TWI685996B - 可充電電池及其電極 - Google Patents

可充電電池及其電極 Download PDF

Info

Publication number
TWI685996B
TWI685996B TW107128456A TW107128456A TWI685996B TW I685996 B TWI685996 B TW I685996B TW 107128456 A TW107128456 A TW 107128456A TW 107128456 A TW107128456 A TW 107128456A TW I685996 B TWI685996 B TW I685996B
Authority
TW
Taiwan
Prior art keywords
rechargeable battery
active material
material layer
strip
electrode
Prior art date
Application number
TW107128456A
Other languages
English (en)
Other versions
TW202002380A (zh
Inventor
林友復
謝建德
Original Assignee
金碳洁股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 金碳洁股份有限公司 filed Critical 金碳洁股份有限公司
Publication of TW202002380A publication Critical patent/TW202002380A/zh
Application granted granted Critical
Publication of TWI685996B publication Critical patent/TWI685996B/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/049Processes for forming or storing electrodes in the battery container
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/665Composites
    • H01M4/667Composites in the form of layers, e.g. coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • H01M4/76Containers for holding the active material, e.g. tubes, capsules
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/025Electrodes composed of, or comprising, active material with shapes other than plane or cylindrical
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/30Batteries in portable systems, e.g. mobile phone, laptop
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本發明公開一種可充電電池及其電極。可充電電池具有兩個電極及設置於兩個電極之間的一離子傳導層。兩個電極中至少一者具有一擴散輔助結構,且擴散輔助結構上形成有一凹陷圖案。擴散輔助結構可增加離子在電極中的擴散路徑,提高離子在電極中的擴散速率。故本發明的可充電電池可適用於快速充放電的操作方式,並可以電磁波作為能量來源進行無線充電。

