TWI667810B - 具有穿隧接面紫外光發光二極體的製造 - Google Patents
具有穿隧接面紫外光發光二極體的製造 Download PDFInfo
- Publication number
- TWI667810B TWI667810B TW107116202A TW107116202A TWI667810B TW I667810 B TWI667810 B TW I667810B TW 107116202 A TW107116202 A TW 107116202A TW 107116202 A TW107116202 A TW 107116202A TW I667810 B TWI667810 B TW I667810B
- Authority
- TW
- Taiwan
- Prior art keywords
- semiconductor region
- type semiconductor
- region
- growing
- tunneling
- Prior art date
Links
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 7
- 239000004065 semiconductor Substances 0.000 claims abstract description 210
- 230000005641 tunneling Effects 0.000 claims abstract description 82
- 238000000034 method Methods 0.000 claims abstract description 37
- 239000002800 charge carrier Substances 0.000 claims abstract description 17
- 239000002243 precursor Substances 0.000 claims description 27
- 229910052733 gallium Inorganic materials 0.000 claims description 14
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 claims description 10
- 238000005036 potential barrier Methods 0.000 claims description 6
- 238000011084 recovery Methods 0.000 claims description 6
- USZGMDQWECZTIQ-UHFFFAOYSA-N [Mg](C1C=CC=C1)C1C=CC=C1 Chemical compound [Mg](C1C=CC=C1)C1C=CC=C1 USZGMDQWECZTIQ-UHFFFAOYSA-N 0.000 claims description 4
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 claims 3
- 229910052707 ruthenium Inorganic materials 0.000 claims 3
- 229910052734 helium Inorganic materials 0.000 claims 1
- 239000001307 helium Substances 0.000 claims 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 claims 1
- 239000011777 magnesium Substances 0.000 description 88
- 239000010410 layer Substances 0.000 description 55
- 239000000463 material Substances 0.000 description 32
- 239000013078 crystal Substances 0.000 description 22
- 238000010586 diagram Methods 0.000 description 14
- 239000002019 doping agent Substances 0.000 description 10
- 229910052782 aluminium Inorganic materials 0.000 description 9
- 229910052738 indium Inorganic materials 0.000 description 9
- 229910052749 magnesium Inorganic materials 0.000 description 9
- 239000000956 alloy Substances 0.000 description 6
- 229910045601 alloy Inorganic materials 0.000 description 6
- 238000006243 chemical reaction Methods 0.000 description 6
- 239000007789 gas Substances 0.000 description 6
- 230000010287 polarization Effects 0.000 description 6
- 229910002704 AlGaN Inorganic materials 0.000 description 5
- 229910052732 germanium Inorganic materials 0.000 description 5
- 101100207343 Antirrhinum majus 1e20 gene Proteins 0.000 description 4
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 4
- 238000005275 alloying Methods 0.000 description 4
- DIOQZVSQGTUSAI-UHFFFAOYSA-N decane Chemical compound CCCCCCCCCC DIOQZVSQGTUSAI-UHFFFAOYSA-N 0.000 description 4
