于预留储电区存储的回收能量有400F/20×(51伏特–42伏特)=180AS(安秒),可回收的电力约有180安秒×(51+42)/2伏特=0.0023 千瓦小时,千瓦小时是指1度电,在例如40Km的续航力使用时,若每次剎车可回收0.0023度的电量,则剎车50次,动力回收系统的回收电力可回收约0.1度,约占6%以上电力回收率。
本发明的能量调节系统100,当超级电容组浮充放电电流小于等于50毫安或其他电流时,能量调节系统100进入休眠省电模式,在休眠省电模式的唤醒阶段每秒醒来10毫秒或其他,当超级电容组的第二储能装置20的第二电压值V2低于介于所述参考电压值VR与第二下限电压值V2min之间的一下中限电压值,其下中限电压值的设定,可以是将所述参考电压值VR与第二下限电压值V2min相加后除以2,得到所述下中限电压值,或者,设定所述第二下限电压值V2min为所述下中限电压值,但本发明不限于此,例如当电容结构的第二储能装置20由超级电容组以1个串联20颗额定电压值2.7伏特的超级电容所组成时,下中限电压值可设定为(42伏特+33伏特)/2=37.5伏特,或者设定为第二下限电压值V2min的33伏特时,再唤醒能量调节系统100进行浮充动作。
第二实施例中,本发明能量调节系统100,在所述浮充模式下,利用超级电容组的参考电压值VR与第二上限电压值V2max之间的预留储电区的存储空间作为超级电容组存储瞬间的充电电力之用,以存储动力回收系统所传输的瞬间电力,同时利用超级电容组的参考电压值VR与第二下限电压值V2min之间的预存电力区所存储的能量作为超级电容组提供瞬间放电所需的电力之用,以补充电动车的电动马达或电气装置的瞬间负载电力之用,锂电池结构的第一储能装置10用来存储与提供电力,超级电容组作为电动车启动、剎车及动力回收时的突流吸收装置以保护锂电池结构的第一储能装置10,因此本发明能量调节系统100具有提供电动马达开机瞬间突流、存储动力回收系统回收充电电流,以及降低锂电池结构的第一储能装置10约2.0C或以上的瞬间加速供电电流等功能。
本发明所揭能量调节系统100作为锂电池结构的第一储能装置10与电源400或负载500之间存储、平衡及传递电力之用,能量调节系统100因内建有控制器40及转换器30的充放电机制,因此,本发明能量调节系统100具有的功能,包括吸收电源400或负载500的开机突流、存储电源400的突流或充电电流,以及在电容结构的第二储能装置20的瞬间大电流辅助供电下, 有效降低约2.0C或以上的锂电池结构的第一储能装置10瞬间放电电流,避免锂电池结构的第一储能装置10大电流充电或放电,达到保护锂电池结构的第一储能装置10的目的。
本发明所揭能量调节系统100所应用不以电动机车、电动车、电网的功率调节系统为限,且能量调节系统100本身可以与锂电池结构的第一储能装置10组合后成为一个独立电瓶装置,达到保护并且延长锂电池结构的第一储能装置10的使用寿命,同时能量调节系统100满足蓄电、稳压以及大电流的需求,其中电容结构的第二储能装置20稳压让电源400或负载500更有效率及稳定。
最后,强调,本发明于前揭实施例中所揭示的构成组件,仅为举例说明,并非用来限制本案的范围,其他等效组件的替代或变化,亦应为本案的权利要求所涵盖。

Claims (13)

  1. 一种能量调节系统,电性连接一电源、一负载,以及锂电池结构的一第一储能装置,其特征在于,包括:
    第二储能装置为电容结构,与所述电源或所述负载电性连接,在储电模式,以所述电源作为电力来源,对所述第二储能装置进行充电,或经过所述第二储能装置对所述第一储能装置进行充电,在转储模式,以所述第一储能装置作为电力来源,对所述第二储能装置进行充电,或经过所述第二储能装置对所述负载进行放电;
    至少一转换器,电性连接于所述第一储能装置与所述第二储能装置之间,于所述储电模式或所述转储模式中,传递输出电压以及输出电流;以及
    控制器,用以检测所述第一储能装置的第一电压值、第一电流值,或者所述第二储能装置的第二电压值,其中,所述第二储能装置分别设定第二上限电压值、第二下限电压值以及参考电压值,所述参考电压值介于所述第二上限电压值与所述第二下限电压值之间,所述第二储能装置的所述第二电压值小于所述参考电压值时,以所述第一储能装置作为电力来源,对所述第二储能装置进行充电至所述参考电压值,所述控制器控制所述转换器传递所述输出电压以及所述输出电流,避免所述第一储能装置大电流充电或放电,达到保护所述第一储能装置的目的。
  2. 根据权利要求1所述的能量调节系统,其特征在于,其中所述负载为功率调节系统、电动马达或电气装置。
  3. 根据权利要求1所述的能量调节系统,其特征在于,其中所述电源为功率调节系统、发电机或动力回收系统。
  4. 根据权利要求1所述的能量调节系统,其特征在于,其中所述参考电压值为所述负载的额定工作电压值。
  5. 根据权利要求1所述的能量调节系统,其特征在于,其中所述参考电压值大于等于所述负载的下限工作电压值且小于等于所述负载的上限工作电压值。
  6. 根据权利要求1所述的能量调节系统,其特征在于,其中所述第二上限电压值为所述负载的上限工作电压值减去裕度值,所述第二下限电压值为所述负载的下限工作电压值加上所述裕度值,所述裕度值为大于等于零的任 一数值。
  7. 根据权利要求1所述的能量调节系统,其特征在于,其中当所述电源对第二储能装置进行充电时,所述控制器检测所述第二储能装置的所述第二电压值超过介于所述参考电压值与所述第二上限电压之间的上中限电压值时,所述控制器调节所述转换器允许所述电源经过所述第二储能装置对所述第一储能装置进行充电。
  8. 根据权利要求7所述的能量调节系统,其特征在于,其中将所述参考电压值与所述第二上限电压值相加后除以2,得到所述上中限电压值。
  9. 根据权利要求1所述的能量调节系统,其特征在于,其中以所述电源经过所述第二储能装置对所述第一储能装置进行充电时,充电电流介于0C与1.0C之间,直到所述第一储能装置的所述第一电流值达到第一下限电流值。
  10. 根据权利要求1所述的能量调节系统,其特征在于,其中所述第二储能装置包含预留储电区,提供负载瞬间过载的电力存储需求,与预存电力区,提供负载瞬间欠载的电力供应需求,避免所述第一储能装置大电流充电或放电,延长所述第一储能装置的寿命。
  11. 根据权利要求1所述的能量调节系统,其特征在于,其中于省电模式的唤醒阶段,所述控制器检测所述第二储能装置的所述第二电压值低于所述第二下限电压值或介于所述参考电压值与所述第二下限电压值之间的下中限电压值,进入所述转储模式,所述控制器控制所述转换器允许所述第一储能装置对所述第二储能装置进行充电。
  12. 根据权利要求11所述的能量调节系统,其特征在于,其中将所述参考电压值与所述第二下限电压值相加后除以2,得到所述下中限电压值。
  13. 根据权利要求1所述的能量调节系统,其特征在于,其中所述第一储能装置对所述第二储能装置进行充电,充电电流介于0C与2.0C之间,直到所述第二储能装置的所述第二电压值达到所述参考电压值。
PCT/CN2023/131655 2022-11-15 2023-11-14 能量调节系统 WO2024104359A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211423966.7A CN118100332A (zh) 2022-11-15 2022-11-15 能量调节系统
CN202211423966.7 2022-11-15

