TWI694571B - Word line structure and method of manufacturing the same - Google Patents

Word line structure and method of manufacturing the same Download PDF

Info

Publication number
TWI694571B
TWI694571B TW108106913A TW108106913A TWI694571B TW I694571 B TWI694571 B TW I694571B TW 108106913 A TW108106913 A TW 108106913A TW 108106913 A TW108106913 A TW 108106913A TW I694571 B TWI694571 B TW I694571B
Authority
TW
Taiwan
Prior art keywords
metal
layer
metal element
concentration
item
Prior art date
Application number
TW108106913A
Other languages
Chinese (zh)
Other versions
TW202032743A (en
Inventor
陳麒閔
洪永泰
駱統
楊大弘
陳光釗
Original Assignee
旺宏電子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旺宏電子股份有限公司 filed Critical 旺宏電子股份有限公司
Priority to TW108106913A priority Critical patent/TWI694571B/en
Application granted granted Critical
Publication of TWI694571B publication Critical patent/TWI694571B/en
Publication of TW202032743A publication Critical patent/TW202032743A/en

Links

Images

Abstract

Provided is a word line structure including a substrate, a stack structure, and a metal silicide structure. The stack structure is disposed on the substrate. The metal silicide structure is disposed on the stack structure. The metal silicide structure includes a first metal element, a second metal element, and a silicon element. The first metal element is different from the second metal element, and concentrations of the first metal element and the second metal element gradually decrease along a direction from a top surface of the metal silicide structure to the substrate.

Description

字元線結構及其製造方法Character line structure and manufacturing method thereof

本發明是有關於一種記憶元件及其製造方法,且特別是有關於一種字元線結構及其製造方法。The invention relates to a memory element and a manufacturing method thereof, and particularly relates to a word line structure and a manufacturing method thereof.

金屬矽化物層具有高熔點、穩定性及低電阻值等優點,目前已廣泛應用於積體電路上。在逐漸微小化的積體電路技術中,線寬、接觸面積及接面深度等逐漸縮小,為了能有效地提高元件的工作品質,降低電阻並減少電阻及電容所造成的信號傳遞延遲,因而常利用金屬矽化物層來有效地降低接面電阻值。The metal silicide layer has the advantages of high melting point, stability and low resistance value, and has been widely used in integrated circuits. In the gradually miniaturized integrated circuit technology, the line width, contact area and junction depth are gradually reduced. In order to effectively improve the working quality of the device, reduce the resistance and reduce the signal transmission delay caused by the resistance and capacitance, so it is often The metal silicide layer is used to effectively reduce the junction resistance.

然而,隨著記憶體技術的進步,記憶體的關鍵尺寸(例如字元線間距)亦隨之縮小。由於字元線間距縮小,在矽化製程(silicidation process)中容易產生字元線頸縮(necking)而引起字元線彎曲(bending)問題,其可能導致漏電流,進而影響記憶體的效能。However, with the advancement of memory technology, the critical size of memory (such as word line spacing) has also shrunk. Due to the narrowing of the word line spacing, the word line necking is likely to occur in the silidation process, which may cause the word line bending problem, which may cause leakage current, which may affect the performance of the memory.

本發明提供一種字元線結構及其製造方法,其可避免字元線頸縮所引起的字元線彎曲問題,並改善原有字元線阻抗的穩定性與耐久度,進而提升記憶體的效能。The invention provides a word line structure and a manufacturing method thereof, which can avoid the word line bending problem caused by the necking of the word line, and improve the stability and durability of the impedance of the original word line, thereby improving the memory efficacy.

本發明提供一種字元線結構,包括:基底、堆疊結構以及金屬矽化物結構。堆疊結構配置在基底上。金屬矽化物結構配置在堆疊結構上。金屬矽化物結構包括第一金屬元素、第二金屬元素以及矽元素。第一金屬元素與第二金屬元素不同,且第一金屬元素的濃度與第二金屬元素的濃度自金屬矽化物結構的頂面往基底的方向逐漸減少。The invention provides a word line structure, including: a substrate, a stacked structure and a metal silicide structure. The stack structure is disposed on the substrate. The metal silicide structure is arranged on the stack structure. The metal silicide structure includes a first metal element, a second metal element, and a silicon element. The first metal element is different from the second metal element, and the concentration of the first metal element and the concentration of the second metal element gradually decrease from the top surface of the metal silicide structure toward the substrate.

在本發明的一實施例中,上述的第一金屬元素包括鈦、鎳或其組合,而第二金屬元素包括鈷。In an embodiment of the invention, the first metal element includes titanium, nickel or a combination thereof, and the second metal element includes cobalt.

在本發明的一實施例中,上述的第一金屬元素的濃度小於第二金屬元素的濃度,且第二金屬元素的濃度小於矽元素的濃度。In an embodiment of the invention, the concentration of the first metal element is less than the concentration of the second metal element, and the concentration of the second metal element is less than the concentration of silicon element.

在本發明的一實施例中,上述的金屬矽化物結構包括第一部分與位於第一部分上的第二部分,且第一金屬元素於第二部分中的平均濃度大約是於第一部分中的5至7倍。In an embodiment of the present invention, the metal silicide structure includes a first part and a second part located on the first part, and the average concentration of the first metal element in the second part is about 5 to 7 times.

在本發明的一實施例中,上述的第二部分中的第二金屬元素的平均濃度與第一部分中的第二金屬元素的平均濃度的比為1至2。In an embodiment of the present invention, the ratio of the average concentration of the second metal element in the second part to the average concentration of the second metal element in the first part is 1 to 2.

在本發明的一實施例中,上述的第一金屬元素具有第一濃度梯度,第二金屬元素具有第二濃度梯度,且第一濃度梯度大於第二濃度梯度。In an embodiment of the invention, the first metal element has a first concentration gradient, the second metal element has a second concentration gradient, and the first concentration gradient is greater than the second concentration gradient.

在本發明的一實施例中,上述的堆疊結構包括:電荷儲存層、導體層以及閘間介電層。導體層配置在電荷儲存層上。閘間介電層配置在電荷儲存層與導體層之間。In an embodiment of the invention, the above-mentioned stacked structure includes: a charge storage layer, a conductor layer and an inter-gate dielectric layer. The conductor layer is arranged on the charge storage layer. The inter-gate dielectric layer is disposed between the charge storage layer and the conductor layer.

在本發明的一實施例中,上述的字元線結構,更包括穿隧介電層配置在基底與堆疊結構之間。In an embodiment of the invention, the above word line structure further includes a tunneling dielectric layer disposed between the substrate and the stacked structure.

