TWI701973B - 積體電路設備及其操作方法 - Google Patents

積體電路設備及其操作方法 Download PDF

Info

Publication number
TWI701973B
TWI701973B TW108105026A TW108105026A TWI701973B TW I701973 B TWI701973 B TW I701973B TW 108105026 A TW108105026 A TW 108105026A TW 108105026 A TW108105026 A TW 108105026A TW I701973 B TWI701973 B TW I701973B
Authority
TW
Taiwan
Prior art keywords
current
output
node
voltage
terminal
Prior art date
Application number
TW108105026A
Other languages
English (en)
Other versions
TW201946495A (zh
Inventor
布雷特 蘿絲 豪維
Original Assignee
美商艾賽斯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 美商艾賽斯股份有限公司 filed Critical 美商艾賽斯股份有限公司
Publication of TW201946495A publication Critical patent/TW201946495A/zh
Application granted granted Critical
Publication of TWI701973B publication Critical patent/TWI701973B/zh

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F3/00Non-retroactive systems for regulating electric variables by using an uncontrolled element, or an uncontrolled combination of elements, such element or such combination having self-regulating properties
    • G05F3/02Regulating voltage or current
    • G05F3/08Regulating voltage or current wherein the variable is dc
    • G05F3/10Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics
    • G05F3/16Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices
    • G05F3/20Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices using diode- transistor combinations
    • G05F3/24Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices using diode- transistor combinations wherein the transistors are of the field-effect type only
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F3/00Non-retroactive systems for regulating electric variables by using an uncontrolled element, or an uncontrolled combination of elements, such element or such combination having self-regulating properties
    • G05F3/02Regulating voltage or current
    • G05F3/08Regulating voltage or current wherein the variable is dc
    • G05F3/10Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics
    • G05F3/16Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices
    • G05F3/20Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices using diode- transistor combinations
    • G05F3/26Current mirrors
    • G05F3/262Current mirrors using field-effect transistors only
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/30Driver circuits
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/04Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of a single character by selection from a plurality of characters, or by composing the character by combination of individual elements, e.g. segments using a combination of such display devices for composing words, rows or the like, in a frame with fixed character positions
    • G09G3/06Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of a single character by selection from a plurality of characters, or by composing the character by combination of individual elements, e.g. segments using a combination of such display devices for composing words, rows or the like, in a frame with fixed character positions using controlled light sources
    • G09G3/12Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of a single character by selection from a plurality of characters, or by composing the character by combination of individual elements, e.g. segments using a combination of such display devices for composing words, rows or the like, in a frame with fixed character positions using controlled light sources using electroluminescent elements
    • G09G3/14Semiconductor devices, e.g. diodes
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/10Controlling the intensity of the light
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/30Driver circuits
    • H05B45/345Current stabilisation; Maintaining constant current
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/30Driver circuits
    • H05B45/395Linear regulators
    • H05B45/397Current mirror circuits
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps
    • Y02B20/30Semiconductor lamps, e.g. solid state lamps [SSL] light emitting diodes [LED] or organic LED [OLED]

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Electromagnetism (AREA)
  • Nonlinear Science (AREA)
  • Automation & Control Theory (AREA)
  • Computer Hardware Design (AREA)
  • Theoretical Computer Science (AREA)
  • Electronic Switches (AREA)
  • Continuous-Control Power Sources That Use Transistors (AREA)
  • Control Of Electrical Variables (AREA)

Abstract

一種電流驅動器積體電路耦合至流經二極體的控制電 流。在一個實例中,二極體是發光二極體,所述發光二極體具有耦合至由電池供電的供應節點的陽極以及耦合至電流驅動器積體電路的驅動端子的陰極。在運作期間,電流驅動器積體電路被啟用且自供應節點經由發光二極體以及經由驅動端子向接地節點吸收輸出電流。當電流流經發光二極體時,電池放電。電池電壓的改變使發光二極體的陰極與接地節點之間的輸出電壓改變。不論輸出電壓如何變化,電流驅動器積體電路在至少2V的輸出電壓範圍內皆使輸出電流的電流位準維持處於期望輸出電流位準的百分之五內。