Description

可充電電池及其電極
本發明涉及一種可充電電池及其電極,特別是涉及一種可應用於微充電系統的可充電電池及其電極。
科技雖蓬勃發展,但不變的是電子產品仍受電源線的限制,於充電時必需連接著電源線,降低了使用的便利性。因此,為了克服以往需憑藉實體電源線傳輸能量的充電方式,無線充電(Wireless Charging)的技術逐漸受到重視。
目前的無線充電技術可區分為利用磁感應(Magnetic Induction)、磁共振(Magnetic Resonance)或是以電磁波傳輸的方式,在免除電源線的使用後,電子產品可達到無導電接點外露的效果。
磁感應式無線充電是目前最常使用的無線充電方式。然而,在利用磁感應進行充電時,電子裝置與充電裝置需近距離接觸以形成感應磁場,而可傳輸能量。
相較於磁感應式無線充電,磁共振式無線充電具有較長的充電距離。藉由調控磁場的頻率,使電子裝置與充電裝置達到共振頻率以傳輸能量。但利用磁共振來無線充電的充電效率較低,且對人體的安全及健康仍存有疑慮。
若以電磁波作為能量傳輸的方式,相較於磁感應式無線充電或磁共振式無線充電具有更長的充電距離。並且,以電磁波傳遞 能量的無線充電方式可同時對多個電子裝置充電。
然而,自環境中擷取電磁波所可供給的電力較小,且可充電電池的內阻又會損耗部分能量,導致可充電電池的充電效率不佳。因此,現有的可充電電池尚無法有效地利用電磁波作為無線充電的能量來源。
本發明所要解決的技術問題在於,提供一種可通過擷取電磁波來充電,以應用於微充電系統的可充電電池。
為了解決上述的技術問題,本發明所採用的其中一技術方案是,提供一種可充電電池,其包括:兩個電極和設置於兩個電極之間的一離子傳導層;其中,兩個電極中至少一者在面對離子傳導層的一側具有一擴散輔助結構,且擴散輔助結構具有一凹陷圖案。
為了解決上述的技術問題,本發明所採用的另外一技術方案是,提供一種可充電電池的電極,其包括一擴散輔助結構,擴散輔助結構具有一凹陷圖案。
本發明的其中一有益效果在於,通過“使電極具有擴散輔助結構”,來增加活性物質層中的離子擴散路徑,進而提升活性物質層中的離子擴散率,以及提高活性材料的利用率。
據此,更多的離子可被儲存在活性物質層內,而使可充電電池的容量維持率(Capacity Retention)和能量密度(Energy Density)被提升,並可減少可充電電池充電所需的時間。因此,本發明提供的可充電電池具有可快速充放電的優勢。
另外,由於離子擴散率增加,本發明的可充電電池及其電極可有效利用充電裝置提供的能量,而可被應用於微充電系統。也就是說,本發明的可充電電池可以通過擷取電磁波產生的電力進行無線充電,並可作為無線微充電電池。
為使能更進一步瞭解本發明的特徵及技術內容,請參閱以下有關本發明的詳細說明與圖式,然而所提供的圖式僅用於提供參考與說明,並非用來對本發明加以限制。
1、3‧‧‧電極
11、31‧‧‧集電板
111、311‧‧‧上表面
12、32‧‧‧活性物質層
121、321‧‧‧擴散輔助結構
121a、321a‧‧‧凹陷圖案
1212、1212a、1212b、1212c、3212‧‧‧條形槽
2‧‧‧離子傳導層
X‧‧‧第一方向
Y‧‧‧第二方向
W、W1、W2‧‧‧寬度
D、D1、D2‧‧‧預定間距
圖1為本發明的可充電電池的局部側視示意圖。
圖2為圖1在區域II的放大立體分解示意圖。
圖3為本發明其中一實施例的電極的立體示意圖。
圖4為本發明另一實施例的電極的側視示意圖。
圖5為樣品一至六的可充電電池以不同電流密度充電時達到完全充電所需充電時間的長條圖。
圖6為本發明再一實施例的電極的側視示意圖。
圖7為本發明又再一實施例的電極的側視示意圖。
圖8為樣品一、六和七的可充電電池在不同充放電比率下的容量維持率關係圖。
圖9為樣品一、六和七的可充電電池在不同功率密度下的能量密度關係圖。
以下是通過特定的具體實施例來說明本發明所公開有關“可充電電池及其電極”的實施方式,本領域技術人員可由本說明書所公開的內容瞭解本發明的優點與效果。本發明可通過其他不同的具體實施例加以施行或應用,本說明書中的各項細節也可基於不同觀點與應用,在不悖離本發明的構思下進行各種修改與變更。另外,本發明的附圖僅為簡單示意說明,並非依實際尺寸的描繪,事先聲明。以下的實施方式將進一步詳細說明本發明的相關技術內容,但所公開的內容並非用以限制本發明的保護範圍。
