TWI612643B - Memory device and manufacturing method of the same - Google Patents

Memory device and manufacturing method of the same Download PDF

Info

Publication number
TWI612643B
TWI612643B TW106119595A TW106119595A TWI612643B TW I612643 B TWI612643 B TW I612643B TW 106119595 A TW106119595 A TW 106119595A TW 106119595 A TW106119595 A TW 106119595A TW I612643 B TWI612643 B TW I612643B
Authority
TW
Taiwan
Prior art keywords
layer
gate
control gate
memory device
dielectric layer
Prior art date
Application number
TW106119595A
Other languages
Chinese (zh)
Other versions
TW201904028A (en
Inventor
周福興
詹耀富
韓宗廷
Original Assignee
旺宏電子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旺宏電子股份有限公司 filed Critical 旺宏電子股份有限公司
Priority to TW106119595A priority Critical patent/TWI612643B/en
Application granted granted Critical
Publication of TWI612643B publication Critical patent/TWI612643B/en
Publication of TW201904028A publication Critical patent/TW201904028A/en

Links

Landscapes

  • Semiconductor Memories (AREA)
  • Non-Volatile Memory (AREA)

Abstract

一種記憶體元件及其製造方法。所述記憶體元件包括基底、浮置閘極、閘極絕緣層、閘間介電層以及控制閘極,所述控制閘極為三層以上的多層結構,且所述多層結構的至少一層為金屬矽化物層。A memory component and a method of manufacturing the same. The memory device includes a substrate, a floating gate, a gate insulating layer, an inter-gate dielectric layer, and a control gate. The control gate has a multilayer structure of three or more layers, and at least one layer of the multilayer structure is metal Telluride layer.

Description

記憶體元件及其製造方法Memory element and method of manufacturing same

本發明是有關於一種半導體技術,且特別是有關於一種記憶體元件及其製造方法。The present invention relates to a semiconductor technology, and more particularly to a memory device and a method of fabricating the same.

非揮發性記憶體由於具有可多次進行資料存入、讀取、抹除等動作,並且存入的資料在斷電後也不會消失等優點,因此已成為個人電腦和電子設備所廣泛採用的一種記憶體元件。Non-volatile memory has become widely used in personal computers and electronic devices because it has the advantages of multiple data storage, reading, erasing, etc., and the stored data does not disappear after power-off. A memory component.

非揮發性記憶體中的字元線(word line)通常是形成於控制閘極上的金屬矽化物層。其中,為了去除金屬矽化物層中的不純物,在形成金屬矽化物層後通常會對金屬矽化物層進行熱處理。然而金屬矽化物層中的金屬矽化物可能因為這道熱處理而擴散至控制閘極中,甚至使金屬矽化物接觸閘間介電層(IPD),並導致閘間介電層電容失效、閘間介電層的崩潰電壓降低、元件可靠性降低等缺點。The word line in a non-volatile memory is typically a metal telluride layer formed on a control gate. Wherein, in order to remove impurities in the metal telluride layer, the metal telluride layer is usually subjected to heat treatment after forming the metal telluride layer. However, the metal telluride in the metal telluride layer may diffuse into the control gate due to this heat treatment, and even the metal telluride contacts the inter-gate dielectric layer (IPD), and causes the dielectric layer capacitance failure between the gates, the gate The dielectric layer has disadvantages such as reduced breakdown voltage and reduced component reliability.

圖1是習知的一種記憶體元件的穿透式電子顯微鏡(transmission electron microscope,TEM)照片。1 is a transmission electron microscope (TEM) photograph of a conventional memory device.

請參照圖1,記憶體元件包括基底100、基底100內的隔離結構102、浮置閘極104、閘極絕緣層106、閘間介電層108、控制閘極110。其中,控制閘極110一般為雙層結構,包括填入浮置閘極104之間的第一層1101與其上的第二層1102,第一層1101為多晶矽,第二層1102為金屬矽化物。在圖1的記憶體元件中,第二層1102的金屬矽化物會因為熱處理而擴散至第一層1101中,甚至在圈起來的部位,金屬矽化物已直接接觸到閘間介電層108,導致閘間介電層108電容失效、閘間介電層108的崩潰電壓降低、元件可靠性降低等缺點。Referring to FIG. 1, the memory device includes a substrate 100, an isolation structure 102 in the substrate 100, a floating gate 104, a gate insulating layer 106, an inter-gate dielectric layer 108, and a control gate 110. The control gate 110 is generally of a two-layer structure, including a first layer 1101 filled between the floating gates 104 and a second layer 1102 thereon. The first layer 1101 is polycrystalline germanium, and the second layer 1102 is metal germanide. . In the memory device of FIG. 1, the metal telluride of the second layer 1102 is diffused into the first layer 1101 by heat treatment, and even at the looped portion, the metal telluride has directly contacted the inter-gate dielectric layer 108. This causes disadvantages such as capacitor failure of the gate dielectric layer 108, a breakdown voltage of the inter-gate dielectric layer 108, and a decrease in device reliability.

有鑑於此,本發明提供一種記憶體元件及其製造方法,能夠防止金屬矽化物層中的金屬矽化物因為熱處理導致的擴散接觸閘間介電層,並且使半導體元件具有良好的可靠度。In view of the above, the present invention provides a memory device and a method of fabricating the same, which can prevent diffusion of a metal telluride in a metal telluride layer due to heat treatment to contact a dielectric layer between gates, and to provide semiconductor devices with good reliability.