Description

積體電路設備及其操作方法
本揭露大體而言是有關於電流驅動器電路系統,且更具體而言是有關於控制電流驅動器應用中的電流流動。
在典型的照明應用及光通訊應用中,採用電流驅動器來控制流經二極體(例如,發光二極體(Light Emitting Diode,LED))的電流。在一個實例中,遙控器(remote control)包括微控制器、電流驅動器、LED以及向供應節點供應直流(Direct Current,DC)電壓的電池。LED的一個端子耦合至供應節點且LED的另一端子以某種方式耦合至電流驅動器。在運作期間,電流驅動器藉由以下方式來控制流經LED的輸出電流:自電池經由電流驅動器以及經由LED向接地節點發送電流或者自供應節點經由LED以及經由電流驅動器向接地節點吸收電流。常常,電流驅動器使用參考電流來設定通過LED的輸出電流的電流位準。一般而言期望使輸出電流的電流位準維持處於參考電流的預定倍數。
當電流流經LED時,電池放電。電池的放電及充電使電 池電壓隨著時間推移而改變。另外,不同的應用需要不同的電池電壓。電池電壓的變化常常使LED的端子與接地節點之間的輸出電壓變化。輸出電壓變化可能會因電池的充電及放電或者根據在不同的應用中涉及的電壓及電流需求而隨著時間推移發生明顯地變化。輸出電壓的此種變化趨於使流經LED的輸出電流的電流位準發生不期望的改變。期望存在用於克服該些缺點的解決方案。
在一個實施例中,積體電路設備包括:輸出節點;接地節點;偏置電流節點;複本節點;求和節點;電流驅動器電晶體;求和節點參考電流產生器電路,其中所述求和節點參考電流產生器電路在所述求和節點上產生求和節點參考電流;電壓偵測器電路,其中在運作模式期間,所述電壓偵測器電路偵測所述輸出節點上的輸出電壓並在所述複本節點上產生複本電壓;輸出模型電流鏡電路,其中所述輸出模型電流鏡電路接收由所述電壓偵測器電路產生的所述複本電壓並產生輸出模型電流,且其中所述輸出模型電流被供應至所述求和節點上;修正電流鏡電路,產生經換算修正電流,其中所述修正電流鏡電路藉由對修正電流進行換算而產生所述經換算修正電流,且其中所述修正電流是所述求和節點參考電流與所述輸出模型電流之間的差;以及修正電流-閘極電壓轉換器電路,其中所述修正電流-閘極電壓轉換器電路將所述經換算修正電流轉換成閘極電壓,所述閘極電壓被供應至所述電流 驅動器電晶體的閘極上。
在一個實施例中,積體電路設備的操作方法包括:(a)向電流驅動器電路的求和節點供應求和節點參考電流;(b)在所述電流驅動器電路的運作模式期間偵測所述電流驅動器電路的輸出節點上的輸出電壓;(c)自在(b)中偵測的所述輸出電壓產生複本電壓,其中所述複本電壓被供應至複本節點上;(d)使用存在於所述複本節點上的所述複本電壓產生輸出模型電流,其中所述輸出模型電流被供應至所述求和節點上;(e)使用所述輸出模型電流及所述求和節點參考電流產生修正電流,其中所述修正電流是所述求和節點參考電流與所述輸出模型電流之間的差;以及(f)產生閘極電壓並將所述閘極電壓供應至電流驅動器電晶體上,其中所述閘極電壓是自與所述修正電流成比例的電流產生的,其中所述電流驅動器電晶體是所述電流驅動器電路的一部分,且其中所述電流驅動器電晶體具有耦合至所述輸出節點的端子。
在一個實施例中,積體電路裝置包括:輸出端子,耦合至二極體的端子,其中在所述積體電路裝置的運作模式期間,在所述輸出端子上存在輸出電流,且其中在所述輸出端子與接地端子之間存在輸出電壓;以及限制構件,用於在所述運作模式期間當所述輸出電壓處於跨越至少2.0伏的範圍的電壓範圍內時將所述輸出電流的變化限制至小於百分之五。
一種系統包括供應節點、控制器積體電路(integrated circuit,IC)、電流驅動器積體電路、二極體及接地節點。電流驅 動器積體電路是用於控制通過二極體的大於至少200毫安培的電流的高電流驅動器的實例。在一個實例中,二極體是發光二極體(LED)且電流驅動器積體電路被耦合成自供應節點經由二極體以及經由電流驅動器積體電路向接地節點吸收電流。LED具有耦合至供應節點的陽極以及耦合至電流驅動器積體電路的驅動端子的陰極。電流驅動器具有被耦合成自控制器積體電路接收控制訊號EN的控制端子,控制訊號EN將電流驅動器積體電路啟用(接通LED)或禁用(關斷LED)。在一個實例中,供應節點由直流(DC)源(例如電池)供電。在另一實例中,供應節點由交流(Alternating Current,AC)源(例如交流線)供電。
在運作期間,電流驅動器積體電路被啟用且自供應節點經由LED以及經由驅動端子向接地節點吸收輸出電流。在LED的陰極與接地節點之間存在輸出電壓。輸出電壓通常因電池的充電及放電循環而發生變化,此使電池電壓隨著時間推移而降低。輸出電壓亦可根據不同應用之間的電壓需求及電流需求而發生變化。另外,LED溫度的改變亦可使輸出電壓改變。當輸出電壓是至少兩伏範圍內的任何值時,電流驅動器積體電路使輸出電流的電流位準的變化維持處於期望輸出電流位準的百分之五內。舉例而言,期望輸出電流位準是250毫安培,且當輸出電壓是介於至少0.3伏與2.4伏之間的任何值時,電流驅動器積體電路將輸出電流控制成介於255毫安培與245毫安培之間。
在一個實施例中,電流驅動器積體電路包括電壓偵測器 電路、輸出模型電流鏡(Output Model Current Mirror,OMCM)電路、修正電流鏡(Corrected Current Mirror,CCM)電路、求和節點參考電流產生器電路、修正電流-閘極電壓轉換器(Corrected Current to Gate Voltage Converter,CCGVC)電路、求和節點及電流驅動電晶體。電壓偵測器電路偵測輸出節點上的輸出電壓並產生複本電壓。
OMCM電路接收複本電壓並產生輸出模型電流IS。輸出模型電流IS對電流驅動器電晶體上的短通道效應(short channel effect)進行建模。輸出模型電流IS是由輸出電壓VOUT調變的參考電流IREF的倍數。在此實例中,所述倍數近似為一。短通道電流調變是由OMCM電路的被耦合成偵測複本電壓的電晶體上存在的短通道效應造成的。OMCM電路的用於偵測複本電壓的電晶體具有上面存在複本電壓的汲極端子。可藉由調整用於偵測複本電壓的電晶體的長度來調整調變量。對此電晶體的長度進行調整以將短通道電流調變量增大或減小至與電流驅動器電晶體的短通道電流調變量相匹配。
根據一個新穎態樣,求和節點被維持處於穩定的電流位準,所述穩定的電流位準是參考電流的第一倍數。舉例而言,求和節點上的電流被維持為參考電流的兩倍(「2 x IREF」)。OMCM電路將輸出模型電流IS供應至求和節點上,且CCM電路產生修正電流IC並將修正電流IC供應至求和節點上。由於求和節點上的電流實質上恆定且由於輸出模型電流IS與修正電流IC二者皆被供應 至求和節點上,因此當輸出模型電流IS減小時,修正電流IC增大。
