TWI553784B - Memory device and method for fabricating the same - Google Patents

Memory device and method for fabricating the same Download PDF

Info

Publication number
TWI553784B
TWI553784B TW103109999A TW103109999A TWI553784B TW I553784 B TWI553784 B TW I553784B TW 103109999 A TW103109999 A TW 103109999A TW 103109999 A TW103109999 A TW 103109999A TW I553784 B TWI553784 B TW I553784B
Authority
TW
Taiwan
Prior art keywords
layer
well region
conductor layer
dielectric layer
memory device
Prior art date
Application number
TW103109999A
Other languages
Chinese (zh)
Other versions
TW201537687A (en
Inventor
薛家倩
朱益輝
蔡亞峻
Original Assignee
旺宏電子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旺宏電子股份有限公司 filed Critical 旺宏電子股份有限公司
Priority to TW103109999A priority Critical patent/TWI553784B/en
Publication of TW201537687A publication Critical patent/TW201537687A/en
Application granted granted Critical
Publication of TWI553784B publication Critical patent/TWI553784B/en

Links

Description

記憶元件及其製造方法 Memory element and method of manufacturing same

本發明是有關於一種半導體元件及其製造方法,且特別是有關於一種記憶元件及其製造方法。 The present invention relates to a semiconductor device and a method of fabricating the same, and more particularly to a memory device and a method of fabricating the same.

記憶體可以分為揮發性記憶體(Volatile memory)與非揮發性記憶體(Non-volatile memory)兩類。揮發性記憶體在電源供應中斷後,其記憶體所儲存的資料便會消失;而非揮發性記憶體即使電源供應中斷,其記憶體所儲存的資料並不會消失,重新供電後,就能夠讀取記憶體中的資料。因此,非揮發性記憶體可廣泛地應用在電子產品,尤其是可攜帶性產品。 Memory can be divided into two types: volatile memory (Volatile memory) and non-volatile memory (Non-volatile memory). Volatile memory will disappear after the power supply is interrupted. The non-volatile memory will not disappear after the power supply is interrupted. After re-powering, it will be able to Read the data in the memory. Therefore, non-volatile memory can be widely used in electronic products, especially portable products.

隨著記憶元件的積集度提高與尺寸縮小,記憶元件的漏電流(Leakage current)也跟著增加。當記憶元件的井區中摻雜硼時,其邊界區域的硼容易向外擴散(Out-Diffusion),以致井區邊界區域的硼的摻雜濃度小於井區中間區域的硼的摻雜濃度。如此一來,當操作記憶元件時,其臨限電壓(Threshold Voltage,Vt)則會隨著井區內不同的摻雜濃度而有所變動。當臨限電壓的變動 增大時,記憶元件的可靠性(Reliability)則會隨之降低。 As the accumulation of memory elements increases and the size shrinks, the leakage current of the memory elements also increases. When boron is doped in the well region of the memory element, boron in the boundary region is easily out-diffused, so that the doping concentration of boron in the boundary region of the well region is smaller than the doping concentration of boron in the intermediate region of the well region. In this way, when the memory element is operated, its threshold voltage (Vt) will vary with different doping concentrations in the well region. When the threshold voltage changes As you increase, the reliability of the memory component decreases.

由於先前技術是在井區的邊界區域進行額外的離子植入製程以補償井區的邊界區域向外擴散後的摻雜濃度。然而,此技術方案卻會造成井區上的穿隧介電層的表面損傷且降低穿隧介電層的應力(Stress),使得其臨限電壓位移(Vt shift)。為了改善臨限電壓位移的現象,則必須增加穿隧介電層的厚度。但穿隧介電層的厚度增加會導致其操作電壓增加,此結果並不樂見於高積集度的元件上。因此,如何減少記憶元件的漏電流且改善其臨限電壓的均勻性(Uniformity)則成為一門極需解決的課題。 Since the prior art performed an additional ion implantation process at the boundary region of the well region to compensate for the doping concentration of the boundary region of the well region after outward diffusion. However, this technical solution causes surface damage of the tunneling dielectric layer on the well region and reduces the stress of the tunneling dielectric layer, so that it has a voltage shift (Vt shift). In order to improve the phenomenon of threshold voltage displacement, it is necessary to increase the thickness of the tunneling dielectric layer. However, an increase in the thickness of the tunneling dielectric layer causes an increase in its operating voltage, and this result is not desirable for components with high integration. Therefore, how to reduce the leakage current of the memory element and improve the uniformity of the threshold voltage (Uniformity) becomes an extremely problem to be solved.

