TWI674272B - 具有apes活性的核酸分子 - Google Patents

具有apes活性的核酸分子 Download PDF

Info

Publication number
TWI674272B
TWI674272B TW106106519A TW106106519A TWI674272B TW I674272 B TWI674272 B TW I674272B TW 106106519 A TW106106519 A TW 106106519A TW 106106519 A TW106106519 A TW 106106519A TW I674272 B TWI674272 B TW I674272B
Authority
TW
Taiwan
Prior art keywords
sequence
cells
dna
apes
nucleic acid
Prior art date
Application number
TW106106519A
Other languages
English (en)
Other versions
TW201726729A (zh
Inventor
田淵久大
杉山朋也
Original Assignee
中外製藥股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中外製藥股份有限公司 filed Critical 中外製藥股份有限公司
Publication of TW201726729A publication Critical patent/TW201726729A/zh
Application granted granted Critical
Publication of TWI674272B publication Critical patent/TWI674272B/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P21/00Preparation of peptides or proteins
    • C12P21/02Preparation of peptides or proteins having a known sequence of two or more amino acids, e.g. glutathione
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/2866Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against receptors for cytokines, lymphokines, interferons
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/30Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants from tumour cells
    • C07K16/303Liver or Pancreas
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/10Immunoglobulins specific features characterized by their source of isolation or production
    • C07K2317/14Specific host cells or culture conditions, e.g. components, pH or temperature
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/14Type of nucleic acid interfering N.A.
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2510/00Genetically modified cells
    • C12N2510/02Cells for production

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Biophysics (AREA)
  • Microbiology (AREA)
  • Plant Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Immunology (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)

Abstract

本發明提供一種能夠使用動物培養細胞以高生產量製造蛋白質的方法,其係包含使APES(Antibody Production Enhancing Sequence)表現、且培養經導入編碼所期望之多肽之DNA的細胞,而產生所期望之多肽。APES係包含與NfkBia相關之鹼基序列,且具有使細胞內之NfkBia表現降低的功能。

Description

具有APES活性的核酸分子
本發明係關於重組多肽之製造方法,更詳細而言,係關於使用nuclear factor κ B inhibitor α(NfkBia)之表現低下的動物細胞,效率良好地製造多肽之方法。
使用基因重組技術生產有用的蛋白質作為醫藥時,若使用動物細胞,則能夠進行原核細胞所無法進行的複雜轉譯後修飾或摺疊(folding),因此動物細胞常被用作用以生產重組蛋白質之宿主細胞。
近年來,抗體或生理活性蛋白質等多數之生物醫藥品出現,但效率良好地於動物細胞生產重組蛋白質的技術,與生物醫藥品之低成本化有關,而確保了對患者之穩定的供給。
因此,生產效率更高的蛋白質製造方法是被期待的。
NfkBia(IKB α、nuclear factor κ B inhibitor α)係nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor,alpha的略稱,且與細胞內之訊息傳導相關的轉錄因子之NF-kappa B的活化有關聯。NfkBia係 NF-kappa B之不活化因子之一。新生成/合成之NfkBia係藉由於核內被誘導表現,將NF-kappa B之DNA結合與轉錄活性作負向調節(非專利文獻1)。又,如NfkBia之抑制細胞增殖之一部分的基因表現,幾乎於所有的小鼠或人類腫瘤細胞中均被抑制(非專利文獻2)。NF-kappa B通常係與如NfkBia之不活化因子結合而存在,但藉由各種刺激而由不活化因子遊離而被活化,移動至核內,而結合至位於細胞激素、成長因子、黏著分子、細胞死亡控制因子與其他各樣之標的基因的啟動子/加強子區域之特異的DNA序列(稱作5’-GGGACTTTCC-3’、NF κ B結合序列、kB結構域(motif)、NFkB反應序列等(序列編號35)),與轉錄活性之調節相關聯(非專利文獻3)。
另一方面,就在動物培養細胞內之NfkBia的行為而言,關於與重組蛋白質之產生能力的關係,尚全無所知。
[先前技術文獻]
[非專利文獻1]
Inducible nuclear expression of newly synthesized I kappa B alpha negatively regulates DNA-binding and transcriptional activities of NF- kappa B
Mol. Cell. Biol., 05 1995, 2689-2696, Vol 15, No. 5
[非專利文獻2]
From mice to humans: Identification of commonly deregulated genes in mammary cancer via comparative SAGE studies
Hu Y., Sun H., Drake J., Kittrell F., Abba M.C., Deng L.,Gaddis S., Sahin A., Baggerly K., Medina D. and Aldaz C.M.
Cancer Research 2004 64:21 (7748-7755)
[非專利文獻3]
"New insights into the Role of Nuclear Factor- kappa B in Cell Growth Regulation"
American Journal of Pathology, 2001, Vol. 159, No.2: 387-397
本發明係以提供能夠以高生產量製造天然型蛋白質或重組蛋白質之方法為目的。
本發明者等人為了解決上述課題而極盡努力,以具有高的重組抗體產生能力之培養細胞株(CHO細胞株)為材料,針對於該細胞株之表現顯著的基因進行探討的結果,以特定小鼠序列為探針,鑑定了被認識之其一mRNA型非編碼RNA。此轉錄產物相當於NfkBia之mRNA的非轉譯區域之互補鏈。進一步地,藉由使由此轉錄產物中之一部分的序列所構成之核酸分子在重組培養細胞中表現,發現 了該培養細胞之重組多肽產生能力會顯著地提高。又,本發明者等人,發現了在該非編碼RNA之表現亢進之抗體高產生細胞中,NfkBia的表現被抑制。進一步地,本發明者等人發現了具有高的重組抗體產生能力的培養細胞,會在細胞內抑制NfkBia之表現。因而,考慮到藉由使控制在培養細胞內之NfkBia表現的轉錄產物高表現,能夠增加所期望之多肽的生產量,而完成了本發明。
本說明書中,將如此藉培養細胞內之表現量增加,而具有提高重組抗體等蛋白質之產生能力之功能的RNA或者DNA或該等序列總稱命名為APES(Antibody Production Enhancing Sequence)(隨著情況不同,亦有稱為PPES(Polypeptide Production Enhancing Sequence))。
本發明者等人,推測APES(或PPES)係藉由控制培養細胞內之NfkBia表現,而增強Nf-kappa B之活性,藉此提高重組多肽產生能力。推測活性經增強之NF-kappa B會移動至核內,使免疫、發炎、抗細胞凋亡相關聯之基因(Bcl-2,Bcl-xL,IAPs(Inhibitor of Apoptosis Proteins)等)的表現亢進,而對細胞之增殖或生存率維持等做出貢獻。
進一步地,由通常之抗體等重組蛋白質或胜肽之基因表現用質體的啟動子/加強子區域中存在有複數個的NF-kappa B結合序列,亦推測移動至核內之NF-kappa B會增強表現質體之啟動子活性,對進一步的抗體之高產生化做出貢獻。如此之序列,例如為MCMV啟動子的情況時,於來自小鼠巨細胞病毒之序列(DD434486)中存在有8處、 於來自人類巨細胞病毒之序列(DI097553)中存在有3處的NF-kappa B結合序列。
本發明的要旨如以下所述。
(1)一種多肽之製造方法,其係包含表現APES、且培養經導入編碼所期望多肽之DNA的細胞,產生所期望的多肽。
(1-1)如(1)之方法,其中細胞為強表現APES之細胞。
(2)如(1)之方法,其中APES係包含藉由於來自人類、小鼠、大鼠或倉鼠之NfkBia基因的DNA或mRNA形成鹼基對而結合,而可抑制NfkBia之基因表現的鹼基序列之核酸分子。
(3)如(2)之方法,其中APES為包含藉由於NfkBia之mRNA的一部分形成鹼基對而可結合之19~25鹼基長的序列之至多30鹼基長的低分子RNA。
(4-1)如(2)之方法,其中APES為包含藉由於NfkBia之mRNA的一部分形成鹼基對而可結合之19~25鹼基長的序列之至多561鹼基長的mRNA型非編碼RNA。
(4)如(2)之方法,其中APES為包含藉由於NfkBia之mRNA的一部分形成鹼基對而可結合之19~25鹼基長的序列之至多500鹼基長之mRNA型非編碼RNA。
(5-1)如(2)之方法,其中APES為包含藉由於NfkBia之mRNA的一部分形成鹼基對而可結合之19~25鹼基長的序列之561~1579鹼基長之mRNA型非編碼RNA。
(5)如(2)之方法,其中APES為包含藉由於NfkBia之 mRNA的一部分形成鹼基對而可結合之19~25鹼基長的序列之500~1000鹼基長之mRNA型非編碼RNA。
(6)如(3)~(5)中任一項之方法,其中19~25鹼基長之連續序列,為以序列編號2所示鹼基序列中之任意部分序列。
(7-1)如(6)之方法,其中APES係由包含以下之鹼基序列的核酸分子中選擇:(a)由序列編號1~16及29之任一鹼基序列所構成之DNA;(b)包含上述(a)序列,且為NfkBia基因之3’側非轉譯區域的部分序列之DNA;(c)與上述(a)或(b)序列除了1或數個鹼基之外為相同的鹼基序列所構成之DNA;(d)上述(a)、(b)或(c)之轉錄產物的RNA;(e)藉由於上述(a)序列形成鹼基對而可結合之序列所構成之DNA或RNA。
(7)如(6)之方法,其中APES係由包含以下鹼基序列之核酸分子中選擇:
(a)序列編號4~16之鹼基序列所構成之DNA;
(b)上述(a)之轉錄產物之RNA
(c)與上述(a)序列除了1個鹼基之外為相同的鹼基序列所構成之DNA
(d)上述(c)之轉錄產物之RNA
(e)藉由於上述(a)序列形成鹼基對而可結合之序列所構成之DNA或RNA。
(8)如(1)之方法,其係於細胞中導入編碼所期望之多肽的外來DNA、且人為導入APES。
(9)如(8)之方法,其中經人為導入APES之細胞,為經轉染APES之細胞。
(10)如(8)之方法,其中經人為導入APES之細胞,為內因性APES的轉錄經活化的細胞。
(11)如(8)之方法,其中於細胞中進一步導入編碼牛磺酸轉運蛋白之DNA。
(12)如(8)之方法,其中於細胞中進一步導入編碼半胱亞磺酸脫羧基酶(cysteine sulfinic acid decarboxylase)之DNA。
(13)如(8)之方法,其中於細胞中進一步導入編碼丙胺酸轉移酶之DNA。
(14)如(1)之方法,其中多肽為抗體。
(15)如(1)之方法,其中細胞為中國倉鼠卵巢細胞。
(16)一種製造含有多肽之醫藥品之方法,該多肽係以如上述任一項之方法所製造。
(17)一種核酸分子,其係含有以下之鹼基序列,且具有APES活性(APES或PPES)(但序列編號1之核酸分子除外):(a)由序列編號2~16及29之任一鹼基序列所構成之DNA;(b)含有上述(a)序列,且為NfkBia基因之3’側非轉譯區域之部分序列的DNA; (c)由與序列編號1~16及29或(b)序列除了1或數個鹼基之外為相同的鹼基序列所構成之DNA;(d)上述(a)、(b)或(b)之轉錄產物之RNA;(e)藉由於上述(a)序列形成鹼基對而可結合之序列所構成之DNA或RNA。
(18)一種載體,其係含有如上述(17)之核酸分子。
(19)一種細胞,其係經人為導入如上述(17)之核酸分子或如(18)之載體。
藉由本發明,可效率良好地生產重組蛋白質。
[圖1]圖1係顯示經鑑定之AI462015轉錄產物之序列及於小鼠基因體中的位置。
[圖2]圖2係顯示於CHO-DG44細胞中使Mab1(抗IL-6受體抗體)高表現之抗體產生細胞的繼代培養第3天時之AI462015轉錄產物的表現強度。
[圖3]圖3係顯示於CHO-DXB11s細胞中使Mab2(抗Glypican 3抗體)高表現之抗體產生細胞的繼代培養第3天時之AI462015轉錄產物的表現強度。
[圖4]圖4係顯示Mab2(抗Glypican 3抗體)產生細胞之1L發酵槽饋料批式培養第3天時之AI462015轉錄產物的表現強度。
[圖5]圖5係顯示Mab2產生細胞之1L發酵槽的饋料批式培養後期第13天時之AI462015轉錄產物的表現強度之亢進。
[圖6]圖6係顯示Mab1(抗IL-6受體抗體)產生潛能低之細胞的1L發酵槽饋料批式培養第3天時之AI462015轉錄產物的表現強度。
[圖7]圖7為轉錄產物AI462015(437p)之一部分序列434bp之表現質體。
[圖8]圖8為轉錄產物AI462015(437p)之一部分序列165bp之表現質體。
[圖9]圖9為作為控制組之僅表現潮黴素抗性基因之質體。
[圖10]圖10係顯示藉由轉錄產物AI462015(437p)之一部分序列的強表現,Mab1產生量會增加。
[圖11] 圖11係顯示於抗體高產生細胞中之轉錄產物AI462015的強表現與NfkBia的表現抑制。
[圖12]圖12係顯示使用於NfkBia表現定量之探針組。
[圖13]圖13係顯示於抗體高產生細胞中之NfkBia表現抑制的定量結果。
[圖14]圖14係顯示小鼠MCMV IE2啟動子上(序列編號23)之8個NfkB結合部位(下線部分)。
[圖15]圖15係microRNA表現之解析法概略。
[圖16]圖16係顯示於抗體高產生細胞高表現之來自microRNA的PCR產物。
[圖17]圖17為於pHyg-TAUT表現細胞中使轉錄產物AI642048(437p)之一部分序列165bp共同表現的質體pPur-APES165及使ALT1共同表現的pPur-ALT1。
[圖18]圖18係為顯示了APES強表現而導致之細胞高增殖、抗體高產生效果之振盪器饋料批式培養的結果。
[圖19]圖19係為顯示了APES強表現而導致之細胞高增 殖、抗體高產生效果之L-Jar饋料批式培養的結果。
[圖20]圖20係顯示APES165強表現宿主候選細胞(9株)之APES表現量與活細胞密度的相關。
[圖21]圖21係顯示藉由轉錄產物AI462015(437p)之一部分序列APES165的更進一步的部分序列之強表現,Mab1產生量會增加。
[圖22]圖22顯示於圖21具有抗體高產生效果之APES165的更進一步的部分序列,係包含Nfkbia互補序列。
[圖23]圖23係顯示AI462015為小鼠Nfkbia mRNA之互補鏈。(實施例8)
[圖24]圖24顯示AI462015之相同序列係存在於CHO-K1細胞基因體中。(實施例8)
[圖25a]圖25係顯示AI462015之一部分序列(由5′端起第7-91號鹼基),係超越物種而被保留。
[圖25b]顯示AI462015之一部分序列(由5′端起第7-91號鹼基),係超越物種而被保留。
[圖25c] 顯示AI462015之一部分序列(由5′端起第7-91號鹼基),係超越物種而被保留。
[圖25d]顯示AI462015之一部分序列(由5′端起第7-91號鹼基),係超越物種而被保留。
[圖25e]顯示AI462015之一部分序列(由5′端起第7-91號鹼基),係超越物種而被保留。
以下對本發明之實施形態更詳細地說明。
(1)APES(Antibody Production Enhancing Sequence)
本發明係提供一種多肽之製造方法,其係包含表現APES、且培養經導入編碼所期望之多肽的DNA之細胞,以產生所期望之多肽。
如於後述實施例中詳細說明的,本發明者等人,發現了於培養CHO細胞中,與抗體產生能力相關而表現量變高的mRNA型非編碼RNA,而鑑定為小鼠基因體中之437鹼基(圖1、GenBank AccessionID:AI462015、序列編號1)之轉錄產物。圖1顯示AI462015之序列及於小鼠基因體上之位置。AI462015之序列,在小鼠基因體中係存在於NfkBia(nuclear factor κ B inhibitor α)mRNA3’側之非轉譯區域附近的互補鏈上。(注記:藉由其後的GeneBank資訊更新,明確得知AI462015轉錄產物之437 鹼基係相當於小鼠NfkBia mRNA 3’側非轉譯區域(513鹼基)之互補鏈。(圖23))
進一步地,本發明者等人,發現了藉由將具有來自AI462015之一部分序列的核酸分子導入宿主細胞中並使其表現,能夠使所期望之多肽生產量增加。
本發明者等人,推測該等核酸分子係藉由控制培養細胞內之NfkBia表現,而增強Nf-kappa B之活性,藉以提高重組多肽產生能力。具體而言,推測活性經增強之NF-kappa B移動至核內,使免疫、發炎、抗細胞凋亡相關聯之基因(Bcl-2,Bcl-xL,IAPs(Inhibitor of Apoptosis Proteins)等)的表現亢進,而對細胞之增殖或生存率維持等作出貢獻。
因而本發明者等人,將具有藉由於培養細胞內表現、或者藉由表現量增加,來控制培養細胞內之NfkBia表現,藉以使Nf-kappa B之活性增強,使重組抗體等所期望之重組多肽的產生能力提高的功能,較佳為不編碼蛋白質之RNA或者DNA或該等之序列,總稱而命名為APES(Antibody Production Enhancing Sequence)(隨著情況不同,亦稱為PPES(Polypeptide Production Enhancing Sequence))。
上述之來自AI462015的序列或其一部分的序列,不僅在小鼠、倉鼠等囓齒類,在人類中亦有保留,於其他哺乳動物、或魚類、昆蟲等動物中亦認為是保留性高的序列。因此,對應於來自AI462015之序列或其一部分之序 列的來自各種動物細胞之NfkBia mRNA 3’側非轉譯區域之部分序列或者其互補序列,亦可作為本發明之APES序列來使用。
於其一態樣中,APES於序列之一部分中含有Nfkbia互補序列、或者為Nfkbia互補序列,藉此,APES表現細胞中Nfkbia之表現被抑制,因此此抑制效果會促進抗體等之高產生功能。
於其一態樣中,APES係對NfkBia mRNA進行RNA干渉的核酸分子,具有於細胞內與NfkBia之mRNA結合,對表現作負控制的功能,藉由於細胞內增加該表現量,使NfkBia之功能表現抑制,以使抗體基因表現量增加,並且使抗體等重組多肽高度產生。
因此,APES可為包含藉由於NfkBia之基因DNA或mRNA形成鹼基對而可結合之序列之雙股RNA(dsRNA)、或短dsRNA之siRNA、或解離為單股之siRNA、或shRNA、反意DNA或RNA、microRNA(miRNA)或mRNA型非編碼RNA。
例如,作為APES之序列,可為由含有與標的之NfkBia mRNA互補的一部分序列之序列所構成之寡核苷酸。作為如此之寡核苷酸的例子,可列舉相當於NfkBia mRNA互補鏈之19~25鹼基的序列、或具有與該序列除了一鹼基之外為相同之序列、且具有抑制NfkBia之表現的效果的miRNA。或,APES亦可為長鏈之mRNA型非編碼RNA,例如可為由包含藉由於NfkBia之基因DNA或 mRNA形成鹼基對而可結合之序列的長度561核苷酸長(561 mer)或者至多500核苷酸長(500 mer)的序列所構成、且具有抑制NfkBia表現的效果者。或,APES亦可為更加長鏈(數百~數十萬核苷酸)之mRNA型非編碼RNA。例如,APES可為200-10萬核苷酸長、或300~30萬核苷酸長之核酸分子或序列。
藉由形成鹼基對而可結合之序列,意指不限於完全對合(亦即100%互補)者,在不妨礙功能的範圍亦容許不對合鹼基的存在。或,隨著APES形態之不同,部分的互補性反而較佳。因此,例如,於包含NfkBia之非轉譯區域的基因DNA或mRNA中有至少70%、更佳為80%、又更佳為90%、最佳為95%相同之序列或其互補序列,亦包含在「藉由形成鹼基對而可結合之序列」中。例如,關於561 mer或者500 mer之mRNA型非編碼RNA,其至少90%相同之序列中,亦包含含有由於鹼基之插入、缺失、或點突變所造成之1~50個(或者561 mer的情況時為1~56個)之失配鹼基的變異序列,且為伴隨於其宿主細胞中的表現,抗體等重組多肽的產生能力會增大、或具有抑制NfkBia表現之功能者。據此,例如如70%以上之相同性,具有某種程度的序列類似性,且來自與宿主細胞不同生物種之NfkBia同源基因(異種間相同基因)而來的序列亦能夠作為APES來利用。
或,藉由形成鹼基對而可結合的序列,亦包含在如細胞內的條件下NfkBia能夠與mRNA結合的序列。如此之 序列,係包含例如,在所屬技術領域中具有通常知識者廣為周知之作為高度嚴格條件的條件下雜交、且具有所期望之功能的序列。高度嚴格之條件的一例,為將聚核苷酸與其他聚核苷酸,在含有6×SSPE或SSC、50%甲醯胺、5×Denhardt’s試藥、0.5%SDS、100μg/ml之經片段化(fragmentation)之變性鮭魚精子DNA之雜交緩衝液中,於42℃之雜交溫度放置12~16小時(此處,一方之聚核苷酸亦可附著於如膜的固體表面)接著,使用含有1×SSC、0.5%SDS之洗淨緩衝液,於42℃以上之最適溫度下洗淨數次。關於其他之具體的條件,可參照Sambrook等「Molecular Cloning:A Laboratory Manual第3版」Cold Spring Harbor Laboratory Pr;及、Ausubel等「分子生物學實驗流程」丸善、等多數之所屬技術領域中具有通常知識者所周知的手冊。
具有作為APES之活性的新穎核酸分子或具有與其互補之序列的核酸分子,係本發明重要的特徵。
於其一態樣中,APES為具有抑制NfkBia之表現或增大重組多肽之產生的功能之核酸分子,其係藉由於來自人類、小鼠、大鼠或倉鼠之NfkBia基因的DNA或mRNA形成鹼基對而可結合之RNA或DNA。如此之核酸分子,係包含與編碼NfkBia之mRNA相同或互補的序列,能夠結合於NfkBia基因或mRNA,以阻礙其表現。
於其一態樣中,APES為包含與NfkBia之mRNA的一部分互補之序列的19~25鹼基長的低分子RNA、或具 有與該序列除了一鹼基之外為相同的序列,且具有抑制NfkBia之表現或增大重組多肽之產生的功能之低分子RNA。此處,低分子RNA意指Small non-coding RNA(snRNA),snRNA中亦包含miRNA。
於其一態樣中,APES係包含與NfkBia之mRNA的一部分互補的序列(例如,上述之低分子非編碼RNA序列)的至多561鹼基長、或者至多500鹼基長的mRNA型非編碼RNA。
於其一態樣中,APES係包含與NfkBia之mRNA的一部分互補的序列(例如,上述之低分子非編碼RNA序列)之561~1579鹼基長、或者500~1000鹼基長的mRNA型非編碼RNA。
CHO細胞轉錄產物中發現的APES之一個具體例,係具有來自小鼠AI462015之一部分序列、或於如此之部分序列中1~數個鹼基經取代、缺損或附加之序列。特別可列舉出自5’側第4號之G至第168號之C為止的鹼基序列所構成之165鹼基之DNA序列(序列編號2、APES165)、或其互補(反意)DNA序列或包含由該等DNA轉錄之RNA序列的序列、或此序列中之任意長度的部分序列。或可列舉自5’側第4號之G至3’端之T為止的鹼基序列所構成之434鹼基之DNA序列(序列編號3、APES434)、或其互補(反意)DNA序列或包含由該等DNA轉錄之RNA序列的序列、或來自此序列之任意長度的部分序列。包含對應於小鼠AI462015序列之來自人類、倉 鼠、大鼠等哺乳類之序列的序列或者該等之部分序列、或如此之部分序列中1~數個鹼基經取代、缺損或附加之鹼基序列譯包含在內。
於其一態樣中,APES係具有AI462015中之自5’側第4號至第133號之鹼基序列(序列編號4、APES130)或來自此序列之一部分序列。例如,可列舉自5’側第4號至第68號(序列編號5、APES4-68)、或自第69號至第133號(序列編號6、APES69-133)之DNA序列或其互補DNA序列或由該等DNA轉錄之序列。
於其一態樣中,APES係具有AI462015中之自5’側第40號至第91號之52鹼基(序列編號7)之序列、或來自該52鹼基於任意位置被切斷之一部分序列的序列。例如,可列舉前半部分(APES40-68之29鹼基、或APES40-63之24鹼基、或APES40-61之22鹼基)或後半部分(APES69-91之23鹼基)之DNA序列或其互補DNA序列(分別相當於序列編號8~11)或由該等DNA轉錄之序列。
上述之52鹼基,除了一鹼基之外,為與大鼠NfkBia基因之3’側非轉譯區域之互補鏈相同的序列。又,其5’側之24鹼基(APES40-63、序列編號9)為與人類NfkBia基因之3’側非轉譯區域為相同序列。又,5’側之22鹼基(APES40-61、序列編號10:AAGTACCAAAATAATTACCAAC)為與大鼠、恆河猴、狗、馬等超越物種之NfkBia mRNA的3’側非轉譯區域之互補鏈為相同序列。藉由使與NfkBia基因之3’側非轉譯區域互補的一部分序列於宿主 細胞中表現,可期待RNAi效果。例如,具有與上述52鹼基中之19~25鹼基互補的序列之RNA,藉由作為microRNA(miRNA)而作用於NfkBia之mRNA非轉譯區域,而具有阻礙轉譯之可能性。
或、APES係具有AI462015中之自5’側第7號至第91號之85鹼基(序列編號29)之序列、或來自該85鹼基於任意位置被切斷之一部分序列的序列。具有與上述85鹼基中之19~25鹼基互補的序列之RNA,藉由作為microRNA(miRNA)而作用於NfkBia之mRNA非轉譯區域,而具有阻礙轉譯之可能性。
於其一態樣中,APES係具有於21鹼基之siRNA搜尋中被發現的序列。例如包含與AI462015中自第84號至第104號(序列編號12、APES84-104)、自第99號至第119號(序列編號13、APES99-119)、自第101號至第121號(序列編號14、APES101-121)之DNA序列互補的序列之miRNA序列。上述之APES 69-133中之自第71號至第112號之序列(序列編號16)經在GeneChip上定量,其為實際上高表現的區域,因此APES84-104有作為miRNA之功能的可能性高。
又,基於APES之構造上或功能上的特徵,可重新將具有作為APES之活性的核酸分子由化學合成或生物源來單離。APES之構造特徵,係為包含與標的之NfkBia mRNA之一部分互補的序列之核酸分子。核酸分子之形態係任何形態均可,可為DNA、DNA之轉錄產物、 mRNA、cDNA、或exosome RNA、化學合成之單股RNA、化學合成之雙股RNA等。功能上之特徵,係伴隨著於其宿主細胞中之表現,使抗體等重組多肽的產生能力增大,或抑制NfkBia之表現。
由生物源單離APES的情況時,來自任何生物均可,並無特殊限定。具體而言,可列舉來自人類、黑猩猩等靈長類;小鼠、大鼠、倉鼠等囓齒類;牛、豬、山羊、等家畜類;雞等鳥類;斑馬魚等魚類;蒼蠅等昆蟲類;線蟲類等動物之APES,較佳為來自人類、囓齒類或與宿主細胞相同種的APES,例如,使APES強表現之細胞為中國倉鼠卵巢細胞(CHO細胞)的情況時,較佳為來自人類、小鼠或倉鼠之APES。
如此之核酸分子,可藉由所屬技術領域中具有通常知識者所廣為周知的方法調製。例如,由高產生抗體等重組多肽之培養細胞調製全RNA,基於本發明之核酸序列(例如,序列編號2之APES165)來合成寡核苷酸,使用其作為引子進行PCR反應,放大具有作為APES之特徵的cDNA以調製即可。又,由高產生抗體等重組多肽之培養細胞調製低分子RNA後,製作cDNA基因庫,基於經選殖之cDNA鹼基序列,可得到包含與NfkBia mRNA互補的部分序列之低分子RNA。cDNA基因庫,亦能夠於調製microRNA(miRNA)等低分子RNA後,藉由例如Sambrook,J.et al.,Molecular Cloning、Cold Spring Harbor Laboratory Press(1989)所記載的方法來構築。
又,可藉由決定所得之cDNA的鹼基序列,將所得之cDNA作為探針來篩選基因體DNA基因庫,藉以單離表現APES之基因體DNA。
具體而言,可如以下之方式進行即可。首先,由具有表現本發明之APES的可能性之細胞、組織等單離全RNA。mRNA之單離可藉由廣為周知的方法、例如,藉由胍超離心法(Chirgwin,J.M.et al.,Biochemistry(1979)18,5294-5299)、AGPC法(Chomczynski,P.and Sacchi,N.,Anal.Biochem.(1987)162,156-159)等來調製全RNA後,使用RNeasy Mini Kit(QIAGEN)等進一步純化全RNA。
由所得之全RNA使用反轉錄酵素來合成cDNA。cDNA之合成,亦可用SuperScriptTM II Reverse Transcriptase(Invitrogen)等來進行。又,亦可使用引子等,遵照使用了5'-Ampli FINDER RACE Kit(Clontech製)及聚合酶連鎖反應(polymerase chain reaction;PCR)之5'-RACE法(Frohman,M.A.et al.,Proc.Natl.Acad.Sci.U.S.A.(1988)85,8998-9002;Belyavsky,A.et al.,Nucleic Acids Res.(1989)17,2919-2932),來進行cDNA之合成及放大。
由所得之PCR產物調製目的DNA片段,與載體DNA連結。進一步,由此製作重組載體,導入大腸菌等,選擇菌落以調製所期望的重組載體。目的DNA之鹼基序列,可藉由廣為周知的方法,例如,二去氧核苷酸鍊終止法來 確認。
又,所得到之DNA,可藉由市售之套組或廣為周知之方法來改變。改變可列舉例如site-directed mutagenesis法之導入一鹼基突變等。經如此改變的序列,只要具有APES活性,即包含於本發明的範圍。
本說明書中,「具有APES活性」意指藉由抑制經培養之宿主細胞內的NfkBia表現,活化Nf-kappa B,藉此具有提高重組多肽產生能力的作用。又,就一種定義來說,係指具有藉由於細胞內表現,而抑制NfkBia表現的功能。
本說明書中,亦有將具有APES活性之核酸分子稱為本發明之核酸分子的情況。
(2)APES之表現
本發明中,發現藉由使用表現APES的細胞,較佳為強表現APES之細胞,使該細胞之多肽產生量增加。
使APES強表現,意指藉由載體等將APES人為導入細胞而得之細胞、或相較於抗體基因導入前之原本的細胞,APES表現量有所增加。原本的細胞並無特殊限定,可列舉例如CHO細胞等製造重組蛋白質時用作宿主的細胞。作為具體例子,若依後述實施例說明,於使用了AFFYMETRIX公司之寡核苷酸陣列(Affymetrix MOUSE430_2)的GeneChip實驗中,抗體基因導入前之原本的細胞,其AI462015訊息值為2000以下,相較於此, APES表現量之增加,意指例如AI462015訊息值成為2倍以上。
強表現APES之細胞,係於細胞內含有內因性或外來APES。作為強表現APES之細胞,可列舉例如APES經人為導入的細胞。
APES經人為導入的細胞,能夠藉由所屬技術領域中具有通常知識者所廣為周知的方法來製作,例如,可藉由將編碼APES之DNA序列接入載體,並將該載體對細胞轉形而製作。
進一步地,本說明書中,藉由基因活化技術(例如,參照國際公開第WO94/12650號小冊子)活化內因性APES,結果,APES強表現之細胞亦包含於經人為導入APES的細胞。
內因性APES之典型的例子,係作為宿主細胞之基因體上被編碼的DNA序列之APES。又,本發明中,亦可利用不藉由基因活化技術,在抗體基因導入後以某種重要因子活化內因性APES之轉錄,而強表現的細胞。
經插入編碼APES之DNA序列的載體亦在本發明的範圍內。本發明之載體,係有用於用以在宿主細胞內或細胞外保持本發明之核酸分子、或使本發明之核酸分子表現。又,有用於用以在宿主細胞中使APES強表現。藉由於宿主細胞中使APES強表現,能夠增加宿主細胞之所期望多肽的生產量。
作為載體,例如以大腸菌為宿主的情況時,為了將載 體以大腸菌(例如,JM109、DH5 α、HB101、XL1Blue)等大量放大而大量調製,較佳為具有用以用大腸菌放大之「ori」,且進一步具有經轉之大腸菌的篩選基因(例如,可藉由某種藥劑(安比西林或四環黴素、卡那黴素、氯黴素)來判別之藥劑抗性基因)。載體的例子,可列舉M13系載體、pUC系載體、pBR322、pBluescript、pCR-Script等。又,以cDNA之次選殖、切出為目的時,於上述載體之外,可列舉例如pGEM-T、pDIRECT、pT7等。
(3)表現載體
本發明中,以APES的強表現、及/或生產多肽的目的來使用載體時,表現載體特別有用。本發明中能夠使用的表現載體,可列舉例如來自哺乳動物之表現載體(例如,pcDNA3(Invitrogen公司製)、或pEGF-BOS(Nucleic Acids.Res.1990,18(17),p5322)、pEF、pCDM8)、來自昆蟲細胞之表現載體(例如「Bac-to-BAC baculovairus expression system」(GIBCO BRL公司製)、pBacPAK8)、來自植物之表現載體(例如pMH1、pMH2)、來自動物病毒之表現載體(例如,pHSV、pMV、pAdexLcw)、來自反轉錄病毒之表現載體(例如,pZIpneo)、來自酵母之表現載體(例如,「Pichia Expression Kit」(Invitrogen公司製)、pNV11、SP-Q01)、來自枯草菌之表現載體(例如,pPL608、pKTH50)等。
用以使外來多肽表現的表現載體,係包含編碼該多肽 之DNA及該能夠推進DNA表現之表現控制序列。同樣地,用以使APES表現的表現載體,係包含編碼APES之DNA及能夠推進該DNA表現的表現控制序列。亦可將單一載體構築為表現多肽及APES兩者。使用基因活化技術將例如宿主基因體之一部分的APES或多肽基因活化的情況時,亦可導入促進來自如此之宿主細胞的DNA表現的表現控制序列。
表現控制序列之例子,係有適當的啟動子、加強子、轉錄終止子、含有編碼蛋白質之基因中之開始密碼子(亦即ATG)之Kozak序列、用於內含子之剪接(splicing)訊息、多腺苷酸化部位、及終止密碼子等,載體的構築,可由所屬技術領域中具有通常知識者適當進行。
表現控制序列較佳為含有在所使用的動物細胞中,可增大基因之轉錄量的啟動子/加強子區域。與編碼所期望之多肽的基因表現相關的啟動子/加強子區域,亦可含有NF-κ B結合序列。
以在CHO細胞、COS細胞、NIH3T3細胞等哺乳動物細胞表現為目的時,較佳為具有為了在細胞內表現所必要的啟動子,例如SV40啟動子(Mulligan等,Nature(1979)277,108)、MMLV-LTR啟動子、EF1 α啟動子(Mizushima等,Nucleic Acids Res.(1990)18,5322)、CMV啟動子等。又,更佳為具有用以篩選對細胞轉形的基因(例如,藉由藥劑(新黴素、G418等)能夠判別的藥劑抗性基因)。具有如此特性之載體,可列舉例如pMAM、pDR2、pBK- RSV、pBK-CMV、pOPRSV、pOP13等。
進一步地,以使基因穩定地表現、且放大細胞內之基因拷貝數為目的的情況時,可列舉於核酸合成路徑缺損的CHO細胞中導入具有與其互補的DHFR基因之載體(例如,pCHOI等),藉由胺甲基葉酸(MTX)而放大的方法;又,以基因之瞬時性表現為目的的情況時,可列舉使用於染色體上具有表現SV40 T抗原之基因的COS細胞,以具有SV40之複製起點的載體(pcD等)轉形的方法。複製開始點再者亦可使用來自多瘤病毒、腺病毒、牛乳突狀瘤病毒(BPV)等者。進一步地,因為於宿主細胞系中放大基因拷貝數,故表現載體可含有胺基配醣體轉移酶(APH)基因、胸苷激酶(TK)基因、大腸菌黃嘌呤鳥糞嘌呤磷酸基核糖轉移酶(Ecogpt)基因、二氫葉酸還原酵素(dhfr)基因等作為選擇標記。
(4)宿主細胞
本發明中使用的細胞,可為能夠產生所期望之多肽之天然細胞、亦可為經導入編碼所期望之多肽之DNA的細胞,但較佳為經導入編碼所期望之多肽之DNA的轉形細胞。
經導入編碼所期望之多肽之DNA的轉形細胞之一例,為至少轉染含有編碼所期望之多肽之DNA的表現載體,且進一步強表現內因性或外來APES之宿主細胞。
進一步,本發明中,「經導入DNA(或基因)」之細 胞,於經轉染外來性DNA之細胞之外,亦包含藉由基因活化技術(例如,參照國際公開第WO94/12650號小冊子)而活化內因性DNA,結果對應於該DNA之蛋白質表現或該DNA之轉錄會開始或增加之細胞。
使用APES經人為導入之細胞來製造所期望之多肽時,導入APES與編碼所期望之多肽之基因的順序並無特殊限制,可於導入APES之後導入編碼所期望之多肽的基因、亦可在導入編碼所期望之多肽的基因後導入APES。又,亦可同時導入APES與編碼所期望之多肽的基因。
使用載體時,APES及編碼所期望之多肽的基因之導入,可藉由單一載體同時導入,亦可使用複數個載體分別導入。
本發明中所用的細胞並無特殊限定,動物細胞、植物細胞、酵母等之真核細胞;大腸菌、枯草菌等之原核細胞等任何細胞均可,較佳為來自昆蟲、魚、兩生類、爬蟲類、哺乳類之動物細胞、特佳為哺乳動物細胞。哺乳動物細胞的由來,可列舉人類、黑猩猩等靈長類;小鼠、大鼠、倉鼠等囓齒類與其他,較佳為人類、囓齒類。進一步地,作為本發明之細胞,較佳為通常多用於多肽表現之CHO細胞、COS細胞、3T3細胞、骨髓瘤細胞、BHK細胞、HeLa細胞、Vero細胞等哺乳動物培養細胞。以所期望之多肽的大量表現為目的時,特佳為CHO細胞。CHO細胞,特別能夠適合使用DHFR基因缺損之CHO細胞之dhfr-CHO(Proc.Natl.Acad.Sci.USA(1980)77,4216- 4220)或CHO K-1(Proc.Natl.Acad.Sci.USA(1968)60,1275)。
上述之CHO細胞,較佳為DG44株、DXB-11株、K-1、CHO-S、特佳為DG44株及DXB-11株。
本發明之宿主細胞可使用作為例如用以製造或表現所期望之多肽的產生系統。只要於強表現APES之宿主細胞中導入編碼所期望之多肽的DNA,即可高生產所期望之多肽。本發明之宿主細胞中,亦可進一步導入編碼牛磺酸轉運蛋白(TauT)或陰離子交換蛋白(AE1)之DNA(亦可接入載體)。本發明之宿主細胞中,亦可進一步導入編碼半胱亞磺酸脫羧基酶(Cystein Sulfinic Acid Decarboxylase:CSAD)或丙胺酸轉移酶(Alanine Transferase:ALT1)之DNA。詳細可參照WO2007/119774、WO2008/114673、WO2009/020144以及WO2009/054433。
對宿主細胞之外來性DNA(亦可接入載體)導入,可藉由使用了例如磷酸鈣法、DEAE聚葡萄糖法、陽離子微脂體DOTAP(Boehringer-ingelheim公司製)之方法;電穿孔法、Nucleofection法(amaxa公司)、脂質體轉染(lipofetion)等方法來進行。
(5)所期望之多肽
以本發明之方法產生之多肽並無特殊限定,抗體(例如,抗IL-6受體抗體、抗IL-6抗體、抗Glypican-3抗體、抗CD3抗體、抗CD20抗體、抗GPIIb/IIIa抗體、抗 TNF抗體、抗CD25抗體、抗EGFR抗體、抗Her2/neu抗體、抗RSV抗體、抗CD33抗體、抗CD52抗體、抗IgE抗體、抗CD11a抗體、抗VEGF抗體、抗VLA4抗體等)或生理活性蛋白質(顆粒球群落刺激因子(G-CSF)、顆粒球巨噬細胞群落刺激因子(GM-CSF)、紅血球生成素、干擾素、IL-1或IL-6等介白素、t-PA、尿激酶、血清白蛋白、血液凝固因子、PTH等)等任何多肽均可,但特別以抗體為佳。抗體係天然抗體、Fab、scFv、sc(Fv)2等低分子化抗體、嵌合抗體、人類化抗體等任何抗體均可。
(6)多肽之製造
藉由培養上述宿主細胞,產生所期望之多肽,收集其多肽,可得到多肽。
細胞之培養中,可使用通常之細胞(較佳為動物細胞)培養中所使用的培養基。該等之中通常含有胺基酸、維生素類、脂質因子、能量源、滲透壓調節劑、鐵源、pH緩衝劑。該等成分之含量,通常以胺基酸0.05-1500mg/L、維生素類0.001-10mg/L、脂質因子0-200mg/L、能量源1-20g/L、滲透壓調節劑0.1-10000mg/L、鐵源0.1-500mg/L、pH緩衝劑1-10000mg/L、微量金屬元素0.00001-200mg/L、界面活性劑0-5000mg/L、增殖輔助因子0.05-10000μg/L及核苷0.001-50mg/L的範圍為適當,但不限定於該等,可隨著培養之細胞種類、所期望之多肽種類等來適當決定。
上述成分之外,亦可添加例如微量金屬元素、界面活性劑、增殖輔助因子、核苷等。
具體而言,可例示例如含有以下成分之培養基:L-丙胺酸、L-精胺酸、L-天門冬醯胺酸、L-天門冬胺酸、L-半胱胺酸、L-胱胺酸、L-麩胺醯胺酸、L-麩胺酸、甘胺酸、L-組胺酸、L-異白胺酸、L-白胺酸、L-賴胺酸、L-甲硫胺酸、L-鳥胺酸、L-苯丙胺酸、L-脯胺酸、L-絲胺酸、L-蘇胺酸、L-色胺酸、L-酪胺酸、L-纈胺酸等,較佳為L-丙胺酸、L-精胺酸、L-天門冬醯胺酸、L-天門冬胺酸、L-胱胺酸、L-麩胺醯胺酸、L-麩胺酸、甘胺酸、L-組胺酸、L-異白胺酸、L-白胺酸、L-賴胺酸、L-甲硫胺酸、L-苯丙胺酸、L-脯胺酸、L-絲胺酸、L-蘇胺酸、L-色胺酸、L-酪胺酸、L-纈胺酸等之胺基酸類;i-肌醇、生物素、葉酸、硫辛酸、菸鹼醯胺、菸鹼酸、p-胺基安息香酸、泛酸鈣、鹽酸吡哆醛、鹽酸吡哆醇、核黃素、鹽酸硫胺素、維生素B12、抗壞血酸等,較佳為生物素、葉酸、硫辛酸、菸鹼酸醯胺、泛酸鈣、鹽酸吡哆醛、核黃素、鹽酸硫胺素、維生素B12、抗壞血酸等之維生素類;氯化膽鹼、酒石酸膽鹼、亞麻油酸、油酸、膽固醇等,較佳為氯化膽鹼等之脂質因子;葡萄糖、半乳糖、甘露糖、果糖等,較佳為葡萄糖等之能量源;氯化鈉、氯化鉀、硝酸鉀等,較佳為氯化鈉等之滲透壓調節劑;EDTA鐵、檸檬酸鐵、氯化亞鐵、氯化鐵、硫酸亞鐵、硫酸鐵、硝酸鐵等,較佳為氯化鐵、EDTA鐵、檸檬酸鐵等之鐵源類;碳酸氫鈉、氯化鈣、磷 酸二氫鈉、HEPES、MOPS等,較佳為碳酸氫鈉等之pH緩衝劑。
上述成分之外,亦可添加例如硫酸銅、硫酸錳、硫酸鋅、硫酸鎂、氯化鎳、氯化錫、氯化鎂、亞矽酸鈉等,較佳為硫酸銅、硫酸鋅、硫酸鎂等之微量金屬元素;Tween80、Pluronic F68等之界面活性劑;及重組型胰島素、重組型IGF-1、重組型EGF、重組型FGF、重組型PDGF、重組型TGF-α、鹽酸乙醇胺、亞硒酸鈉、視黃酸、鹽酸腐胺等、較佳為亞硒酸鈉、鹽酸乙醇胺、重組型IGF-1、鹽酸腐胺等之增殖輔助因子;去氧腺苷、去氧胞苷、去氧鳥苷、腺苷、胞苷、鳥苷、尿苷等之核苷等。再者上述培養基之適當例子中,亦可含有鏈黴素、盤尼西林G鉀及健大黴素等抗生素;或酚紅等pH指示藥。
培養基之pH雖隨著培養之細胞而不同,但一般而言為pH6.8~7.6,多數情況pH7.0~7.4為適當。
培養基亦可使用市售之動物細胞培養用培養基,例如D-MEM(Dulbecco's Modified Eagle Medium)、D-MEM/F-12 1:1 Mixture(Dulbecco's Modified Eagle Medium:Nutrient Mixture F-12)、RPMI1640、CHO-S-SFM II(Invitrogen公司)、CHO-SF(Sigma-Aldrich公司)、EX-CELL 301(JRH biosciences公司)、CD-CHO(Invitrogen公司)、IS CHO-V(Irvine Scientific公司)、PF-ACF-CHO(Sigma-Aldrich公司)等培養基。
又,培養基亦可為無血清培養基。
宿主細胞為CHO細胞時,CHO細胞之培養可使用所屬技術領域中具有通常知識者廣為周知之方法來進行。例如,通常可於氣相之CO2濃度為0-40%、較佳為2-10%之環境下,於30-39℃、較佳為37℃左右來培養。
用以產生所期望之多肽的適當培養期間通常為1天~3個月、較佳為1天~2個月、更佳為1天~1個月。
又,動物細胞培養用之各種培養裝置,例如可使用發酵槽型箱培養裝置、氣升型培養裝置、培養燒瓶型培養裝置、旋轉燒瓶型培養裝置、微載體型培養裝置、流動層型培養裝置、中空纖維型培養裝置、轉瓶型培養裝置、填充槽型培養裝置等來培養。
培養可使用批式培養(batch culture)、饋料批式培養(fed-batch culture)、連續培養(continuous culture)等任意方法,但較佳為饋料批式培養或連續培養、更佳為饋料批式培養。
所產生之多肽,可由宿主細胞內或細胞外(培養基等)單離,而作為實質上純粹均勻的多肽而純化。多肽之分離、純化,只要係使用通常之多肽純化中使用的分離、純化方法即可,並無任何限定。例如,只要係將層析法管柱、過濾器、超微過濾、鹽析、溶劑沈澱、溶劑萃取、蒸餾、免疫沈降、SDS-聚丙烯醯胺膠體電泳、等電點電泳法、透析、再結晶等作適當選擇、組合,即可分離、純化多肽。
層析法可列舉例如親和性層析法、離子交換層析法、 疏水性層析法、膠體過濾、逆相層析法、吸附層析法等(Strategies for Protein Purification and Characterization:A Laboratory Course Manual.Ed Daniel R.Marshak et al.,Cold Spring Harbor Laboratory Press,1996)。該等層析法,可使用液相層析法,例如HPLC、FPLC等液相層析法來進行。本發明亦包含使用該等純化方法而經高度純化之多肽。
再者,藉由於多肽純化前或純化後,藉由使適當的多肽修飾酵素作用,亦可任意地增加修飾、或者部分的將胜肽去除。多肽修飾酵素可使用例如胰蛋白、胰凝乳蛋白酶、賴胺醯肽鏈內切酶、蛋白質激酶、葡萄醣苷酶等。
(7)醫藥品
藉由本發明之方法所製造的多肽,當具有可作為醫藥而利用的生物學活性時,藉由將此多肽與醫藥上容許之載持體或添加劑混合而予以製劑化,能夠製造醫藥品。
醫藥上容許的載持體及添加劑之例子,可列舉水、醫藥上容許之有機溶劑、膠原蛋白、聚乙烯醇、聚乙烯吡咯啶酮、羧基乙烯基聚合物、羧基甲基纖維素鈉、聚丙烯酸鈉、海藻酸鈉、水溶性聚葡萄糖、羧基甲基澱粉鈉、果膠、甲基纖維素、乙基纖維素、三仙膠、阿拉伯膠、酪蛋白、寒天、聚乙二醇、二甘油、甘油、丙二醇、凡士林、石蠟、硬脂醇、硬脂酸、人類血清白蛋白(HSA)、甘露醇、山梨醇、乳糖、容許作為醫藥添加物之界面活性劑 等。
實際之添加物,雖係依照本發明治療劑之劑型,而由上述之中單獨或適當組合而選出,當然並不限定於該等。例如,作為注射用製劑而使用時,可使用將經純化之多肽溶解於溶劑,例如生理食鹽水、緩衝液、葡萄糖溶液等,且於其中添加吸附防止劑,例如Tween80、Tween20、明膠、人類血清白蛋白等者。或,為了成為在使用前溶解再構成的劑形,亦可為經冷凍乾燥者,用以冷凍乾燥之賦形劑,例如可使用甘露醇、葡萄糖等糖醇或糖類。
多肽之有效投予量,係依照多肽的種類、作為治療或預防的對象之疾病種類、患者年齡、疾病之嚴重程度等來作適當選擇。例如,多肽為抗Glypican抗體時,抗Glypican抗體之有效投予量,係以一次體重每1kg 0.001mg至1000mg的範圍來選擇。或,可選擇每個患者0.01~100000mg/body之投予量。但是,並不限制為該等投予量。
多肽之投予方法,經口、非經口投予均可,但較佳為非經口投予,具體而言,可列舉注射(例如,靜脈內注射、肌肉內注射、腹腔內注射、皮下注射等之全身或局部投予)、經鼻投予、經肺投予、經皮投予等。
(8)NfkBia表現之抑制
依照本發明,於培養經導入編碼所期望之多肽之DNA的動物細胞,以製造該多肽的方法中,透過於宿主 細胞中使nuclear factor κ B inhibitor α(NfkBia)之表現量降低,能夠增加該所期望之多肽的產生量。NfkBia基因為必須基因,其表現被完全抑制時細胞會死亡。因此,適度抑制該NfkBia基因之表現,在本發明的方法中被認為係重要的。
因此,於培養經導入編碼所期望之多肽之DNA的動物細胞,以製造該多肽的方法中,包含使該細胞之NfkBia表現量降低至比抗體基因導入前之親代細胞的表現量更低之步驟的多肽之製造方法,亦包含於本發明之範圍。
作為使NfkBia表現降低的方法,可藉由自NfkBia基因阻礙轉錄、mRNA之分解、自mRNA阻礙轉譯、或阻礙轉譯產物之功能(結合),來阻礙NfkBia之表現。相較於不進行如此之使NfkBia表現降低的方法之情況,藉由使NfkBia表現量成為70%以下、較佳為60%以下、更佳為50%以下,所期望之多肽產生量會增大。換言之,為了不使細胞死亡所必要的NfkBia基因表現量,必須為例如20%以上、較佳為30%以上之表現量。
阻礙NfkBia表現之具體手段,可利用反意寡核苷酸、核糖核酸酶(ribozyme),或dsRNA、siRNA、shRNA、miRNA等引起RNA干渉(RNAi)之核酸分子。又,亦可利用稱作Large intergenic(or intervening)long noncoding RNA(lincRNAs)之mRNA型非編碼RNA、其他mRNA型non-coding RNA、誘導式寡核苷酸(decoy oligonucleotide)、適體(aptamer)。該等核酸分子,係包含與編碼NfkBia之mRNA相同或互補的序列,能夠與NfkBia基因或mRNA結合,而阻礙其表現。APES(或PPES)即為如此之核酸分子。
作為可利用來阻礙NfkBia表現之核酸分子的例子,係為包含與NfkBia之mRNA的一部分互補的序列之19~25鹼基長之低分子RNA、或具有與該序列除了一鹼基之外為相同的序列,且具有NfkBia之表現阻礙功能的低分子RNA。
藉由使如此之阻礙NfkBia表現的低分子RNA在宿主細胞中表現,能夠使nuclear factor κ B inhibitor α(NfkBia)之表現量降低。用以使阻礙NfkBia表現之低分子RNA於宿主細胞中表現的典型方法,可藉由將包含編碼如此之低分子RNA的DNA之載體導入至細胞來進行。
又,藉由將相對於NfkBia mRNA或其部分序列之正意RNA與反意RNA互相結合而形成的dsRNA導入細胞內,亦能夠阻礙NfkBia之表現。
測定NfkBia表現量時,必須定序對象細胞表現之NfkBia mRNA之以TaqMan法所能夠定量的序列。例如,本探討中使用之NfkBia部分序列(序列編號19、28)與TaqMan探針組(序列編號20-22)可以圖12表示,此TaqMan探針的設計,可藉由Primer Express(註冊商標)Software(Applied Biosystems)等來進行。上述之NfkBia部分序列(序列編號28),於CHO K1細胞亦被確認為NF- kappa-B inhibitor alpha-like序列,與吾人之PCR選殖序列一致。其中,能夠定量終止密碼子TGA(907-909)之上游64鹼基至上游132鹼基為止之區域的表現。
典型的測定機器係有Applied Biosystems(ABI)公司製之7900HI Sequence Detection System等,因為全部之套組及試藥均可購入,故能夠遵照ABI公司推薦的實驗流程(protocol)來定量。
[實施例]
以下,以實施例具體說明本發明。再者,該等實施例係為用以說明本發明者,並非用來限定本發明的範圍。
〔實施例1〕各種基因導入之CHO細胞的GeneChip解析實驗
GeneChip實驗,係使用AFFYMETRIX公司之寡核苷酸陣列(Affymetrix MOUSE430_2)而遵照通常的順序。但是,因為Hamster Array尚未商品化,故使用Mouse Genome 430 2.0 Array。藉由雜交條件的最佳化,Test 3 array上之Mouse Gene16種探針中,於8種探針可得到Present Call,與Mouse之鹼基序列相同性為約90%以上的情況時,能夠進行Hamster轉錄產物的表現定量。
由強表現各種基因之細胞調製高純度total RNA後,使用total RNA與含有T7啟動子序列之寡dT引子(T7-(T)24)合成cDNA。接著,藉由使用了Bio-11 CTP,Bio-16 UTP與Megascript T7 Kit(Ambion)之轉錄反應,由cDNA合成生物素標記(biotin labeled)之cRNA。將cRNA以管柱純化後,將於電泳上經確認相當於由18s至28s rRNA之分子量的高品質cRNA片段化,使其成為具有均一大小之GeneChip樣品。使用前的GeneChip樣品,係添加雜交樣品溶液,於-80℃冷凍保存。樣品溶液在使用前經熱處理、離心、塗抹於Mouse Genome 430 2.0 Array,一邊旋轉Array,一邊以45℃之雜交專用烘箱放置16小時。回收樣品,重複洗滌Array,以Streptavidin R-Phycoerythrin於染色後掃描。
藉由比較Array上之轉錄物(約45,000)的GeneChip訊息值,鑑定1L發酵槽饋料批式培養於第10天產生900mg/L以上之MAb1(抗IL-6R抗體;tocilizumab、商品名Actemra)之MAb1(抗IL-6R抗體)強表現TAUT強表現CSAD強表現DG44細胞的繼代培養細胞中,小鼠基因體上之mRNA型非編碼RNA UG_GENE=AI462015(Affymetrix MOUSE430_2,1420088_AT)作為表現強度高且表現亢進顯著的轉錄產物(圖1:AI462015轉錄產物之序列)。
AI462015雖為437鹼基之mRNA型非編碼RNA,其序列係存在於小鼠基因體12之NfkBia mRNA 3’側之非轉譯區域附近(56590831-56590397)的互補鏈上。故認為有AI462015轉錄產物直接作用於NfkBia mRNA之非轉譯區域而阻礙轉譯之可能性、或437鹼基之一部分序列發揮作 為低分子RNA之功能而使NfkBia mRNA分解的可能性。
比如說,由包含AI462015序列中之5’側自第40號之A至第91號之A之52鹼基序列(AAGTACCAAAATAATTACCAACAAAATACAACATATACAACATTTACAAGAA:序列編號7),與大鼠NfkBia mRNA 3‘側之非轉譯區域(1478-1529,GENE ID:25493 NfkBia)的互補鏈除了一鹼基(AI462015中之5’側第61號之A)之外為一致,而且,包含AI462015之自第40號之A至第63號之A之24鹼基序列(AAGTACCAAAATAATTACCAACAA:序列編號9),亦為人類NfkBia mRNA 3‘側非轉譯區域之一部分序列(TTGTTGGTAATTATTTTGGTACTT,1490-1513:序列編號24)的互補鏈來看,可預測52鹼基之一部分之19-25鹼基作為microRNA、或一部分序列作為反意RNA作用於CHO細胞之NfkBia mRNA的可能性。
又,依據更新資訊(實施例8),例如,包含AI462015序列中之5’側自第7號之T至第91號之A的85鹼基序列(圖23與24的下線部、序列編號29)(TGTAAAAATCTGTTTAATAAATATACATCTTAGAAGTACCAAAATAATTACCAACAAAATACAACATATACAACATTTACAAGAA),與大鼠NfkBia mRNA 3‘側之非轉譯區域(1478-1562,GENE ID:25493 NfkBia、序列編號31)的互補鏈除了一鹼基(AI462015中之5’側第70號之A)以外為一致(Matching=84/85、圖25b);同樣地,人類(Matching=75/85、圖 25a、序列編號30)、黑猩猩(Matching=75/85、圖25c、序列編號32)、恆河猴(Matching=74/85、圖25d、序列編號33)、牛(Matching=76/85、圖25e、序列編號34)亦確認了相同性。因而,可認為此85鹼基(Conserved Sequence 7-91)之一部分之19-25鹼基係作為microRNA、或一部分序列作為反意RNA,而超越物種地作用於動物細胞、或者哺乳動物細胞。因此,可預測其亦作用於動物培養細胞、較佳為如CHO細胞之哺乳動物細胞的NfkBia mRNA。
〔實施例2〕抗體高產生細胞中表現亢進之轉錄產物的鑑定
實施例1中,MAb1(抗IL-6R抗體;tocilizumab、商品名Actemra)高產生DG44細胞中轉錄產物AI462015之表現量雖有亢進(圖2),但於不同宿主細胞(CHO-DXB11s)中使不同抗體(MAb2:抗Glypican 3抗體;GC33(參照WO2006/006693))高產生時亦同樣地,觀察到AI462015轉錄產物之表現亢進(圖3)。
如圖2所示,於CHO-DG44細胞中使牛磺酸轉運蛋白(TauT)基因強表現時、使半胱亞磺酸脫羧基酶(CSAD)基因強表現時(data not shown)、使TauT與CSAD共同強表現時,轉錄產物AI462015之表現量均為相同程度,但於使TauT與CSAD共同強表現之細胞中進一步使Mab1(抗IL-6受體抗體)強表現時,可觀察到AI462015之異常亢進(宿 主細胞的7倍),表現量亦顯示異常高之GeneChip訊息值(10,000以上)。由控制組之GAPDH表現強度在細胞間為相同等級來看,轉錄產物AI462015之表現亢進為Mab1抗體高產生細胞中特異的現象。圖3亦同樣地,於CHO-DXB11s細胞中使MAb2(抗Glypican 3抗體)基因強表現時,AI462015序列之表現亢進(TauT,CSAD,AE1強表現細胞之平均值的13倍)為MAb2抗體高產生細胞中特異的現象。
以上結果顯示了,振盪器繼代培養第3天穩定增殖之抗體高產生細胞,會異常地高度表現AI462015序列。
又,於1L發酵槽培養第3天的生產培養條件下,亦可觀察到AI462015序列之異常的表現亢進。如圖4所示,1L發酵槽饋料批式培養之第10天,產生約1200-1400mg/L之MAb1(抗IL-6R抗體)的2種抗體高產生細胞係顯示了5,000以上的高GeneChip訊息值。因培養條件之不同,1L發酵槽饋料批式培養第3天的訊息值為振盪器培養之50%左右,但培養後期之第13天時AI462015序列的表現強度亢進到與振盪器繼代培養相同程度,顯示了異常高的訊息值(圖5)。另一方面,抗體產生量低之MAb1強表現DXB11s細胞(無添加水解物之振盪器培養第7天為300mg/L以下、即使添加水解物亦為500mg/L以下),即使在添加了會造成高產生化的水解物(Hy-Fish、Procine Lysate)的條件下,亦無法觀察到1L發酵槽培養第3天的AI462015序列表現亢進(圖6)。
基於圖2中顯示了高的訊息值之MAb1強表現TauT強表現CSAD強表現DG44細胞的抗體產生量高(無添加水解物之振盪器培養第7天時640mg/L)、圖3中顯示高訊息值之MAb2強表現DXB11s細胞的抗體產生量高(無添加水解物之振盪器培養第7天時640mg/L)、圖6中即使添加了會導致抗體高產生化之水解物其訊息值亦無亢進的實驗結果,可認為「AI462015序列表現量高的細胞,其抗體產生潛能高」。
〔實施例3〕APES強表現造成抗體產生細胞之高產生化例子
因為AI462015序列表現量之高低,係顯示與抗體產生潛能的高低相關,故於圖6中抗體產生潛能低之MAb1強表現DXB11s細胞中,導入表現AI462015序列之一部分的質體,使其強表現而比較抗體產生潛能。
將來自小鼠基因體之轉錄產物AI462015(圖1、437鹼基)序列的一部分(包含Affymetrix GeneChip之AI462015 Probe Sequence)的5’側自第4號之G至3’端之T命名為APES434;將5’側自第4號之G至第168號之C命名為APES165,製成2種類之表現單元(APES意指Antibody Production Enhancing Sequence之略稱)。藉由合成添加了Kozak序列之表現單元,構築於CMV啟動子下高表現之pHyg-APES434(圖7)、pHyg-APES165(圖8)、pHyg-null(圖9)。
藉由Amaxa公司(現為LONZA公司)基因導入系統Nucleofector,於圖6之抗體低產生株之MAb1強表現DXB11s細胞中導入表現質體,於96孔盤上,在含有Hygromycin(200μg/ml)之篩選培養基存在下,篩選高增殖之全細胞株,增大至24孔盤後比較抗體產生量。經篩選之株數分別為pHyg-APES434(N=38)、pHyg-APES165(N=60)、pHyg-null(N=11),該等之株數,期待為導入APES強表現質體之正面效果。含有1mL繼代培養基之24孔盤的靜置培養,在培養第13天時無法觀察到細胞增殖,故測定抗體產生量及細胞數。抗體產生量之平均值為pHyg-APES434(44.3mg/L)、pHyg-APES165(41.2mg/L)、pHyg-null(21.9mg/L),細胞數(平均值)為pHyg-APES434(9.27x105cells/mL)、pHyg-APES165(11.39x105cells/mL)、pHyg-null(7.76x105cells/mL),pHyg-APES434、pHyg-APES165導入細胞均相對於控制組之pHyg-null在統計上較優越(t檢定P<0.001,圖10)。
以上結果顯示,使包含AI462015轉錄產物之5’側165bp之核酸序列(例如序列編號2之DNA轉錄產物之APES165、或序列編號3之DNA轉錄產物之APES434)強表現時,細胞之抗體產生潛能會提高。
〔實施例4〕抗體高產生CHO細胞中NfkBia之表現抑制
如實施例1所述,由AI462015序列存在於小鼠基因體12之NfkBia基因之3’側非轉譯區域附近(3’側78bp) 之互補鏈上、及AI462015序列中所含之22鹼基(AAGTACCAAAATAATTACCAAC:序列編號10)係與人類NfkBia基因之3’側非轉譯區域(1492-1513)的互補鏈為相同序列、且超越大鼠、恆河猴、狗、馬等物種而被保留來看,可考量具有作為microRNA進行RNA干渉而分解NfkBia mRNA之可能性;或由相當於能夠定量AI462015表現之AFFYMETRIX公司的寡核苷酸陣列(Affymetrix MOUSE430_2)上之特異探針序列區域(CATATACAACATTT ACAAGAAGGCGACACAGACCTTAGTTGG:序列編號16)42bp的前半部分之5’側自第71號之C開始的21鹼基(CATATACAACATTTACAAGAA:序列編號15),為大鼠NfkBia mRNA之自第1478至第1498鹼基之互補序列來看,可考量來自AI462015序列之核酸分子對NfkBia mRNA進行RNA干渉而抑制表現,藉以維持抗體高產生CHO細胞之恆定性的可能性(基因剔除小鼠之lethality為postnatal)。(註:之後,得知了AI462015之轉錄產物係相當於小鼠NfkBia基因之3’側513鹼基之非轉譯區域的互補鏈。參照實施例8。又,以小鼠GeneChip定量之AI462015之自第71號至第112號之序列(序列編號16)係作為CHO細胞中之轉錄產物而被確認)。
因而,定量抗體產生潛能高之AI462015高表現細胞中之NfkBia mRNA表現量,而確認其表現被抑制。
CHO細胞之NfkBia mRNA序列未知,因此由小鼠與大鼠之胺基酸編碼區域(均為942鹼基:314胺基酸)中被保留的序列來設計探針(5’ACTTGGTGACTTTGGGTGCT、 5’GCCTCCAAACACACAGTCAT)(序列編號17、18),得到325bp之PCR產物。經PCR選殖之325bp,由其序列相同性看來,可認為係來自CHO細胞之NfkBia mRNA的一部分序列(圖11)。
Mouse Genome 430 2.0 Array(實施例1)中,可能因為其探針序列相當於CHO細胞之種特異序列,故雖無法定量NfkBia mRNA表現,但比較325bp PCR產物量時,相對於不產生抗體之基因強表現細胞(lane 1,2),AI462015序列表現亢進之抗體高產生細胞(lane 3,4)中NfkBia mRNA之表現被抑制。進一步地,設計能夠定量325bp之一部分序列的TaqMan Probe Set(圖12),以RT-PCR法定量時,抗體高產生細胞中,NfkBia mRNA之表現係被抑制至不產生抗體之細胞的約50%(圖13)。
由以上可認為,抗體高產生細胞中,NfkBia mRNA之表現受到抑制,結果抗體產生潛能提高。實際上,吾人認為,用於抗體基因表現之表現質體的啟動子/加強子區域中存在有複數個以上之NfkB結合部位(圖14:小鼠MCMV IE2啟動子上之NfkB結合部位),該等之加強子區域係為抗體基因高表現所必須的區域,故藉由抑制NfkBia表現而被活化的NfkB會移動至核內,使啟動子活性增強,此為抗體高產生的一個原因。
〔實施例5〕抗體高產生CHO細胞中亢進之microRNA的解析
為了解析microRNA,如圖15所示地使用Mir-XTM miRNA First-Strand Sythesis Kit(Clontech),在由繼代培養中之MAb1(抗IL-6R抗體)高產生DXB11s細胞、MAb1(抗IL-6R抗體)高產生TAUT強表現DXB11s細胞、與抗體基因導入前之DXB11s宿主細胞所調製之small RNA的3’側附加poly(A)標籤(tag)後,使於3’側具有寡dT且於5’側具有PCR引子序列(mRQ 3’ Primer)之轉接序列(adaptor)起始(priming),合成一次鏈cDNA。以所得之cDNA作為模板,使用mRQ 3’ primer、與預測來自APES序列之microRNA-specific Primer(APES 40-61 5’ primer、或APES 71-91 5’ primer)、且使用正控制之U6 snRNA 5’ primer,進行qPCR反應(95℃ 5sec,60℃ 20sec,30cycles)。PCR反應液,係在純化後以3%瓊脂糖膠體進行電泳。如圖16所示般,藉由APES 40-61 5’ primer與U6 snRNA 5’ primer之PCR反應,可觀察到目標大小的譜帶(band)。如lane 1,2,3所示般,APES 40-61(AAGTACCAAAATAATTACCAAC:序列編號10)22鹼基在MAb1(抗IL-6R抗體)高產生細胞中有高表現。由正控制之U6 snRNA(lane 4)表現量在所有細胞中均為相同等級、且沒有確認到APES 71-91(CATATACAACATTTACAAGAA:序列編號15)之存在來看(data not shown),可認為序列超越物種而被保留的APES 40-61(22鹼基)係作為microRNA而對抗體高產生化作出貢獻。
〔實施例6〕APES強表現導致之抗體產生用宿主細胞的高增殖化例子
由抗體產生用宿主細胞DXB11/TAUT,於1L發酵槽饋料批式培養第14天時,得到產生3.9g/L之MAb1(抗IL-6R抗體)的抗體高產生細胞(DXB11/TAUT/MAb1),藉由TAUT的生存率維持能力,培養第31天雖會產生8.1g/L,但考慮到實際生產,若欲在培養第14天達到高產生,必須使細胞最高到達密度(4.1 x10e6cells/mL)增加。若APES強表現所導致之Nfkbia mRNA的表現抑制(實施例4)促進Nfkb的活化,則增殖相關聯之基因表現會亢進,而可能會提高細胞最高到達密度。將與APES同樣地會對抗體高產生化作出貢獻的ALT1共同表現用質體(pPur-APES165,pPur-ALT1,圖17)分別導入至上述抗體高產生細胞DXB11/TAUT/MAb1(親株),各篩選高增殖的前3株,進行振盪器饋料批式培養時,得到了APES165強表現細胞之細胞最高到達密度的平均值為(11.5±1.7)x10e6cells/mL、ALT1強表現細胞為(8.9±1.8)x10e6cells/mL以上之高增殖的細胞。進一步在振盪器饋料批式培養第14天時之抗體產生量的平均值,APES強表現細胞:4.4±0.6g/L;ALT1強表現細胞:4.0±0.6g/L,較導入前之DXB11/TAUT/MAb1細胞:3.4g/L更加變高,由此顯示了APES強表現效果係與TAUT強表現效果獨立地產生正面作用(圖18)。APES強表現所導致之正的效果在1L-Jar饋料批式培養中為顯著,比較各自在振盪器饋料批 式培養中的高增殖細胞時,APES強表現株最為高增殖、培養第12天時為5.3g/L,相較於親株之3.2g/L、ALT1強表現株之4.4g/L,顯示了在短期間培養時之高產生的優點(圖19)。基於以上結果,係使抗體產生用宿主細胞DXB11/TAUT改變為更加高增殖的宿主細胞,而製成了APES165強表現宿主DXB11/TAUT/APES。於DXB11/TAUT宿主中以電穿孔法基因導入pPur-APES165,對以藥劑篩選後生存率、增殖均為良好的宿主候選9株,定量繼代培養時的APES snRNA(small non-coding RNA)表現量。APES表現量高的DXB11/TAUT/APES宿主候選株在培養時的活細胞密度高,顯示了相關性(R2=0.70)(圖20)。
〔實施例7〕APES強表現所導致之抗體產生細胞的高產生化例子2
與實施例3同樣地,於MAb1強表現DXB11s細胞中導入表現AI462015轉錄產物之5’側部分序列的質體,比較抗體產生潛能。
除了APES4-168(APES165)之外,亦進一步製成由其一部分序列所構成的APES4-68(序列編號5)及APES69-133(序列編號6)之表現單元,探討細胞之抗體產生潛能。相對於空載體強表現(null),APES4-68為p<0.05、APES69-133為p<0.01,在抗體高產生方面有顯著差異(t檢定P<0.001、圖21)。
圖22表示實施例3及本實施例中鑑定之具有APES活性的部分序列,分別相當於小鼠AI462015轉錄產物之何區域。顯示APES活性之部分序列,係含有Nfkbia互補序列23鹼基以上。
〔實施例8〕關於APES之基因解析
實施例1中,基於申請時的基因資訊,雖記載了「AI462015為437鹼基之mRNA型非編碼RNA,但其序列係存在於小鼠基因體12之NfkBia基因3’側的非轉譯區域附近(56590831-56590397)的互補鏈上」,但是藉由之後的GeneBank資訊更新,明確得知了AI462015之轉錄產物之437鹼基,係相當於小鼠NfkBia基因之3’側非轉譯區域(513鹼基)的互補鏈(圖23)。如圖24所示,由申請後公開之CHO-K1細胞基因體序列上存在有AI462015之相同序列(序列編號25:AI462015;序列編號26-27:CHO-K1基因體)、且進一步地,高產生抗體之CHO細胞中觀察到Nfkbia之表現被抑制(實施例4)來看,可認為CHO細胞中AI462015之相同序列係被高表現而發揮功能。
本發明可應用於任何抗體等之重組多肽產生細胞。
本說明書中引用的全部刊物、專利及專利申請案,均作為參考而採用入本說明書當中。
<110> 中外製藥股份有限公司
<120> 重組多肽之製造方法
<130> FA0001-12022
<150> JP 2011-082002
<151> 2011-04-01
<160> 35
<170> PatentIn version 3.1
<210> 1
<211> 437
<212> DNA
<213> Mus musculus
<400> 1
<210> 2
<211> 165
<212> DNA
<213> 人工序列
<220>
<223> APES165
<400> 2
<210> 3
<211> 434
<212> DNA
<213> 人工序列
<220>
<223> APES434
<400> 3
<210> 4
<211> 130
<212> DNA
<213> 人工序列
<220>
<223> APES130
<400> 4
<210> 5
<211> 65
<212> DNA
<213> 人工序列
<220>
<223> APES 4-68
<400> 5
<210> 6
<211> 65
<212> DNA
<213> 人工序列
<220>
<223> APES 69-133
<400> 6
<210> 7
<211> 52
<212> DNA
<213> 人工序列
<220>
<223> APES 40-91
<400> 7
<210> 8
<211> 29
<212> DNA
<213> 人工序列
<220>
<223> APES 40-68
<400> 8
<210> 9
<211> 24
<212> DNA
<213> 人工序列
<220>
<223> APES 40-63
<400> 9
<210> 10
<211> 22
<212> DNA
<213> 人工序列
<220>
<223> APES 40-61
<400> 10
<210> 11
<211> 23
<212> DNA
<213> 人工序列
<220>
<223> APES 69-91
<400> 11
<210> 12
<211> 21
<212> DNA
<213> 人工序列
<220>
<223> APES 84-104
<400> 12
<210> 13
<211> 22
<212> DNA
<213> 人工序列
<220>
<223> APES 99-119
<400> 13
<210> 14
<211> 21
<212> DNA
<213> 人工序列
<220>
<223> APES 101-121
<400> 14
<210> 15
<211> 21
<212> DNA
<213> 人工序列
<220>
<223> APES 71-91
<400> 15
<210> 16
<211> 42
<212> DNA
<213> 人工序列
<220>
<223> APES 71-112
<400> 16
<210> 17
<211> 20
<212> DNA
<213> 人工序列
<220>
<223> 探針
<400> 17
<210> 18
<211> 20
<212> DNA
<213> 人工序列
<220>
<223> 探針
<400> 18
<210> 19
<211> 145
<212> DNA
<213> 人工序列
<220>
<223> Hamster Nfkbia mRNA的部分
<400> 19
<210> 20
<211> 19
<212> DNA
<213> 人工序列
<220>
<223> 探針
<400> 20
<210> 21
<211> 24
<212> DNA
<213> 人工序列
<220>
<223> 探針
<400> 21
<210> 22
<211> 24
<212> DNA
<213> 人工序列
<220>
<223> 探針
<400> 22
<210> 23
<211> 1394
<212> DNA
<213> Mus musculus
<400> 23
<210> 24
<211> 24
<212> DNA
<213> Homo sapiens
<400> 24
<210> 25
<211> 433
<212> DNA
<213> Mus musculus
<400> 25
<210> 26
<211> 414
<212> DNA
<213> Cricetulus griseus
<400> 26
<210> 27
<211> 414
<212> DNA
<213> Cricetulus griseus
<400> 27
<210> 28
<211> 134
<212> DNA
<213> 人工序列
<220>
<223> Hamster Nfkbis mRNA(134bp)的部分
<400> 28
<210> 29
<211> 85
<212> DNA
<213> 人工序列
<220>
<223> 保守序列7-91
<400> 29
<210> 30
<211> 83
<212> DNA
<213> Homo sapiens
<400> 30
<210> 31
<211> 85
<212> DNA
<213> Rattus norvegicus
<400> 31
<210> 32
<211> 89
<212> DNA
<213> Pan troglodytes
<400> 32
<210> 33
<211> 89
<212> DNA
<213> Macaca mulatta
<400> 33
<210> 34
<211> 90
<212> DNA
<213> Bos taurus
<400> 34
<210> 35
<211> 10
<212> DNA
<213> 人工序列
<220>
<223> kB motif
<400> 35

Claims (7)

  1. 一種核酸分子,其係由以下任一鹼基序列所構成,且具有APES活性(但序列編號1之核酸分子除外):(a)由序列編號2、4~16及29之任一鹼基序列所構成之DNA;(b)由與序列編號1~16及29除了1個鹼基之外為相同的鹼基序列所構成之DNA;(c)上述(a)或(b)之轉錄產物之RNA;(d)藉由於上述(a)序列形成鹼基對而可結合之序列所構成之DNA或RNA,其係用於表現上述具有APES活性的核酸分子、且培養經導入編碼所期望之多肽之DNA的細胞,以產生所期望的多肽。
  2. 一種含有以下任一鹼基序列且具有APES活性之核酸分子於增加多肽產生中的用途:(a)由序列編號3之鹼基序列所構成之DNA;(b)含有上述(a)序列,且為NfkBia基因之3’側非轉譯區域之部分序列的DNA;(c)由與序列編號3或(b)序列除了1個鹼基之外為相同的鹼基序列所構成之DNA;(d)上述(a)或(b)之轉錄產物之RNA;(e)藉由於上述(a)序列形成鹼基對而可結合之序列所構成之DNA或RNA。
  3. 一種載體,其係含有如申請專利範圍第1項所述之 核酸分子,其係用於表現具有APES活性的核酸分子、且培養經導入編碼所期望之多肽之DNA的細胞,以產生所期望的多肽。
  4. 一種細胞,其係經人為導入含有如申請專利範圍第1項所述之核酸分子或如申請專利範圍第3項所述之載體,其係用於表現具有APES活性的核酸分子、且培養經導入編碼所期望之多肽之DNA的細胞,以產生所期望的多肽。
  5. 一種核酸分子,其係由以下任一鹼基序列所構成,且具有APES活性:(a)由序列編號2、4~16及29之任一鹼基序列所構成之DNA;(b)由與序列編號1~16及29除了1個鹼基之外為相同的鹼基序列所構成之DNA;(c)上述(a)或(b)之轉錄產物之RNA,其係用於表現上述具有APES活性的核酸分子、且培養經導入編碼所期望之多肽之DNA的細胞,以產生所期望的多肽。
  6. 一種載體,其係含有如申請專利範圍第5項所述之核酸分子,其係用於表現具有APES活性的核酸分子、且培養經導入編碼所期望之多肽之DNA的細胞,以產生所期望的多肽。
  7. 一種細胞,其係經人為導入含有如申請專利範圍第5項所述之核酸分子或如申請專利範圍第6項所述之載 體,其係用於表現具有APES活性的核酸分子、且培養經導入編碼所期望之多肽之DNA的細胞,以產生所期望的多肽。
TW106106519A 2011-04-01 2012-03-30 具有apes活性的核酸分子 TWI674272B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011082002 2011-04-01
JP2011-082002 2011-04-01

Publications (2)

Publication Number Publication Date
TW201726729A TW201726729A (zh) 2017-08-01
TWI674272B true TWI674272B (zh) 2019-10-11

Family

ID=46969084

Family Applications (2)

Application Number Title Priority Date Filing Date
TW106106519A TWI674272B (zh) 2011-04-01 2012-03-30 具有apes活性的核酸分子
TW101111417A TWI647309B (zh) 2011-04-01 2012-03-30 重組多肽之製造方法

Family Applications After (1)

Application Number Title Priority Date Filing Date
TW101111417A TWI647309B (zh) 2011-04-01 2012-03-30 重組多肽之製造方法

Country Status (15)

Country Link
US (2) US11028149B2 (zh)
EP (1) EP2695947B1 (zh)
JP (3) JP6182066B2 (zh)
KR (1) KR101958033B1 (zh)
CN (3) CN108546295B (zh)
AU (2) AU2012239382B2 (zh)
BR (1) BR112013024781B1 (zh)
CA (1) CA2830013C (zh)
DK (1) DK2695947T3 (zh)
ES (1) ES2620306T3 (zh)
MX (1) MX352229B (zh)
RU (1) RU2628310C2 (zh)
SG (1) SG194014A1 (zh)
TW (2) TWI674272B (zh)
WO (1) WO2012137683A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7824907B2 (en) * 2003-03-11 2010-11-02 Merck Serono Sa Expression vectors comprising the mCMV IE2 promoter
WO2014058025A1 (ja) 2012-10-10 2014-04-17 中外製薬株式会社 改変宿主細胞の樹立方法
US9647919B1 (en) * 2014-12-04 2017-05-09 Amazon Technologies Automated determination of maximum service throughput
CN107287178B (zh) * 2016-04-12 2019-10-29 中国科学院微生物研究所 Csad蛋白及其编码基因在抗流感病毒中的应用

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1270044A2 (en) * 2001-06-18 2003-01-02 Pfizer Limited Wound healing biomarkers

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9222931D0 (en) 1992-11-02 1992-12-16 Sandoz Ltd Organic compounds
TW402639B (en) 1992-12-03 2000-08-21 Transkaryotic Therapies Inc Protein production and protein delivery
AU2002213207A1 (en) 2000-10-11 2002-04-22 Digital Gene Technologies, Inc. Gene expression modulated in ileitis
JP5697297B2 (ja) * 2004-05-14 2015-04-08 ロゼッタ ジノミクス リミテッド マイクロnasおよびその使用
EP2898897A3 (en) 2004-07-09 2015-10-14 Chugai Seiyaku Kabushiki Kaisha Anti-glypican 3 antibody
WO2006105109A2 (en) * 2005-03-29 2006-10-05 The Trustees Of The University Of Pennsylvania Methods for generating new hair follicles, treating baldness, and hair removal
CN101421411B (zh) 2006-04-13 2015-06-03 中外制药株式会社 牛磺酸转运蛋白基因
ES2398076T3 (es) * 2006-06-02 2013-03-13 Regeneron Pharmaceuticals, Inc. Anticuerpos de alta afinidad contra el receptor de IL-6 humano
EP2135946B1 (en) 2007-03-15 2015-12-09 Chugai Seiyaku Kabushiki Kaisha Method for production of polypeptide
US8062864B2 (en) * 2007-05-21 2011-11-22 Alderbio Holdings Llc Nucleic acids encoding antibodies to IL-6, and recombinant production of anti-IL-6 antibodies
WO2009020144A1 (ja) * 2007-08-07 2009-02-12 Chugai Seiyaku Kabushiki Kaisha 異種タンパク質の製造方法
BRPI0818039A2 (pt) * 2007-10-15 2014-10-14 Chugai Pharmaceutical Co Ltd Método para produzir uma célula capaz de produção de alto rendimento de heteroproteínas.
EP2213746B1 (en) * 2007-10-24 2015-07-15 Chugai Seiyaku Kabushiki Kaisha Cell for use in the production of exogenous protein, and production process using the cell
CA2709804A1 (en) * 2007-12-21 2009-07-30 Danisco Us Inc. Enhanced protein production in bacillus

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1270044A2 (en) * 2001-06-18 2003-01-02 Pfizer Limited Wound healing biomarkers

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Xiufen Lei et al., "Regulation of NF-κB inhibitor IκBα and viral replication by a KSHV microRNA", Nat Cell Biol. 12(2):193–199, 2010/02
Yu-Qing Lan et al., "Suppression of IκBα increases the expression of matrix metalloproteinase-2 in human ciliary muscle cells", Molecular Vision 15:1977-1987, 2009
Yu-Qing Lan et al., "Suppression of IκBα increases the expression of matrix metalloproteinase-2 in human ciliary muscle cells", Molecular Vision 15:1977-1987, 2009 Xiufen Lei et al., "Regulation of NF-κB inhibitor IκBα and viral replication by a KSHV microRNA", Nat Cell Biol. 12(2):193–199, 2010/02 *

Also Published As

Publication number Publication date
JP2018161146A (ja) 2018-10-18
CN103459608B (zh) 2018-05-01
MX2013011355A (es) 2013-12-16
EP2695947B1 (en) 2017-03-01
AU2012239382B2 (en) 2016-04-21
CN106995831A (zh) 2017-08-01
KR101958033B1 (ko) 2019-03-13
BR112013024781A2 (pt) 2018-06-05
SG194014A1 (en) 2013-11-29
MX352229B (es) 2017-11-15
CA2830013A1 (en) 2012-10-11
JP6626160B2 (ja) 2019-12-25
CA2830013C (en) 2020-01-07
US20210246193A1 (en) 2021-08-12
TWI647309B (zh) 2019-01-11
CN108546295A (zh) 2018-09-18
RU2013148804A (ru) 2015-05-10
TW201303019A (zh) 2013-01-16
AU2012239382A1 (en) 2013-10-17
US11028149B2 (en) 2021-06-08
CN103459608A (zh) 2013-12-18
TW201726729A (zh) 2017-08-01
JP2017074065A (ja) 2017-04-20
AU2016201744B2 (en) 2017-09-28
JP6182066B2 (ja) 2017-08-16
JP6444968B2 (ja) 2018-12-26
WO2012137683A1 (ja) 2012-10-11
EP2695947A4 (en) 2014-10-29
US20140030758A1 (en) 2014-01-30
EP2695947A1 (en) 2014-02-12
RU2628310C2 (ru) 2017-08-15
AU2016201744A1 (en) 2016-04-07
US11905325B2 (en) 2024-02-20
ES2620306T3 (es) 2017-06-28
KR20140015506A (ko) 2014-02-06
BR112013024781B1 (pt) 2021-09-08
JPWO2012137683A1 (ja) 2014-07-28
CN108546295B (zh) 2022-08-09
DK2695947T3 (en) 2017-05-08

Similar Documents

Publication Publication Date Title
US11905325B2 (en) Recombinant polypeptide production method
JP6680848B2 (ja) 改変宿主細胞の樹立方法