本發明提供一種記憶體元件,包括浮置閘極、閘極絕緣層、閘間介電層以及控制閘極。浮置閘極位於基底上。閘極絕緣層位於浮置閘極與基底之間。閘間介電層位於浮置閘極上。控制閘極位於閘間介電層上,並且為三層以上的多層結構,多層結構的至少一層為金屬矽化物層。The invention provides a memory device comprising a floating gate, a gate insulating layer, a gate dielectric layer and a control gate. The floating gate is located on the substrate. The gate insulating layer is between the floating gate and the substrate. The gate dielectric layer is on the floating gate. The control gate is located on the dielectric layer between the gates and has a multilayer structure of three or more layers, and at least one layer of the multilayer structure is a metal halide layer.

在本發明的一實施例中,控制閘極包括第一層、第二層以及第三層。第二層位於第一層與第三層之間。In an embodiment of the invention, the control gate includes a first layer, a second layer, and a third layer. The second layer is located between the first layer and the third layer.

在本發明的一實施例中,控制閘極的第一層與第二層的厚度小於第三層的厚度。In an embodiment of the invention, the thickness of the first layer and the second layer of the control gate is less than the thickness of the third layer.

在本發明的一實施例中,控制閘極的第一層的晶粒大小小於第二層與第三層的晶粒大小。In an embodiment of the invention, the grain size of the first layer of the control gate is smaller than the grain size of the second layer and the third layer.

在本發明的一實施例中,控制閘極的至少一層為碳摻雜的多晶矽。In an embodiment of the invention, at least one layer of the control gate is a carbon doped polysilicon.

本發明又提供一種記憶體元件的製造方法,包括在基底上依序形成閘極絕緣層與浮置閘極。圖案化所述浮置閘極與所述閘極絕緣層,並且於基底中形成多個隔離結構,隔離結構的表面低於浮置閘極的表面。於浮置閘極與隔離結構上形成閘間介電層。於閘間介電層上形成控制閘極,控制閘極為三層以上的多層結構,其中至少一層為金屬矽化物層。The invention further provides a method of fabricating a memory device, comprising sequentially forming a gate insulating layer and a floating gate on a substrate. The floating gate and the gate insulating layer are patterned, and a plurality of isolation structures are formed in the substrate, the surface of the isolation structure being lower than the surface of the floating gate. A dielectric layer between the gates is formed on the floating gate and the isolation structure. A control gate is formed on the dielectric layer of the gate, and the control gate has a multi-layer structure of three or more layers, at least one of which is a metal telluride layer.

在本發明的又一實施例中,形成所述控制閘極的方法包括:於閘間介電層上依序形成第一層、第二層以及第三層。In still another embodiment of the present invention, the method of forming the control gate includes sequentially forming a first layer, a second layer, and a third layer on the inter-gate dielectric layer.

在本發明的又一實施例中,形成上述第一層的期間可摻雜碳。In still another embodiment of the present invention, carbon may be doped during the formation of the first layer.

在本發明的又一實施例中,形成上述第二層的期間可摻雜碳。In still another embodiment of the present invention, carbon may be doped during the formation of the second layer.

在本發明的又一實施例中,形成上述金屬矽化物層之後還可進行熱處理。In still another embodiment of the present invention, heat treatment may be performed after forming the metal halide layer.

基於上述,本發明藉由使記憶體元件的控制閘極為三層以上的多層結構,因此能夠防止金屬矽化物層因為熱處理而擴散接觸閘間介電層的情形發生,並且使半導體元件具有良好的可靠度。Based on the above, the present invention can prevent the metal telluride layer from diffusing contact with the inter-gate dielectric layer by heat treatment by making the control gate of the memory element have a multilayer structure of three or more layers, and the semiconductor element has a good semiconductor element. Reliability.

為讓本發明的上述特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。The above described features and advantages of the invention will be apparent from the following description.

圖2A至圖2H是依照本發明一實施例所繪示之記憶體元件的製造流程的剖面示意圖。2A-2H are schematic cross-sectional views showing a manufacturing process of a memory device according to an embodiment of the invention.

請參照圖2A,於基底200上形成閘極絕緣層202。在本實施例中,基底200例如為半導體基底、半導體化合物基底或是絕緣層上有矽(silicon on insulator,SOI)。半導體例如是IVA族的原子,例如矽或鍺。半導體化合物例如是IVA族的原子所形成之半導體化合物,例如是碳化矽或是矽化鍺,或是IIIA族原子與VA族原子所形成之半導體化合物,例如是砷化鎵。基底200可以具有摻雜,基底200的摻雜可以是P型或N型。P型的摻雜可以是IIIA族離子,例如是硼離子。N型摻雜可以是VA族離子,例如是砷或是磷。Referring to FIG. 2A, a gate insulating layer 202 is formed on the substrate 200. In the present embodiment, the substrate 200 is, for example, a semiconductor substrate, a semiconductor compound substrate, or a silicon on insulator (SOI). The semiconductor is, for example, an atom of the IVA group, such as ruthenium or osmium. The semiconductor compound is, for example, a semiconductor compound formed of atoms of Group IVA, such as tantalum carbide or germanium telluride, or a semiconductor compound formed of a group IIIA atom and a group VA atom, such as gallium arsenide. The substrate 200 may have a doping, and the doping of the substrate 200 may be a P-type or an N-type. The P-type doping may be a Group IIIA ion, such as a boron ion. The N-type doping may be a Group VA ion such as arsenic or phosphorus.