本發明提供一種在本發明的一實施例中,上述的字元線結構的製造方法,其步驟如下。在基底上形成堆疊結構。進行沉積製程,依序形成第一金屬層與第二金屬層,以覆蓋堆疊結構的頂部,其中第一金屬層與第二金屬層具有不同金屬。進行熱處理製程,以將堆疊結構的頂部轉變為金屬矽化物結構。The present invention provides a method for manufacturing the above word line structure in an embodiment of the present invention, and the steps are as follows. A stacked structure is formed on the substrate. A deposition process is performed to form a first metal layer and a second metal layer in order to cover the top of the stacked structure, where the first metal layer and the second metal layer have different metals. A heat treatment process is performed to transform the top of the stacked structure into a metal silicide structure.

在本發明的一實施例中,上述的第一金屬層包括鈦層、鎳層或其組合,而第二金屬層包括鈷層。In an embodiment of the invention, the above-mentioned first metal layer includes a titanium layer, a nickel layer or a combination thereof, and the second metal layer includes a cobalt layer.

在本發明的一實施例中,上述的第一金屬層的厚度小於第二金屬層的厚度。In an embodiment of the invention, the thickness of the first metal layer is smaller than the thickness of the second metal layer.

在本發明的一實施例中,上述的進行熱處理製程包括以下步驟。進行第一熱處理步驟,使得第一金屬層、第二金屬層與堆疊結構的頂部進行反應。進行選擇性移除步驟,以移除未反應的第一金屬層與未反應的第二金屬層。進行第二熱處理步驟,且第二熱處理步驟的溫度大於第一熱處理步驟的溫度。In an embodiment of the invention, the above heat treatment process includes the following steps. The first heat treatment step is performed so that the first metal layer and the second metal layer react with the top of the stacked structure. A selective removal step is performed to remove the unreacted first metal layer and the unreacted second metal layer. The second heat treatment step is performed, and the temperature of the second heat treatment step is greater than the temperature of the first heat treatment step.

在本發明的一實施例中,上述的沉積製程與第一熱處理步驟是同時進行的。In an embodiment of the invention, the above-mentioned deposition process and the first heat treatment step are performed simultaneously.

在本發明的一實施例中,上述的第一熱處理步驟是在沉積製程之後進行的。In an embodiment of the invention, the above-mentioned first heat treatment step is performed after the deposition process.

在本發明的一實施例中,上述的製造方法,更包括在第二金屬層上形成頂蓋層,其中頂蓋層包括金屬氮化物層。In an embodiment of the invention, the above manufacturing method further includes forming a cap layer on the second metal layer, wherein the cap layer includes a metal nitride layer.

在本發明的一實施例中,上述的金屬矽化物結構包括第一金屬元素、第二金屬元素以及矽元素。第一金屬元素與第二金屬元素不同。第一金屬元素的濃度與第二金屬元素的濃度自金屬矽化物結構的頂面往基底的方向逐漸減少。In an embodiment of the invention, the metal silicide structure includes a first metal element, a second metal element, and a silicon element. The first metal element is different from the second metal element. The concentration of the first metal element and the concentration of the second metal element gradually decrease from the top surface of the metal silicide structure toward the substrate.

在本發明的一實施例中,上述的第一金屬元素的濃度小於第二金屬元素的濃度,且第二金屬元素的濃度小於矽元素的濃度。In an embodiment of the invention, the concentration of the first metal element is less than the concentration of the second metal element, and the concentration of the second metal element is less than the concentration of silicon element.

在本發明的一實施例中,上述的金屬矽化物結構包括第一部分與位於第一部分上的第二部分,且第一金屬元素於第二部分中的平均濃度大約是第一部分中的5至7倍。In an embodiment of the present invention, the above metal silicide structure includes a first part and a second part located on the first part, and the average concentration of the first metal element in the second part is about 5 to 7 in the first part Times.

在本發明的一實施例中,上述的第二部分中的第二金屬元素的平均濃度與第一部分中的第二金屬元素的平均濃度的比為1至2。In an embodiment of the present invention, the ratio of the average concentration of the second metal element in the second part to the average concentration of the second metal element in the first part is 1 to 2.

在本發明的一實施例中,上述的第一金屬元素具有第一濃度梯度,第二金屬元素具有第二濃度梯度,且第一濃度梯度大於第二濃度梯度。In an embodiment of the invention, the first metal element has a first concentration gradient, the second metal element has a second concentration gradient, and the first concentration gradient is greater than the second concentration gradient.

基於上述,在本實施例中,依序形成第一金屬層與第二金屬層以覆蓋堆疊結構的頂部,並進行熱處理製程,以將堆疊結構的頂部轉變為金屬矽化物結構。由於第一金屬層與第二金屬層具有不同材料,其可保持金屬矽化物結構的形狀,而不易產生頸縮或彎曲。在此情況下,本實施例可降低字元線阻抗,進而提升記憶體的效能。Based on the above, in this embodiment, the first metal layer and the second metal layer are sequentially formed to cover the top of the stack structure, and a heat treatment process is performed to transform the top of the stack structure into a metal silicide structure. Since the first metal layer and the second metal layer have different materials, they can maintain the shape of the metal silicide structure and are not prone to necking or bending. In this case, this embodiment can reduce the word line impedance, thereby improving the performance of the memory.

為讓本發明的上述特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。In order to make the above-mentioned features and advantages of the present invention more obvious and understandable, the embodiments are specifically described below in conjunction with the accompanying drawings for detailed description as follows.

參照本實施例之圖式以更全面地闡述本發明。然而,本發明亦可以各種不同的形式體現,而不應限於本文中所述之實施例。圖式中的層與區域的厚度會為了清楚起見而放大。相同或相似之標號表示相同或相似之元件,以下段落將不再一一贅述。The invention is explained more fully with reference to the drawings of this embodiment. However, the present invention can also be embodied in various forms, and should not be limited to the embodiments described herein. The thickness of layers and regions in the drawings will be exaggerated for clarity. The same or similar reference numerals indicate the same or similar elements, and the following paragraphs will not repeat them one by one.

圖1A至圖1E是依照本發明一實施例的一種字元線結構的製造流程的剖面示意圖。以下實施例中所述的字元線結構可應用在記憶元件(例如快閃記憶體)中,但本發明不以此為限。1A to 1E are schematic cross-sectional views of a manufacturing process of a word line structure according to an embodiment of the invention. The word line structure described in the following embodiments can be applied to memory elements (such as flash memory), but the invention is not limited thereto.

請參照圖1A,本發明實施例提供一種字元線結構10(如圖1D所示)的製造方法,其步驟如下。首先,提供基底100。在一些實施例中,基底100例如為半導體基底、半導體化合物基底或是絕緣層上有半導體基底(Semiconductor Over Insulator, SOI)。半導體例如是IVA族的原子,例如矽或鍺。半導體化合物例如是IVA族的原子所形成之半導體化合物,例如是碳化矽或是矽化鍺,或是IIIA族原子與VA族原子所形成之半導體化合物,例如是砷化鎵。Referring to FIG. 1A, an embodiment of the present invention provides a method for manufacturing a word line structure 10 (as shown in FIG. 1D). The steps are as follows. First, the substrate 100 is provided. In some embodiments, the substrate 100 is, for example, a semiconductor substrate, a semiconductor compound substrate, or a semiconductor substrate (Semiconductor Over Insulator, SOI) on an insulating layer. The semiconductor is, for example, an atom of group IVA, such as silicon or germanium. The semiconductor compound is, for example, a semiconductor compound formed by group IVA atoms, for example, silicon carbide or germanium silicide, or a semiconductor compound formed by group IIIA atoms and group VA atoms, for example, gallium arsenide.