- 238000000151 deposition Methods 0.000 description 4
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 238000012545 processing Methods 0.000 description 4
- 229910052710 silicon Inorganic materials 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 238000005229 chemical vapour deposition Methods 0.000 description 3
- 230000007547 defect Effects 0.000 description 3
- 238000005530 etching Methods 0.000 description 3
- 238000010348 incorporation Methods 0.000 description 3
- 230000000670 limiting effect Effects 0.000 description 3
- 229910052757 nitrogen Inorganic materials 0.000 description 3
- 239000010453 quartz Substances 0.000 description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 3
- 239000002344 surface layer Substances 0.000 description 3
- 238000000137 annealing Methods 0.000 description 2
- 230000004888 barrier function Effects 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 238000005520 cutting process Methods 0.000 description 2
- 230000008021 deposition Effects 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 238000011065 in-situ storage Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 150000004767 nitrides Chemical class 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 239000002096 quantum dot Substances 0.000 description 2
- 230000008439 repair process Effects 0.000 description 2
- 230000002441 reversible effect Effects 0.000 description 2
- RGGPNXQUMRMPRA-UHFFFAOYSA-N triethylgallium Chemical compound CC[Ga](CC)CC RGGPNXQUMRMPRA-UHFFFAOYSA-N 0.000 description 2
- JLTRXTDYQLMHGR-UHFFFAOYSA-N trimethylaluminium Chemical compound C[Al](C)C JLTRXTDYQLMHGR-UHFFFAOYSA-N 0.000 description 2
- XCZXGTMEAKBVPV-UHFFFAOYSA-N trimethylgallium Chemical compound C[Ga](C)C XCZXGTMEAKBVPV-UHFFFAOYSA-N 0.000 description 2
- -1 HCl Chemical class 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 125000000217 alkyl group Chemical group 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- QZPSXPBJTPJTSZ-UHFFFAOYSA-N aqua regia Chemical compound Cl.O[N+]([O-])=O QZPSXPBJTPJTSZ-UHFFFAOYSA-N 0.000 description 1
- 125000004429 atom Chemical group 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000004071 biological effect Effects 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 125000004432 carbon atom Chemical group C* 0.000 description 1
- 239000012159 carrier gas Substances 0.000 description 1
- 238000003776 cleavage reaction Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000003795 desorption Methods 0.000 description 1
- 238000002059 diagnostic imaging Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 230000005670 electromagnetic radiation Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000011066 ex-situ storage Methods 0.000 description 1