本發明提供一種記憶元件及其製造方法,可改善記憶元件的臨限電壓的均勻性。 The present invention provides a memory element and a method of fabricating the same that can improve the uniformity of the threshold voltage of the memory element.

本發明提供一種記憶元件,包括基底、井區、穿隧介電層、第一導體層、隔離結構以及阻障層。井區位於基底中。穿隧介電層位於井區上。第一導體層位於穿隧介電層上。隔離結構位於第一導體層、穿隧介電層、井區以及基底中。阻障層位於隔離結構與井區之間。 The present invention provides a memory device including a substrate, a well region, a tunneling dielectric layer, a first conductor layer, an isolation structure, and a barrier layer. The well zone is located in the substrate. The tunneling dielectric layer is located on the well region. The first conductor layer is on the tunneling dielectric layer. The isolation structure is located in the first conductor layer, the tunneling dielectric layer, the well region, and the substrate. The barrier layer is located between the isolation structure and the well region.

在本發明的一實施例中,上述記憶元件更包括閘間介電層位於第一導體層的頂面與隔離結構的頂面上。第二導體層位於閘間介電層上。 In an embodiment of the invention, the memory element further includes a gate dielectric layer on a top surface of the first conductor layer and a top surface of the isolation structure. The second conductor layer is on the inter-gate dielectric layer.

在本發明的一實施例中,上述阻障層更延伸位隔離結構 與上述第一導體層之間。 In an embodiment of the invention, the barrier layer further extends the isolation structure Between the first conductor layer and the above.

在本發明的一實施例中,上述阻障層包括含氮材料。 In an embodiment of the invention, the barrier layer comprises a nitrogen-containing material.

在本發明的一實施例中,上述阻障層包括氮化矽或氮氧化矽。 In an embodiment of the invention, the barrier layer comprises tantalum nitride or hafnium oxynitride.

本發明提供一種記憶元件的製造方法,包括提供基底。接著,於基底中形成井區。於井區上形成穿隧介電層。於穿隧介電層上形成第一導體層。然後,於第一導體層、穿隧介電層、井區以及基底中形成溝渠。之後,進行表面處理製程,使得溝渠的側面與底面上形成阻障層。 The present invention provides a method of fabricating a memory element comprising providing a substrate. Next, a well region is formed in the substrate. A tunneling dielectric layer is formed on the well region. Forming a first conductor layer on the tunneling dielectric layer. A trench is then formed in the first conductor layer, the tunneling dielectric layer, the well region, and the substrate. Thereafter, a surface treatment process is performed to form a barrier layer on the side and bottom surfaces of the trench.

在本發明的一實施例中,上述表面處理製程包括氮化處理、電漿處理或氮氧化處理。 In an embodiment of the invention, the surface treatment process includes a nitriding treatment, a plasma treatment, or an oxynitridation treatment.

在本發明的一實施例中,上述表面處理製程包括氮化處理,且所述氮化處理包括熱處理、電漿處理或氮氧化處理。 In an embodiment of the invention, the surface treatment process includes a nitridation process, and the nitridation process includes a heat treatment, a plasma treatment, or an oxynitride treatment.

在本發明的一實施例中,上述阻障層包括含氮材料。 In an embodiment of the invention, the barrier layer comprises a nitrogen-containing material.

在本發明的一實施例中,上述阻障層包括氮化矽或氮氧化矽。 In an embodiment of the invention, the barrier layer comprises tantalum nitride or hafnium oxynitride.

基於上述,本發明可利用上述阻障層來防止或減少井區與第一導體層中摻雜的摻質向外擴散,減少井區與第一導體層的摻雜濃度邊界區域與中間區域的摻雜濃度的差異。如此一來,井區與第一導體層的邊界區域較不會產生漏電流的現象,進而改善本發明之記憶元件的臨限電壓的均勻性以及穿隧電流的均勻性。 Based on the above, the present invention can utilize the above-mentioned barrier layer to prevent or reduce out-diffusion of the doping dopant doped in the well region and the first conductor layer, and reduce the doping concentration boundary region and the intermediate region of the well region and the first conductor layer. The difference in doping concentration. In this way, the boundary region between the well region and the first conductor layer is less likely to cause leakage current, thereby improving the uniformity of the threshold voltage and the uniformity of the tunneling current of the memory device of the present invention.