接著,於基底100上形成穿隧介電層102。如圖1A所示,穿隧介電層102全面地覆蓋基底100的表面。在一些實施例中,穿隧介電層102可以由單一材料層構成。單一材料層例如是低介電常數材料或是高介電常數材料。低介電常數材料為介電常數低於4的介電材料,例如是氧化矽或氮氧化矽。高介電常數材料為介電常數高於4的介電材料,例如是HfAlO、HfO 2、Al 2O 3或Si 3N 4。在替代實施例中,穿隧介電層102也可以是雙層結構或是多層結構。 Next, a tunneling dielectric layer 102 is formed on the substrate 100. As shown in FIG. 1A, the tunneling dielectric layer 102 fully covers the surface of the substrate 100. In some embodiments, the tunneling dielectric layer 102 may be composed of a single material layer. The single material layer is, for example, a low dielectric constant material or a high dielectric constant material. The low dielectric constant material is a dielectric material having a dielectric constant lower than 4, such as silicon oxide or silicon oxynitride. The high dielectric constant material is a dielectric material having a dielectric constant higher than 4, for example, HfAlO, HfO 2 , Al 2 O 3 or Si 3 N 4 . In an alternative embodiment, the tunneling dielectric layer 102 can also be a double-layer structure or a multi-layer structure.

然後,於穿隧介電層102上形成多個堆疊結構104,使得穿隧介電層102位於基底100與堆疊結構104之間。具體來說,堆疊結構104由下而上依序包括電荷儲存層106、閘間介電層108以及導體層110。在一些實施例中,電荷儲存層106的材料包括導體材料,其可例如是摻雜多晶矽、未摻雜多晶矽或其組合。在本實施例中,電荷儲存層106可以是浮置閘極。閘間介電層108的材料包括介電材料,其可例如是氧化矽、氮化矽、氮氧化矽或其組合。閘間介電層108可以是單層結構或多層結構。在本實施例中,閘間介電層108可例如是由氧化物/氮化物/氧化物(Oxide/Nitride/Oxide,ONO)所構成的複合層。導體層110的材料包括導體材料,其可例如是摻雜多晶矽、未摻雜多晶矽或其組合。在本實施例中,導體層110可以是控制閘極。Then, a plurality of stacked structures 104 are formed on the tunneling dielectric layer 102 so that the tunneling dielectric layer 102 is located between the substrate 100 and the stacking structure 104. Specifically, the stacked structure 104 includes a charge storage layer 106, an intergate dielectric layer 108, and a conductor layer 110 in this order from bottom to top. In some embodiments, the material of the charge storage layer 106 includes a conductive material, which may be, for example, doped polysilicon, undoped polysilicon, or a combination thereof. In this embodiment, the charge storage layer 106 may be a floating gate. The material of the inter-gate dielectric layer 108 includes a dielectric material, which may be, for example, silicon oxide, silicon nitride, silicon oxynitride, or a combination thereof. The inter-gate dielectric layer 108 may be a single-layer structure or a multi-layer structure. In this embodiment, the inter-gate dielectric layer 108 may be, for example, a composite layer composed of oxide/nitride/oxide (Oxide/Nitride/Oxide, ONO). The material of the conductor layer 110 includes a conductor material, which may be, for example, doped polysilicon, undoped polysilicon, or a combination thereof. In this embodiment, the conductor layer 110 may be a control gate.

在一些實施例中,堆疊結構104以等距離方式彼此間隔,如圖1A所示。但本發明不以此為限,在其他實施例中,堆疊結構104亦可以非等距離方式彼此間隔。在替代實施例中,堆疊結構104的寬度或底面積可彼此相同或不同。In some embodiments, the stacked structures 104 are spaced apart from each other in an equidistant manner, as shown in FIG. 1A. However, the present invention is not limited to this. In other embodiments, the stacked structures 104 may also be spaced from each other in a non-equidistant manner. In alternative embodiments, the width or bottom area of the stacked structure 104 may be the same as or different from each other.

在形成堆疊結構104之後,形成襯層112,以共形地覆蓋堆疊結構104。在一些實施例中,襯層112的材料包括介電材料,其可例如是氧化矽、氮化矽、氮氧化矽或其組合。接著,形成介電層113以填入堆疊結構104之間的溝渠或空間中。在一些實施例中,介電層113的材料包括介電材料,其可例如是氧化矽、氮化矽、氮氧化矽或其組合。在替代實施例中,襯層112與介電層113包括不同材料。舉例來說,襯層112可以是氧化矽層,而介電層113可以是氮化矽層。另一方面,在形成介電層113之後,可選擇性地進行平坦化製程,以使介電層113的頂面與襯層112的頂面共平面,如圖1A所示。After forming the stacked structure 104, a liner layer 112 is formed to conformally cover the stacked structure 104. In some embodiments, the material of the liner layer 112 includes a dielectric material, which may be, for example, silicon oxide, silicon nitride, silicon oxynitride, or a combination thereof. Next, a dielectric layer 113 is formed to fill the trenches or spaces between the stacked structures 104. In some embodiments, the material of the dielectric layer 113 includes a dielectric material, which may be, for example, silicon oxide, silicon nitride, silicon oxynitride, or a combination thereof. In alternative embodiments, the liner layer 112 and the dielectric layer 113 include different materials. For example, the liner layer 112 may be a silicon oxide layer, and the dielectric layer 113 may be a silicon nitride layer. On the other hand, after the dielectric layer 113 is formed, a planarization process may be selectively performed so that the top surface of the dielectric layer 113 and the top surface of the liner layer 112 are coplanar, as shown in FIG. 1A.

請參照圖1A與圖1B,依序移除部分介電層113與部分襯層112,以使堆疊結構104的頂部111外露於介電層113a與襯層112a。堆疊結構104的頂部111與底部109的比例可依需求來調整,本發明不以此為限。在一些實施例中,襯層112a的頂面至少高於閘間介電層108的頂面。Referring to FIGS. 1A and 1B, part of the dielectric layer 113 and part of the liner layer 112 are sequentially removed, so that the top 111 of the stacked structure 104 is exposed to the dielectric layer 113a and the liner layer 112a. The ratio of the top 111 and the bottom 109 of the stacked structure 104 can be adjusted according to requirements, and the invention is not limited thereto. In some embodiments, the top surface of the liner layer 112a is at least higher than the top surface of the intergate dielectric layer 108.