使用經換算修正電流ID來產生用於控制電流驅動器電晶體的運作的閘極電壓。CCM電路藉由以第二倍數對修正電流IC進行換算來產生經換算修正電流ID。舉例而言,經換算修正電流ID是修正電流IC的十五倍。CCGVC電路接收經換算修正電流ID並將經換算修正電流ID轉換成閘極電壓。CCGVC電路將閘極電壓供應至電流驅動器電晶體的閘極端子上。閘極電壓控制電流驅動器電晶體的導電性以使流經二極體的電流在輸出電壓的至少2伏範圍內保持處於期望輸出電流位準的百分之五內。期望輸出電流位準是經換算修正電流ID的第三倍數。舉例而言,輸出電流IOUT的電流位準是經換算修正電流ID的二百零六倍。如此一來,修正電流IC的增大對因輸出電壓VOUT的變化而引起的輸出模型電流的減小進行補償,藉此將輸出電流IOUT的電流位準控制成維持處於期望輸出電流位準的百分之五內。
以上是發明內容,且因此必然包含細節的簡化、概括及省略。因此,應理解本發明內容僅為例示性的。在以下實施方式中仍闡述了其他方法、結構及細節。本發明內容並不旨在對本發 明進行界定。本發明是由申請專利範圍界定的。
10、30:電流驅動器電路/電流驅動器
11:驅動電晶體/驅動場效電晶體
12:參考電流產生器/參考電流產生器電路
13:電流鏡電路
14:場效電晶體/電晶體
15、35:負荷
16、37、55:供應節點
17、38、56:接地節點
18、36、IOUT:輸出電流/電流
19、39、88、IREF:參考電流
20、40、67、VOUT:輸出電壓
21:多晶矽閘極
22:汲極區
23:源極區
24、41:虛線
31:高功率輸出電晶體/驅動電晶體
32:高功率輸出電晶體/疊接電晶體
33:參考電流產生器
34:電晶體
50:系統
51:新穎電流驅動器積體電路/電流驅動器積體電路/電流驅動器
52:電池/直流(DC)電壓源
53:控制器積體電路
54:二極體/LED
57:供應端子
58:控制端子
59:接地端子
60:供應端子/端子
61:控制端子/端子
62:驅動端子/端子
63:接地端子/端子
64、EN:控制訊號
65、68:導體
66:輸出電流
70:電壓偵測器電路
71:輸出模型電流鏡(OMCM)電路
72:修正電流鏡(CCM)電路
73:求和節點參考電流產生器電路/參考電流產生器電路
74:修正電流-閘極電壓轉換器(CCGVC)電路
75:參考電流產生器
76:偏置電流產生器
77:電流驅動器電晶體
78:反相器
79、80、81、82:電晶體
83:複本節點
84:輸出節點
85:參考電流節點
86:偏置電流節點
87:求和節點
89、IBIAS:偏置電流
90:複本電壓
91、94、100、104、106:第一電晶體/電晶體
92、95、101、105、107:第二電晶體/電晶體
93、IS:輸出模型電流
96:第三電晶體/電晶體
97、ID:經換算修正電流
98、IC:修正電流
99:求和節點參考電流
102:閘極電壓節點
103:閘極電壓
108:第一倍數
109:第二倍數
110:第三倍數
200、400:方法
201、202、203、204、205、206、402、403、404、405、406:步驟
300:表
401:第一步驟/步驟/初始步驟
407:電流控制環路
A:陽極端子
C:陰極端子
L:長度
VDD:固定電壓/供應電壓
W:寬度
各個附圖對本發明的實施例進行例示,在各個附圖中相同的編號表示相同的組件。
圖1是具有單個驅動電晶體11的電流驅動器電路10的電路圖。
圖2是圖1所示驅動電晶體11的俯視圖的圖。
圖3是示出在圖1所示電流驅動器電路10的運作期間,輸出電流IOUT 18及參考電流IREF 19相對於輸出電壓VOUT 20的關係的曲線圖的圖。
圖4是具有兩個高功率輸出電晶體31及32的電流驅動器電路30的電路圖。
圖5是示出在圖4所示電流驅動器電路30的運作期間,輸出電流IOUT 36及參考電流IREF 39相對於輸出電壓VOUT 40的關係的曲線圖的圖。
圖6是涉及新穎電流驅動器積體電路51的系統50的電路圖。
圖7是圖6所示電流驅動器積體電路51的詳細電路圖。
圖8是在圖7所示電流驅動器積體電路51的運作期間,各個節點上的電流相對於輸出電壓VOUT 67的關係的曲線圖。
圖9是根據一個新穎態樣的方法200的流程圖。
圖10是示出相較於電流驅動器10及30而言由電流驅動器51達成的輸出電流的穩定性及大小的實質性改進的表300。
圖11是示出閘極電壓103如何作為修正電流IC 98的函數而變化的圖。
圖12是根據另一新穎態樣的方法400的流程圖。
現在將詳細參照本發明的示例性實施例,本發明的示例 性實施例的實例示出於附圖中。
圖1是具有單個驅動電晶體11的電流驅動器電路10的電路圖。電流驅動器電路10包括參考電流產生器12及電流鏡電路13。電流鏡電路包括驅動場效電晶體11及場效電晶體14。電晶體14的閘極端子耦合至電晶體14的汲極端子。電晶體14的閘極端子亦耦合至驅動電晶體11的閘極端子。在圖1所示實例中,驅動電晶體11是電晶體14的大小的近似二百(「200」)倍。電流驅動器電路10自供應節點16驅動負荷15。負荷15耦合於供應節點16與驅動電晶體11的汲極端子之間。驅動電晶體11的源極端子耦合至接地節點17。
在電流驅動器電路10的運作期間,電流驅動器電路10藉由自供應節點16經由負荷15以及經由驅動場效電晶體11向接地節點17吸收電流IOUT 18來驅動負荷15。參考電流產生器電路12向電晶體14的汲極端子輸出參考電流IREF 19。流經負荷15的輸出電流IOUT 18是參考電流IREF 19的倍數。所述倍數是由驅動電晶體11的大小對電晶體14的大小的比確定的。在此實例中,由於驅動電晶體11是電晶體14的大小的近似二百(「200」)倍,因此倍數是二百(「200」)。輸出電流IOUT 18將為參考電流IREF 19的200倍。在此實例中,參考電流IREF 19是近似1.2毫安培且輸出電流IOUT 18將為近似240毫安培。
在電流驅動器電路10的大部分應用中,期望使輸出電流IOUT 18保持恆定且在輸出電壓VOUT 20的範圍內保持處於參考電流IREF 19的固定倍數。然而,在電流驅動器電路10的運作期間,輸出電流IOUT 18趨於隨著輸出電壓VOUT 20的改變而改變。如圖3所示,輸出電流IOUT 18在輸出電壓20的2伏範圍內變化近似90毫安培。