應當可以理解的是,雖然本文中可能會使用到“第一”、“第 二”、“第三”等術語來描述各種元件或者信號,但這些元件或者信號不應受這些術語的限制。這些術語主要是用以區分一元件與另一元件,或者一信號與另一信號。另外,本文中所使用的術語“或”,應視實際情況可能包括相關聯的列出項目中的任一個或者多個的組合。
請參閱圖1,本發明一實施例提供一種可充電電池。須說明的是,圖1中僅繪示可充電電池的電極組件來進行說明。在本實施例中,可充電電池可以是鋰離子電池,並且可以通過擷取電磁波來進行無線充電。
本實施例的可充電電池至少包括:兩個電極1、3和一離子傳導層2,且離子傳導層2是設置於兩個電極1、3之間,以使兩個電極1、3相互隔絕。
如圖1所示,在本實施例中,電極1包括一集電板11以及一設置於集電板11上的活性物質層12。電極3和電極1具有相似的結構。也就是說,電極3也包括另一集電板31以及設置於集電板31上的活性物質層32。
集電板11、31可收集電流,故通常為一金屬導體,例如銅板、鍍金銅板或錫板。另外,集電板11、31具有一上表面111、311。
兩層活性物質層12、32分別設置並覆蓋於兩個集電板11、31的上表面111、311上。
每一活性物質層12(32)是位於集電板11(31)和離子傳導層2之間。活性物質層12(32)可藉由化學反應來儲存或產生電能。
以鋰電池為例,當可充電電池在充電狀態時,正極的活性材料被氧化而形成鋰離子並產生電子。鋰離子通過離子傳導層2而往負極方向移動,並與負極的活性材料反應而產生鋰化物。同時,電子會經由外部電路抵達負極。
當可充電電池在放電狀態下,負極的活性材料會氧化形成鋰離子並產生電子。電子會由負極移動至外部電路以供給電力。而 鋰離子會通過離子傳導層2朝向正極移動。
由此可知,鋰電池是利用化學反應來進行化學能與電能的轉換。鋰電池內部以鋰離子作為化學能的傳遞媒介,鋰電池外部以電子作為電能的傳遞媒介。據此,鋰電池的效能會受到鋰離子在電解液以及活性材料(即正極活性材料或負極活性材料)中的擴散速率影響,也會受到電子在活性材料(即正極活性材料或負極活性材料)與電極(正極或負極)中的傳導速率影響。
本實施例中,以鋰電池為例來進一步說明電極1、3的結構以及材料,其中,兩個電極1、3可分別為一正極和一負極。
正極(電極1)的活性物質層12包括一活性材料、一導電助劑和一黏結劑。
活性材料可以是含鋰金屬化物,且含鋰金屬化物可以進一步包括鎳、鈷、錳或鐵等金屬。舉例來說,本實施例以鋰鎳鈷錳氧化物(Lithium Nickel Manganese Cobalt Oxide,LiNiCoMnO2,簡稱為LNCM)作為活性材料。
以活性物質層12的總重為基準,活性材料的含量為85wt%至97wt%(重量百分濃度)。在一實施例中,活性材料的含量為94wt%至96wt%。
導電助劑可以是導電碳黑、奈米碳管、石墨烯、碳纖維或其組合物。導電助劑可提供電子在電極中的傳導路徑,以改善電子移動至集電板11的速率,以便將電子由活性物質層12轉移至集電板11。
以活性物質層12的總重為基準,導電助劑的含量為0.5wt%至5wt%。於一較佳實施例中,導電助劑包括碳黑以及石墨烯,其中,石墨烯的含量為0.5wt%至2.5wt%,導電碳黑的含量為0wt%至2.5wt%。
黏結劑可以是聚偏二氟乙烯(Polyvinylidene Difluoride,簡稱為PVDF),但並不限於此。以活性物質層12的總重為基準,黏結 劑的含量為2.5wt%至10wt%。在一實施例中,以活性物質層12的總重為基準,黏結劑的含量為1wt%至5wt%。
在一實施例中,正極的活性物質層12的厚度為100微米至300微米。
另外,負極(電極3)的活性物質層32包括一活性材料,且活性材料為石墨。
在電極1、3的一側形成擴散輔助結構121、321的方式可以通過狹縫塗佈製程來實現。具體而言,可利用狹縫塗佈機(Slot Die Coater),在集電板上塗佈,以直接形成具有擴散輔助結構121、321的活性物質層12、32。首先,混合活性材料、導電助劑和黏結劑形成一電極漿料,跟據凹陷圖案121a、321a設定狹縫塗佈機塗佈的路徑及參數,並在集電板11、31的上表面111、311形成具有多個條形槽1212、3212的活性物質層12、32。