請參照圖1B與圖1C,在暴露出堆疊結構104的頂部111之後,完全移除介電層113a。接著,進行沉積製程,依序形成第一金屬層114、第二金屬層116以及頂蓋層118。在此情況下,第一金屬層114、第二金屬層116以及頂蓋層118至少共形地覆蓋堆疊結構104的頂部111的頂面與側壁。在替代實施例中,如圖1C所示,第一金屬層114、第二金屬層116以及頂蓋層118延伸覆蓋襯層112a的表面。在一些實施例中,第一金屬層114包括鈦層、鎳層或其組合,其厚度可介於0.5 nm至3 nm之間。第二金屬層116包括鈷層,其厚度可介於5 nm至8 nm之間。在本實施例中,第一金屬層114與第二金屬層116具有不同金屬,且第一金屬層114的厚度小於第二金屬層116的厚度。頂蓋層118包括金屬氮化物層,例如是氮化鈦(TiN),其厚度可介於5 nm至10 nm之間。1B and 1C, after the top 111 of the stack structure 104 is exposed, the dielectric layer 113a is completely removed. Next, a deposition process is performed to sequentially form the first metal layer 114, the second metal layer 116, and the cap layer 118. In this case, the first metal layer 114, the second metal layer 116 and the cap layer 118 conformally cover at least the top surface and the side wall of the top 111 of the stacked structure 104. In an alternative embodiment, as shown in FIG. 1C, the first metal layer 114, the second metal layer 116, and the cap layer 118 extend to cover the surface of the liner layer 112a. In some embodiments, the first metal layer 114 includes a titanium layer, a nickel layer, or a combination thereof, and the thickness thereof may be between 0.5 nm and 3 nm. The second metal layer 116 includes a cobalt layer, and its thickness may be between 5 nm and 8 nm. In this embodiment, the first metal layer 114 and the second metal layer 116 have different metals, and the thickness of the first metal layer 114 is smaller than the thickness of the second metal layer 116. The cap layer 118 includes a metal nitride layer, for example, titanium nitride (TiN), and its thickness may be between 5 nm and 10 nm.

請參照圖1C與圖1D,進行熱處理製程(或稱為矽化製程),以將堆疊結構104的頂部111轉變為金屬矽化物結構121。以下,將堆疊結構104的底部109稱為堆疊結構104,而金屬矽化物結構121位於堆疊結構104上。具體來說,上述的熱處理製程包括以下步驟。進行第一熱處理步驟,使得第一金屬層114、第二金屬層116與堆疊結構104的頂部111進行反應,以形成第一金屬矽化物。在此情況下,上述的第一金屬矽化物可例如是介穩定(metastable)的相結構。在一些實施例中,所述第一熱處理步驟可以是快速熱處理製程(Rapid Thermal Process,RTP),其溫度可介於450°C至500°C之間,而其處理時間可介於30秒至180秒之間。1C and 1D, a heat treatment process (or silicidation process) is performed to transform the top 111 of the stack structure 104 into a metal silicide structure 121. Hereinafter, the bottom 109 of the stacked structure 104 is referred to as a stacked structure 104, and the metal silicide structure 121 is located on the stacked structure 104. Specifically, the above heat treatment process includes the following steps. The first heat treatment step is performed so that the first metal layer 114 and the second metal layer 116 react with the top 111 of the stack structure 104 to form the first metal silicide. In this case, the above-mentioned first metal silicide may be, for example, a metastable phase structure. In some embodiments, the first heat treatment step may be a Rapid Thermal Process (RTP), the temperature of which may range from 450°C to 500°C, and the processing time may range from 30 seconds to Between 180 seconds.

在形成第一金屬矽化物之後,進行選擇性移除步驟,以移除未反應的第一金屬層114、未反應的第二金屬層116以及頂蓋層118。在一些實施例中,上述的選擇性移除步驟例如是進行RCA清洗製程。RCA清洗製程包括使用水(H 2O)/過氧化氫(H 2O 2)/氨水(NH 4OH)的混合液(亦即,標準清洗液SC1)、使用水(H 2O)/過氧化氫(H 2O 2)/鹽酸(HCl)之混合液(亦即,標準清洗液SC2)或使用上述SC1與SC2的組合。 After forming the first metal silicide, a selective removal step is performed to remove the unreacted first metal layer 114, the unreacted second metal layer 116, and the cap layer 118. In some embodiments, the aforementioned selective removal step is, for example, an RCA cleaning process. The RCA cleaning process includes the use of a mixed solution of water (H 2 O)/hydrogen peroxide (H 2 O 2 )/ammonia (NH 4 OH) (that is, standard cleaning solution SC1), and the use of water (H 2 O)/excess A mixed solution of hydrogen oxide (H 2 O 2 )/hydrochloric acid (HCl) (that is, standard cleaning solution SC2) or a combination of the above SC1 and SC2 is used.

在移除未反應的第一金屬層114、未反應的第二金屬層116以及頂蓋層118之後,進行第二熱處理步驟,以將第一金屬矽化物轉變成電阻值較低的第二金屬矽化物,亦即圖1D所繪示的金屬矽化物結構121。在此情況下,上述的第二金屬矽化物可例如是穩定的相結構。也就是說,第二金屬矽化物的相結構比第一金屬矽化物的相結構更為穩定。在一些實施例中,所述第二熱處理步驟可以是另一快速熱處理製程,其溫度可介於700°C至900°C之間,而其處理時間可介於10秒至90秒之間。在替代實施例中,第二熱處理步驟的溫度大於第一熱處理步驟的溫度。After removing the unreacted first metal layer 114, the unreacted second metal layer 116, and the cap layer 118, a second heat treatment step is performed to convert the first metal silicide to a second metal with a lower resistance value The silicide, that is, the metal silicide structure 121 shown in FIG. 1D. In this case, the above-mentioned second metal silicide may be, for example, a stable phase structure. In other words, the phase structure of the second metal silicide is more stable than that of the first metal silicide. In some embodiments, the second heat treatment step may be another rapid heat treatment process, the temperature may be between 700°C and 900°C, and the treatment time may be between 10 seconds and 90 seconds. In an alternative embodiment, the temperature of the second heat treatment step is greater than the temperature of the first heat treatment step.

另外,雖然第一熱處理步驟是在沉積製程之後進行的,但本發明不以此為限。在其他實施例中,沉積製程與第一熱處理步驟亦可以是同時進行的。也就是說,可在同一腔室中同時進行沉積與加熱。換言之,沉積製程與第一熱處理步驟可以原位(in-situ)的方式來進行。In addition, although the first heat treatment step is performed after the deposition process, the present invention is not limited thereto. In other embodiments, the deposition process and the first heat treatment step may also be performed simultaneously. That is, deposition and heating can be performed simultaneously in the same chamber. In other words, the deposition process and the first heat treatment step can be performed in-situ.