圖2是圖1所示驅動電晶體11的俯視圖的圖。驅動電晶體11包括多晶矽閘極21、汲極區22及源極區23。可藉由增大多晶矽閘極21的長度L來使輸出電流IOUT 18的變化最小化。然而,增大長度L需要增大寬度W以使驅動電晶體11的寬度對長度比維持為相同的,此轉而會增大驅動電晶體11的總體大小。由於驅動電晶體11將耗用的晶粒面積會增大,因此一般而言不期望增大驅動電晶體11的大小。舉例而言,若寬度W增大二(「2」)倍,則長度L亦將增大二(「2」)倍來維持寬度對長度比。因此,在此實例中,電晶體的總體晶粒面積將增大四(「4」)倍。
圖3是示出在圖1所示電流驅動器電路10的運作期間,輸出電流IOUT 18及參考電流IREF 19相對於輸出電壓VOUT 20的關係的曲線圖的圖。輸出電壓VOUT 20自0.4伏至2.4伏處於近似2伏範圍內。參考電流IREF 19在輸出電壓範圍內被設定成處於恆定的1.2毫安培。輸出電流在輸出電壓的範圍內處於自大約185毫安培至近似275毫安培的範圍內。圖1所示電流驅動器電路10具有輸出電流18,輸出電流18在輸出電壓的2.0伏範圍內變化近似90 毫安培。如由虛線24所界定,當輸出電壓VOUT 20小於0.6伏時,相較於當輸出電壓VOUT 20大於0.6伏時而言,輸出電流IOUT 18快得多地增大。
圖4是具有兩個高功率輸出電晶體31及32的電流驅動器電路30的電路圖。電流驅動器電路30包括參考電流產生器33、驅動電晶體31及疊接電晶體(cascode transistor)32。疊接電晶體32的汲極端子耦合至負荷35。疊接電晶體32的源極端子耦合至驅動電晶體31的汲極端子。在運作期間,電流驅動器電路30自供應節點37經由負荷35、經由疊接電晶體32以及經由驅動電晶體31向接地節點38吸收輸出電流IOUT 36。參考電流產生器33向電晶體34的汲極端子輸出參考電流IREF 39。輸出電流IOUT 36是參考電流IREF 39的倍數。所述倍數取決於驅動電晶體31的寬度對長度比以及電晶體34的寬度對長度比。在疊接電晶體32的汲極端子與驅動電晶體31的源極端子之間存在輸出電壓VOUT 40。在此實例中,疊接電晶體32及驅動電晶體31分別是電晶體34的大小的二百(「200」)倍。
圖5是示出在圖4所示電流驅動器電路30的運作期間,輸出電流IOUT 36及參考電流IREF 39相對於輸出電壓VOUT 40的關係的曲線圖的圖。輸出電流IOUT 36趨於隨著輸出電壓VOUT 40變化。如由虛線41所界定,當輸出電壓VOUT 40小於0.8伏時,相較於當輸出電壓VOUT 40大於0.8伏時而言,輸出電流IOUT 36快得多地增大。在輸出電壓VOUT 40的2伏的範圍內,電流驅動器電 路30的電流IOUT 36變化近似100毫安培。
圖6是涉及新穎電流驅動器積體電路51的系統50的電路圖。系統50包括電流驅動器積體電路51、電池52、控制器積體電路53、二極體54、供應節點55及接地節點56。電池52具有耦合至供應節點55的正端子以及耦合至接地節點56的負端子。 電池52將供應節點55控制成處於固定電壓VDD。舉例而言,VDD介於2.7伏與3.3伏之間。在此實例中,二極體54是發光二極體(LED)。在一個實例中,系統50是遙控器的一部分,其中電流脈動通過二極體藉此輻射在無線通訊中使用的能量。
控制器積體電路53具有供應端子57、控制端子58及接地端子59。控制器積體電路53的供應端子57耦合至供應節點55。 控制器積體電路53的接地端子59耦合至接地節點56。電流驅動器積體電路51具有供應端子60、控制端子61、驅動端子62及接地端子63。電流驅動器積體電路51的供應端子60耦合至供應節點55。電流驅動器積體電路51的接地端子63耦合至接地節點56。 電流驅動器積體電路51的控制端子61耦合至控制器積體電路53的控制端子58。在一個實例中,電流驅動器積體電路51是積體電路晶粒且端子60至端子63是結合墊。
二極體54具有耦合至供應節點55的陽極端子A。二極體54具有耦合至電流驅動器積體電路51的驅動端子62的陰極端子C。在圖6所示實例中,控制器積體電路53及電流驅動器積體電路51由直流(DC)源供電,然而,在其他實施例中,控制器積 體電路53及電流驅動器積體電路51自交流(AC)源供電。
在運作期間,二極體54在開始時斷開且處於非導電狀態以使得沒有電流流經二極體54。接下來,控制器積體電路53確定二極體54欲自非導電狀態切換至導電狀態以使電流流經二極體54。控制器積體電路53將藉由導體65自控制端子58供應至電流驅動器積體電路51的控制端子61上的控制訊號EN 64置位。因應於偵測到控制訊號EN 64自數位邏輯低位準切換至數位邏輯高位準,電流驅動器積體電路51自供應節點55經由二極體54以及經由電流驅動器積體電路51向接地節點56吸收電流。電流自供應節點55流動至二極體54的陽極端子上、流經二極體54且自二極體54的陰極端子流出至電流驅動器積體電路51的驅動端子62上、流經電流驅動器積體電路51且自接地端子63流出至接地節點56上。在導體68與接地節點56之間存在輸出電壓VOUT 67。
根據一個新穎態樣,電流驅動器積體電路51將二極體54驅動成使輸出電流IOUT 66在輸出電壓VOUT 67的範圍內的變化小於10%。舉例而言,電池電壓可能以3.6伏開始,且LED內的典型壓降可為1.2伏,因此輸出電壓VOUT 67將為2.4伏。若電池放電至1.8伏,則輸出電壓VOUT 67可減小至0.6伏。不論輸出電壓VOUT 67如何變化,在其中輸出電壓VOUT 67介於0.4伏與2.4伏的範圍(或2伏範圍)內的情形中輸出電流IOUT 66保持處於期望輸出電流範圍內。在一個實例中,電流驅動器積體電路51將二極體54驅動成使輸出電流IOUT 66在輸出電壓VOUT 67的至少兩伏範 圍內的變化小於百分之四。在另一實例中,電流驅動器積體電路51將二極體54驅動成使輸出電流IOUT 66在輸出電壓VOUT 67的至少兩伏範圍內的變化小於百分之十。
圖7是圖6所示電流驅動器積體電路51的詳細電路圖。 電流驅動器積體電路51包括電壓偵測器電路70、輸出模型電流鏡(OMCM)電路71、修正電流鏡(CCM)電路72、求和節點參考電流產生器電路73、修正電流-閘極電壓轉換器(CCGVC)電路74、參考電流產生器75、偏置電流產生器76、電流驅動器電晶體77、反相器78、電晶體79、80、81及82、複本節點83、輸出節點84、參考電流節點85、偏置電流節點86及求和節點87。參考電流產生器75產生參考電流IREF 88並將參考電流IREF 88輸出至參考電流節點85上。偏置電流產生器76產生偏置電流IBIAS 89並將偏置電流IBIAS 89輸出至偏置電流節點86上。