在其他實施例中,也可先形成活性物質層12、32,再另外加工形成擴散輔助結構121、321。具體來說,先將包含有活性材料、導電助劑和黏結劑的電極漿料直接塗佈於集電板11、31上,形成一平坦的固化電極漿料。接著,再根據凹陷圖案121a、321a設定雷射雕刻機(Laser Engraving Machine)雕刻的路徑及參數,於平坦的固化電極漿料上雕刻形成多個條形槽1212、3212,亦可製得擴散輔助結構121、321。
請參閱圖2,於本實施例中,兩個電極1、3中至少一者在面對離子傳導層2的一側具有一擴散輔助結構121、321。也就是說,兩個活性物質層12、32中至少一者具有擴散輔助結構121、321。
凹陷圖案121a在圖2的實施例中,是以正極和負極(電極1、3)都具有擴散輔助結構121、321的實施態樣進行說明。然而,在另一實施例中,正極和負極(電極1、3)中只有一者具有擴散輔助結構121、321;而不具有擴散輔助結構121、321的另一電極1、3,在面向離子傳導層2的面為一平坦表面。
請參閱圖2,活性物質層12、32在面對離子傳導層2的一側具有一擴散輔助結構121、321。擴散輔助結構121、321為凹凸結構,而可增加活性物質層12、32的表面積。如此,擴散輔助結構121、321可使離子具有更多的擴散路徑,而增加離子在活性物質層12、32中的擴散速率,並提高活性材料的利用率。
擴散輔助結構121、321具有一凹陷圖案121a、321a。進一步而言,活性物質層12、32的局部表面內凹而形成凹陷圖案121a、321a。
以下以電極1為例,來進一步說明擴散輔助結構121的細節。
請參閱圖3,本實施例的擴散輔助結構121包括多個條形槽1212。多個條形槽1212是由活性物質層12的局部表面往集電板11的方向凹陷而形成。因此,多個條形槽1212共同形成凹陷圖案121a。
在本實施例中,每一個條形槽1212都是由活性物質層12的其中一端面延伸至另一端面。在一實施例中,且多個條形槽1212具有相同的尺寸。在一實施例中,每一個條形槽1212的寬度與深度都是50微米。
然而,凹陷圖案121a的形狀並不限於圖3所繪示的實施例。在其他實施例中,凹陷圖案121a並不一定是由多個條形槽1212所構成,也可以是由多個環狀槽所構成,或是由多個條形槽1212與多個環狀槽共同形成。只要可以增加活性物質層12的表面積,本發明並不限制擴散輔助結構121或者是凹陷圖案121a的具體形狀。
如圖3所示,本實施例中的多個條形槽1212分別沿一第一方向X延伸並沿著一第二方向Y平行排列,多個條形槽1212間彼此獨立且不相連通。
但多個條形槽1212的排列方式不限於上述,於其他實施例中,多個條形槽1212亦可彼此交錯或相互垂直,而使多個條形槽 1212彼此相互連通。
請參閱圖3,本實施例中的每個條形槽1212在第二方向Y上具有相同的寬度W。另外,兩相鄰的條形槽1212在第二方向Y上彼此之間相隔一預定間距D,且多個預定間距D都相同。在本實施例中,每一個條形槽1212的寬度W與預定間距D相同。也就是說,在圖3的實施例中,預定間距D與每一條形槽1212的寬度W之間的比例為1:1。在本實施例中,條形槽1212的預定間距D以及寬度W都是50微米。
於其他實施例中,條形槽1212的寬度W也可以和預定間距D不同。換句話說,條形槽1212的寬度W可以大於或者小於預定間距D。進一步而言,預定間距與D條形槽1212的寬度W之間的比值R(D/W)介於1至9之間。
另外,請參閱圖4,條形槽1212的寬度W是小於預定間距D。
請參照圖5,繪示不同實施例的可充電電池在不同電流密度下達到完全充電(Fully Charged)的總充電時間。本發明製備了不同條件的可充電電池(樣品一至六)。樣品一至六的兩個電極1、3的材料都相同,其中,只有樣品六的兩個電極1、3都不具有擴散輔助結構。樣品一至五的可充電電池分別具有不同的擴散輔助結構。也就是說,在樣品一至五的可充電電池中,預定間距D與寬度W的比值R不同。