在本實施例中,閘極絕緣層202可以由單一材料層構成。單一材料層例如是低介電常數材料或是高介電常數材料。低介電常數材料為介電常數低於4的介電材料,例如是氧化矽或氮氧化矽。高介電常數材料為介電常數高於4的介電材料,例如是HfAlO、HfO 2、Al 2O 3或Si 3N 4。閘極絕緣層202也可以依據能隙工程理論(band-gap engineering (BE) theory)選擇可以提高注入電流的雙層堆疊結構或是多層堆疊結構。雙層堆疊結構例如是低介電常數材料與高介電常數材料所組成之雙層堆疊結構(以低介電常數材料/高介電常數材料表示),例如是氧化矽/HfSiO、氧化矽/HfO 2或是氧化矽/氮化矽。多層堆疊結構例如是低介電常數材料、高介電常數材料以及低介電常數材料所組成之多層堆疊結構(以低介電常數材料/高介電常數材料/低介電常數材料表示),例如是氧化矽/氮化矽/氧化矽或是氧化矽/Al 2O 3/氧化矽。閘極絕緣層202的形成方法例如是熱氧化法或是化學氣相沈積法。 In the present embodiment, the gate insulating layer 202 may be composed of a single material layer. The single material layer is, for example, a low dielectric constant material or a high dielectric constant material. The low dielectric constant material is a dielectric material having a dielectric constant of less than 4, such as ruthenium oxide or ruthenium oxynitride. The high dielectric constant material is a dielectric material having a dielectric constant higher than 4, such as HfAlO, HfO 2 , Al 2 O 3 or Si 3 N 4 . The gate insulating layer 202 can also select a two-layer stacked structure or a multilayer stacked structure that can increase the injection current according to a band-gap engineering (BE) theory. The two-layer stacked structure is, for example, a two-layer stacked structure (represented by a low dielectric constant material/high dielectric constant material) composed of a low dielectric constant material and a high dielectric constant material, such as yttrium oxide/HfSiO, yttrium oxide/ HfO 2 or yttrium oxide/tantalum nitride. The multilayer stacked structure is, for example, a multilayer stack structure composed of a low dielectric constant material, a high dielectric constant material, and a low dielectric constant material (represented by a low dielectric constant material/high dielectric constant material/low dielectric constant material), For example, yttrium oxide/tantalum nitride/yttria or yttrium oxide/Al 2 O 3 /yttrium oxide. The method of forming the gate insulating layer 202 is, for example, a thermal oxidation method or a chemical vapor deposition method.

請繼續參照圖2A,在閘極絕緣層202上再形成導體層204。導體層204的材質例如是多晶矽(包括摻雜多晶矽)、多晶矽化金屬或其組合之堆疊層、金屬層或可應用之導體,導體層204的形成方法例如是利用化學氣相沈積法或是物理氣相沈積法。接著,在導體層204上形成圖案化罩幕層205。圖案化罩幕層205可以是單一材料層或是雙層材料層。在一實施例中,圖案化罩幕層205例如是圖案化的光阻層。Referring to FIG. 2A, a conductor layer 204 is further formed on the gate insulating layer 202. The material of the conductor layer 204 is, for example, a stacked layer of a polycrystalline germanium (including doped polysilicon), a polycrystalline germanium metal or a combination thereof, a metal layer or an applicable conductor, and the conductive layer 204 is formed by, for example, chemical vapor deposition or physics. Vapor deposition method. Next, a patterned mask layer 205 is formed on the conductor layer 204. The patterned mask layer 205 can be a single material layer or a two layer material layer. In an embodiment, the patterned mask layer 205 is, for example, a patterned photoresist layer.

然後,請參照圖2B,以圖案化罩幕層205為罩幕,進行蝕刻製程,以圖案化導體層204以及閘極絕緣層202,形成浮置閘極204a以及閘極絕緣層202a,並且於基底200a中形成多個溝渠206。蝕刻製程例如是非等向性蝕刻法,如乾式蝕刻法。Then, referring to FIG. 2B, an etching process is performed by patterning the mask layer 205 as a mask to pattern the conductor layer 204 and the gate insulating layer 202 to form a floating gate 204a and a gate insulating layer 202a. A plurality of trenches 206 are formed in the substrate 200a. The etching process is, for example, an anisotropic etching method such as a dry etching method.

接著,請參照圖2C,移除圖案化罩幕層205,然後在基底200a上形成絕緣材料層208,使絕緣材料填入溝渠206中,並覆蓋浮置閘極204a。上述移除圖案化罩幕層205的方法例如是乾式移除法、濕式移除法或其組合。絕緣材料層208的材料例如是氧化矽或是硼磷矽玻璃,其形成的方法例如是化學氣相沈積法。Next, referring to FIG. 2C, the patterned mask layer 205 is removed, and then an insulating material layer 208 is formed on the substrate 200a, and the insulating material is filled into the trench 206 and covers the floating gate 204a. The above method of removing the patterned mask layer 205 is, for example, a dry removal method, a wet removal method, or a combination thereof. The material of the insulating material layer 208 is, for example, cerium oxide or borophosphonium glass, and the method of forming it is, for example, a chemical vapor deposition method.

接著,請參照圖2D,移除浮置閘極204a上的絕緣材料層208,並形成位於溝渠206中的絕緣材料層208a。移除的方法可以採用化學機械研磨製程來實施,但不以此為限。在另一個實施例中,也可以採用濕式蝕刻法來實施。Next, referring to FIG. 2D, the insulating material layer 208 on the floating gate 204a is removed and an insulating material layer 208a is formed in the trench 206. The method of removal can be carried out using a chemical mechanical polishing process, but is not limited thereto. In another embodiment, it can also be carried out using a wet etching method.