電壓偵測器電路70偵測輸出節點84上的輸出電壓VOUT 67並產生複本電壓90。電壓偵測器電路70將所產生的複本電壓90輸出至複本節點83上。電壓偵測器電路70包括第一電晶體91及第二電晶體92。第一電晶體91的汲極端子及閘極端子耦合至偏置電流節點86並接收偏置電流IBIAS 89。第一電晶體91的源極端子耦合至輸出節點84。第一電晶體91的閘極耦合至第二電晶體92的閘極。在第二電晶體92的閘極上接收所偵測到的輸出電壓VOUT 67加上接通第一電晶體91所需的電壓。第二電晶體92的汲極端子耦合至OMCM電路71且第二電晶體92的源極端子耦合至 複本節點83。
輸出模型電流鏡(OMCM)電路71接收由電壓偵測器電路70產生的複本電壓90並產生輸出模型電流IS 93。輸出模型電流IS 93被供應至求和節點87上。輸出模型電流IS 93亦被稱為模型短通道效應電流,此乃因輸出模型電流IS 93對電流驅動器電晶體77上的短通道效應進行建模。OMCM電路71將所產生的輸出模型電流IS 93輸出至求和節點87上。輸出模型電流IS 93是由輸出電壓VOUT 67調變的IREF電流88的倍數。在此實例中,所述倍數近似為一。短通道電流調變歸因於電晶體94上存在的短通道效應。藉由對電晶體94的長度進行調整以將短通道電流調變量增大或減小至與電流驅動器電晶體77的短通道電流調變量相匹配來對調變量進行調整。
OMCM電路71包括第一電晶體94、第二電晶體95及第三電晶體96。第二電晶體95與第三電晶體96形成電流鏡。第二電晶體95的閘極耦合至第三電晶體96的閘極且耦合至第二電晶體95的汲極端子。第二電晶體95與第三電晶體96二者的閘極皆耦合至電壓偵測器電路70的第二電晶體92的汲極端子。第二電晶體95的源極端子及第三電晶體96的源極端子藉由供應端子60耦合至供應節點55。第三電晶體96的汲極端子耦合至求和節點87。
修正電流鏡(CCM)電路72產生經換算修正電流97。 CCM電路72藉由對修正電流98進行換算來產生經換算修正電流 97。修正電流98被供應至求和節點87上。在求和節點87上存在求和節點參考電流99。求和節點參考電流99是固定的且獨立於供應電壓VDD。求和節點參考電流99是輸出模型電流IS 93與修正電流IC 98之和。修正電流IC 98是求和節點參考電流99與輸出模型電流IS 93之間的差。
CCM電路72包括電流鏡,所述電流鏡包括第一電晶體100及第二電晶體101。第一電晶體100的源極端子及第二電晶體101的源極端子藉由供應端子60耦合至供應節點55。第一電晶體100的閘極及第二電晶體101的閘極耦合至第一電晶體100的汲極端子且耦合至求和節點87。第二電晶體101的汲極端子耦合至閘極電壓節點102。
修正電流-閘極電壓轉換器(CCGVC)電路74接收經換算修正電流ID 97。CCGVC電路74將經換算修正電流ID 97轉換成閘極電壓103。CCGVC電路74將所產生的閘極電壓103供應至電流驅動器電晶體77的閘極端子上。閘極電壓103是經換算修正電流ID 97的函數。閘極電壓103控制電流驅動器電晶體77的導電性且轉而控制流經二極體54的電流。
CCGVC電路74包括第一電晶體104及第二電晶體105。 第一電晶體104的汲極端子耦合至閘極電壓節點102。第一電晶體104的源極端子耦合至第二電晶體105的汲極端子。第一電晶體104的閘極耦合至偏置電流節點86且耦合至電壓偵測器電路70的第一電晶體91的閘極。第二電晶體105的閘極端子耦合至閘極 電壓節點102。第二電晶體105的源極端子藉由接地端子63耦合至接地節點56。
求和節點參考電流產生器電路73在求和節點87上產生求和節點參考電流99。求和節點參考電流產生器電路73包括第一電晶體106及第二電晶體107。求和節點參考電流產生器電路73使求和節點87上的求和節點參考電流99的電流位準維持處於等於參考電流IREF 88的第一倍數108的電流位準。在此實例中,第一倍數是二(「2」)且因此使求和節點參考電流99維持為參考電流IREF 88的兩倍。由於求和節點87上的此求和節點參考電流99被維持處於參考電流IREF 88的兩倍,因此被供應至求和節點87上的輸出模型電流IS 93與修正電流IC 98以相反的方式改變。舉例而言,在運作模式期間輸出模型電流93的減小會引起修正電流IC 98相應地增大。當輸出電壓VOUT 67主要因電池52的放電而減小時,輸出模型電流IS 93趨於減小。作為因應,修正電流IC 98會增大,藉此使輸出電流66在輸出電壓67的至少2伏範圍內保持處於期望輸出電流的百分之五內。
圖8是在圖7所示電流驅動器積體電路51的運作期間,各個節點上的電流相對於輸出電壓VOUT 67的關係的曲線圖。輸出電流IOUT 66的期望電流位準為近似250.0毫安培。如圖8所示,輸出電流IOUT 66的電流位準保持處於期望電流位準的+/-5.0毫安培內。由於新穎控制技術,當輸出電壓VOUT 67介於0.3伏與2.4伏之間時,輸出電流IOUT 66的變化小於期望電流位準的+/-2%。 相較於圖1所示電流驅動器10以及相較於圖4所示電流驅動器30而言,電流驅動器積體電路51產生實質上更穩定的輸出電流。
圖9是根據一個新穎態樣的方法200的流程圖。在第一步驟(步驟201)中,向電流驅動器電路的求和節點供應求和節點參考電流。舉例而言,在圖7所示電流驅動器積體電路51中,求和節點參考電流產生器電路73將求和節點87上的求和節點參考電流99維持處於穩定的且恆定的電流位準。所述電流位準是參考電流IREF 88的第一倍數108(例如,「2 x IREF」)。
在第二步驟(步驟202)中,在運作模式期間偵測電流驅動器電路的輸出電壓。輸出電壓存在於電流驅動器電路的輸出節點上。在圖7所示電流驅動器積體電路51的實例中,電壓偵測器電路70偵測存在於輸出節點84與接地節點56之間的輸出電壓VOUT 67。在一個實例中,電壓偵測器電路70是源極隨耦電路(source follower circuit)。
在第三步驟(步驟203)中,自偵測到的輸出電壓產生複本電壓。複本電壓被供應至複本節點上。在圖7所示實例中,電壓偵測器電路70產生複本電壓90,複本電壓90被供應至複本節點83上。複本電壓90相對於輸出電壓VOUT 67成比例地改變。
在第四步驟(步驟204)中,使用存在於複本節點上的複本電壓產生輸出模型電流。輸出模型電流被供應至求和節點上。 在圖7所示實例中,OMCM電路71自複本節點83接收複本電壓90並自複本電壓90產生輸出模型電流IS 93。OMCM電路71將所 產生的輸出模型電流IS 93輸出至求和節點87上。
在第五步驟(步驟205)中,使用輸出模型電流及求和節點參考電流產生修正電流。修正電流是求和節點參考電流與輸出模型電流之間的差。在圖7所示實例中,CCM電路72產生修正電流IC 98,修正電流IC 98被供應至求和節點87上。由於求和節點87被維持處於恆定電流位準(「2 x IREF」),因此當輸出模型電流IS 93減小時,此會使修正電流IC 98以相應的方式增大。