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 1
- 229910052735 hafnium Inorganic materials 0.000 description 1
- VBJZVLUMGGDVMO-UHFFFAOYSA-N hafnium atom Chemical compound [Hf] VBJZVLUMGGDVMO-UHFFFAOYSA-N 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 125000005842 heteroatom Chemical group 0.000 description 1
- 150000004678 hydrides Chemical class 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 238000005984 hydrogenation reaction Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000001459 lithography Methods 0.000 description 1
- 238000001451 molecular beam epitaxy Methods 0.000 description 1
- 230000000877 morphologic effect Effects 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 239000005416 organic matter Substances 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 150000002910 rare earth metals Chemical group 0.000 description 1
- 230000002829 reductive effect Effects 0.000 description 1
- 230000003014 reinforcing effect Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 230000007017 scission Effects 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 230000002269 spontaneous effect Effects 0.000 description 1
- 238000000859 sublimation Methods 0.000 description 1
- 230000008022 sublimation Effects 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- IBEFSUTVZWZJEL-UHFFFAOYSA-N trimethylindium Chemical compound C[In](C)C IBEFSUTVZWZJEL-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 238000002211 ultraviolet spectrum Methods 0.000 description 1
- 229910052984 zinc sulfide Inorganic materials 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/02—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
- H01L33/04—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction
- H01L33/06—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction within the light emitting region, e.g. quantum confinement structure or tunnel barrier
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/0004—Devices characterised by their operation
- H01L33/002—Devices characterised by their operation having heterojunctions or graded gap
- H01L33/0025—Devices characterised by their operation having heterojunctions or graded gap comprising only AIIIBV compounds
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/005—Processes
- H01L33/0062—Processes for devices with an active region comprising only III-V compounds
- H01L33/0075—Processes for devices with an active region comprising only III-V compounds comprising nitride compounds
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/02—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
- H01L33/04—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/02—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
- H01L33/20—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular shape, e.g. curved or truncated substrate
- H01L33/22—Roughened surfaces, e.g. at the interface between epitaxial layers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/02—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
- H01L33/26—Materials of the light emitting region
- H01L33/30—Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table
- H01L33/32—Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table containing nitrogen
- H01L33/325—Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table containing nitrogen characterised by the doping materials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/36—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
- H01L33/40—Materials therefor
- H01L33/405—Reflective materials
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Led Devices (AREA)
Abstract
一種製造一發光二極體(LED)之方法包含形成經結構化以發射紫外(UV)光並經安置於一第一n型半導體區域與一第一p型半導體區域之間之一主動區域。該方法亦包含形成一穿隧接面,其中該第一p型半導體區域經安置於該主動區域與該穿隧接面之間,且其中該穿隧接面經電耦合以將電荷載體通過該第一p型半導體區域注入至該主動區域中。亦形成一第二n型半導體區域,其中該穿隧接面經安置於該第二n型半導體區域與該第一p型半導體區域之間。
Description
本發明大體上係關於發光二極體。
紫外(UV)光泛指具有10 nm至420 nm之一波長之電磁輻射,此波長範圍短於可見光之波長,但長於X射線之波長。UV光係自太陽發射,並係太陽總輸出之大約10%。UV光譜中之光可導致有機分子中之化學反應;因此UV光可導致顯著生物效應(最明顯日曬)。
歸因於UV光能夠引發化學反應並導致材料發螢光,UV輻射具有數個應用。例如,~10 nm波長範圍中之光可用於極UV光微影,230 nm至265 nm波長範圍中之光可用於標籤追蹤及條碼,及280 nm至400 nm波長範圍中之光可用於細胞之醫學成像。
因為UV光具有許多有用應用,所以需要發射UV光之裝置。然而,許多此等UV源可遭受與習知燈泡相同的缺陷;其等係大的、低效的、易碎的,且不能用作點光源。例如,一些常見UV發射器係短波長螢光燈管及氣體放電燈,兩者均使用一真空管以產生UV光。
[相關申請案之交叉參考]
本申請案主張於2017年5月12日申請之美國臨時申請案第62/505,717號之權利,該案之內容以引用的方式併入本文中。
本文中描述用於具有一穿隧接面之一紫外光發光二極體之製造之實施例。在以下描述中,闡述諸多特定細節以提供對該等實施例之一透徹理解。然而,熟習相關技術者將認識到:可在無該等具體細節之一或多者之情況下或運用其他方法、組件、材料等來實踐本文中描述之技術。在其他例項中,未詳細展示或描述熟知結構、材料或操作以避免模糊某些態樣。
貫穿本說明書對「一個實施例」或「一實施例」之引用意味著與該實施例結合描述之一特定特徵、結構或特徵包含於本發明之至少一個實施例中。因此,在貫穿此說明書之各種位置中出現短語「在一項實施例中」或「在一實施例中」不必要全部指代相同實施例。此外,特定特徵、結構或特徵可在一個或多個實施例中以任何適宜方式組合。
貫穿本發明,詞彙「第一」、「第二」、「第三」等用於指代包含於一二極體中之半導體材料之不同區域。可瞭解,此等數字表示法係為在語言上區分各種區域(其可具有相同或類似化學化合物),描述其等裝置架構中之位置並維持適當前述基礎。根據本發明之教示,可改變半導體區域之數字表示法。
本發明主要係指向製造一UV發射發光二極體(UV LED)之方法,該UV發射發光二極體(UV LED)係一高度緊湊發光裝置。
圖1係根據本發明之一實施例之一紫外光(UV)發光二極體(LED)100之一圖解說明。UV LED 100包含(自頁面頂部至底部)第一接點113、第一n型半導體區域101、主動區域103、第一p型半導體區域105、穿隧接面107、第二n型半導體區域109及第二接點111。如所描繪,回應於一施加電壓,UV LED 100之主動區域發射UV光。在一些實施例中,由UV LED 100發射之超過50%之光譜係UV光。再者,如熟習此項技術者將瞭解,UV LED 100可發射取決於所採用之特定裝置架構之任何其他波長之光。UV LED 100可為雷射作用或非雷射作用的。應瞭解,可自頂部向下(頁面定向)或自底部向上製造所描繪之裝置。
如所繪示,主動區域103經安置於第一n型半導體區域101與第一p型半導體區域105之間。第一p型半導體區域105經安置於主動區域103與穿隧接面107之間。穿隧接面107經電耦合以將電荷載體通過第一p型半導體區域105注入至主動區域103中。穿隧接面107經安置於第二n型半導體區域109與第一p型半導體區域105之間。第一電接點113經耦合至第一n型半導體區域101,且第二電接點111經耦合至第二n型半導體區域109。可使用任何金屬有機化學氣相沈積、化學氣相沈積、分子束磊晶或類似物來形成或生長UV LED 100。
在所描繪之實施例中,UV LED 100之各種組件可包含以下材料組分(其中未論述以避免混淆本發明之某些態樣)。穿隧接面107之組分將結合圖2A至圖7單獨論述。
第一n型半導體區域101可包含Al(x)Ga(1-x-y)In(y)N。此半導體結構可具有大於量子井之帶隙之一帶隙,在一些實施例中,該等量子井可經併入於主動區域103中。第一n型半導體區域101亦可包含超晶格(即
,具有交替組分之層之週期性陣列)。此外,第一n型半導體區域101可為Si或Ge摻雜的以賦予n型特徵。