為讓本發明的上述特徵和優點能更明顯易懂,下文特舉 實施例,並配合所附圖式作詳細說明如下。 In order to make the above features and advantages of the present invention more apparent, the following is a special The embodiments are described in detail below in conjunction with the drawings.

10‧‧‧溝渠 10‧‧‧ Ditch

20‧‧‧隔離結構 20‧‧‧Isolation structure

100‧‧‧基底 100‧‧‧Base

110‧‧‧井區 110‧‧‧ Well Area

120‧‧‧穿隧介電層 120‧‧‧Tunnel dielectric layer

130‧‧‧第一導體層 130‧‧‧First conductor layer

140‧‧‧罩幕層 140‧‧‧ Cover layer

145‧‧‧表面處理製程 145‧‧‧ surface treatment process

150‧‧‧阻障層 150‧‧‧Barrier layer

160‧‧‧閘間介電層 160‧‧‧Interruptor dielectric layer

170‧‧‧第二導體層 170‧‧‧Second conductor layer

圖1A至圖1G為依照本發明實施例所繪示的記憶元件之製造流程剖面示意圖。 1A-1G are schematic cross-sectional views showing a manufacturing process of a memory device according to an embodiment of the invention.

圖1A至圖1G為依照本發明實施例所繪示的記憶元件之製造流程剖面示意圖。 1A-1G are schematic cross-sectional views showing a manufacturing process of a memory device according to an embodiment of the invention.

請參照圖1A,提供基底100,基底100例如為半導體基底、半導體化合物基底或是絕緣層上有半導體基底(Semiconductor Over Insulator,SOI)。半導體例如是IVA族的原子,例如矽或鍺。半導體化合物例如是IVA族的原子所形成之半導體化合物,例如是碳化矽或是矽化鍺,或是IIIA族原子與VA族原子所形成之半導體化合物,例如是砷化鎵。 Referring to FIG. 1A, a substrate 100 is provided. The substrate 100 is, for example, a semiconductor substrate, a semiconductor compound substrate, or a semiconductor substrate (Semiconductor Over Insulator (SOI)). The semiconductor is, for example, an atom of the IVA group, such as ruthenium or osmium. The semiconductor compound is, for example, a semiconductor compound formed of atoms of Group IVA, such as tantalum carbide or germanium telluride, or a semiconductor compound formed of a group IIIA atom and a group VA atom, such as gallium arsenide.

接著,於基底100中形成井區110。井區110可以藉由圖案化的罩幕層以及進行離子植入製程來形成。在一實施例中,基底100具有第一導電型;井區110亦具有第一導電型,其中第一導電型例如是P型。在另一實施例中,基底100具有第一導電型;井區110具有第二導電型,其中第一導電型例如是N型;第二導電型例如是P型。 Next, a well region 110 is formed in the substrate 100. The well region 110 can be formed by a patterned mask layer and an ion implantation process. In one embodiment, the substrate 100 has a first conductivity type; the well region 110 also has a first conductivity type, wherein the first conductivity type is, for example, a P type. In another embodiment, the substrate 100 has a first conductivity type; the well region 110 has a second conductivity type, wherein the first conductivity type is, for example, an N type; and the second conductivity type is, for example, a P type.