如圖1D所示,在矽化製程期間,頂部111與第一金屬層114、第二金屬層116進行反應會損耗部分頂部111。因此,反應後的金屬矽化物結構121的體積可能小於反應前的頂部111的體積。上述金屬矽化物的縮小現象(shrinkage phenomenon)使得金屬矽化物結構121的側壁比堆疊結構104的側壁更為內縮。As shown in FIG. 1D, during the silicidation process, the top 111 reacts with the first metal layer 114 and the second metal layer 116 to consume part of the top 111. Therefore, the volume of the metal silicide structure 121 after the reaction may be smaller than the volume of the top 111 before the reaction. The shrinkage phenomenon of the metal silicide described above makes the side walls of the metal silicide structure 121 shrink more than the side walls of the stacked structure 104.

值得注意的是,本實施例藉由不同金屬材料所構成的第一金屬層114與第二金屬層116來與頂部111進行矽化製程,其可解決金屬矽化物結構121頸縮或變形的問題,以降低字元線阻抗,進而提升記憶體的效能。以下,以第一金屬層114為鈦層,而第二金屬層116為鈷層為例來說明。在一些實施例中,鈦層114中的鈦元素的移動速率小於鈷層116中的鈷元素的移動速率。在此情況下,大部分的鈷元素擴散至頂部111中,而大部分的鈦元素則停留在頂部111的表面。因此,這些鈦元素可維持金屬矽化物結構121的形狀,而不易頸縮並產生彎曲現象。相較於以單一鈷層來進行矽化製程,本實施例將鈦層插入鈷層與矽層之間來進行矽化製程,其所形成的金屬矽化物結構121的輪廓較為筆直且較不彎曲,且亦能改善字元線阻抗的穩定性與耐久度。在另一實施例中,在矽化製程中,鈷原子比鈦原子或鎳原子消耗更多的矽原子。因此,相較於以單一鈷層來進行矽化製程,本實施例將鈦層或鎳層插入鈷層與矽層之間來進行矽化製程,所形成的金屬矽化物結構121不易產生縮小現象,因此,可維持金屬矽化物結構121的形狀而不易變形。It is worth noting that in this embodiment, the first metal layer 114 and the second metal layer 116 made of different metal materials are subjected to a silicidation process with the top 111, which can solve the problem of necking or deformation of the metal silicide structure 121. In order to reduce the impedance of the word line, and thus improve the performance of the memory. In the following, the first metal layer 114 is a titanium layer and the second metal layer 116 is a cobalt layer as an example. In some embodiments, the movement rate of the titanium element in the titanium layer 114 is smaller than the movement rate of the cobalt element in the cobalt layer 116. In this case, most of the cobalt element diffuses into the top 111, while most of the titanium element stays on the surface of the top 111. Therefore, these titanium elements can maintain the shape of the metal silicide structure 121, and are not easy to neck and bend. Compared with the single cobalt layer for the silicidation process, in this embodiment, the titanium layer is inserted between the cobalt layer and the silicon layer for the silicidation process. The outline of the metal silicide structure 121 formed by it is straighter and less curved, and It can also improve the stability and durability of the word line impedance. In another embodiment, in the silicidation process, cobalt atoms consume more silicon atoms than titanium or nickel atoms. Therefore, compared with the single cobalt layer for the silicidation process, in this embodiment, the titanium layer or the nickel layer is inserted between the cobalt layer and the silicon layer to perform the silicidation process, and the formed metal silicide structure 121 is less likely to shrink. Therefore, , The shape of the metal silicide structure 121 can be maintained without being easily deformed.

請參照圖1D與圖2,金屬矽化物結構121配置在堆疊結構104上。金屬矽化物結構121包括第一金屬元素131、第二金屬元素132以及矽元素133。在一實施例中,第一金屬元素131包括鈦、鎳或其組合,而第二金屬元素132包括鈷。在另一實施例中,第一金屬元素131與第二金屬元素132不同。如圖2所示,沿著金屬矽化物結構121的頂面121t往基底100的方向(亦即線A-A’)來看,第一金屬元素131的濃度與第二金屬元素132的濃度逐漸減少。第一金屬元素131的濃度小於第二金屬元素132的濃度,且第二金屬元素132的濃度小於矽元素133的濃度。1D and FIG. 2, the metal silicide structure 121 is disposed on the stack structure 104. The metal silicide structure 121 includes a first metal element 131, a second metal element 132, and a silicon element 133. In one embodiment, the first metal element 131 includes titanium, nickel, or a combination thereof, and the second metal element 132 includes cobalt. In another embodiment, the first metal element 131 and the second metal element 132 are different. As shown in FIG. 2, along the direction of the top surface 121t of the metal silicide structure 121 toward the substrate 100 (that is, line AA′), the concentration of the first metal element 131 and the concentration of the second metal element 132 gradually cut back. The concentration of the first metal element 131 is less than the concentration of the second metal element 132, and the concentration of the second metal element 132 is less than the concentration of the silicon element 133.

在其他實施例中,第一金屬元素131具有第一濃度梯度,而第二金屬元素132具有第二濃度梯度。於此,所謂的「濃度梯度」是指濃度差異、濃度曲線的斜率,或者是最大濃度與最小濃度的比。如圖2所示,第一金屬元素131的第一濃度梯度大於第二金屬元素132的第二濃度梯度。也就是說,大部分的第一金屬元素131(例如Ti)位於或集中於金屬矽化物結構121的頂面121t;而大部分的第二金屬元素132(例如Co)則是擴散或均勻分散至金屬矽化物結構121中。In other embodiments, the first metal element 131 has a first concentration gradient, and the second metal element 132 has a second concentration gradient. Here, the "concentration gradient" refers to the concentration difference, the slope of the concentration curve, or the ratio of the maximum concentration to the minimum concentration. As shown in FIG. 2, the first concentration gradient of the first metal element 131 is greater than the second concentration gradient of the second metal element 132. In other words, most of the first metal elements 131 (such as Ti) are located or concentrated on the top surface 121t of the metal silicide structure 121; and most of the second metal elements 132 (such as Co) are diffused or uniformly dispersed to In the metal silicide structure 121.