Publications (1)

Publication Number Publication Date
WO2024104359A1 true WO2024104359A1 (zh) 2024-05-23

Family

ID=91083838

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/131655 WO2024104359A1 (zh) 2022-11-15 2023-11-14 能量调节系统

Country Status (2)

Country Link
CN (1) CN118100332A (zh)
WO (1) WO2024104359A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014180159A (ja) * 2013-03-15 2014-09-25 Sanken Electric Co Ltd 電力供給システム
CN111817375A (zh) * 2020-07-07 2020-10-23 日立楼宇技术(广州)有限公司 一种电梯轿厢的供电装置和供电方法
TWI750087B (zh) * 2021-04-28 2021-12-11 天揚精密科技股份有限公司 智慧能量存儲系統
CN114421503A (zh) * 2022-03-14 2022-04-29 中国长江三峡集团有限公司 一种混合储能系统及其控制方法与控制装置
CN115250002A (zh) * 2021-04-28 2022-10-28 天扬精密科技股份有限公司 智能能量存储系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014180159A (ja) * 2013-03-15 2014-09-25 Sanken Electric Co Ltd 電力供給システム
CN111817375A (zh) * 2020-07-07 2020-10-23 日立楼宇技术(广州)有限公司 一种电梯轿厢的供电装置和供电方法
TWI750087B (zh) * 2021-04-28 2021-12-11 天揚精密科技股份有限公司 智慧能量存儲系統
CN115250002A (zh) * 2021-04-28 2022-10-28 天扬精密科技股份有限公司 智能能量存储系统
CN114421503A (zh) * 2022-03-14 2022-04-29 中国长江三峡集团有限公司 一种混合储能系统及其控制方法与控制装置

Also Published As

Publication number Publication date
CN118100332A (zh) 2024-05-28

Similar Documents

Publication Publication Date Title
US6949843B2 (en) Grid-connected power systems having back-up power sources and methods of providing back-up power in grid-connected power systems
US6795322B2 (en) Power supply with uninterruptible function
KR101174891B1 (ko) 전력 저장 시스템 및 그 제어방법
CN103023127B (zh) 太阳能空调及该空调的供电方法
TWI705641B (zh) 供電裝置、應用其之飛行工具及其供電方法
JPH1169893A (ja) ハイブリッド発電システム
JP2008131736A (ja) 分散型電源システムと昇降圧チョッパ装置
CN114899913B (zh) 一种混合储能逆变器离网模式下电池充放电电流控制方法
JPH09191565A (ja) 直流配電システム
CN106961150B (zh) 复合储能电池的控制方法及系统
KR20180090673A (ko) 하이브리드 에너지 저장 시스템
US10069303B2 (en) Power generation system and method with energy management
CN110829464A (zh) 一种基于直流侧的光伏储能电池调频系统和方法
CN113581223A (zh) 一种混合动力机车及其能量平衡控制方法与系统
CN106026174B (zh) 一种具有智能化功率分配功能的光伏并网发电系统
WO2024104359A1 (zh) 能量调节系统
JP2001177995A (ja) ハイブリッド電源システム
KR20110112678A (ko) 분산 전원을 이용한 전력 제어 시스템
TWI830498B (zh) 能量調節系統
JPH0965582A (ja) 太陽電池を利用した電源システム
TW202422994A (zh) 能量調節系統
JP2003092831A (ja) 電力供給システムおよびその運転方法
JP6556482B2 (ja) 蓄電制御システム
JPH10243575A (ja) 太陽電池電源装置及びその運転方法
JP3688744B2 (ja) 太陽光発電装置