於井區110上形成穿隧介電層120。穿隧介電層120可以由單材料層構成。單材料層例如是低介電常數材料或是高介電常數材料。低介電常數材料為介電常數低於4的介電材料,例如是氧化矽或氮氧化矽。高介電常數材料為介電常數高於4的介電材料,例如是HfAlO、HfO2、Al2O3或Si3N4。穿隧介電層120也可以依據能隙工程理論(Band-gap Engineering Theory)選擇可以提高注入電流的雙層堆疊結構或是多層堆疊結構。雙層堆疊結構例如是低介電常數材料與高介電常數材料所組成之雙層堆疊結構(以低介電常數材料/高介電常數材料表示),例如是氧化矽/HfSiO、氧化矽/HfO2或是氧化矽/氮化矽。多層堆疊結構例如是低介電常數材料、高介電常數材料以及低介電常數材料所組成之多層堆疊結構(以低介電常數材料/高介電常數材料/低介電常數材料表示),例如是氧化矽/氮化矽/氧化矽或是氧化矽/Al2O3/氧化矽。穿隧介電層120的形成方法例如是化學氣相沉積法、原位蒸汽生成法(ISSG)、低壓自由基氧化法(LPRO)或爐管氧化法等來形成。 A tunneling dielectric layer 120 is formed over the well region 110. The tunneling dielectric layer 120 can be composed of a single material layer. The single material layer is, for example, a low dielectric constant material or a high dielectric constant material. The low dielectric constant material is a dielectric material having a dielectric constant of less than 4, such as ruthenium oxide or ruthenium oxynitride. The high dielectric constant material is a dielectric material having a dielectric constant higher than 4, such as HfAlO, HfO 2 , Al 2 O 3 or Si 3 N 4 . The tunneling dielectric layer 120 can also select a two-layer stacked structure or a multilayer stacked structure that can increase the injection current according to the Band-gap Engineering Theory. The two-layer stacked structure is, for example, a two-layer stacked structure (represented by a low dielectric constant material/high dielectric constant material) composed of a low dielectric constant material and a high dielectric constant material, such as yttrium oxide/HfSiO, yttrium oxide/ HfO 2 or yttrium oxide/tantalum nitride. The multilayer stacked structure is, for example, a multilayer stack structure composed of a low dielectric constant material, a high dielectric constant material, and a low dielectric constant material (represented by a low dielectric constant material/high dielectric constant material/low dielectric constant material), For example, yttrium oxide/tantalum nitride/yttria or yttrium oxide/Al 2 O 3 /yttrium oxide. The formation method of the tunnel dielectric layer 120 is formed, for example, by chemical vapor deposition, in situ steam generation (ISSG), low pressure radical oxidation (LPRO) or furnace tube oxidation.

之後,於穿隧介電層120上形成第一導體層130(例如是做為浮置閘極)。第一導體層130材料例如是摻雜多晶矽、非摻雜多晶矽或其組合,其形成方法可以利用化學氣相沈積法來形成。摻雜多晶矽中的摻質例如是硼。 Thereafter, a first conductor layer 130 is formed on the tunnel dielectric layer 120 (eg, as a floating gate). The material of the first conductor layer 130 is, for example, doped polysilicon, undoped polysilicon or a combination thereof, and the formation method thereof can be formed by chemical vapor deposition. The dopant in the doped polysilicon is, for example, boron.

請參照圖1B,於第一導體層130上形成圖案化的罩幕層140。罩幕層140的材料例如是矽材料、金屬材料、氧化物或對後 續表面處理製程145不具反應性之材料等。只要罩幕層140的材料與基底100、穿隧介電層120以及第一導體層130的材料之間具有高度的蝕刻選擇比,本發明之罩幕層140的材料並不限於此。 Referring to FIG. 1B, a patterned mask layer 140 is formed on the first conductor layer 130. The material of the mask layer 140 is, for example, a tantalum material, a metal material, an oxide or a back. The surface treatment process 145 is not reactive material or the like. The material of the mask layer 140 of the present invention is not limited thereto as long as there is a high etching selectivity between the material of the mask layer 140 and the material of the substrate 100, the tunnel dielectric layer 120, and the first conductor layer 130.

請參照圖1C,於第一導體層130、穿隧介電層120、井區110以及基底100中形成溝渠10。具體來說,以圖案化的罩幕層140當做蝕刻罩幕層,利用乾式蝕刻法(例如是濺鍍蝕刻法、反應性離子蝕刻法等)蝕刻第一導體層130、穿隧介電層120、井區110以及基底100,以形成溝渠10。 Referring to FIG. 1C, a trench 10 is formed in the first conductor layer 130, the tunnel dielectric layer 120, the well region 110, and the substrate 100. Specifically, the patterned mask layer 140 is used as an etching mask layer, and the first conductor layer 130 and the tunnel dielectric layer 120 are etched by a dry etching method (for example, a sputtering etching method, a reactive ion etching method, or the like). The well region 110 and the substrate 100 form a trench 10.