具體來說,金屬矽化物結構121包括第一部分121a與位於第一部分121a上的第二部分121b,如圖1D所示。在一些實施例中,第一部分121a的中間寬度W1可小於或等於第二部分121b的中間寬度W2,但本發明不以此為限。如圖2所示,沿著金屬矽化物結構121的頂面121t往基底100的方向(亦即線A-A’)來看,在一實施例中,第二部分121b中的第一金屬元素131的平均濃度與第一部分121a中的第一金屬元素131的平均濃度的比(R1)為5至7。也就是說,第一金屬元素131於第二部分121b中的平均濃度大約是第一部分121a中的5至7倍。在另一實施例中,第二部分121b中的第二金屬元素132的平均濃度與第一部分121a中的第二金屬元素132的平均濃度的比(R2)為1至2。在替代實施例中,上述的比(R1)大於比(R2)。換言之,第一金屬元素131較為集中在第二部分121b;而第二金屬元素132則是均勻分布在第一部分121a與第二部分121b中。Specifically, the metal silicide structure 121 includes a first portion 121a and a second portion 121b located on the first portion 121a, as shown in FIG. 1D. In some embodiments, the middle width W1 of the first portion 121a may be less than or equal to the middle width W2 of the second portion 121b, but the invention is not limited thereto. As shown in FIG. 2, looking along the direction of the top surface 121t of the metal silicide structure 121 toward the substrate 100 (that is, line AA′), in one embodiment, the first metal element in the second portion 121b The ratio (R1) of the average concentration of 131 to the average concentration of the first metal element 131 in the first portion 121a is 5 to 7. That is to say, the average concentration of the first metal element 131 in the second portion 121b is about 5 to 7 times that of the first portion 121a. In another embodiment, the ratio (R2) of the average concentration of the second metal element 132 in the second portion 121b to the average concentration of the second metal element 132 in the first portion 121a is 1 to 2. In an alternative embodiment, the aforementioned ratio (R1) is greater than the ratio (R2). In other words, the first metal element 131 is more concentrated in the second portion 121b; and the second metal element 132 is evenly distributed in the first portion 121a and the second portion 121b.

請參照圖1D與圖1E,在形成金屬矽化物結構121之後,字元線結構10便已完成。在形成字元線結構10之後,可形成介電層120以覆蓋金屬矽化物結構121。在一些實施例中,介電層120的材料包括氧化矽、磷矽玻璃(PSG)、硼磷矽玻璃(BPSG)或其組合。由於金屬矽化物結構121之間的間距較小,因此,介電層120填入金屬矽化物結構121之間的空間時會形成空氣間隙122。如圖1E所示,空氣間隙122位於堆疊結構104之間,且自堆疊結構104的下部延伸至金屬矽化物結構121的上部。在一些實施例中,由於空氣間隙122的介電常數趨近於1,因此空氣間隙122可降低金屬矽化物結構121之間的電容值並降低RC延遲。如圖1E所示,空氣間隙122的頂面122t可等於或高於金屬矽化物結構121的頂面121t。在另一實施例中,空氣間隙122可接觸或不接觸穿隧介電層102的頂面。在替代實施例中,空氣間隙122包括單一個空氣間隙或兩個以上的空氣間隙。1D and 1E, after the metal silicide structure 121 is formed, the word line structure 10 is completed. After forming the word line structure 10, a dielectric layer 120 may be formed to cover the metal silicide structure 121. In some embodiments, the material of the dielectric layer 120 includes silicon oxide, phosphorosilicate glass (PSG), borophosphosilicate glass (BPSG), or a combination thereof. Since the spacing between the metal silicide structures 121 is relatively small, an air gap 122 is formed when the dielectric layer 120 fills the space between the metal silicide structures 121. As shown in FIG. 1E, the air gap 122 is located between the stacked structures 104 and extends from the lower portion of the stacked structure 104 to the upper portion of the metal silicide structure 121. In some embodiments, since the dielectric constant of the air gap 122 approaches 1, the air gap 122 can reduce the capacitance between the metal silicide structures 121 and reduce the RC delay. As shown in FIG. 1E, the top surface 122t of the air gap 122 may be equal to or higher than the top surface 121t of the metal silicide structure 121. In another embodiment, the air gap 122 may or may not contact the top surface of the tunneling dielectric layer 102. In alternative embodiments, the air gap 122 includes a single air gap or more than two air gaps.

綜上所述,在本實施例中,依序形成第一金屬層與第二金屬層以覆蓋堆疊結構的頂部,並進行熱處理製程,以將堆疊結構的頂部轉變為金屬矽化物結構。由於第一金屬層與第二金屬層具有不同材料,其可保持金屬矽化物結構的形狀,而不易產生頸縮或彎曲。在此情況下,本實施例可降低字元線阻抗,進而提升記憶體的效能。In summary, in this embodiment, the first metal layer and the second metal layer are formed in order to cover the top of the stack structure, and a heat treatment process is performed to transform the top of the stack structure into a metal silicide structure. Since the first metal layer and the second metal layer have different materials, they can maintain the shape of the metal silicide structure and are not prone to necking or bending. In this case, this embodiment can reduce the word line impedance, thereby improving the performance of the memory.

雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明的精神和範圍內,當可作些許的更動與潤飾,故本發明的保護範圍當視後附的申請專利範圍所界定者為準。Although the present invention has been disclosed as above with examples, it is not intended to limit the present invention. Any person with ordinary knowledge in the technical field can make some changes and modifications without departing from the spirit and scope of the present invention. The scope of protection of the present invention shall be subject to the scope defined in the appended patent application.

10:字元線結構 100:基底 102:穿隧介電層 104:堆疊結構 106:電荷儲存層 108:閘間介電層 109:堆疊結構的底部 110:導體層 111:堆疊結構的頂部 112:襯層 113、120:介電層 114:第一金屬層 116:第二金屬層 118:頂蓋層 121:金屬矽化物結構 121a:第一部分 121b:第二部分 121t:金屬矽化物結構的頂面 122:空氣間隙 122t:空氣間隙的頂面 131:第一金屬元素 132:第二金屬元素 133:矽元素 W1、W2:中間寬度10: Character line structure 100: base 102: Tunneling dielectric layer 104: stacked structure 106: charge storage layer 108: Gate dielectric layer 109: bottom of the stack structure 110: conductor layer 111: the top of the stack structure 112: Lining 113, 120: dielectric layer 114: first metal layer 116: Second metal layer 118: top cover layer 121: Metal silicide structure 121a: Part One 121b: Part Two 121t: top surface of metal silicide structure 122: Air gap 122t: the top surface of the air gap 131: The first metal element 132: Second metal element 133: Silicon W1, W2: middle width

圖1A至圖1E是依照本發明一實施例的一種字元線結構的製造流程的剖面示意圖。 圖2是沿著圖1D的線A-A’的數量強度(濃度)與距離的關係圖。 1A to 1E are schematic cross-sectional views of a manufacturing process of a word line structure according to an embodiment of the invention. Fig. 2 is a graph of the relationship between the numerical intensity (density) and the distance along the line A-A' of Fig. 1D.