然後,請參照圖2E,移除溝渠206中部分的絕緣材料層208a,形成隔離結構208b。隔離結構208b的表面208s低於浮置閘極204a的表面204s。移除部分絕緣材料層208a的方法例如是濕式蝕刻法或乾式蝕刻法。Then, referring to FIG. 2E, a portion of the insulating material layer 208a in the trench 206 is removed to form an isolation structure 208b. The surface 208s of the isolation structure 208b is lower than the surface 204s of the floating gate 204a. A method of removing a portion of the insulating material layer 208a is, for example, a wet etching method or a dry etching method.

然後,請參照圖2F,於浮置閘極204a以及隔離結構208b上形成閘間介電層210。閘間介電層210可以為單一層或者具有如ONO結構的多層。在本實施例中,閘間介電層210是以三層結構為例,其中,閘間介電層210包括介電層2101、介電層2102及介電層2103,介電層2103位於介電層2102上,介電層2102位於介電層2101上。介電層2101與介電層2103的材料例如二氧化矽或其他絕緣材料,形成的方法例如是化學氣相沈積法或熱氧化法。介電層2102的材料例如氮化矽或其他絕緣材料,形成的方法例如是化學氣相沈積法或熱氮化法。Then, referring to FIG. 2F, a gate dielectric layer 210 is formed on the floating gate 204a and the isolation structure 208b. The inter-gate dielectric layer 210 may be a single layer or have multiple layers such as an ONO structure. In this embodiment, the inter-gate dielectric layer 210 is exemplified by a three-layer structure, wherein the inter-gate dielectric layer 210 includes a dielectric layer 2101, a dielectric layer 2102, and a dielectric layer 2103, and the dielectric layer 2103 is located. On the electrical layer 2102, a dielectric layer 2102 is located on the dielectric layer 2101. The material of the dielectric layer 2101 and the dielectric layer 2103, such as cerium oxide or other insulating material, is formed by, for example, chemical vapor deposition or thermal oxidation. The material of the dielectric layer 2102, such as tantalum nitride or other insulating material, is formed by, for example, chemical vapor deposition or thermal nitridation.

接著,請參考圖2G,在閘間介電層210上形成堆疊結構212,所述堆疊結構212為三層以上的多晶矽結構。在本實施例中,堆疊結構212的形成是在閘間介電層210上依序形成第一層2121、第二材料層2122以及第三材料層2123,且形成方法例如是利用化學氣相沈積法或是物理氣相沈積法;然後,圖案化這三層2121、2122以及2123而得到堆疊結構212。Next, referring to FIG. 2G, a stacked structure 212 is formed on the inter-gate dielectric layer 210, and the stacked structure 212 is a polycrystalline germanium structure of three or more layers. In this embodiment, the stack structure 212 is formed by sequentially forming a first layer 2121, a second material layer 2122, and a third material layer 2123 on the inter-gate dielectric layer 210, and the forming method is, for example, using chemical vapor deposition. The method is either physical vapor deposition; then, the three layers 2121, 2122, and 2123 are patterned to obtain a stacked structure 212.

在本發明的另一實施例中,可於形成第一層2121的期間摻雜碳,以使第一層2121的晶粒控制在10 nm~20 nm,有助於填入浮置閘極204a之間的空間。在本發明的另一實施例中,於形成第二材料層2122的期間也可摻雜碳。藉由於第一層2121及第二材料層2122中的至少一層為碳摻雜的多晶矽,可使第一層2121及第二材料層2122中的至少一層中多晶矽的晶粒大小變小,也能加強對金屬矽化物的阻擋能力。In another embodiment of the present invention, carbon may be doped during the formation of the first layer 2121 to control the grain of the first layer 2121 at 10 nm to 20 nm, which helps to fill the floating gate 204a. The space between. In another embodiment of the invention, carbon may also be doped during the formation of the second material layer 2122. By using at least one of the first layer 2121 and the second material layer 2122 as a carbon-doped polysilicon, the grain size of the polycrystalline silicon in at least one of the first layer 2121 and the second material layer 2122 can be reduced. Strengthen the barrier to metal telluride.

在本發明的另一實施例中,堆疊結構212中各層具有不同的的晶粒大小。藉由使堆疊結構212中各層具有不同的晶粒大小,可加強對金屬矽化物的阻擋能力。在本發明的一實施例中,第一層2121的晶粒大小小於第二材料層2122與第三材料層2123的晶粒大小。In another embodiment of the invention, the layers in stack structure 212 have different grain sizes. By having the various layers in the stack structure 212 have different grain sizes, the barrier capability to metal telluride can be enhanced. In an embodiment of the invention, the grain size of the first layer 2121 is smaller than the grain size of the second material layer 2122 and the third material layer 2123.

在本發明的一實施例中,堆疊結構212中各層具有不同的厚度,其中,第一層2121的厚度例如為200Å~400Å,第二材料層2122的厚度例如為100Å~300Å,第三材料層2123的厚度例如為400Å~600Å。藉由將堆疊結構212中各層的厚度控制在上述範圍中,能夠在防止金屬矽化物接觸閘間介電層的同時維持控制閘極的厚度,使控制閘極不至於過厚,進而避免控制閘極的厚度不均或蝕刻不均等問題。In an embodiment of the present invention, the layers in the stacked structure 212 have different thicknesses, wherein the thickness of the first layer 2121 is, for example, 200 Å to 400 Å, and the thickness of the second material layer 2122 is, for example, 100 Å to 300 Å, and the third material layer. The thickness of 2123 is, for example, 400 Å to 600 Å. By controlling the thickness of each layer in the stacked structure 212 within the above range, it is possible to prevent the metal telluride from contacting the inter-gate dielectric layer while maintaining the thickness of the control gate so that the control gate is not excessively thick, thereby avoiding the control gate. Extreme thickness unevenness or uneven etching.