具體而言,樣品一至五的擴散輔助結構121都包括相互平行的多個條形槽1212。但是,在樣品一至五中,預定間距D以及條形槽1212的寬度W之間的比例分別依序為1:1(樣品一)、6:4(樣品二)、7:3(樣品三)、8:2(樣品四)以及9:1(樣品五)。本發明所指的完全充電是以0.05C-rate(約0.8mA/g)的比率對可充電電池進行充電,當電池電壓與最高電壓的差值小於50mV時視為完全充電。
根據圖5的結果所示,相較於不具有擴散輔助結構121的樣 品六,樣品一至五具有較短的總充電時間。由此可知,本發明的擴散輔助結構121可增加離子在活性物質層12中的擴散路徑,並提升離子在活性物質層12內的擴散速率,以增加實際參與能量轉換的離子,並減緩因離子擴散效果不佳而導致充電速度較慢的問題。
值得注意的是,當以低電流(0.8mA/g)進行定電流充電時,樣品一至五的總充電時間明顯低於樣品六的總充電時間。因此,在提升離子在活性物質層12中的擴散速率之後,本發明的可充電電池改善了以往以低電流充電時總充電時間較長的問題。
進一步比較樣品一至五的測試結果,當預定間距D與寬度W之間的比值R為1至9的範圍中時,比值R與可充電電池的總充電時間具有正相關的趨勢。也就是說,當比值R越小,可充電電池的總充電時間越短。並且,當充電時的電流密度越小時,比值R對總充電時間的影響更為明顯。
因此,通過控制擴散輔助結構121的比值R,亦可進一步提升離子在活性物質層12中的擴散速率,並可降低以低電流(0.8mA/g)充電時的總充電時間。
另外,任兩個條形槽1212的寬度W也可以不同。請參照圖6,多個條形槽1212之間的預定間距D相同,但至少兩個條形槽1212a、1212b分別具有不同的寬度W1、W2。
在又一實施例中,多個條形槽1212之間的預定間距D也可以不同。請參照圖7所示,多個條形槽1212a~c都具有相同的寬度W。其中一個條形槽1212a與相鄰的條形槽1212c之間分隔一第一預定間距D1,並與另一個相鄰的條形槽1212b分隔一第二預定間距D2,且第一預定間距D1與第二預定間距D2不同。
另外,請參照圖8以及圖9。將前述樣品一、六以及另一樣品七進行充放電測試,其結果顯示於圖8以及圖9。
樣品六與樣品七都不具有擴散輔助結構121。另外,在樣品 一、六中,電極1的活性物質層12具有導電助劑,而在樣品七中,電極1的活性物質層12不具有導電助劑。
如圖8所示,顯示在不同充放電比率(C-rate)下,樣品一、六、七的可充電電池的容量維持率。須說明的是,當充放電比率提高時(即在短時間內以高電流充放電),可充電電池的電能轉換能力會受限於離子在活性物質層12中的擴散速率以及電子在活性物質層12中的傳導速率。若充放電速率過快,會降低電能和化學能的轉換率,導致可充電電池儲存的容量維持率降低。
圖8顯示具有擴散輔助結構121的可充電電池(樣品一)相較於沒有擴散輔助結構121的可充電電池(樣品六)具有更高的容量維持率。另外,容量維持率越高代表離子在電極中的擴散速率越快,因此進入電極中的離子數目越多。
因此,本發明的擴散輔助結構121確實可增加離子的擴散路徑,並提高離子在活性物質層12中的擴散速率。當離子在活性物質層12中的擴散速率提升後,可充電電池中的活性材料具有更高的利用率,使電能轉換為化學能的比率提高,進而使可充電電池具有較高的容量維持率。
另外,根據樣品六、七的結果所示,相較於沒有添加導電助劑的可充電電池(樣品七),添加導電助劑的可充電電池(樣品六)具有更高的容量維持率。
由上可知,導電助劑的添加也可增加電子在活性物質層12中的傳導路徑,並提高電子在活性物質層12中的傳導速率。當電子在活性物質層12中的傳導速率提高後,可降低可充電電池中的內電阻,減少可充電電池內部的能量損耗,藉此使可充電電池具有較高的容量維持率。
值得注意的是,以高充放電比率(5C-rate)充放電時,樣品一、六和七的容量維持率之間的差距更為明顯。也就是說,本發明的可充電電池可改善以往可充電電池不適合以高充放電比率進行充 放電的缺失。
請參閱圖9所示,圖9為可充電電池在不同放電時間下不同功率密度下可轉換能量密度的關係圖。當以較高的放電比率進行放電時(即較短的放電時間,例如6分鐘、10C),功率密度提高但能量密度下降,代表可充電電池的電能轉換能力會受限於活性物質層12的離子擴散速率和電子傳導速率。當以較低的放電比率進行放電時(即較長的放電時間,例如5小時、0.2C),功率密度會下降但能量密度相對提高。根據樣品一、六的結果所示,具有擴散輔助結構121的可充電電池(樣品一)相較於沒有擴散輔助結構121的可充電電池(樣品六)具有更高的能量密度。