10:字元線結構 10: Character line structure

100:基底 100: base

102:穿隧介電層 102: Tunneling dielectric layer

104:堆疊結構 104: stacked structure

106:電荷儲存層 106: charge storage layer

108:閘間介電層 108: Gate dielectric layer

110:導體層 110: conductor layer

112a:襯層 112a: Lining

120:介電層 120: dielectric layer

121:金屬矽化物結構 121: Metal silicide structure

121t:金屬矽化物結構的頂面 121t: top surface of metal silicide structure

122:空氣間隙 122: Air gap

122t:空氣間隙的頂面 122t: the top surface of the air gap

Claims (20)

一種字元線結構,包括: 堆疊結構,配置在基底上;以及 金屬矽化物結構,配置在所述堆疊結構上,其中所述金屬矽化物結構包括第一金屬元素、第二金屬元素以及矽元素,所述第一金屬元素與所述第二金屬元素不同,且所述第一金屬元素的濃度與所述第二金屬元素的濃度自所述金屬矽化物結構的頂面往所述基底的方向逐漸減少。 A character line structure, including: Stacked structure, arranged on the substrate; and A metal silicide structure disposed on the stack structure, wherein the metal silicide structure includes a first metal element, a second metal element, and a silicon element, the first metal element is different from the second metal element, and The concentration of the first metal element and the concentration of the second metal element gradually decrease from the top surface of the metal silicide structure toward the substrate. 如申請專利範圍第1項所述的字元線結構,其中所述第一金屬元素包括鈦、鎳或其組合,而所述第二金屬元素包括鈷。The character line structure as described in item 1 of the patent application scope, wherein the first metal element includes titanium, nickel or a combination thereof, and the second metal element includes cobalt. 如申請專利範圍第2項所述的字元線結構,其中所述第一金屬元素的所述濃度小於所述第二金屬元素的所述濃度,且所述第二金屬元素的所述濃度小於所述矽元素的濃度。The character line structure as described in item 2 of the patent application range, wherein the concentration of the first metal element is less than the concentration of the second metal element, and the concentration of the second metal element is less than The concentration of silicon element. 如申請專利範圍第2項所述的字元線結構,其中所述金屬矽化物結構包括第一部分與位於所述第一部分上的第二部分,且所述第二部分中的所述第一金屬元素的平均濃度與所述第一部分中的所述第一金屬元素的平均濃度的比為5至7。The word line structure as described in item 2 of the patent application scope, wherein the metal silicide structure includes a first part and a second part located on the first part, and the first metal in the second part The ratio of the average concentration of the element to the average concentration of the first metal element in the first part is 5 to 7. 如申請專利範圍第4項所述的字元線結構,其中所述第二部分中的所述第二金屬元素的平均濃度與所述第一部分中的所述第二金屬元素的平均濃度的比為1至2。The character line structure as described in item 4 of the patent application range, wherein the ratio of the average concentration of the second metal element in the second part to the average concentration of the second metal element in the first part For 1 to 2. 如申請專利範圍第2項所述的字元線結構,其中所述第一金屬元素具有第一濃度梯度,所述第二金屬元素具有第二濃度梯度,且所述第一濃度梯度大於所述第二濃度梯度。The character line structure as described in item 2 of the patent application scope, wherein the first metal element has a first concentration gradient, the second metal element has a second concentration gradient, and the first concentration gradient is greater than the Second concentration gradient. 如申請專利範圍第1項所述的字元線結構,其中所述堆疊結構包括: 電荷儲存層; 導體層,配置在所述電荷儲存層上;以及 閘間介電層,配置在所述電荷儲存層與所述導體層之間。 The character line structure as described in item 1 of the patent application scope, wherein the stacked structure includes: Charge storage layer; A conductor layer disposed on the charge storage layer; and The inter-gate dielectric layer is disposed between the charge storage layer and the conductor layer. 如申請專利範圍第1項所述的字元線結構,更包括穿隧介電層配置在所述基底與所述堆疊結構之間。The word line structure as described in item 1 of the patent application further includes a tunneling dielectric layer disposed between the substrate and the stacked structure. 一種字元線結構的製造方法,包括: 在基底上形成堆疊結構; 進行沉積製程,依序形成第一金屬層與第二金屬層,以覆蓋所述堆疊結構的頂部,其中所述第一金屬層與所述第二金屬層具有不同金屬;以及 進行熱處理製程,以將所述堆疊結構的所述頂部轉變為金屬矽化物結構。 A method for manufacturing a character line structure includes: Forming a stacked structure on the substrate; Performing a deposition process to sequentially form a first metal layer and a second metal layer to cover the top of the stacked structure, wherein the first metal layer and the second metal layer have different metals; and A heat treatment process is performed to transform the top of the stacked structure into a metal silicide structure. 如申請專利範圍第9項所述的字元線結構的製造方法,其中所述第一金屬層包括鈦層、鎳層或其組合,而所述第二金屬層包括鈷層。The method for manufacturing a word line structure as described in item 9 of the patent application range, wherein the first metal layer includes a titanium layer, a nickel layer, or a combination thereof, and the second metal layer includes a cobalt layer. 如申請專利範圍第9項所述的字元線結構的製造方法,其中所述第一金屬層的厚度小於所述第二金屬層的厚度。The method for manufacturing a word line structure as described in item 9 of the patent application range, wherein the thickness of the first metal layer is smaller than the thickness of the second metal layer. 如申請專利範圍第9項所述的字元線結構的製造方法,其中所述進行所述熱處理製程包括: 進行第一熱處理步驟,使得所述第一金屬層、所述第二金屬層與所述堆疊結構的所述頂部進行反應; 進行選擇性移除步驟,以移除未反應的第一金屬層與未反應的第二金屬層;以及 進行第二熱處理步驟,其中所述第二熱處理步驟的溫度大於所述第一熱處理步驟的溫度。 The method for manufacturing a character line structure as described in item 9 of the patent application scope, wherein the process of performing the heat treatment includes: Performing a first heat treatment step so that the first metal layer and the second metal layer react with the top of the stacked structure; Performing a selective removal step to remove the unreacted first metal layer and the unreacted second metal layer; and A second heat treatment step is performed, wherein the temperature of the second heat treatment step is greater than the temperature of the first heat treatment step. 如申請專利範圍第12項所述的字元線結構的製造方法,其中所述沉積製程與所述第一熱處理步驟是同時進行的。The method for manufacturing a word line structure as described in item 12 of the patent application scope, wherein the deposition process and the first heat treatment step are performed simultaneously. 如申請專利範圍第12項所述的字元線結構的製造方法,其中所述第一熱處理步驟是在所述沉積製程之後進行的。The method for manufacturing a word line structure as described in item 12 of the patent application scope, wherein the first heat treatment step is performed after the deposition process. 如申請專利範圍第9項所述的字元線結構的製造方法,更包括在所述第二金屬層上形成頂蓋層,其中所述頂蓋層包括金屬氮化物層。The method for manufacturing a word line structure as described in item 9 of the scope of the patent application further includes forming a cap layer on the second metal layer, wherein the cap layer includes a metal nitride layer. 如申請專利範圍第9項所述的字元線結構的製造方法,其中所述金屬矽化物結構包括第一金屬元素、第二金屬元素以及矽元素,所述第一金屬元素與所述第二金屬元素不同,且所述第一金屬元素的濃度與所述第二金屬元素的濃度自所述金屬矽化物結構的頂面往所述基底的方向逐漸減少。The method for manufacturing a word line structure as described in item 9 of the patent application scope, wherein the metal silicide structure includes a first metal element, a second metal element, and a silicon element, the first metal element and the second The metal elements are different, and the concentrations of the first metal element and the second metal element gradually decrease from the top surface of the metal silicide structure toward the substrate. 如申請專利範圍第16項所述的字元線結構的製造方法,其中所述第一金屬元素的所述濃度小於所述第二金屬元素的所述濃度,且所述第二金屬元素的所述濃度小於所述矽元素的濃度。The method for manufacturing a word line structure as described in item 16 of the patent application range, wherein the concentration of the first metal element is less than the concentration of the second metal element, and the position of the second metal element The concentration is less than the concentration of silicon element. 如申請專利範圍第16項所述的字元線結構的製造方法,其中所述金屬矽化物結構包括第一部分與位於所述第一部分上的第二部分,且所述第二部分中的所述第一金屬元素的平均濃度與所述第一部分中的所述第一金屬元素的平均濃度的比為5至7。The method for manufacturing a word line structure as described in item 16 of the patent application range, wherein the metal silicide structure includes a first part and a second part located on the first part, and the The ratio of the average concentration of the first metal element to the average concentration of the first metal element in the first part is 5 to 7. 如申請專利範圍第18項所述的字元線結構的製造方法,其中所述第二部分中的所述第二金屬元素的平均濃度與所述第一部分中的所述第二金屬元素的平均濃度的比為1至2。The method for manufacturing a character line structure as described in item 18 of the patent application range, wherein the average concentration of the second metal element in the second part and the average of the second metal element in the first part The ratio of the concentration is 1 to 2. 如申請專利範圍第16項所述的字元線結構的製造方法,其中所述第一金屬元素具有第一濃度梯度,所述第二金屬元素具有第二濃度梯度,且所述第一濃度梯度大於所述第二濃度梯度。The method for manufacturing a word line structure as described in item 16 of the patent application range, wherein the first metal element has a first concentration gradient, the second metal element has a second concentration gradient, and the first concentration gradient Greater than the second concentration gradient.
TW108106913A 2019-02-27 2019-02-27 Word line structure and method of manufacturing the same TWI694571B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW108106913A TWI694571B (en) 2019-02-27 2019-02-27 Word line structure and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW108106913A TWI694571B (en) 2019-02-27 2019-02-27 Word line structure and method of manufacturing the same