在本發明的另一實施例中,堆疊結構212中各層具有不同的厚度。藉由使堆疊結構212中各層具有不同的厚度,可進一步控制堆疊結構212中各層多晶矽的晶粒大小,使堆疊結構212中各層多晶矽的晶粒大小不同,而加強對金屬矽化物的阻擋能力。在本發明的一實施例中,第一層2121與第二材料層2122的厚度小於第三材料層2123的厚度。In another embodiment of the invention, the layers in stack structure 212 have different thicknesses. By having different thicknesses of the layers in the stacked structure 212, the grain size of each layer of polycrystalline germanium in the stacked structure 212 can be further controlled, so that the grain size of each layer of polycrystalline germanium in the stacked structure 212 is different, and the barrier property against the metal telluride is enhanced. In an embodiment of the invention, the thickness of the first layer 2121 and the second material layer 2122 is less than the thickness of the third material layer 2123.

本發明中例示了形成具有三層多晶矽的堆疊結構212,然而本發明不限於此。堆疊結構只要形成為具有三層以上的多層結構即可,亦可形成為具有四層或更多。The formation of the stacked structure 212 having three polysilicon layers is exemplified in the present invention, but the present invention is not limited thereto. The stacked structure may be formed to have four or more layers as long as it has a multilayer structure of three or more layers.

之後,請參照圖2H,在堆疊結構212上沉積可形成金屬矽化物的金屬層(未繪示),例如鈷或鎳。金屬層的沉積方法例如是利用化學氣相沉積法或是物理氣相沉積法。在沉積金屬層之後,進行熱處理,使金屬層與第二材料層2122及第三材料層2123反應,以形成第二層2122a及第三層2123a,進而形成控制閘極212a。第二層2122a及第三層2123a的材料例如是鈷化矽、鎳化矽或其他可應用之材料。在本發明的一實施例中,第二層2122a及第三層2123a為鈷化矽。在本發明的一實施例中,熱處理為快速升溫處理(RTP)。本實施例是藉由使控制閘極212a形成為具有三層以上的多層結構,故可有效防止第二層2122a及第三層2123a中的金屬矽化物因為後續製程中的熱處理所導致的擴散而接觸閘間介電層210,並且使半導體元件具有良好的可靠度。Thereafter, referring to FIG. 2H, a metal layer (not shown) capable of forming a metal halide, such as cobalt or nickel, is deposited on the stacked structure 212. The deposition method of the metal layer is, for example, a chemical vapor deposition method or a physical vapor deposition method. After depositing the metal layer, heat treatment is performed to react the metal layer with the second material layer 2122 and the third material layer 2123 to form the second layer 2122a and the third layer 2123a, thereby forming the control gate 212a. The material of the second layer 2122a and the third layer 2123a is, for example, cobalt ruthenium, nickel ruthenium or other applicable materials. In an embodiment of the invention, the second layer 2122a and the third layer 2123a are cobalt ruthenium. In an embodiment of the invention, the heat treatment is rapid temperature rise treatment (RTP). In the present embodiment, by forming the control gate 212a to have a multilayer structure of three or more layers, it is possible to effectively prevent the metal telluride in the second layer 2122a and the third layer 2123a from being diffused due to heat treatment in a subsequent process. The inter-gate dielectric layer 210 is contacted and the semiconductor element is provided with good reliability.

在形成第二層2122a及第三層2123a之後,可進一步進行熱處理。所述熱處理例如是在800°C至900°C的溫度下進行60秒至120秒,以移除閘間介電層(如氧化矽或氮化矽)中的不純物或雜質。After the second layer 2122a and the third layer 2123a are formed, heat treatment may be further performed. The heat treatment is performed, for example, at a temperature of 800 ° C to 900 ° C for 60 seconds to 120 seconds to remove impurities or impurities in the inter-gate dielectric layer such as hafnium oxide or tantalum nitride.

請再次參照圖2H,本發明實施例的記憶體元件包括浮置閘極204a、閘極絕緣層202a、隔離結構208b、介電層2101、介電層2102、介電層2103以及控制閘極212a。Referring again to FIG. 2H, the memory device of the embodiment of the present invention includes a floating gate 204a, a gate insulating layer 202a, an isolation structure 208b, a dielectric layer 2101, a dielectric layer 2102, a dielectric layer 2103, and a control gate 212a. .

浮置閘極204a的材料例如是多晶矽(包括摻雜多晶矽)、多晶矽化金屬或其組合之堆疊層、金屬層或可應用之導體。The material of the floating gate 204a is, for example, a stacked layer of polycrystalline germanium (including doped polysilicon), polycrystalline germanium metal or a combination thereof, a metal layer or an applicable conductor.

閘極絕緣層202a可以由單一材料層構成。單一材料層例如是低介電常數材料或是高介電常數材料。閘極絕緣層202a位於浮置閘極204a與基底200之間。閘極絕緣層202a也可以依據能隙工程理論選擇可以提高注入電流的雙層堆疊結構或是多層堆疊結構。The gate insulating layer 202a may be composed of a single material layer. The single material layer is, for example, a low dielectric constant material or a high dielectric constant material. The gate insulating layer 202a is located between the floating gate 204a and the substrate 200. The gate insulating layer 202a can also select a two-layer stacked structure or a multilayer stacked structure that can increase the injection current according to the energy gap engineering theory.

隔離結構208b用以隔離相鄰的兩個記憶體元件20。隔離結構208b的材料可以是絕緣材料,例如是氧化矽或是硼磷矽玻璃。隔離結構208b位在相鄰的兩個浮置閘極204a間的基底200之中。The isolation structure 208b is used to isolate the adjacent two memory elements 20. The material of the isolation structure 208b may be an insulating material such as yttrium oxide or borophosphon glass. The isolation structure 208b is located in the substrate 200 between adjacent two floating gates 204a.