請參照圖1D,在井區110的側壁上形成阻障層150。在本實施例中,阻障層150形成於硬罩幕層140的頂面以及溝渠10的側面與底面上,但是如果溝渠10的側面與底面的材料為矽氧化合物或無法在表面處理製程145中產生反應之材料等,則溝渠10的側面與底面並不會產生阻障層150,也就是說,本發明之阻障層150可為連續或非連續之表面。阻障層150的材料與後續形成之隔離結構20(圖1E)的材料不同。更具體地說,在阻障層150的材料的選擇上,可以選擇井區110之中的摻質在阻障層150中的擴散速率遠低於在後續形成之隔離結構20(圖1E)中的擴散速率的材料。在一實施例中,阻障層150的材料可包括含氮材料。含氮材料例如是氮化矽(SiN)、氮氧化矽(SiON)或其組合。在一實施例中,阻障層150的厚度可為5埃至500埃。阻障層150的形成方法例如是進行表面處理製程145。表面處理製程145例如是氮化處理、電漿處理製程或氮氧化處理製程。在一實施例中,氮化 處理包括熱處理、電漿處理或氮氧化處理。具體來說,可於高真空腔(High-Vaccum Chamber)內,在200℃至1000℃的溫度下,利用Ar/N2當作前驅氣體(Precursor Gas)進行電漿處理。然而,本發明並不限於此。 Referring to FIG. 1D, a barrier layer 150 is formed on sidewalls of the well region 110. In the present embodiment, the barrier layer 150 is formed on the top surface of the hard mask layer 140 and the side and bottom surfaces of the trench 10, but if the material of the side and bottom surfaces of the trench 10 is a silicon oxide compound or cannot be processed in the surface treatment process 145 The material and the like in which the reaction is generated, the barrier layer 150 is not formed on the side and the bottom surface of the trench 10, that is, the barrier layer 150 of the present invention may be a continuous or discontinuous surface. The material of the barrier layer 150 is different from the material of the subsequently formed isolation structure 20 (Fig. 1E). More specifically, in the selection of the material of the barrier layer 150, the diffusion rate of the dopant in the well region 110 in the barrier layer 150 can be selected to be much lower than in the subsequently formed isolation structure 20 (Fig. 1E). The material of the diffusion rate. In an embodiment, the material of the barrier layer 150 may include a nitrogen-containing material. The nitrogen-containing material is, for example, tantalum nitride (SiN), cerium oxynitride (SiON), or a combination thereof. In an embodiment, the barrier layer 150 may have a thickness of 5 angstroms to 500 angstroms. The method of forming the barrier layer 150 is, for example, performing a surface treatment process 145. The surface treatment process 145 is, for example, a nitriding treatment, a plasma treatment process, or an oxynitride treatment process. In an embodiment, the nitriding treatment comprises heat treatment, plasma treatment or nitrogen oxidation treatment. Specifically, the plasma treatment can be performed using Ar/N 2 as a precursor gas (Precursor Gas) in a High-Vaccum Chamber at a temperature of 200 ° C to 1000 ° C. However, the invention is not limited thereto.

接著,請參照圖1E,於溝渠10中形成隔離結構20。隔離結構20的形成方法例如是於罩幕層140上形成絕緣層(未繪示),此絕緣層填滿溝渠10。絕緣層的材料例如是氧化物。氧化物例如是旋塗式玻璃(Spin-On Glass,SOG)或高密度電漿氧化物(High Density Plasma,HDP oxide),其形成方法可以利用化學氣相沈積法來形成。然後,以第一導體層130做為停止層(Stop Layer),利用化學機械研磨(CMP)移除上述絕緣層,以暴露第一導體層130的頂面。在CMP處理時可以過度研磨(Overpolish),以確保可以完全移除第一導體層130上的罩幕層140與阻障層150。因此,所形成的隔離結構20的頂面與第一導體層130的頂面可能會產生些微的高度差,此高度差約為100埃至1000埃。然而,本發明並不以此為限,若製程條件控制得當,可使得隔離結構20的頂面與第一導體層130的頂面共平面。 Next, referring to FIG. 1E, an isolation structure 20 is formed in the trench 10. The isolation structure 20 is formed by, for example, forming an insulating layer (not shown) on the mask layer 140, and the insulating layer fills the trench 10. The material of the insulating layer is, for example, an oxide. The oxide is, for example, spin-on glass (SOG) or high-density plasma oxide (HDP oxide), and the formation method thereof can be formed by chemical vapor deposition. Then, the first conductor layer 130 is used as a Stop Layer, and the insulating layer is removed by chemical mechanical polishing (CMP) to expose the top surface of the first conductor layer 130. Overpolish may be performed during the CMP process to ensure that the mask layer 140 and the barrier layer 150 on the first conductor layer 130 may be completely removed. Therefore, the top surface of the isolation structure 20 formed and the top surface of the first conductor layer 130 may have a slight height difference of about 100 angstroms to 1000 angstroms. However, the present invention is not limited thereto, and if the process conditions are properly controlled, the top surface of the isolation structure 20 may be coplanar with the top surface of the first conductor layer 130.