在第六步驟(步驟206)中,產生閘極電壓並將所述閘極電壓供應至電流驅動器電晶體上。閘極電壓是自與修正電流成比例的電流產生的。電流驅動器電晶體是電流驅動器電路的一部分,且電流驅動器電晶體具有耦合至輸出節點的端子。舉例而言,在圖7所示電流驅動器積體電路51中,CCM電路72產生經換算修正電流ID 97並將經換算修正電流ID 97供應至CCGVC電路74上。經換算修正電流ID 97具有為修正電流IC 98的第二倍數109的電流位準(例如,「15 x IC」)。經換算修正電流ID 97與修正電流IC 98成比例。CCGVC電路74接收經換算修正電流ID 97並自經換算修正電流ID 97產生閘極電壓103,閘極電壓103被供應至電流驅動器電晶體77的閘極上。電流驅動器電晶體77的汲極藉由驅動端子62耦合至輸出節點84。閘極電壓103將輸出電流IOUT 66控制成具有經換算修正電流ID 97的第三倍數110的電流位準(例如,「206 x ID」)。
圖10是示出相較於電流驅動器10及30而言由電流驅動 器51達成的輸出電流的穩定性及大小的實質性改進的表300。當輸出電壓是0.3伏與2.4伏之間的任何值時,被電流驅動器51驅動而通過二極體的電流的變化小於百分之五,且面積明顯小於電流驅動器30。
圖11是示出閘極電壓103如何作為修正電流IC 98的函數而變化的圖。閘極電壓103被供應至電流驅動器電晶體77的閘極且控制流經二極體54的電流。
圖12是根據另一新穎態樣的方法400的流程圖。方法400是操作電流驅動器電路51的方法。第一步驟401標明電流驅動器積體電路51的各個電晶體在控制訊號EN 64被置位且電流未經由二極體54傳導之前的狀態。步驟402至步驟406標明新穎電流控制環路,所述新穎電流控制環路在電流經由二極體54傳導的同時使輸出電流維持處於期望輸出電流位準的百分之五內。
在第一步驟(步驟401)中,將控制訊號EN 64取消置位且接通電晶體79及80。參考電流IREF 88經由電晶體81及82傳導。求和節點參考電流99流經電晶體106、107及79。電晶體79將電晶體100及101維持為非導電狀態。電晶體80將CCGVC電路74的電晶體104及105維持為非導電狀態且電晶體80亦將電流驅動器電晶體77維持為非導電狀態。偏置電流89將電晶體91維持為導電狀態。電晶體92將複本節點83上的電壓維持為實質上等於輸出節點84上的輸出電壓VOUT 67。輸出模型電流IS 93在電晶體95、92及94中流動。
在第二步驟(步驟402)中,判斷控制訊號EN 64是否被置位。若控制訊號EN 64被取消置位(例如,數位邏輯低位準),則方法繼續進行初始步驟401。另一方面,若控制訊號EN 64被置位(例如,數位邏輯高位準),則方法400繼續進行電流控制環路407的步驟。
在第三步驟(步驟403)中,將電晶體79及80自導電狀態切換至非導電狀態。控制訊號EN 64被供應至電晶體79的閘極上以使電晶體79關斷。反相器78向電晶體80的閘極供應控制訊號EN 64的反相型式以使電晶體80關斷。電晶體79與電晶體80是相反的導電類型。舉例而言,電晶體79是P型場效電晶體(P-type Field Effect Transistor,P-type FET)且電晶體80是N型場效電晶體(N-type Field Effect Transistor,N-type FET)。
在第四步驟(步驟404)中,輸出模型電流IS 93流經電晶體96。修正電流IC 98流經電晶體100。經換算修正電流ID 97流經電晶體101、104及105。輸出電流IOUT 66經由二極體54以及經由電流驅動器電晶體77向接地節點56流動。
在第五步驟(步驟405)中,因應於偵測到輸出節點84上的輸出電壓VOUT 67的改變,電晶體91及92使複本節點83上的複本電壓90與輸出節點84上的輸出電壓VOUT 67相匹配。
在第六步驟(步驟406)中,經調整的複本電壓90對電晶體94上的短通道效應進行調整,此轉而會相應地調整其他電流。接下來,所述方法繼續進行步驟402,在步驟402中判斷保持 處於電流控制環路407中(在控制訊號EN 64被置位時)還是返回至初始步驟401(在控制訊號EN 64被取消置位時)。
儘管已出於指示目的結合特定具體實施例闡述了本發明,然而本發明並非僅限於此。舉例而言,儘管圖6所示電流驅動器積體電路51自LED 54向地電位吸收電流,然而在其他實施例中,電流驅動器積體電路51耦合於供應節點與LED 54之間以使電流驅動器積體電路51自供應節點55經由LED 54向接地節點56發送電流。
圖6所示實例使用直流(DC)電壓源52來對LED 54供電。在另一實例中,使用交流(AC)源來對LED 54供電。舉例而言,使用整流器(rectifier)來對來自交流源的交流電壓進行整流。切換調節器(switching regulator)接收經整流的交流電壓並向供應節點55供應固定的直流電壓。
儘管電流驅動器積體電路51僅具有一個控制端子61(控制器積體電路53將控制訊號EN 64供應至所述一個控制端子61上),然而在其他實例中,電流驅動器積體電路具有多於一個控制端子。舉例而言,在另一實施例中,電流驅動器51被配置成接收電流控制訊號。電流控制指示欲經由LED 54發送的期望輸出電流。電流驅動器積體電路51使用電流控制訊號來對控制環路的各個電流進行設定以使輸出電流IOUT 66處於由電流控制訊號指示的期望電流位準。
在圖6所示實例中,供應電壓VDD介於2.7伏與3.3伏 之間且輸出電壓VOUT處於近似2伏範圍內。應理解,該些電壓範圍僅為一個實例,且在其他實施例中,新穎電流驅動器積體電路51可與實質上較高的電壓(大於12伏)一起使用。在其他實施例中,輸出電壓VOUT處於明顯較大的範圍(大於10伏)內,但是新穎電流驅動器積體電路51仍運作成使輸出電流IOUT維持處於期望輸出電流位準的百分之五內。因此,在不背離申請專利範圍所述的本發明的範圍的條件下,可實踐所述實施例的各種特徵的各種修改形式、改編形式及組合。
50:系統
51:新穎電流驅動器積體電路/電流驅動器積體電路/電流驅動器
52:電池/直流(DC)電壓源
53:控制器積體電路
54:二極體/LED
55:供應節點
56:接地節點
57:供應端子
58:控制端子
59:接地端子
60:供應端子/端子
61:控制端子/端子
62:驅動端子/端子
63:接地端子/端子
64、EN:控制訊號
65、68:導體
66:輸出電流
67、VOUT:輸出電壓
A:陽極端子
C:陰極端子
IOUT:輸出電流/電流