閘間介電層210可包括介電層2101、介電層2102與介電層2103。介電層2101與介電層2103的材料包括二氧化矽或其他絕緣材料,介電層2102的材料包括氮化矽或其他絕緣材料。The inter-gate dielectric layer 210 can include a dielectric layer 2101, a dielectric layer 2102, and a dielectric layer 2103. The material of the dielectric layer 2101 and the dielectric layer 2103 includes cerium oxide or other insulating material, and the material of the dielectric layer 2102 includes tantalum nitride or other insulating material.

控制閘極212a覆蓋多數個記憶體元件20的浮置閘極204a,並且覆蓋隔離相鄰兩個記憶體元件20的隔離結構208b。控制閘極212a包括第一層2121、第二層2122a與第三層2123a,第二層2122a位於第一層2121與第三層2123a之間,其中,第一層2121為多晶矽,第二層2122a與第三層2123a為金屬矽化物。在另一實施例中,第一層2121可為碳摻雜的多晶矽。另外,在一實施例中,控制閘極212a中各層可具有不同的晶粒大小。舉例來說,第一層2121的晶粒大小可小於第二層2122a與第三層2123a的晶粒大小。在另一實施例中,控制閘極212a中各層可具有不同的厚度。舉例來說,第一層2121與第二層2122a的厚度可小於第三層2123a的厚度。第二層2122a與第三層2123a的材料例如是鈷化矽、鎳化矽或其他可應用之材料。在本發明的一實施例中,第二層2122a與第三層2123a為鈷化矽。Control gate 212a covers floating gates 204a of a plurality of memory elements 20 and covers isolation structures 208b that isolate adjacent two memory elements 20. The control gate 212a includes a first layer 2121, a second layer 2122a and a third layer 2123a, and a second layer 2122a is located between the first layer 2121 and the third layer 2123a, wherein the first layer 2121 is polycrystalline germanium, and the second layer 2122a The third layer 2123a is a metal halide. In another embodiment, the first layer 2121 can be a carbon doped polysilicon. Additionally, in an embodiment, the layers in the control gate 212a can have different grain sizes. For example, the grain size of the first layer 2121 may be smaller than the grain size of the second layer 2122a and the third layer 2123a. In another embodiment, the layers in the control gate 212a can have different thicknesses. For example, the thickness of the first layer 2121 and the second layer 2122a may be less than the thickness of the third layer 2123a. The material of the second layer 2122a and the third layer 2123a is, for example, cobalt ruthenium, nickel ruthenium or other applicable materials. In an embodiment of the invention, the second layer 2122a and the third layer 2123a are cobalt ruthenium.

以上實施例例示了具有三層結構的控制閘極212a,然而本發明不限於此。控制閘極只要是三層以上的多層結構即可,亦可具有四層或更多。藉由使控制閘極212a具有三層以上的多層結構,可有效防止第二層2122a與第三層2123a中的金屬矽化物因為熱處理導致的擴散接觸閘間介電層210,並且使半導體元件具有良好的可靠度。The above embodiment has exemplified the control gate 212a having a three-layer structure, but the present invention is not limited thereto. The control gate may have a multilayer structure of three or more layers, and may have four or more layers. By having the control gate 212a having a multilayer structure of three or more layers, it is possible to effectively prevent diffusion of the metal germanide in the second layer 2122a and the third layer 2123a due to heat treatment to contact the inter-gate dielectric layer 210, and to have the semiconductor element Good reliability.

以下列舉一實例來確認本發明的功效,但本發明的範圍並不侷限於以下內容。An example is given below to confirm the efficacy of the present invention, but the scope of the present invention is not limited to the following.

〈實例〉<Example>

製作一個如圖2H所示的記憶體元件,在經過2分鐘850°C的快速熱製程(RTP)後,觀察其結構並顯示於圖3。其中,閘間介電層310上的控制閘極312中,第一層3121的厚度為300Å,第二層3122的厚度為200Å,且第三層3123的厚度為500Å,並且第一層3121的晶粒大小為15 nm~20 nm,第二層3122的晶粒大小為10 nm~20 nm,第三層3123的晶粒大小為30 nm~40 nm,並且第二層3122與第三層2123為鈷化矽(CoSi 2)。 A memory element as shown in Fig. 2H was fabricated, and after 2 minutes of rapid thermal processing (RTP) at 850 ° C, its structure was observed and shown in Fig. 3. Wherein, in the control gate 312 on the inter-gate dielectric layer 310, the first layer 3121 has a thickness of 300 Å, the second layer 3122 has a thickness of 200 Å, and the third layer 3123 has a thickness of 500 Å, and the first layer 3121 has a thickness of 500 Å. The grain size is 15 nm to 20 nm, the grain size of the second layer 3122 is 10 nm to 20 nm, the grain size of the third layer 3123 is 30 nm to 40 nm, and the second layer 3122 and the third layer 2123 It is cobalt ruthenium (CoSi 2 ).

圖3是實例中的記憶體元件的穿透式電子顯微鏡(transmission electron microscope,TEM)照片。Figure 3 is a transmission electron microscope (TEM) photograph of a memory element in the example.

請參照圖3,本實例中,第二層3122與第三層3123中的金屬矽化物不會因為熱處理而接觸閘間介電層310,因此可以避免閘間介電層310電容失效、閘間介電層310的崩潰電壓降低、元件可靠性降低等問題。Referring to FIG. 3 , in the present example, the metal germanide in the second layer 3122 and the third layer 3123 does not contact the inter-gate dielectric layer 310 due to the heat treatment, thereby avoiding the capacitor failure of the inter-gate dielectric layer 310 and the gate. The breakdown voltage of the dielectric layer 310 is lowered, and the reliability of the element is lowered.