因此,本發明的擴散輔助結構121確實可增加離子的擴散路徑,並提高離子在活性物質層12中的擴散速率。當離子在活性物質層12中的擴散速率提升後,可充電電池中的活性物質具有更高的利用率,並提高電能和化學能的轉換率,藉此使可充電電池具有較高的能量密度。
另外,根據樣品六、七的結果所示,添加有導電助劑的可充電電池(樣品六)相較於沒有添加有導電助劑的可充電電池(樣品七)具有更高的能量密度。
因此,導電助劑的添加可增加電子的傳導路徑,並提高電子在活性物質層12中的傳導速率。當電子在活性物質層12中的傳導速率提高後,可降低可充電電池中的內電阻,減少能量在可充電電池內部的能量損耗,藉此使可充電電池具有較高的能量密度。
值得注意的是,以高充放電功率密度(約1200W/kg)進行充放電時,樣品一、六和七的能量密度的差距更為明顯;也就是說,本發明的可充電電池可改善以往可充電電池不適合以高功率密度充放電的缺失。
上述實驗結果可證明,擴散輔助結構121可增加離子擴散路徑,進而提高電極1的離子在活性物質層12中的擴散速率。更進 一步,可通過調控擴散輔助結構121的凹陷區域的形狀以及尺寸比例,來增加離子擴散路徑,並提升離子在活性物質層12中的擴散速率。
另外,根據樣品六和七的結果可得知,在電極1的活性物質層12內添加導電助劑可增加電子傳導路徑,提高電子在活性物質層12中的傳導速率。
本發明在提升可充電電池的離子在活性物質層12中的擴散速率和電子在活性物質層12中的傳導速率後,可改善以往可充電電池在高充放電比率或高功率密度狀態下充放電時充電效率不佳的問題。具體來說,本發明的可充電電池相較於現有的可充電電池具有較高的容量維持率以及能量密度,且具有較短的總充電時間。
另外,由於本發明的可充電電池的離子在活性物質層12中的擴散速率和電子在活性物質層12中的傳導速率較高的,而可提升活性材料的利用率。因此,本發明的可充電電池可以較小的能量進行充電,即使是環境中能量較低的電磁波,亦可作為充電的電力來源,故本發明的可充電電池可以電磁波傳輸的方式進行無線充電,且可作為無線微充電電池(Wireless Trickle-Charging Battery)。
[實施例的有益效果]
本發明的其中一有益效果在於,本發明所提供的可充電電池及其電極,藉由“使兩個電極1、3至少其中一者具有擴散輔助結構121”的技術方案,可使離子在活性物質層12中的更擴散路徑更多,並可提升離子在活性物質層12中的擴散速率,而提升可充電電池的性能。
本發明的另一有益效果在於,本發明所提供的可充電電池及其電極,藉由“於活性物質層12中添加導電助劑”的技術方案,可幫助電子由活性物質層12傳導至集電板11,增加電子的傳導路徑,提升電子在活性物質層12中的傳導速率,藉此提升可充電電 池的性能。
據此,本發明的可充電電池在改善離子在活性物質層12中的擴散速率和電子在活性物質層12中的傳導速率後,可以較高的充放電比率或較高的功率密度進行充放電,具有可快速充放電的效果,可縮短達到完全充電所需的時間,且具有較高的容量維持率以及較高的能量密度。
另外,由於本發明的可充電電池具有較佳的離子在活性物質層12中的擴散速率和電子在活性物質層12中的傳導速率,較不會因離子在活性物質層12中的擴散速率或電子在活性物質層12中的傳導速率不佳,而導致電能和化學能轉換效率低落。
據此,即使充電裝置能提供的能量較為薄弱,本發明實施例的可充電電池仍可有效地將化學能轉換為電能儲存。進一步而言,本發明實施例的可充電電池可作為無線微充電電池,而應用於無線微波充電系統中。
以上所公開的內容僅為本發明的優選可行實施例,並非因此侷限本發明的申請專利範圍,所以凡是運用本發明說明書及圖式內容所做的等效技術變化,均包含於本發明的申請專利範圍內。
1、3‧‧‧電極
11、31‧‧‧集電板
111、311‧‧‧上表面
12、32‧‧‧活性物質層
121、321‧‧‧擴散輔助結構
121a、321a‧‧‧凹陷圖案
1212、3212‧‧‧條形槽
2‧‧‧離子傳導層