Publications (2)

Publication Number Publication Date
TWI694571B true TWI694571B (en) 2020-05-21
TW202032743A TW202032743A (en) 2020-09-01

Family

ID=71895951

Family Applications (1)

Application Number Title Priority Date Filing Date
TW108106913A TWI694571B (en) 2019-02-27 2019-02-27 Word line structure and method of manufacturing the same

Country Status (1)

Country Link
TW (1) TWI694571B (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200834894A (en) * 2006-12-21 2008-08-16 Samsung Electronics Co Ltd Non-volatile memory devices and methods of manufacturing the same
TW201128768A (en) * 2010-02-12 2011-08-16 Macronix Int Co Ltd Bit line structure, semiconductor device and method of forming the same
TW201622063A (en) * 2014-12-15 2016-06-16 旺宏電子股份有限公司 Semiconductor device and method of manufacturing the same
WO2017019177A1 (en) * 2015-07-24 2017-02-02 Sandisk Technologies Llc Three-dimensional memory device with metal and silicide control gates
US9859290B1 (en) * 2016-11-02 2018-01-02 United Microelectronics Corp. Memory device and method for fabricating the same
US20180182861A1 (en) * 2016-12-27 2018-06-28 SK Hynix Inc. Semiconductor device and method for fabricating the same
TW201834184A (en) * 2016-10-28 2018-09-16 美商英特爾股份有限公司 Local interconnect for group iv source/drain regions
WO2019003042A1 (en) * 2017-06-27 2019-01-03 株式会社半導体エネルギー研究所 Semiconductor device, and manufacturing method for semiconductor device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200834894A (en) * 2006-12-21 2008-08-16 Samsung Electronics Co Ltd Non-volatile memory devices and methods of manufacturing the same
TW201128768A (en) * 2010-02-12 2011-08-16 Macronix Int Co Ltd Bit line structure, semiconductor device and method of forming the same
TW201622063A (en) * 2014-12-15 2016-06-16 旺宏電子股份有限公司 Semiconductor device and method of manufacturing the same
WO2017019177A1 (en) * 2015-07-24 2017-02-02 Sandisk Technologies Llc Three-dimensional memory device with metal and silicide control gates
TW201834184A (en) * 2016-10-28 2018-09-16 美商英特爾股份有限公司 Local interconnect for group iv source/drain regions
US9859290B1 (en) * 2016-11-02 2018-01-02 United Microelectronics Corp. Memory device and method for fabricating the same
US20180182861A1 (en) * 2016-12-27 2018-06-28 SK Hynix Inc. Semiconductor device and method for fabricating the same
WO2019003042A1 (en) * 2017-06-27 2019-01-03 株式会社半導体エネルギー研究所 Semiconductor device, and manufacturing method for semiconductor device

Also Published As

Publication number Publication date
TW202032743A (en) 2020-09-01

Similar Documents

Publication Publication Date Title
TWI613761B (en) Three-dimensional non-volatile memory and manufacturing method thereof
US9105694B2 (en) Method for fabricating semiconductor device
US9870951B2 (en) Method of fabricating semiconductor structure with self-aligned spacers
CN108538712B (en) Method for manufacturing contact hole
US20150187899A1 (en) Semiconductor device and method for forming the same
KR100741467B1 (en) Semiconductor device and forming the same
TWI647822B (en) Three-dimensional non-volatile memory and manufacturing method thereof
US10340283B2 (en) Process for fabricating 3D memory
US10453756B2 (en) Method for manufacturing a semiconductor device including a pair of channel semiconductor patterns
TWI694571B (en) Word line structure and method of manufacturing the same
TWI615949B (en) Three-dimensional memory device and method of forming the same
TWI815159B (en) Semiconductor device, transistor and method of forming semiconductor device
US10892265B2 (en) Word line structure and method of manufacturing the same
TWI555066B (en) Method of manufacturing a semiconductor device
TW202310176A (en) Method of manufacturing semiconductor device
TWI291710B (en) Fabrication method for non-volatile memory
TWI813200B (en) Integrated circuit structure and method forming same
TWI807711B (en) An integrated circuit structure and method of forming the same
US20230155004A1 (en) Transistor source/drain contacts and methods of forming the same
US20160225872A1 (en) Semiconductor structure with a multilayer gate oxide and method of fabricating the same
TWI572075B (en) Memory device and method for fabricating the same
TW471048B (en) Method of preventing extrusion of a gate
TWI553784B (en) Memory device and method for fabricating the same
TWI559455B (en) Method for manufacturing non-volatile memory
TW202403890A (en) Semiconductor structure and method forming the same