綜上所述,本發明藉由使用三層以上的多層結構的導體層作為閘極結構,並可將其應用於各種半導體元件中,例如作為記憶體元件的控制閘極,因此能夠防止金屬矽化物層因為熱處理而擴散接觸閘間介電層的情形發生,並且使半導體元件具有良好的可靠度。並且本發明之製程能夠與現有製程整合。As described above, the present invention uses a conductor layer of a multilayer structure of three or more layers as a gate structure, and can be applied to various semiconductor elements, for example, as a control gate of a memory element, thereby preventing metal deuteration. The fact that the layer diffuses into contact with the inter-gate dielectric layer due to heat treatment occurs, and the semiconductor element has good reliability. And the process of the present invention can be integrated with existing processes.

雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明的精神和範圍內,當可作些許的更動與潤飾,故本發明的保護範圍當視後附的申請專利範圍所界定者為準。Although the present invention has been disclosed in the above embodiments, it is not intended to limit the present invention, and any one of ordinary skill in the art can make some changes and refinements without departing from the spirit and scope of the present invention. The scope of the invention is defined by the scope of the appended claims.

20‧‧‧記憶體元件20‧‧‧ memory components

100、200、200a‧‧‧基底100, 200, 200a‧‧‧ base

102、208b‧‧‧隔離結構102, 208b‧‧‧ isolation structure

104、204a‧‧‧浮置閘極104, 204a‧‧‧Floating gate

106、202、202a‧‧‧閘極絕緣層106, 202, 202a‧‧‧ gate insulation

108、210、310‧‧‧閘間介電層108, 210, 310‧‧‧ Inter-gate dielectric layer

110、212a、312‧‧‧控制閘極110, 212a, 312‧‧‧ control gate

1101、2121、3121‧‧‧第一層1101, 2121, 3121‧‧‧ first floor

1102、2122a、3122‧‧‧第二層1102, 2122a, 3122‧‧‧ second floor

204‧‧‧導體層204‧‧‧Conductor layer

204s‧‧‧浮置閘極204a的表面204s‧‧‧ Surface of floating gate 204a

205‧‧‧圖案化罩幕層205‧‧‧ patterned mask layer

206‧‧‧溝渠206‧‧‧ Ditch

208、208a‧‧‧絕緣材料層208, 208a‧‧‧layer of insulating material

208s‧‧‧隔離結構208b的表面208s‧‧‧ Surface of isolation structure 208b

2101、2102、2103‧‧‧介電層2101, 2102, 2103‧‧‧ dielectric layer

212‧‧‧堆疊結構212‧‧‧Stack structure

2122‧‧‧第二材料層2122‧‧‧Second material layer

2123‧‧‧第三材料層2123‧‧‧ third material layer

2123a、3123‧‧‧第三層2123a, 3123‧‧‧ third floor

圖1是習知的一種記憶體元件的穿透式電子顯微鏡(transmission electron microscope,TEM)照片。 圖2A至圖2H是依照本發明一實施例所繪示之記憶體元件的製造流程的剖面示意圖。 圖3是實例中的記憶體元件的穿透式電子顯微鏡照片。1 is a transmission electron microscope (TEM) photograph of a conventional memory device. 2A-2H are schematic cross-sectional views showing a manufacturing process of a memory device according to an embodiment of the invention. Figure 3 is a transmission electron micrograph of a memory element in an example.

20‧‧‧記憶體元件 20‧‧‧ memory components

200a‧‧‧基底 200a‧‧‧Base

202a‧‧‧閘極絕緣層 202a‧‧‧gate insulation

204a‧‧‧浮置閘極 204a‧‧‧Floating gate

208b‧‧‧隔離結構 208b‧‧‧Isolation structure

210‧‧‧閘間介電層 210‧‧‧Inter-tile dielectric layer

2101、2102、2103‧‧‧介電層 2101, 2102, 2103‧‧‧ dielectric layer

212a‧‧‧控制閘極 212a‧‧‧Control gate

2121‧‧‧第一層 2121‧‧‧ first floor

2122a‧‧‧第二層 2122a‧‧‧ second floor

2123a‧‧‧第三層 2123a‧‧‧ third floor

Claims (8)