Claims (19)

  1. 一種可充電電池,所述可充電電池為一無線微充電電池,其包括:兩個電極;以及一離子傳導層,其設置於兩個所述電極之間;其中,兩個所述電極其中至少一者在面對所述離子傳導層的一側具有一擴散輔助結構,且所述擴散輔助結構具有一凹陷圖案。
  2. 如請求項1所述的可充電電池,其中,所述凹陷圖案包括多個條形槽,多個所述條形槽沿一第一方向延伸並沿著一第二方向排列。
  3. 如請求項2所述的可充電電池,其中,多個所述條形槽在所述第二方向具有相同的寬度。
  4. 如請求項2所述的可充電電池,其中,至少兩個所述條形槽在所述第二方向的寬度不同。
  5. 如請求項2所述的可充電電池,其中,每兩相鄰的所述條形槽在所述第二方向上彼此相隔一預定間距,所述預定間距與每一所述條形槽在所述第二方向的寬度之間的比值為1至9。
  6. 如請求項5所述的可充電電池,其中,所述預定間距與所述條形槽的寬度相同。
  7. 如請求項1所述的可充電電池,其中,兩個所述電極都具有所述擴散輔助結構。
  8. 如請求項1所述的可充電電池,其中,其中一個所述電極具有所述擴散輔助結構,另一個所述電極在面對所述離子傳導層的一側具有一平坦表面。
  9. 如請求項8所述的可充電電池,其中,具有所述擴散輔助結構的所述電極為正極。
  10. 如請求項1所述的可充電電池,其中,兩個所述電極中至少一者包括一集電板以及一活性物質層,所述活性物質層位於所述集電板與所述離子傳導層之間,並具有所述擴散輔助結構。
  11. 如請求項10所述的可充電電池,其中,所述集電板具有一連接所述活性物質層的上表面,且所述活性物質層完全覆蓋所述上表面。
  12. 如請求項10所述的可充電電池,其中,所述活性物質層包括一導電助劑,所述導電助劑包括導電碳黑、奈米碳管、石墨烯、碳纖維或其組合物,所述導電助劑的含量為0.5至5重量百分濃度。
  13. 一種可充電電池的電極,其包括一擴散輔助結構,所述擴散輔助結構具有一凹陷圖案。
  14. 如請求項13所述的電極,其中,所述凹陷圖案包括多個條形槽,多個所述條形槽沿一第一方向延伸並沿著一第二方向排列。
  15. 如請求項14所述的電極,其中,多個所述條形槽在所述第二方向具有相同的寬度。
  16. 如請求項14所述的電極,其中,每兩相鄰的所述條形槽在所述第二方向上彼此相隔一預定間距,所述預定間距與每一所述條形槽在所述第二方向的寬度之間的比值為1至9。
  17. 如請求項13所述的電極,其包括一集電板以及一活性物質層,所述活性物質層位於所述集電板上,並具有所述擴散輔助結構。
  18. 如請求項17所述的電極,其中,所述集電板具有一連接所述活性物質層的上表面,且所述活性物質層完全覆蓋所述上表面。
  19. 如請求項17所述的電極,其中,所述活性物質層包括一導電助劑,所述導電助劑包括導電碳黑、奈米碳管、石墨烯、碳纖維或其組合物,所述導電助劑的含量為0.5wt%至5wt%。
TW107128456A 2018-06-13 2018-08-15 可充電電池及其電極 TWI685996B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201862684636P 2018-06-13 2018-06-13
US62/684,636 2018-06-13