請參照圖1F,於第一導體層130與隔離結構20上形成閘間介電層160。閘間介電層160沿著第一導體層130與隔離結構20的頂面共形地(Conformally)形成。閘間介電層160覆蓋第一導體層130與隔離結構20的頂面且部分覆蓋第一導體層130與隔離結構20之間的阻障層150。在一實施例中,閘間介電層160例 如是由氧化層/氮化層/氧化層(Oxide-Nitride-Oxide,ONO)所構成的複合層,此複合層可為三層或更多層,本發明並不限於此,其形成方法可以是化學氣相沉積法、熱氧化法等。 Referring to FIG. 1F, a gate dielectric layer 160 is formed on the first conductor layer 130 and the isolation structure 20. The inter-gate dielectric layer 160 is conformally formed along the first conductor layer 130 and the top surface of the isolation structure 20. The inter-gate dielectric layer 160 covers the top surface of the first conductor layer 130 and the isolation structure 20 and partially covers the barrier layer 150 between the first conductor layer 130 and the isolation structure 20. In one embodiment, 160 cases of the dielectric layer between the gates For example, the composite layer composed of an oxide layer/nitride layer/oxide layer (Oxide-Nitride-Oxide, ONO) may be three or more layers. The invention is not limited thereto, and the formation method may be Chemical vapor deposition, thermal oxidation, and the like.

請參照圖1G,於閘間介電層160上形成第二導體層170(例如是做為控制閘極)。第二導體層170的形成方法例如是形成導體材料層。導體材料的材料例如是摻雜多晶矽、非摻雜多晶矽或其組合,其形成方法可以利用化學氣相沈積法。第二導體層170的厚度例如為300埃至2000埃。之後,再利用微影與蝕刻製程將導體材料層圖案化,以形成第二導體層170。 Referring to FIG. 1G, a second conductor layer 170 is formed on the inter-gate dielectric layer 160 (for example, as a control gate). The method of forming the second conductor layer 170 is, for example, forming a layer of a conductor material. The material of the conductor material is, for example, doped polysilicon, undoped polysilicon or a combination thereof, and the formation method thereof can be performed by chemical vapor deposition. The thickness of the second conductor layer 170 is, for example, 300 angstroms to 2000 angstroms. Thereafter, the conductor material layer is patterned using a lithography and etching process to form the second conductor layer 170.

請參照圖1G,根據本發明實施例的記憶元件包括基底100、井區110、穿隧介電層120、第一導體層130、隔離結構20、阻障層150、閘間介電層160以及第二導體層170。井區110位於基底100中。穿隧介電層120位於井區110上。第一導體層130位於穿隧介電層120上,第一導體層130可做為浮置閘極。隔離結構20穿過第一導體層130、穿隧介電層120、井區110並延伸至基底100中。閘間介電層160位於第一導體層130的頂面與隔離結構20的頂面上。第二導體層170位於閘間介電層160上,第二導體層170可做為控制閘極。阻障層150位於隔離結構20與第一導體層130之間、隔離結構20與穿隧介電層120之間以及隔離結構20與井區110之間。 1G, a memory device according to an embodiment of the invention includes a substrate 100, a well region 110, a tunneling dielectric layer 120, a first conductor layer 130, an isolation structure 20, a barrier layer 150, an inter-gate dielectric layer 160, and The second conductor layer 170. Well zone 110 is located in substrate 100. The tunneling dielectric layer 120 is located on the well region 110. The first conductor layer 130 is located on the tunneling dielectric layer 120, and the first conductor layer 130 can be used as a floating gate. The isolation structure 20 passes through the first conductor layer 130, the tunnel dielectric layer 120, the well region 110, and extends into the substrate 100. The inter-gate dielectric layer 160 is located on the top surface of the first conductor layer 130 and the top surface of the isolation structure 20. The second conductor layer 170 is located on the inter-gate dielectric layer 160, and the second conductor layer 170 can serve as a control gate. The barrier layer 150 is between the isolation structure 20 and the first conductor layer 130, between the isolation structure 20 and the tunnel dielectric layer 120, and between the isolation structure 20 and the well region 110.

在本發明中,形成在井區110側壁的阻障層150的材料與隔離結構不同,且可以防止井區110中摻雜的摻質向外擴散。 舉例來說,當井區110中摻雜硼時,由於硼在阻障層(例如是氮化矽、氮氧化矽)150中擴散速率遠低於硼在隔離結構(例如氧化矽)20中擴散速率,因此,阻障層150可以防止井區110中摻雜的硼向外擴散。除此之外,阻障層150亦可防止第一導體層130中的摻質向外擴散。 In the present invention, the material of the barrier layer 150 formed on the sidewall of the well region 110 is different from the isolation structure, and the doping dopant doped in the well region 110 can be prevented from being outwardly diffused. For example, when boron is doped in well region 110, the diffusion rate of boron in the barrier layer (e.g., tantalum nitride, hafnium oxynitride) 150 is much lower than that of boron in the isolation structure (e.g., hafnium oxide) 20. The rate, therefore, barrier layer 150 can prevent outward diffusion of boron doped in well region 110. In addition, the barrier layer 150 can also prevent the dopant in the first conductor layer 130 from diffusing outward.

綜上所述,本發明在井區與第一導體層的側壁上形成阻障層,可防止或減少井區與第一導體層中摻雜的摻質向外擴散,以改善本發明之記憶元件的臨限電壓的均勻性以及穿隧電流的均勻性。此外,本發明可以利用表面處理的方式形成阻障層,不需要額外的離子植入製程或增加穿隧介電層的厚度的情況下,改善記憶元件的臨限電壓的均勻性以及穿隧電流的均勻性。 In summary, the present invention forms a barrier layer on the sidewall of the well region and the first conductor layer, which can prevent or reduce the outward diffusion of dopant doping in the well region and the first conductor layer to improve the memory of the present invention. The uniformity of the threshold voltage of the component and the uniformity of the tunneling current. In addition, the present invention can form a barrier layer by surface treatment, improve the uniformity of the threshold voltage of the memory element, and the tunneling current without requiring an additional ion implantation process or increasing the thickness of the tunneling dielectric layer. Uniformity.

雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明的精神和範圍內,當可作些許的更動與潤飾,故本發明的保護範圍當視後附的申請專利範圍所界定者為準。 Although the present invention has been disclosed in the above embodiments, it is not intended to limit the present invention, and any one of ordinary skill in the art can make some changes and refinements without departing from the spirit and scope of the present invention. The scope of the invention is defined by the scope of the appended claims.

20‧‧‧隔離結構 20‧‧‧Isolation structure

100‧‧‧基底 100‧‧‧Base

110‧‧‧井區 110‧‧‧ Well Area

120‧‧‧穿隧介電層 120‧‧‧Tunnel dielectric layer

130‧‧‧第一導體層 130‧‧‧First conductor layer

150‧‧‧阻障層 150‧‧‧Barrier layer

160‧‧‧閘間介電層 160‧‧‧Interruptor dielectric layer

170‧‧‧第二導體層 170‧‧‧Second conductor layer

Claims (10)

一種記憶元件,包括:一井區,位於一基底中;一穿隧介電層,位於該井區上;一第一導體層,位於該穿隧介電層上;一隔離結構,位於該第一導體層、該穿隧介電層、該井區以及該基底中;以及一阻障層,位於該隔離結構與該井區之間。 A memory element comprising: a well region located in a substrate; a tunneling dielectric layer on the well region; a first conductor layer on the tunneling dielectric layer; and an isolation structure at the first a conductor layer, the tunneling dielectric layer, the well region and the substrate; and a barrier layer between the isolation structure and the well region. 如申請專利範圍第1項所述的記憶元件,更包括:一閘間介電層,位於該第一導體層的頂面與該隔離結構的頂面上;以及一第二導體層,位於該閘間介電層上。 The memory device of claim 1, further comprising: a gate dielectric layer on a top surface of the first conductor layer and a top surface of the isolation structure; and a second conductor layer located at the On the dielectric layer of the gate. 如申請專利範圍第1項所述的記憶元件,其中該阻障層更延伸位於該隔離結構與該第一導體層之間。 The memory device of claim 1, wherein the barrier layer extends further between the isolation structure and the first conductor layer. 如申請專利範圍第1項所述的記憶元件,其中該阻障層包括含氮材料。 The memory element of claim 1, wherein the barrier layer comprises a nitrogen-containing material. 如申請專利範圍第4項所述的記憶元件,其中該含氮材料包括氮化矽或氮氧化矽。 The memory element of claim 4, wherein the nitrogen-containing material comprises tantalum nitride or hafnium oxynitride. 一種記憶元件的製造方法,包括:提供一基底;於該基底中形成一井區;於該井區上形成一穿隧介電層; 於該穿隧介電層上形成一第一導體層;於該第一導體層、該穿隧介電層、該井區以及該基底中形成一溝渠;以及進行一表面處理製程,使得該溝渠的側面與底面上形成一阻障層。 A method of fabricating a memory device, comprising: providing a substrate; forming a well region in the substrate; forming a tunneling dielectric layer on the well region; Forming a first conductor layer on the tunneling dielectric layer; forming a trench in the first conductor layer, the tunneling dielectric layer, the well region, and the substrate; and performing a surface treatment process to make the trench A barrier layer is formed on the side and the bottom surface. 如申請專利範圍第6項所述的記憶元件的製造方法,其中該表面處理製程包括氮化處理、氮氧化處理或電漿處理。 The method of manufacturing a memory device according to the sixth aspect of the invention, wherein the surface treatment process comprises a nitriding treatment, an oxynitridation treatment or a plasma treatment. 如申請專利範圍第6項所述的記憶元件的製造方法,其中該表面處理製程包括氮化處理,且該氮化處理包括熱處理、電漿處理或氮氧化處理。 The method of manufacturing a memory device according to claim 6, wherein the surface treatment process comprises a nitridation treatment, and the nitridation treatment comprises a heat treatment, a plasma treatment, or an oxynitridation treatment. 如申請專利範圍第6項所述的記憶元件的製造方法,其中該阻障層包括含氮材料。 The method of manufacturing a memory device according to claim 6, wherein the barrier layer comprises a nitrogen-containing material. 如申請專利範圍第6項所述的記憶元件的製造方法,其中該含氮材料包括氮化矽或氮氧化矽。 The method of manufacturing a memory device according to claim 6, wherein the nitrogen-containing material comprises tantalum nitride or hafnium oxynitride.
TW103109999A 2014-03-17 2014-03-17 Memory device and method for fabricating the same TWI553784B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW103109999A TWI553784B (en) 2014-03-17 2014-03-17 Memory device and method for fabricating the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW103109999A TWI553784B (en) 2014-03-17 2014-03-17 Memory device and method for fabricating the same