一種記憶體元件,包括:浮置閘極,位於基底上;閘極絕緣層,位於所述浮置閘極與所述基底之間;閘間介電層,位於所述浮置閘極上;以及控制閘極,位於所述閘間介電層上,所述控制閘極包括第一層、第二層以及第三層,所述第二層位於所述第一層與所述第三層之間,其中所述第一層為多晶矽層,所述第二層與所述第三層為金屬矽化物層。 A memory device comprising: a floating gate on a substrate; a gate insulating layer between the floating gate and the substrate; a gate dielectric layer on the floating gate; a control gate on the inter-gate dielectric layer, the control gate comprising a first layer, a second layer and a third layer, the second layer being located in the first layer and the third layer The first layer is a polycrystalline germanium layer, and the second layer and the third layer are metal germanide layers. 如申請專利範圍第1項所述的記憶體元件,其中所述控制閘極的所述第一層與所述控制閘極的所述第二層的厚度小於所述控制閘極的所述第三層的厚度。 The memory device of claim 1, wherein a thickness of the first layer of the control gate and the second layer of the control gate is smaller than the number of the control gate The thickness of the three layers. 如申請專利範圍第1項所述的記憶體元件,其中所述控制閘極的所述第一層的晶粒大小小於所述控制閘極的所述第二層與所述控制閘極的所述第三層的晶粒大小。 The memory device of claim 1, wherein the first layer of the control gate has a grain size smaller than the second layer of the control gate and the control gate The grain size of the third layer. 如申請專利範圍第1項所述的記憶體元件,其中所述控制閘極的所述第一層為碳摻雜的多晶矽。 The memory device of claim 1, wherein the first layer of the control gate is a carbon doped polysilicon. 一種記憶體元件的製造方法,包括:在基底上依序形成閘極絕緣層與浮置閘極;圖案化所述浮置閘極與所述閘極絕緣層;於所述基底中形成多個隔離結構,所述隔離結構的表面低於所述浮置閘極的表面; 於所述浮置閘極與所述隔離結構上形成閘間介電層;以及於所述閘間介電層上形成控制閘極,所述控制閘極為三層以上的多層結構,其中形成所述控制閘極的方法包括:於所述閘間介電層上依序形成第一層、第二層以及第三層,其中所述第一層為多晶矽層,所述第二層與所述第三層為金屬矽化物層。 A method of fabricating a memory device, comprising: sequentially forming a gate insulating layer and a floating gate on a substrate; patterning the floating gate and the gate insulating layer; forming a plurality of layers in the substrate An isolation structure, a surface of the isolation structure being lower than a surface of the floating gate; Forming a gate dielectric layer on the floating gate and the isolation structure; and forming a control gate on the inter-gate dielectric layer, the control gate having a multilayer structure of three or more layers, wherein the formation The method for controlling a gate includes sequentially forming a first layer, a second layer, and a third layer on the inter-gate dielectric layer, wherein the first layer is a polysilicon layer, and the second layer is The third layer is a metal telluride layer. 如申請專利範圍第5項所述的記憶體元件的製造方法,其中形成所述第一層的期間包括摻雜碳。 The method of manufacturing a memory device according to claim 5, wherein the forming of the first layer includes doping carbon. 如申請專利範圍第5項所述的記憶體元件的製造方法,其中形成所述第二層的期間包括摻雜碳。 The method of manufacturing a memory device according to claim 5, wherein the forming of the second layer comprises doping carbon. 如申請專利範圍第5項所述的記憶體元件的製造方法,其中形成所述金屬矽化物層之後更包括進行熱處理。 The method of manufacturing a memory device according to claim 5, wherein the forming of the metal telluride layer further comprises performing a heat treatment.
TW106119595A 2017-06-13 2017-06-13 Memory device and manufacturing method of the same TWI612643B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW106119595A TWI612643B (en) 2017-06-13 2017-06-13 Memory device and manufacturing method of the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW106119595A TWI612643B (en) 2017-06-13 2017-06-13 Memory device and manufacturing method of the same

Publications (2)

Publication Number Publication Date
TWI612643B true TWI612643B (en) 2018-01-21
TW201904028A TW201904028A (en) 2019-01-16

Family

ID=61728714

Family Applications (1)

Application Number Title Priority Date Filing Date
TW106119595A TWI612643B (en) 2017-06-13 2017-06-13 Memory device and manufacturing method of the same

Country Status (1)

Country Link
TW (1) TWI612643B (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140284698A1 (en) * 2013-03-22 2014-09-25 Kabushiki Kaisha Toshiba Semiconductor device
US20150348982A1 (en) * 2010-03-04 2015-12-03 Jeeyong Kim Semiconductor Devices

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150348982A1 (en) * 2010-03-04 2015-12-03 Jeeyong Kim Semiconductor Devices
US20140284698A1 (en) * 2013-03-22 2014-09-25 Kabushiki Kaisha Toshiba Semiconductor device

Also Published As

Publication number Publication date
TW201904028A (en) 2019-01-16

Similar Documents

Publication Publication Date Title
KR101129919B1 (en) Semiconductor device and method for forming the same
US20200035684A1 (en) Semiconductor device including insulating element
TWI496282B (en) Gate structures and method of forming a gate structure
US10304731B2 (en) Damascene oxygen barrier and hydrogen barrier for ferroelectric random-access memory
KR102212747B1 (en) Deep-trench capacitor including void and fabricating method thereof
US7985670B2 (en) Method of forming U-shaped floating gate with a poly meta-stable polysilicon layer
TW201401442A (en) Method of fabricating non-volatile memory device
US9614105B2 (en) Charge-trap NOR with silicon-rich nitride as a charge trap layer
JP2009170781A (en) Nonvolatile semiconductor storage device and manufacturing method thereof
US20180366573A1 (en) Semiconductor device, memory device and manufacturing method of the same
US7846795B2 (en) Bit line of a semiconductor device and method for fabricating the same
CN109148455A (en) Memory component and its manufacturing method
TW201820427A (en) Method of fabricating semiconductor device
TWI612643B (en) Memory device and manufacturing method of the same
TWI780713B (en) Semiconducting metal oxide transistors having a patterned gate and methods for forming the same
US8288279B1 (en) Method for forming conductive contact
TWI395290B (en) Flash memory and method of fabricating the same
JPH0888332A (en) Manufacture of semiconductor memory device
JP2008021935A (en) Electronic device and manufacturing method thereof
US7867849B2 (en) Method of manufacturing a non-volatile semiconductor device
US7893508B2 (en) Semiconductor device and manufacturing method thereof
TWI565035B (en) Memory cell and fabricating method thereof
TWI803113B (en) Semiconductor device with pad structure and method for fabricating the same
US20240363762A1 (en) Semiconducting metal oxide transistors having a patterned gate and methods for forming the same
US20230180623A1 (en) Magnetic tunnel junction pillar formation for mram device