Publications (2)

Publication Number Publication Date
TW202002380A TW202002380A (zh) 2020-01-01
TWI685996B true TWI685996B (zh) 2020-02-21

Family

ID=68838774

Family Applications (1)

Application Number Title Priority Date Filing Date
TW107128456A TWI685996B (zh) 2018-06-13 2018-08-15 可充電電池及其電極

Country Status (3)

Country Link
US (1) US10734669B2 (zh)
CN (1) CN110600676A (zh)
TW (1) TWI685996B (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI665842B (zh) * 2018-06-13 2019-07-11 金碳洁股份有限公司 無線充電的電源管理系統及其方法
JP7320010B2 (ja) * 2021-03-12 2023-08-02 プライムプラネットエナジー&ソリューションズ株式会社 二次電池用電極の製造方法および電極ならびに該電極を備える二次電池
JP7414758B2 (ja) * 2021-03-12 2024-01-16 プライムプラネットエナジー&ソリューションズ株式会社 二次電池用電極およびそれを備える二次電池
CN113381079B (zh) * 2021-06-08 2022-07-08 歌尔科技有限公司 一种卷绕式电池及tws蓝牙耳机
JP2023101951A (ja) * 2022-01-11 2023-07-24 トヨタ自動車株式会社 電極の製造方法、電極集電体および電極

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI369019B (en) * 2007-12-27 2012-07-21 Ind Tech Res Inst Cathodal materials for lithium cells, methods for fabricating the same, and lithium secondary cells using the same
CN104600352A (zh) * 2013-10-30 2015-05-06 Sk新技术株式会社 带有形成气孔通道的石墨毡的钠离子二次电池

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6210826B1 (en) * 1998-03-06 2001-04-03 Rayovac Corporation Seals, and electrochemical cells made therewith
CN102969767B (zh) * 2012-11-26 2015-10-28 深圳凯虹移动通信有限公司 移动终端设备及其充电方法
CN203932198U (zh) * 2014-05-30 2014-11-05 比亚迪股份有限公司 一种锂离子电池电极片及锂离子电池

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI369019B (en) * 2007-12-27 2012-07-21 Ind Tech Res Inst Cathodal materials for lithium cells, methods for fabricating the same, and lithium secondary cells using the same
CN104600352A (zh) * 2013-10-30 2015-05-06 Sk新技术株式会社 带有形成气孔通道的石墨毡的钠离子二次电池

Also Published As

Publication number Publication date
US20190386331A1 (en) 2019-12-19
CN110600676A (zh) 2019-12-20
TW202002380A (zh) 2020-01-01
US10734669B2 (en) 2020-08-04

Similar Documents

Publication Publication Date Title
TWI685996B (zh) 可充電電池及其電極
US9246161B2 (en) All-solid battery
KR102095008B1 (ko) 음극, 이를 포함하는 이차전지, 전지 모듈 및 전지 팩
CN106207082A (zh) 电气设备
KR102122467B1 (ko) 리튬 이차전지용 전극 및 이를 포함하는 리튬 이차전지
CN101969114A (zh) 锂离子二次电池及其极片的制备方法
US20150064562A1 (en) Nickel-iron battery with a chemically pre-formed (cpf) iron negative electrode
JP2001210304A (ja) 密閉型電池およびその製造方法
JP2015125893A (ja) 全固体電池の製造方法
CN107925061B (zh) 用于制造电极的方法
KR101207723B1 (ko) 비수전해질 이차전지용 집전체, 전극, 및 비수전해질 이차전지, 및 그 제조방법
US11476503B2 (en) All-solid-state battery
KR20200028258A (ko) 이차전지용 음극 및 그를 포함하는 이차전지
JP7174334B2 (ja) 二次電池
JP2003249223A (ja) リチウムイオン二次電池およびその製造方法
KR100274892B1 (ko) 리튬 2차전지
CN113287214A (zh) 极片、电芯及电池
KR101941683B1 (ko) 전극조립체 및 이의 제조방법
JP4039893B2 (ja) 高容量負極
KR20240000416U (ko) 리튬 이온 배터리
KR20080021945A (ko) 전지용 전극과 이를 이용한 이차 전지
JP4297711B2 (ja) 電気化学素子
KR20070020759A (ko) 무기 산화물을 포함하고 있는 리튬 이차전지
JP2014175155A (ja) 非水電解液二次電池用電極、その製造方法、及び非水電解液二次電池
KR102056455B1 (ko) 음극 및 이를 포함하는 이차 전지

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees