TWI673956B - 校準方法和校準系統 - Google Patents

校準方法和校準系統 Download PDF

Info

Publication number
TWI673956B
TWI673956B TW107136586A TW107136586A TWI673956B TW I673956 B TWI673956 B TW I673956B TW 107136586 A TW107136586 A TW 107136586A TW 107136586 A TW107136586 A TW 107136586A TW I673956 B TWI673956 B TW I673956B
Authority
TW
Taiwan
Prior art keywords
capacitor
code density
digital
code
density
Prior art date
Application number
TW107136586A
Other languages
English (en)
Other versions
TW202017321A (zh
Inventor
汪鼎豪
Ting Hao Wang
陳昱竹
Yu Chu Chen
Original Assignee
創意電子股份有限公司
Global Unichip Corporation
台灣積體電路製造股份有限公司
Taiwan Semiconductor Manufacturing Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 創意電子股份有限公司, Global Unichip Corporation, 台灣積體電路製造股份有限公司, Taiwan Semiconductor Manufacturing Co., Ltd. filed Critical 創意電子股份有限公司
Priority to TW107136586A priority Critical patent/TWI673956B/zh
Priority to JP2019002715A priority patent/JP6752906B2/ja
Priority to US16/451,019 priority patent/US10700694B2/en
Application granted granted Critical
Publication of TWI673956B publication Critical patent/TWI673956B/zh
Publication of TW202017321A publication Critical patent/TW202017321A/zh

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/10Calibration or testing
    • H03M1/1009Calibration
    • H03M1/1033Calibration over the full range of the converter, e.g. for correcting differential non-linearity
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/06Continuously compensating for, or preventing, undesired influence of physical parameters
    • H03M1/0617Continuously compensating for, or preventing, undesired influence of physical parameters characterised by the use of methods or means not specific to a particular type of detrimental influence
    • H03M1/0626Continuously compensating for, or preventing, undesired influence of physical parameters characterised by the use of methods or means not specific to a particular type of detrimental influence by filtering
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/12Analogue/digital converters
    • H03M1/34Analogue value compared with reference values
    • H03M1/38Analogue value compared with reference values sequentially only, e.g. successive approximation type
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/12Analogue/digital converters
    • H03M1/34Analogue value compared with reference values
    • H03M1/38Analogue value compared with reference values sequentially only, e.g. successive approximation type
    • H03M1/46Analogue value compared with reference values sequentially only, e.g. successive approximation type with digital/analogue converter for supplying reference values to converter
    • H03M1/466Analogue value compared with reference values sequentially only, e.g. successive approximation type with digital/analogue converter for supplying reference values to converter using switched capacitors
    • H03M1/468Analogue value compared with reference values sequentially only, e.g. successive approximation type with digital/analogue converter for supplying reference values to converter using switched capacitors in which the input S/H circuit is merged with the feedback DAC array

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Power Engineering (AREA)
  • Analogue/Digital Conversion (AREA)

Abstract

一種校準方法,適用於一連續逼近式類比數位轉換器,連續逼近式類比數位轉換器包含一電容陣列。校準方法包含以下流程:輸入一輸入訊號至類比數位轉換器,其中類比數位轉換器依據輸入訊號產生一輸出訊號,且輸出訊號包含多個特定數位碼;計算多個特定數位碼中多個數位碼群組各自的平均碼密度,其中每個數位碼群組包含多個特定數位碼中的一或多個特定數位碼;將多個數位碼群組中的一第一目標群組的平均碼密度和一第一參考碼密度進行比較以產生一第一比較結果;依據第一比較結果校準電容陣列的一第一待校準電容單元的電容值。

Description

校準方法和校準系統
本揭示文件有關一種校準方法,尤指一種用於校準連續逼近式類比數位轉換器輸出誤差的校準方法。
連續逼近式類比數位轉換器(successive approximation ADC,簡稱SAR ADC)具有低功耗和小尺寸的特點,因此廣泛應用於現今的電子產品。連續逼近式類比數位轉換器利用電容陣列對輸入訊號進行採樣與逐次逼近,其中電容陣列的每個電容的電容值需要精確地依據2的升冪次方排列。例如,一個4位元的連續逼近式類比數位轉換器的電容陣列的電容值依序為8C、4C、2C以及1C。若連續逼近式類比數位轉換器的電容陣列的電容值因製程因素產生誤差,必然連帶導致其輸出錯誤的輸出結果。
有鑑於此,如何提供可實時校準連續逼近式類比數位轉換器之輸出誤差的校準方法與校準系統,實為業界有待解決的問題。
本揭示文件提供一種校準方法。校準方法適用 於一連續逼近式類比數位轉換器,連續逼近式類比數位轉換器包含一電容陣列。校準方法包含以下流程:輸入一輸入訊號至類比數位轉換器,其中類比數位轉換器依據輸入訊號產生一輸出訊號,且輸出訊號包含多個數位碼;計算多個特定數位碼中多個數位碼群組各自的平均碼密度,其中每個數位碼群組包含多個特定數位碼中的一或多個特定數位碼;將多個數位碼群組中的一第一目標群組的平均碼密度和一第一參考碼密度進行比較,以產生一第一比較結果;依據第一比較結果校準電容陣列的一第一待校準電容單元的電容值。
本揭示文件提供一種校準系統。校準系統包含一連續逼近式類比數位轉換器、一碼密度計算模組、一碼密度檢測模組和一電容校準模組。連續逼近式類比數位轉換器包含一電容陣列,用於依據輸入訊號產生一輸出訊號,其中輸出訊號包含多個特定數位碼。碼密度計算模組用於接收該輸出訊號,並計算多個特定數位碼中多個數位碼群組各自的平均碼密度,其中每個數位碼群組包含多個特定數位碼中的一或多個特定數位碼。碼密度檢測模組用於將多個數位碼群組中的一第一目標群組的平均碼密度和一第一參考碼密度進行比較,並輸出一第一比較結果。電容校準模組耦接於電容陣列,用於依據第一比較結果校準電容陣列的一第一待校準電容單元的電容值。
上述的校準方法和校準系統可對連續逼近式類比數位轉換器進行實時校準。
100‧‧‧校準系統
110‧‧‧連續逼近式類比數位轉換器
112‧‧‧電容陣列
114‧‧‧比較器
116‧‧‧連續逼近邏輯電路
118-1~118-M‧‧‧電容單元
120‧‧‧碼密度計算模組
130‧‧‧碼密度檢測模組
140‧‧‧電容校準模組
200‧‧‧校準方法
S202~S224‧‧‧流程
CM‧‧‧主電容
C1‧‧‧第一子電容
C2‧‧‧第二子電容
SW1‧‧‧第一單刀雙擲開關
SW2‧‧‧第二單刀雙擲開關
T1‧‧‧輸出訊號的週期
N1~N2‧‧‧節點
Vin‧‧‧輸入訊號
Vout‧‧‧輸出訊號
Vref‧‧‧參考電壓
為讓揭示文件之上述和其他目的、特徵、優點與實施例能更明顯易懂,所附圖式之說明如下:第1圖為根據本揭示文件一實施例的校準系統簡化後的功能方塊圖。
第2(a)~2(b)圖為依據本揭示文件一實施例的校準方法簡化後的流程圖。
第3圖為依據本揭示文件一實施例的輸出訊號示意圖。
第4(a)~4(b)圖為依據本揭示文件一實施例的平均碼密度分布直方圖。
第5圖為第1圖中根據本揭示文件一實施例的電容單元簡化後的示意圖。
以下將配合相關圖式來說明本發明的實施例。在圖式中,相同的標號表示相同或類似的元件或方法流程。
第1圖為根據本揭示文件一實施例的校準系統100簡化後的功能方塊圖。校準系統100包含一連續逼近式類比數位轉換器110、一碼密度計算模組120、一碼密度檢測模組130和一電容校準模組140。其中,碼密度計算模組120和電容校準模組140耦接於連續逼近式類比數位轉換器110,而碼密度檢測模組130則耦接於碼密度計算模組120和電容校準模組140之間。為使圖面簡潔而易於說明,校準系統100中的其他元件與連接關係並未繪示於第1圖中。
連續逼近式類比數位轉換器110包含一電容陣列112、一比較器114和一連續逼近邏輯電路116,其中電容陣列112耦接於電容校準模組140。電容陣列112包含有M個電容單元118-1~118-M,M為正整數。其中電容單元118-1~118-M各自可被選擇性地耦接於一輸入訊號Vin、一參考電壓Vref或一接地端。
換言之,連續逼近式類比數位轉換器110為M位元的類比數位轉換器。藉由電容陣列112與比較器114的配合運作,可對輸入訊號Vin進行取樣與連續逼近。連續逼近邏輯電路116再依據連續逼近的結果,輸出與輸入訊號Vin的大小對應的輸出訊號Vout。
本案說明書和圖式中使用的元件編號和裝置編號中的索引1~M,只是為了方便指稱個別的元件和信號,並非有意將前述元件和信號的數量侷限在特定數目。在本案說明書和圖式中,若使用某一元件編號和裝置編號時沒有指明該元件編號和裝置編號的索引,則代表該元件編號和裝置編號是指稱所屬元件群組和裝置群組中不特定的任一元件和裝置。例如,元件編號118-1指稱的對象是電容單元118-1,而元件編號118指稱的對象則是電容單元118-1~118-M中不特定的任意電容單元118。
值得一提的是,輸出訊號Vout包含多個數位碼(digital code)。例如,在連續逼近式類比數位轉換器110為4位元的類比數位轉換器的某些實施例中,輸出訊號Vout最多可包含24個數位碼(例如,數位碼0000至1111)。因此, 在連續逼近式類比數位轉換器110為M位元的情況下,輸出訊號Vout最多可包含對應於十進位的數值0至(2M-1)的2M個二進位數位碼。
碼密度計算模組120用於接收輸出訊號Vout,並計算輸出訊號Vout的多個特定數位碼的碼密度(code density)。碼密度檢測模組130用於自多個特定數位碼中選擇一或多個數位碼作為目標群組,並將目標群組的平均碼密度和一參考碼密度進行比較,再將比較結果輸出至電容校準模組140。
若目標群組的平均碼密度和參考碼密度之間具有偏差值,且偏差值超過一預設偏差值,代表電容陣列112中多個電容單元118的電容值與設計預期值有所誤差,或是連續逼近式類比數位轉換器110中的某些元件因運作過程中的各種因素產生特性變異。此時,電容校準模組140可以依據選定的目標群組以及對應的偏差值,選擇電容陣列112中對應的電容單元118來進行校準。
第2(a)~2(b)圖為依據本揭示文件一實施例的校準方法200簡化後的流程圖。校準系統100可用於執行校準方法200以校準連續逼近式類比數位轉換器110,以下將以第1圖搭配第2(a)~2(b)圖來進一步說明校準系統100的運作方式。在第2(a)~2(b)圖所繪示的流程圖中,位於一特定裝置所屬欄位中的流程,即代表由該特定裝置所進行的流程。例如,標記在「連續逼近式類比數位轉換器」欄位中的流程,代表由連續逼近式類比數位轉換器110所進行的流 程;標記在「碼密度檢測模組」欄位中的流程,則代表由碼密度檢測模組130所進行的流程。
在流程S202中,連續逼近式類比數位轉換器110利用電容陣列112接收輸入訊號Vin。接著,在流程204中,連續逼近式類比數位轉換器110利用電容陣列112和比較器114對輸入訊號Vin進行連續逼近,再利用連續逼近邏輯電路116依據連續逼近的結果產生輸出訊號Vout,且將輸出訊號Vout傳送至碼密度計算模組120。
在本實施例中,輸入訊號Vin是符合連續逼近式類比數位轉換器110的全規模範圍(full scale range,簡稱FSR)的電壓或電流訊號。例如,輸入訊號Vin可為斜坡(ramp)訊號或正弦波(sine wave)訊號。
在流程S206中,碼密度計算模組120依據接收到的輸出訊號Vout,累計多個特定數位碼中的多個數位碼群組各自於一預設時間長度的輸出訊號Vout中的總出現次數。
舉例而言,在連續逼近式類比數位轉換器110為4位元的類比數位轉換器,且輸入訊號Vin為斜坡訊號的情況下,輸出訊號Vout會如第3圖所示,且輸出訊號Vout的多個特定數位碼為數位碼0001至1010。碼密度計算模組120可計算多個特定數位碼中的第一數位碼群組(例如,數位碼0001至0100)在預設時間長度中的總出現次數(例如,16次),以得到一第一累計次數。接著,碼密度計算模組120可計算多個特定數位碼中的第二數位碼群組(例如,數位碼 0101至1000)在同樣預設時間長度中的總出現次數(例如,15次),以得到一第二累計次數。再者,碼密度計算模組120可計算多個特定數位碼中的第三數位碼群組(例如,數位碼1001至1100)在同樣預設時間長度的總出現次數(例如,16次),以得到一第三累計次數,其餘依此類推。其中,每一個數位碼群組可以包含一或多個數位碼。
在流程S208中,碼密度計算模組120會依據每一個數位碼群組的總出現次數,計算每一個數位碼群組的平均碼密度。例如,前述的第一數位碼群組的平均碼密度為4,第二數位碼群組的平均碼密度為3.75。
若輸入訊號Vin為斜坡訊號,則碼密度計算模組120計算出的平均碼密度會如第4(a)圖所示呈現平坦分布。而若輸入訊號Vin為正弦波訊號,則碼密度計算模組120計算出的平均碼密度會如第4(b)圖所示呈現浴盆(bathtub)分布。
在流程S210中,碼密度檢測模組130會選擇多個數位碼群組的其中一者做為目標群組(例如,選擇前述第一數位碼群組、第二數位碼群組以及第三數位碼群組的其中一者)。另外,碼密度檢測模組130會依據其他的數位碼群組(例如,依據前述第一數位碼群組、第二數位碼群組以及第三數位碼群組的其餘兩者),來計算參考碼密度和預設偏差值。
具體而言,連續逼近式類比數位轉換器110的多個數位碼會分布於一數值範圍內。例如,如第3圖所示, 在連續逼近式類比數位轉換器110為4位元的類比數位轉換器的某些實施例中,多個數位碼會分布於0000至1111的數值範圍內。因此,在連續逼近式類比數位轉換器110為M位元的類比數位轉換器的情況下,多個數位碼會分布於對應於十進位之數值0至(2M-1)的二進位數值範圍內。碼密度檢測模組130會依據目標群組位於前述數值範圍中的位置,來計算參考碼密度和預設偏差值。
在輸入訊號Vin為斜坡訊號的實施例中,當目標群組(例如,第一數位碼群組0101至1000)被選定時,碼密度檢測模組130會根據目標群組在數值範圍的位置,選擇鄰近於目標群組的其他數位碼群組(例如,第二數位碼群組0000至0100以及第三數位碼群組1001至1100)。接著,碼密度檢測模組130會將被選擇的其他數位碼群組的平均碼密度再度取平均,以計算參考碼密度。然後,碼密度檢測模組130會將得到的參考碼密度除2以計算預設偏差值。
在輸入訊號Vin為正弦波訊號的實施例中,參考碼密度的計算方式相似於輸入訊號Vin為斜坡訊號的實施例,差異在於,碼密度檢測模組130會依據目標群組在數值範圍中的位置,來決定偏差值的計算方式。若目標群組位於數值範圍的中段(例如,數值範圍0000至1111中,0101至1011的範圍),碼密度檢測模組130會將得到的參考碼密度除以二,以得到預設偏差值。另一方面,若目標群組位於數值範圍的邊緣(例如,數值範圍0000至1111中,0001至0010或1100至1111的範圍),碼密度檢測模組130會將得到 的參考碼密度除以三分之二來得到較大的預設偏差值,以因應澡盆分布中兩側的碼密度變化程度較大的情形。
在流程S212中,碼密度檢測模組130會比較目標群組的平均碼密度和參考碼密度。若目標群組的平均碼密度和參考碼密度之間的偏差值的絕對值大於預設偏差值,碼密度檢測模組130會判斷目標群組的碼密度出現異常。而若目標群組的平均碼密度和參考碼密度之間的偏差值的絕對值沒有大於預設偏差值,碼密度檢測模組130會判斷目標群組的碼密度正常。
以下將以多個實施例進一步說明前述流程S210~S212的運作。請參考第3圖,在一實施例中,多個特定數位碼包含數位碼0000至1100,其中目標群組包含數位碼0101至1000,假定目標群組的平均碼密度為3.75。並且,碼密度檢測模組130可以使用鄰近目標群組的兩個數位碼群組(例如,分別包含數位碼0000至0100以及1001至1100),來計算參考碼密度和預設偏差值。參考碼密度和預設偏差值的計算結果如以下的表一所示:
由於目標群組的平均碼密度(亦即,3.75)和參考碼密度(亦即,3.875)之間的偏差值的絕對值(亦即,0.125)沒有大於預設偏差值(亦即,1.875),碼密度檢測模組130會判斷目標群組的碼密度正常。
請再參考第3圖,在另一實施例中,多個特定數位碼包含數位碼0000至1100,其中目標群組只包含數位碼0110,而目標群組的平均碼密度為6。並且,碼密度檢測模組130可以使用鄰近目標群組的兩個數位碼群組(例如,分別包含數位碼0100至0101以及0111至1000),來計算參考碼密度和預設偏差值。參考碼密度和預設偏差值的計算結果如以下的表二所示:
由於目標群組的平均碼密度(亦即,6)和參考碼密度(亦即,3.25)之間的偏差值的絕對值(亦即,2.75)大於預設偏差值(亦即,1.625),碼密度檢測模組130會判斷目標群組0110的碼密度異常。
在又一實施例中,多個特定數位碼包含數位碼0000至1100,其中目標群組只包含數位碼1010,所以目標群組的平均碼密度為4。並且,碼密度檢測模組130可以使用鄰近目標群組的兩個數位碼群組(例如,分別包含數位碼1100至1011以及1001至1000),來計算參考碼密度和預設偏差值。參考碼密度和預設偏差值的計算結果如以下的表三所示:
由於目標群組的平均碼密度(亦即,4)和參考碼密度(亦即,3.75)之間的偏差值的絕對值(亦即,0.25)沒有大於預設偏差值(亦即,1.875),碼密度檢測模組130會判斷目標群組0110的碼密度正常。
在流程S214中,碼密度檢測模組130會輸出包 含比較結果的調整資訊至電容校準模組140。接著,電容校準模組140會執行流程S216,以依據自碼密度檢測模組130接收到的調整資訊判斷是否需要調整電容陣列112的電容值。
當電容校準模組140接收到代表碼密度正常的調整資訊時,電容校準模組140便不會調整電容陣列112的電容值。此時,校準系統100會再度執行流程S202,以在連續逼近式類比數位轉換器110的運作過程中進行實時校準。
在某些實施例中,校準系統100亦可以在判斷多個數位碼的碼密度皆正常的情況下,結束校準方法200。
另一方面,當電容校準模組140接收到代表碼密度異常的調整資訊時,電容校準模組140會執行第2(b)圖的流程S218,以依據目標群組在前述數值範圍中的位置,自電容陣列112中選擇某一電容單元118作為待校準電容單元來進行電容值校準。以下將近一步說明電容校準模組140選擇待校準電容單元的運作方式。
在某些實施例中,電容校準模組140儲存有數值範圍依據2的升冪次方依序等分而得到多個二進位等分點。例如,在連續逼近式類比數位轉換器110為4位元的類比數位轉換器,所以數位碼分布於數值範圍0000至1111的實施例中,電容校準模組140儲存有將數值範圍0000至1111依據2的一次方至2的四次方進行等分後得到1個二等分點、3個四等分點、7個八等分點以及15個十六等分點。
因此,在連續逼近式類比數位轉換器110為M位元的類比數位轉換器的情況下,電容校準模組140儲存有將數值範圍依據2的一次方至2的M次方進行等分後得到的多個二進位等分點。
請參照第1圖,於電容陣列112的M個電容單元118中,電容單元118-1具有最大的電容值,電容單元118-2具有次大的電容值,而電容單元118-M具有最小的電容值,依此類推。電容校準模組140會自多個二進位等分點中,判斷出與目標群組於數值範圍中的位置最相近的二進位等分點,再依據該最相近的二進位等分點將對應的電容單元118設置為待校準電容單元。
例如,在連續逼近式類比數位轉換器110為4位元的類比數位轉換器的實施例中,若目標群組為1000,則目標群組於數值範圍0000至1111中的位置最相近於二等分點。因此,電容校準模組140會將電容單元118-1設置為待校準電容單元。
又例如,同樣在連續逼近式類比數位轉換器110為4位元的類比數位轉換器的實施例中,若目標群組為1100,則目標群組於數值範圍0000至1111中的位置最相近於四等分點。因此,電容校準模組140會將電容單元118-2設置為待校準電容單元。
亦即,若目標群組於數值範圍中的位置最相近於任一2的X次方等分點,則電容校準模組140會將電容單元118-X設置為待校準電容單元,其中X為正整數且X小於等 於M。
接著,電容校準模組140會執行流程S220以判斷待校準電容單元的電容值的校準方向。當電容校準模組140依據接收到的比較結果,判斷目標群組的碼密度大於參考碼密度時,電容校準模組140會判斷待校準電容單元的電容值需要減少。而當電容校準模組140依據接收到的比較結果,判斷目標群組的碼密度小於參考碼密度時,電容校準模組140會判斷待校準電容單元的電容值需要增加。
在流程S222中,電容校準模組140會傳送校準指令至連續逼近式類比數位轉換器110,其中校準指令包含待校準電容單元的電容值的校準方向。而在流程S224中,連續逼近式類比數位轉換器110會依據接收到的校準指令校準待校準電容單元的電容值。
以下將配合第5圖進一步說明流程S224中待校準電容單元的電容值的校準方式。如第5圖所示,以電容單元118-1為例,電容單元118-1包含一主電容CM、一第一子電容C1、一第二子電容C2、一第一單刀雙擲開關SW1和一第二單刀雙擲開關SW2。主電容CM耦接於第一節點N1和第二節點N2之間。第一子電容C1的第一端耦接於第一節點N1,第一子電容C1的第二端則透過第一單刀雙擲開關SW1耦接於第二節點N2。第二子電容C2的第一端耦接於第一節點N1,第二子電容C2的第二端則透過第二單刀雙擲開關SW2耦接於接地端。
換言之,主電容CM並聯耦接於第一子電容 C1,但主電容CM沒有並聯耦接於第二子電容C2。
當電容單元118-1被選為待校準電容單元時,若目標群組的碼密度小於參考碼密度,連續逼近式類比數位轉換器110會於流程S224中接收到增加電容單元118-1的電容值的校準指令。此時,連續逼近式類比數位轉換器110會透過第二單刀雙擲開關SW2將第二子電容C2的第二端自耦接於接地端切換至耦接於第二節點N2。
亦即,當目標群組的碼密度小於參考碼密度時,連續逼近式類比數位轉換器110會將第二子電容C2並聯耦接於主電容CM,以增加電容單元118-1的電容值。
另一方面,若目標群組的碼密度大於參考碼密度,連續逼近式類比數位轉換器110會於流程S224中接收到減少電容單元118-1的電容值的校準指令。此時,連續逼近式類比數位轉換器110會透過第一單刀雙擲開關SW1將第一子電容C1的第二端自耦接於第二節點N2切換至耦接於接地端。
亦即,當目標群組的碼密度大於參考碼密度時,連續逼近式類比數位轉換器110會斷開第一子電容C1與和主電容CM之間的並聯連接,以減少電容單元118-1的電容值。
在某些實施例中,電容單元118-1包含多個第一子電容C1、多個第二子電容C2、多個第一單刀雙擲開關SW1及/或多個第二單刀雙擲開關SW2。其中,每個第一子電容C1對應地透過一個第一單刀雙擲開關SW1並聯耦接於 主電容CM,且多個第二子電容C2皆沒有並聯耦接於主電容CM。校準系統100可於每次執行校準方法200時,依據前述的規則斷開多個第一子電容C1的其中之一與主電容CM的並聯連接,或是將多個第二子電容C2的其中之一耦接於主電容CM。如此一來,可以進一步提升校準方法200的校準精確度。
電容陣列112的其他電容單元118所包含的元件和連接方式,以及適用的電容值校準方法,皆相似於電容單元118-1,為簡潔起見,在此不重複贅述。
接著,在流程S224結束之後,校準系統100可再度執行流程S202以對連續逼近式類比數位轉換器110進行實時校準。
在某一實施例中,校準系統100會在執行流程S224後結束執行校準方法200。
在另一實施例中,校準系統100會多次執行流程S210~S220。亦即,校準系統100會自數位碼群組中選擇多個目標群組,並將多個目標群組各自的平均碼密度與對應的參考碼密度進行比較,以產生多個比較結果。接著,校準系統100會執行流程S222,以依據多個比較結果輸出校準指令。如此一來,校準系統100能夠一次性地校準多個目標群組對應的多個待校準電容單元的電容值。
例如,校準系統100可自數位碼群組選擇第一目標群組與第二目標群組。接著,將第一目標群組的平均碼密度與第一參考碼密度進行比較,以產生第一比較結果,以 及將第二目標群組的平均碼密度與第二參考碼密度進行比較,以產生第二比較結果。校準系統100會依據第一比較結果和第二比較結果輸出校準指令,以一次性地校準第一目標群組對應的第一待校準電容單元以及第二目標群組對應的第二待校準電容單元。換言之,當電容校準模組140依據第一比較結果校準第一待校準電容單元的電容值時,電容校準模組140會依據第二比較結果一起校準第二待校準電容單元的電容值。
由上述可知,校準系統100可於連續逼近式類比數位轉換器110的運作過程中,平行執行校準方法200。如此一來,便可以實現對連續逼近式類比數位轉換器110的實時校準,以克服連續逼近式類比數位轉換器110因製程或運作過程中的各種因素產生的輸出誤差。
在說明書及申請專利範圍中使用了某些詞彙來指稱特定的元件。然而,所屬技術領域中具有通常知識者應可理解,同樣的元件可能會用不同的名詞來稱呼。說明書及申請專利範圍並不以名稱的差異做為區分元件的方式,而是以元件在功能上的差異來做為區分的基準。在說明書及申請專利範圍所提及的「包含」為開放式的用語,故應解釋成「包含但不限定於」。另外,「耦接」在此包含任何直接及間接的連接手段。因此,若文中描述第一元件耦接於第二元件,則代表第一元件可通過電性連接或無線傳輸、光學傳輸等信號連接方式而直接地連接於第二元件,或者通過其他元件或連接手段間接地電性或信號連接至該第二元件。
在此所使用的「及/或」的描述方式,包含所列舉的其中之一或多個項目的任意組合。另外,除非說明書中特別指明,否則任何單數格的用語都同時包含複數格的涵義。
以上僅為本發明的較佳實施例,凡依本發明請求項所做的均等變化與修飾,皆應屬本發明的涵蓋範圍。

Claims (14)

  1. 一種校準方法,適用於一連續逼近式類比數位轉換器,該連續逼近式類比數位轉換器包含一電容陣列,該校準方法包含:輸入一輸入訊號至該連續逼近式類比數位轉換器,其中該連續逼近式類比數位轉換器依據該輸入訊號產生一輸出訊號,且該輸出訊號包含多個特定數位碼;計算該多個特定數位碼中多個數位碼群組各自的平均碼密度,其中每個數位碼群組包含該多個特定數位碼中的一或多個特定數位碼;將該多個數位碼群組中的一第一目標群組的平均碼密度和一第一參考碼密度進行比較,以產生一第一比較結果;以及依據該第一比較結果校準該電容陣列的一第一待校準電容單元的電容值。
  2. 如請求項1的校準方法,其中計算該多個特定數位碼中該多個數位碼群組各自的平均碼密度的流程包含:計算該多個特定數位碼中的一第一數位碼群組在該輸出訊號中的出現次數,以得到一第一累計次數;依據該第一累計次數計算該第一數位碼群組對應於該輸出訊號的一第一平均碼密度;計算該多個數位碼中的一第二數位碼群組在該輸出訊號中的出現次數,以得到一第二累計次數;以及依據該第二累計次數計算該第二數位碼群組對應於該輸出訊號的一第二平均碼密度。
  3. 如請求項1的校準方法,其中,當該第一目標群組的平均碼密度大於該第一參考碼密度時,減少該第一待校準電容單元的電容值,當該第一目標群組的平均碼密度小於該第一參考碼密度時,增加該第一待校準電容單元的電容值。
  4. 如請求項3的校準方法,另包含:將該多個數位碼群組中的一第二目標群組的平均碼密度和一第二參考碼密度進行比較,以產生一第二比較結果;其中,依據該第一比較結果校準該電容陣列的該第一待校準電容單元的電容值的流程包含:當校準該第一待校準電容單元的電容值時,依據該第二比較結果校準該電容陣列的一第二待校準電容單元的電容值,其中當該第二目標群組的平均碼密度大於該第二參考碼密度時,減少該第二待校準電容單元的電容值,當該第二目標群組的平均碼密度小於該第二參考碼密度時,增加該第二待校準電容單元的電容值。
  5. 如請求項3的校準方法,其中,該第一待校準電容單元包含一主電容、一第一子電容和一第二子電容,該第一子電容並聯耦接於該主電容,且依據該第一比較結果校準該電容陣列的該第一待校準電容單元的電容值的流程另包含:當該第一目標群組的平均碼密度大於該參考碼密度時,斷開該第一子電容與該主電容之間的並聯連接;以及當該第一目標群組的平均碼密度小於該參考碼密度時,將該第二子電容並聯耦接於該主電容。
  6. 如請求項1的校準方法,其中,該多個特定數位碼分佈在一數值範圍內,且將該多個特定數位碼中的該第一目標群組的平均碼密度和該參考碼密度進行比較的流程包含:當該第一目標群組被選定時,根據該第一目標群組在該數值範圍的位置,選擇該多個數位碼群組中鄰近該第一目標群組的其他數位碼群組;平均該其他數位碼群組的平均碼密度以取得該參考碼密度。
  7. 如請求項6的校準方法,其中,該電容陣列包含M個電容單元,且M為正整數,依據該第一比較結果校準該電容陣列的該第一待校準電容單元的電容值的流程另包含:將該數值範圍依據2的升冪次方依序等分,以得到多個二進位等分點;判斷與該第一目標群組在該數值範圍的位置最相近的該多個二進位等分點中的一第一等分點;根據該第一等分點所對應的2的次方,選擇該M個電容單元的其中一者作為該第一待校準電容單元。
  8. 一種校準系統,包含:一連續逼近式類比數位轉換器,包含一電容陣列,用於依據一輸入訊號產生一輸出訊號,其中該輸出訊號包含多個特定數位碼;一碼密度計算模組,用於接收該輸出訊號,並計算該多個特定數位碼中多個數位碼群組各自的平均碼密度,其中每個數位碼群組包含該多個特定數位碼中的一或多個特定數位碼;一碼密度檢測模組,用於將該多個數位碼群組中的一第一目標群組的平均碼密度和一第一參考碼密度進行比較,並輸出一第一比較結果;以及一電容校準模組,耦接於電容陣列,用於依據該第一比較結果校準該電容陣列的一第一待校準電容單元的電容值。
  9. 如請求項8的校準系統,其中,該碼密度計算模組執行以下運作以計算該多個數位碼群組各自的平均碼密度:計算該多個數位碼中的一第一數位碼群組在該輸出訊號中的出現次數,以得到一第一累計次數;依據該第一累計次數計算該第一數位碼群組對應於該輸出訊號的一第一平均碼密度;計算該多個數位碼中的一第二數位碼群組在該輸出訊號中的出現次數,以得到一第二累計次數;以及依據該第二累計次數計算該第二數位碼群組對應於該輸出訊號的一第二平均碼密度。
  10. 如請求項8的校準系統,其中,當該第一目標群組的平均碼密度大於該第一參考碼密度時,該電容校準模組減少該第一待校準電容單元的電容值,當該第一目標群組的平均碼密度小於該第一參考碼密度時,該電容校準模組增加該第一待校準電容單元的電容值。
  11. 如請求項10的校準系統,其中,該碼密度檢測模組用於將該多個數位碼群組中的一第二目標群組的平均碼密度和一第二參考碼密度進行比較,並輸出一第二比較結果,其中,當該電容校準模組依據該第一比較結果校準該第一待校準電容單元的電容值時,該電容校準模組依據該第二比較結果校準該電容陣列的一第二待校準電容單元的電容值,其中,當該第二目標群組的平均碼密度大於該第二參考碼密度時,該電容校準模組減少該第二待校準電容單元的電容值,當該第二目標群組的平均碼密度小於該第二參考碼密度時,該電容校準模組增加該第二待校準電容單元的電容值。
  12. 如請求項10的校準系統,其中,該第一待校準電容單元包含:一主電容;一第一子電容,其中該第一子電容並聯耦接於該主電容;以及一第二子電容;其中,當該第一目標群組的平均碼密度大於該參考碼密度時,該電容校準模組斷開該第一子電容與該主電容之間的並聯連接,當該第一目標群組的平均碼密度小於該參考碼密度時,該電容校準模組將該第二子電容並聯耦接於該主電容。
  13. 如請求項8的校準系統,其中,該多個數位碼分佈在一數值範圍內,當該第一目標群組選定時,該碼密度檢測模組根據該第一目標群組在該數值範圍的位置,選取該多個數位碼群組中鄰近該第一目標群組的其他數位碼群組,且該碼密度檢測模組平均該其他數位碼群組的平均碼密度以取得該參考碼密度。
  14. 如請求項13的校準系統,其中,該電容陣列包含:M個電容單元,其中M為正整數;其中,該電容校準模組儲存有該數值範圍依據2的升冪次方依序等分而得到的多個二進位等分點,該電容校準模組判斷與該第一目標群組在該數值範圍的位置最相近的該多個二進位等分點中的一第一等分點,且根據該第一等分點所對應的2的次方,選擇該M個電容單元的其中一者作為該待校準電容單元。
TW107136586A 2018-10-17 2018-10-17 校準方法和校準系統 TWI673956B (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
TW107136586A TWI673956B (zh) 2018-10-17 2018-10-17 校準方法和校準系統
JP2019002715A JP6752906B2 (ja) 2018-10-17 2019-01-10 校正方法及び校正システム
US16/451,019 US10700694B2 (en) 2018-10-17 2019-06-25 Calibration method and related calibration system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW107136586A TWI673956B (zh) 2018-10-17 2018-10-17 校準方法和校準系統

Publications (2)

Publication Number Publication Date
TWI673956B true TWI673956B (zh) 2019-10-01
TW202017321A TW202017321A (zh) 2020-05-01

Family

ID=69023665

Family Applications (1)

Application Number Title Priority Date Filing Date
TW107136586A TWI673956B (zh) 2018-10-17 2018-10-17 校準方法和校準系統

Country Status (3)

Country Link
US (1) US10700694B2 (zh)
JP (1) JP6752906B2 (zh)
TW (1) TWI673956B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11171662B1 (en) * 2020-08-11 2021-11-09 Analog Devices, Inc. Analog-to-digital conversion circuit with improved linearity
US11424756B2 (en) * 2020-08-31 2022-08-23 Texas Instruments Incorporated Successive approximation register analog-to-digital converter with embedded filtering

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW499796B (en) * 1999-05-28 2002-08-21 Ericsson Telefon Ab L M Correction of static errors in A/D-converter
TWI499218B (zh) * 2012-02-14 2015-09-01 Hittite Microwave Corp 用以校準具有多個通道之管線類比至數位轉換器的方法與裝置

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4399426A (en) * 1981-05-04 1983-08-16 Tan Khen Sang On board self-calibration of analog-to-digital and digital-to-analog converters
JPS5983418A (ja) * 1982-11-04 1984-05-14 Hitachi Ltd A/d変換器
JPH0786947A (ja) * 1993-09-09 1995-03-31 Hitachi Ltd A/d変換器
JP2001024509A (ja) * 1999-07-05 2001-01-26 Matsushita Electric Ind Co Ltd 自己補正方式電荷再配分逐次比較型ad変換器
US6707403B1 (en) * 2002-11-12 2004-03-16 Analog Devices, Inc. Analog to digital converter with a calibration circuit for compensating for coupling capacitor errors, and a method for calibrating the analog to digital converter
US6856174B1 (en) * 2003-10-01 2005-02-15 Texas Instruments Incorporated Versatile system for high resolution device calibration
JP4921255B2 (ja) * 2007-06-22 2012-04-25 ルネサスエレクトロニクス株式会社 逐次型ad変換器
US8223044B2 (en) * 2010-04-22 2012-07-17 Texas Instruments Incorporated INL correction circuitry and method for SAR ADC
US8446304B2 (en) * 2010-06-30 2013-05-21 University Of Limerick Digital background calibration system and method for successive approximation (SAR) analogue to digital converter
WO2012153372A1 (ja) * 2011-05-10 2012-11-15 パナソニック株式会社 逐次比較型ad変換器
US9584150B2 (en) * 2015-07-07 2017-02-28 Infineon Technologies Ag Gain calibration for ADC with external reference
US9571115B1 (en) * 2015-11-13 2017-02-14 International Business Machines Corporation Analog to digital converter with high precision offset calibrated integrating comparators
US9973202B2 (en) * 2016-09-20 2018-05-15 Kabushiki Kaisha Toshiba Successive approximation register analog-to-digital converter
US9774345B1 (en) * 2016-09-20 2017-09-26 Kabushiki Kaisha Toshiba Successive approximation register analog-to-digital converter
TWI657666B (zh) * 2017-10-31 2019-04-21 聯陽半導體股份有限公司 類比至數位轉換器及其校正方法以及校正設備
US10483995B1 (en) * 2019-02-22 2019-11-19 Caelus Technologies Limited Calibration of radix errors using Least-Significant-Bit (LSB) averaging in a Successive-Approximation Register Analog-Digital Converter (SAR-ADC) during a fully self-calibrating routine

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW499796B (en) * 1999-05-28 2002-08-21 Ericsson Telefon Ab L M Correction of static errors in A/D-converter
TWI499218B (zh) * 2012-02-14 2015-09-01 Hittite Microwave Corp 用以校準具有多個通道之管線類比至數位轉換器的方法與裝置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
X. Gu, X. He and F. Li, "A calibration technique for SAR ADC based on code density test," 2015 IEEE 11th International Conference on ASIC (ASICON), Chengdu, 2015, pp. 1-4. *

Also Published As

Publication number Publication date
US20200127676A1 (en) 2020-04-23
TW202017321A (zh) 2020-05-01
US10700694B2 (en) 2020-06-30
JP2020065241A (ja) 2020-04-23
JP6752906B2 (ja) 2020-09-09

Similar Documents

Publication Publication Date Title
CN111064468B (zh) 校准方法和校准系统
JP6352477B2 (ja) フライングキャパシタマルチレベルコンバータ用の電圧バランス制御装置及び電圧バランス制御方法
US8842027B2 (en) Analog to digital converter and method for evaluating capacitor weighting of digital-to-analog converter thereof
CN106797220B (zh) Dac电容阵列及模数转换器、降低模数转换器功耗的方法
TWI673956B (zh) 校準方法和校準系統
CN108476024B (zh) 一种dac电容阵列、sar型模数转换器及降低功耗的方法
US8902092B2 (en) Analog-digital conversion circuit and method
US9654127B1 (en) Method for adaptively regulating coding mode and digital correction circuit thereof
CN112202448A (zh) 逐次逼近型模数转换器及其校准方法、电子设备
US9496885B2 (en) Analog-to-digital conversion circuit
US20140077982A1 (en) Delta Modulator
US8120517B2 (en) Digital-analog conversion circuit and output data correction method of the same
US11043961B2 (en) Analog-to-digital converter and associated chip
CN114124094A (zh) 模数转换器及权重电容校准方法
CN109547026A (zh) 一种基于r-2r电阻网络的电流舵型数模转换器
CN203554417U (zh) Sar adc电路及电子设备
CN104980158B (zh) 逐次逼近模数转换器及其校准方法
US10985773B2 (en) Analog to digital converting device and capacitor adjusting method thereof
CN203554418U (zh) Sar adc电路及电子设备
CN107070452A (zh) 一种能够降低模数转换器功耗的模数转换系统
CN112332843B (zh) 电容阵列、sar型模数转换器及电容校准方法
CN115701687A (zh) 用于流水线型模数转换电路的校准装置、方法以及雷达
CN114696830A (zh) 模数转换器、电量检测电路以及电池管理系统
CN114696825B (zh) 模数转换器及电容权重校准方法和装置
CN114696824B (zh) 全差分模数转换器及电容权重校准方法和装置