Claims (19)

  1. 一種積體電路設備,包括:輸出節點;接地節點;偏置電流節點;複本節點;求和節點;電流驅動器電晶體;求和節點參考電流產生器電路,其中所述求和節點參考電流產生器電路在所述求和節點上產生求和節點參考電流;電壓偵測器電路,其中在運作模式期間,所述電壓偵測器電路偵測所述輸出節點上的輸出電壓並在所述複本節點上產生複本電壓;輸出模型電流鏡電路,其中所述輸出模型電流鏡電路接收由所述電壓偵測器電路產生的所述複本電壓,並依據所述複本電壓以產生電流,所述輸出模型電流鏡電路依據所述電流產生輸出模型電流,且其中所述輸出模型電流被供應至所述求和節點上;修正電流鏡電路,產生經換算修正電流,其中所述修正電流鏡電路藉由對修正電流進行換算而產生所述經換算修正電流,且其中所述修正電流是所述求和節點參考電流與所述輸出模型電流之間的差;以及修正電流-閘極電壓轉換器電路,其中所述修正電流-閘極電 壓轉換器電路將所述經換算修正電流轉換成閘極電壓,所述閘極電壓被供應至所述電流驅動器電晶體的閘極上。
  2. 如申請專利範圍第1項所述的積體電路設備,其中所述積體電路設備是經封裝的積體電路,其中所述經封裝的積體電路包括輸出積體電路封裝端子及接地積體電路封裝端子,其中所述輸出積體電路封裝端子是所述輸出節點的一部分,且其中所述接地積體電路封裝端子是所述接地節點的一部分。
  3. 如申請專利範圍第1項所述的積體電路設備,其中所述求和節點上的所述求和節點參考電流在所述運作模式期間是實質上穩定且恆定的電流,其中所述求和節點參考電流是由參考電流產生器產生的電流產生的,且其中所述閘極電壓是所述經換算修正電流的函數。
  4. 如申請專利範圍第1項所述的積體電路設備,其中在所述運作模式期間所述輸出模型電流的減小會引起所述修正電流相應地增大,且其中在所述運作模式期間所述輸出模型電流的減小會引起所述經換算修正電流相應地增大。
  5. 如申請專利範圍第1項所述的積體電路設備,其中所述電流驅動器電晶體的汲極端子耦合至所述輸出節點,且其中所述電流驅動器電晶體是N通道場效電晶體。
  6. 如申請專利範圍第1項所述的積體電路設備,其中所述電壓偵測器電路包括:第一電晶體,具有第一端子、第二端子及第三端子,其中所 述第一端子耦合至所述偏置電流節點,其中所述第二端子耦合至所述輸出節點,且其中所述第三端子耦合至所述偏置電流節點;以及第二電晶體,具有第一端子、第二端子及第三端子,其中所述第一端子耦合至所述輸出模型電流鏡電路的電晶體,其中所述第二端子耦合至所述複本節點,且其中所述第二電晶體的所述第三端子耦合至所述第一電晶體的所述第三端子。
  7. 如申請專利範圍第1項所述的積體電路設備,更包括:控制端子,其中所述運作模式因應於所述控制端子上的數位訊號自第一數位邏輯位準切換至第二數位邏輯位準而被啟用;供應端子,其中參考電流產生器是由所述供應端子供應;接地端子,其中所述接地端子耦合至所述電流驅動器電晶體的源極端子;以及驅動端子,其中所述驅動端子耦合至所述電流驅動器電晶體的汲極端子。
  8. 如申請專利範圍第1項所述的積體電路設備,其中所述輸出節點耦合至二極體的陰極,且其中在所述運作模式期間,所述電流驅動器電晶體自所述二極體向所述接地節點吸收電流。
  9. 如申請專利範圍第1項所述的積體電路設備,其中在所述運作模式期間,當輸出電壓介於0.3伏與2.4伏之間時所述輸出節點上的輸出電流的變化小於百分之五,且其中所述輸出電壓存在於所述輸出節點與所述接地節點之間。
  10. 一種積體電路設備的操作方法,包括:(a)向電流驅動器電路的求和節點供應求和節點參考電流;(b)在所述電流驅動器電路的運作模式期間偵測所述電流驅動器電路的輸出節點上的輸出電壓;(c)自在(b)中偵測的所述輸出電壓產生複本電壓,其中所述複本電壓被供應至複本節點上;(d)依據所述複本節點上的所述複本電壓以產生電流,並依據所述電流產生輸出模型電流,其中所述輸出模型電流被供應至所述求和節點上;(e)使用所述輸出模型電流及所述求和節點參考電流產生修正電流,其中所述修正電流是所述求和節點參考電流與所述輸出模型電流之間的差;以及(f)產生閘極電壓並將所述閘極電壓供應至電流驅動器電晶體上,其中所述閘極電壓是自與所述修正電流成比例的電流產生的,其中所述電流驅動器電晶體是所述電流驅動器電路的一部分,且其中所述電流驅動器電晶體具有耦合至所述輸出節點的端子。
  11. 如申請專利範圍第10項所述的操作方法,其中在(c)中產生的所述複本電壓與在(b)中偵測的存在於所述電流驅動器電路的所述輸出節點上的所述輸出電壓成比例地變化,且其中所述閘極電壓是使用在(e)中產生的所述修正電流產生的。
  12. 如申請專利範圍第10項所述的操作方法,其中所述輸 出節點耦合至二極體的陰極,且其中在所述運作模式期間,所述電流驅動器電路使電流自所述二極體的所述陰極經由所述輸出節點以及經由所述電流驅動器電晶體傳導至接地節點。
  13. 如申請專利範圍第10項所述的操作方法,其中(a)中的所述供應所述求和節點參考電流更包括:(a1)使用參考電流產生器產生參考電流;(a2)對所述參考電流進行換算以產生所述求和節點參考電流,其中所述求和節點參考電流的電流位準大於在(a1)中產生的所述參考電流且與在(a1)中產生的所述參考電流成比例;以及(a3)在所述運作模式期間將所述求和節點參考電流供應至所述求和節點,以使所述求和節點的電流位準保持實質上恆定。
  14. 如申請專利範圍第10項所述的操作方法,更包括:(h)向電壓偵測器電路供應偏置電流,其中(h)中的所述供應是在(a)中的所述供應之前進行,且其中所述電壓偵測器電路是所述電流驅動器電路的一部分。
  15. 如申請專利範圍第10項所述的操作方法,其中當所述輸出電壓處於電壓範圍內時,(a)至(f)部分地使所述輸出節點上的輸出電流變化不大於百分之五,其中所述電壓範圍跨越至少2.0伏的範圍。
  16. 如申請專利範圍第15項所述的操作方法,其中所述電壓範圍介於0.3伏與2.4伏之間。
  17. 一種積體電路裝置,包括: 輸出端子,耦合至二極體的端子,其中在所述積體電路裝置的運作模式期間,在所述輸出端子上存在輸出電流,且其中在所述輸出端子與接地端子之間存在輸出電壓;以及電流驅動器積體電路,用於在所述運作模式期間當所述輸出電壓處於跨越至少2.0伏的範圍的電壓範圍內時將所述輸出電流的變化限制至小於百分之五,其中所述電流驅動器積體電路包括參考電流產生器、求和節點參考電流產生器電路、電壓偵測器電路、輸出模型電流鏡電路、修正電流鏡電路及修正電流-閘極電壓轉換器電路,其中,所述求和節點參考電流產生器電路在求和節點上產生求和節點參考電流;所述電壓偵測器電路偵測輸出節點上的所述輸出電壓並在複本節點上產生複本電壓;所述輸出模型電流鏡電路接收由所述電壓偵測器電路產生的所述複本電壓,並依據所述複本電壓以產生電流,所述輸出模型電流鏡電路依據所述電流產生輸出模型電流,且其中所述輸出模型電流被供應至所述求和節點上;所述修正電流鏡電路產生經換算修正電流,其中所述修正電流鏡電路藉由對修正電流進行換算而產生所述經換算修正電流,且其中所述修正電流是所述求和節點參考電流與所述輸出模型電流之間的差;以及所述修正電流-閘極電壓轉換器電路將所述經換算修正電流 轉換成閘極電壓,所述閘極電壓被供應至電流驅動器電晶體的閘極上。
  18. 如申請專利範圍第17項所述的積體電路裝置,其中所述電壓範圍是自0.3伏至2.4伏。
  19. 如申請專利範圍第17項所述的積體電路裝置,其中在所述積體電路裝置的所述運作模式期間,所述輸出電流自所述二極體的所述端子經由所述輸出端子以及經由電晶體傳導至接地節點。
TW108105026A 2018-02-19 2019-02-15 積體電路設備及其操作方法 TWI701973B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US15/899,352 2018-02-19
US15/899,352 US10219339B1 (en) 2018-02-19 2018-02-19 Current correction techniques for accurate high current short channel driver

Publications (2)

Publication Number Publication Date
TW201946495A TW201946495A (zh) 2019-12-01
TWI701973B true TWI701973B (zh) 2020-08-11

Family

ID=65410810

Family Applications (2)

Application Number Title Priority Date Filing Date
TW109123274A TWI758776B (zh) 2018-02-19 2019-02-15 積體電路設備及其操作方法
TW108105026A TWI701973B (zh) 2018-02-19 2019-02-15 積體電路設備及其操作方法

Family Applications Before (1)

Application Number Title Priority Date Filing Date
TW109123274A TWI758776B (zh) 2018-02-19 2019-02-15 積體電路設備及其操作方法

Country Status (6)

Country Link
US (2) US10219339B1 (zh)
EP (1) EP3528237B1 (zh)
JP (1) JP6762487B2 (zh)
KR (2) KR102218222B1 (zh)
CN (2) CN110177406B (zh)
TW (2) TWI758776B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB202114713D0 (en) * 2021-10-14 2021-12-01 Ams Ag High-side driver circuit

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003102708A2 (en) 2002-05-30 2003-12-11 Analog Devices, Inc. Voltage regulator with dynamically boosted bias cuttent
US20050099748A1 (en) * 2003-11-12 2005-05-12 Aemireddy Arvind R. Reverse conduction protection method and apparatus for a dual power supply driver
US20120228934A1 (en) * 2009-09-02 2012-09-13 Austriamicrosystems Ag Multi-Current Source and Method for Regulating Current
US20170075204A1 (en) * 2015-09-15 2017-03-16 Panasonic Intellectual Property Management Co., Ltd. Semiconductor light source driving apparatus and projection video display apparatus

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10260207A (ja) * 1997-03-19 1998-09-29 Sony Corp 電源表示装置
US6433528B1 (en) 2000-12-20 2002-08-13 Texas Instruments Incorporated High impedance mirror scheme with enhanced compliance voltage
US6897715B2 (en) * 2002-05-30 2005-05-24 Analog Devices, Inc. Multimode voltage regulator
JP4848689B2 (ja) * 2005-07-11 2011-12-28 セイコーエプソン株式会社 半導体集積回路
JP4775016B2 (ja) * 2006-02-09 2011-09-21 富士電機株式会社 スイッチング電源制御回路
JP2008283110A (ja) * 2007-05-14 2008-11-20 Seiko Epson Corp 電流負荷駆動回路
JP5301923B2 (ja) * 2008-08-20 2013-09-25 ローム株式会社 負荷駆動装置、照明装置、表示装置
US8334660B2 (en) * 2010-05-19 2012-12-18 Sct Technology, Ltd. Light source driving circuit with low operating output voltage
KR101676585B1 (ko) * 2012-06-21 2016-11-15 알토란 칩 앤드 시스템즈, 인크. 발광다이오드 구동기 회로
US8766674B1 (en) * 2013-03-15 2014-07-01 Qualcomm Incorporated Current-mode buffer with output swing detector for high frequency clock interconnect
CN203251283U (zh) * 2013-03-18 2013-10-23 意法半导体研发(上海)有限公司 用于对具有漏极和源极的驱动晶体管的栅极进行放电的电路以及用于驱动器的电路
CN104065251B (zh) * 2013-03-18 2017-03-15 意法半导体研发(上海)有限公司 具有受控栅极放电电流的驱动器电路
KR20140146888A (ko) * 2013-06-18 2014-12-29 삼성전기주식회사 발광 다이오드 조명 장치 및 그 구동 방법
JP2015128236A (ja) * 2013-12-27 2015-07-09 キヤノン株式会社 差動信号駆動回路
US20150351170A1 (en) * 2014-05-28 2015-12-03 Screen Labs America, Inc. Methods systems and devices for minimizing power losses in light emitting diode drivers
JP2015046193A (ja) * 2014-11-27 2015-03-12 ピーエスフォー ルクスコ エスエイアールエルPS4 Luxco S.a.r.l. 定電流源回路
US10004117B2 (en) * 2015-09-22 2018-06-19 Nxp B.V. Amplifier for a constant-current LED driver circuit and constant-current LED driver IC device
US9645594B2 (en) * 2015-10-13 2017-05-09 STMicroelectronics Design & Application S.R.O. Voltage regulator with dropout detector and bias current limiter and associated methods
US9661695B1 (en) * 2015-11-12 2017-05-23 Hong Kong Applied Science and Technology Research Institute Company Limited Low-headroom constant current source for high-current applications
MX2018006574A (es) * 2015-12-08 2018-08-01 Eaton Intelligent Power Ltd Suministro de energia constante para celdas termoelectricas.
US10337676B2 (en) * 2015-12-09 2019-07-02 Jiaxing Super Lighting Electric Appliance Co., Ltd. LED tube lamp
CN107371299B (zh) * 2017-08-29 2023-09-19 无锡麟力科技有限公司 一种高功率因数的线性恒流led驱动电路和驱动方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003102708A2 (en) 2002-05-30 2003-12-11 Analog Devices, Inc. Voltage regulator with dynamically boosted bias cuttent
US20050099748A1 (en) * 2003-11-12 2005-05-12 Aemireddy Arvind R. Reverse conduction protection method and apparatus for a dual power supply driver
US20120228934A1 (en) * 2009-09-02 2012-09-13 Austriamicrosystems Ag Multi-Current Source and Method for Regulating Current
US20170075204A1 (en) * 2015-09-15 2017-03-16 Panasonic Intellectual Property Management Co., Ltd. Semiconductor light source driving apparatus and projection video display apparatus

Also Published As

Publication number Publication date
KR102460738B1 (ko) 2022-10-31
JP6762487B2 (ja) 2020-09-30
TW202046823A (zh) 2020-12-16
CN110177406A (zh) 2019-08-27
CN113727492A (zh) 2021-11-30
CN113727492B (zh) 2024-03-22
KR20210020057A (ko) 2021-02-23
JP2019164771A (ja) 2019-09-26
KR102218222B1 (ko) 2021-02-22
US10219339B1 (en) 2019-02-26
US10375784B1 (en) 2019-08-06
US20190261476A1 (en) 2019-08-22
CN110177406B (zh) 2021-09-28
EP3528237A1 (en) 2019-08-21
EP3528237B1 (en) 2021-06-02
TWI758776B (zh) 2022-03-21
KR20190100033A (ko) 2019-08-28
TW201946495A (zh) 2019-12-01

Similar Documents

Publication Publication Date Title
CN111665891B (zh) 用于控制低压差稳压器的系统和方法
US9742262B1 (en) Switching power supply startup circuit with normally on device providing startup charging current
US20090135632A1 (en) Step-down switching regulator capable of providing high-speed response with compact structure
WO2006048990A1 (ja) 電源装置、及び携帯機器
US7619450B2 (en) Start-up circuit for providing a start-up voltage to an application circuit
US9083237B2 (en) Circuits and methods for controlling a DC/DC converter
US20240204671A1 (en) Bias power regulator circuit for isolated converters with a wide output voltage range
US20140203726A1 (en) Oscillation circuit
US7573251B2 (en) AC-to-DC voltage regulator
US7615984B2 (en) DC-DC converter and method of controlling thereof
US20070216379A1 (en) Power supply unit and portable device
KR20050048691A (ko) 용량적으로 결합된 전력 공급기
TWI701973B (zh) 積體電路設備及其操作方法
US8183787B2 (en) Power supply systems with controllable power
TW201705664A (zh) 整合過電流保護偵測和過電壓保護偵測的升壓裝置
CN110622404B (zh) 供电电源、包括其的系统及操作其的方法
US8421526B2 (en) Circuit charge pump arrangement and method for providing a regulated current
US6801063B1 (en) Charge compensated bootstrap driving circuit
US20190342959A1 (en) Light emitting element driving device and driving method thereof
JP4511287B2 (ja) 昇圧型スイッチングレギュレータ回路
US20240111321A1 (en) Semiconductor device, regulator circuit, and method for starting regulator circuit
TWI405405B (zh) 發光二極體電路及其誤差放大器
JP4690213B2 (ja) Dc/dcコンバータ
KR20090103118A (ko) 내부전압 발생회로