Publications (2)

Publication Number Publication Date
TW201537687A TW201537687A (en) 2015-10-01
TWI553784B true TWI553784B (en) 2016-10-11

Family

ID=54850977

Family Applications (1)

Application Number Title Priority Date Filing Date
TW103109999A TWI553784B (en) 2014-03-17 2014-03-17 Memory device and method for fabricating the same

Country Status (1)

Country Link
TW (1) TWI553784B (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200905807A (en) * 2007-07-23 2009-02-01 Powerchip Semiconductor Corp Memory and method for fabricating the same

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200905807A (en) * 2007-07-23 2009-02-01 Powerchip Semiconductor Corp Memory and method for fabricating the same

Also Published As

Publication number Publication date
TW201537687A (en) 2015-10-01

Similar Documents

Publication Publication Date Title
TWI668744B (en) Semiconductor devices and methods for forming the same
JP7058962B2 (en) Dielectric film forming method and semiconductor device manufacturing method
US10164074B2 (en) Semiconductor device with gate electrode embedded in substrate
CN101894789B (en) Method for fabricating an isolation structure
US8241974B2 (en) Nonvolatile memory device with multiple blocking layers and method of fabricating the same
KR100741467B1 (en) Semiconductor device and forming the same
TW201436236A (en) Semiconductor device and method for forming the same
KR102311437B1 (en) Semiconductor structure with insertion layer and method for manufacturing the same
KR20090036850A (en) Flash memory device and manufacturing method thereof
CN104103509A (en) Formation method of interfacial layer and formation method of metal gate transistor
JP2007200946A (en) Semiconductor device and its manufacturing method
US8008728B2 (en) Semiconductor device and manufacturing method of semiconductor device
TW201725704A (en) Non-volatile memory device and method for fbricating the same
US20090053881A1 (en) Method of forming dielectric layer of semiconductor memory device
TWI553784B (en) Memory device and method for fabricating the same
US20180366573A1 (en) Semiconductor device, memory device and manufacturing method of the same
US7972927B2 (en) Method of manufacturing a nonvolatile semiconductor memory device
US7605067B2 (en) Method of manufacturing non-volatile memory device
KR100966680B1 (en) Semiconductor memory device and manufacturing method thereof
KR20070000603A (en) Method of manufacturing a floating gate in non-volatile memory device
US7893508B2 (en) Semiconductor device and manufacturing method thereof
TWI565035B (en) Memory cell and fabricating method thereof
TWI694571B (en) Word line structure and method of manufacturing the same
TWI612643B (en) Memory device and manufacturing method of the same
CN104934426A (en) Storage device and manufacturing method therefor