主動區域103可包含由Al(x)Ga(1-x-y)In(y)N組成之一或多個異質結構。異質結構可具有具有較小帶隙區域(較小Al莫耳分數,或替代地增加的In莫耳分數),由安置於個別量子井之間之較大帶隙障壁(較大Al含量)包覆之多個量子井。熟習此項技術者將瞭解AlGaInN結構中之Al之百分比愈大,帶隙愈大(對於純InN在~.7 ev範圍內及對於AlN在~6 eV範圍內)。主動區域103中之量子井之數目可為1至10(或更多),且量子井厚度可在1 nm至20 nm之範圍內。障壁厚度可在1 nm至20 nm之範圍內。此外,主動區域103亦可包含量子點、量子線、量子盤等,作為嵌入於一寬帶隙材料中之主動元件。
第一p型半導體區域105可包含Al(x)Ga(1-x-y)In(y)N,Al(x)Ga(1-x-y)In(y)N具有大於併入於主動區域103中之量子井之帶隙之一帶隙。類似於第一n型半導體區域,第一p型半導體區域105可包含超晶格。第一p型半導體區域105亦可為Mg摻雜的以賦予p型特徵。
最後,第二n型半導體區域109可包含如第一n型半導體區域101(上文論述)之一類似(或相同)結構。且第一接點113及第二接點111可包含諸如Al、Ti/Al、W/Al等等之金屬/合金。
在所描繪之實施例中,穿隧接面107經用作一「電荷轉換層」以將孔提供至UV LED 100。N層(101及109)經接觸,且在環繞主動區域103之PN接面以反向偏置至正向偏置操作穿隧接面。穿隧接面107允許UV LED 100將製造而無接觸問題:消除對AlGaN具有抵抗性之一p型接點,且替代該p型接點之接點比使用一p型GaN接觸層吸收更少光。換言之,接觸具有穿隧接面107之主動區域103允許UV LED 100可被製造成無(a)與主動區域103中之材料形成不良電接觸之一電極或(b)吸收自主動區域103發射之大部分UV光之一電極。因此,此處揭示之裝置架構表示UV發射LED之效率中之一有意義的增加。
圖2A係根據本發明之一實施例之用於圖1中之紫外光發光二極體之一兩層穿隧接面207A之一圖解說明。如所描繪之穿隧接面207A包含第二p型半導體區域215(例如
,Al0.65
Ga0.35
N:Mg; [Mg]~1e20 cm-3
)及第三n型半導體區域217(例如
,Al0.65
Ga0.35
N:Si; [Si]~1e20 cm-3
),其等各別地可為P+(例如
,Mg)及N+(例如
,Si)摻雜的。在一些實施例中,此等半導體材料之兩者經簡併摻雜以允許電荷載體在導帶/價帶之間穿隧,且在一施加偏壓下產生空與滿狀態之間之重疊。第二p型半導體區域215經安置於一第一p型半導體區域(例如
,第一p型半導體區域105)與第三n型半導體區域217之間。在一些實施例中,穿隧接面207A中之材料可具有一漸變元素組分。換言之,第二p型半導體區域215與第三n型半導體區域217之間之轉變逐漸發生。此分級合金補償可改良深接受器Mg之電離。替代地,穿隧接面207A可在第二p型半導體區域215及第三n型半導體區域217之介面處具有一階梯狀組分,以引發電荷(例如,在(0001)定向層中之第三n型半導體區域217中之較低Al)。在一項實施例中,環繞穿隧接面207之層(例如
,圖1中之第一p型半導體區域105及第二n型半導體區域109)可具有寬於第二p型半導體區域215及第三n型半導體區域217之一者或兩者之一帶隙。然而,在一不同實施例中,穿隧接面207A中之半導體材料可具有寬於或相同於周圍材料之帶隙。
熟習此項技術者將瞭解,儘管第二p型半導體區域215及第三n型半導體區域217被稱為「穿隧接面」,但電荷載體之實際穿隧發生於此結構之一窄部分中。第二p型半導體區域215及第三n型半導體區域217係用於促進電荷載體穿隧於穿隧接面207A之一小部分中之半導體結構。穿隧接面207A包含一電位障(即
,傳統上禁用載體之一區域),其中電荷載體經由量子穿隧通過電位障。因此,由於此等結構用於形成穿隧功能性,故本發明係指其等共同作為「穿隧接面」。
圖2B係根據本發明之一實施例之用於圖1中之紫外光發光二極體之一三層穿隧接面207B之一圖解說明。穿隧接面207B在許多方面類似於穿隧接面207A;然而,穿隧接面207B包含安置於第二p型半導體區域215(例如
,Al0.65
Ga0.35
N:Mg; [Mg]~1e20 cm-3
)與第三n型半導體區域217(例如
,Al0.65
Ga0.35
N:Si; [Si]~1e20 cm-3
)之間之窄帶隙半導體區域219(例如
,In0.1
Ga0.9
N:Mg; [Mg]~1e18 cm-3
,亦參見
圖6A)。窄帶隙半導體區域219具有窄於第二p型半導體區域215及第三n型半導體區域217之一帶隙。窄帶隙半導體區域219可包含例如GaN、AlInGaN、InGaN且可為1 nm至10 nm厚。所描繪之結構使用極化以增加穿隧接面207B中之電場。三層穿隧接面207B包含具有實質上相同組分(一個p型( 例如
,第二p型半導體區域215),及一個n型(例如
,第三n型半導體區域217))之兩層,其環繞具有一不同組分之一第二層(例如
,窄帶隙半導體區域219)。第三n型半導體區域217可為Mg停止層(例如
,獲得可含有一不同摻雜劑(諸如Ge)之一含In層)。第二p型半導體區域215/第三n型半導體區域217及窄帶隙半導體區域219之組分具有不同極化(自發+壓電組件)。在1/2介面處,具有量值Q = P2 - P1之一片電荷存在,其中P2及P1各別地係周圍材料(第二p型半導體區域215/第三n型半導體區域217)及中心材料(窄帶隙半導體區域219)之極化。在此等材料之介面處,電荷係片-Q。中間層(d2)之厚度應經選擇,使得(P2 - P1)(d2/eps2) = Eg1/q,其中eps2係周圍材料之介電常數,及Eg1係中心材料之帶隙。通常,此處採用之強極化發生於氮化物之纖鋅礦相位中,且極化主要係電的。
圖2C係根據本發明之一實施例之用於圖1中之紫外光發光二極體之一四層穿隧接面207C之一圖解說明。穿隧接面207C在許多方面類似於穿隧接面207B;然而,穿隧接面207C包含第三p型半導體區域221,使得第二p型半導體區域215經安置於第三p型半導體區域221與窄帶隙半導體區域219之間。然而,熟習此項技術者將瞭解,可根據本發明之教示用一n型半導體區域(在穿隧接面之另一側)替代第三p型半導體區域221。第二p型半導體區域215可具有高於第三p型半導體區域221之自由電荷載體之一密度(更重度摻雜)。此四層結構在極化層之前涵蓋Mg控制層。在此情況中,第二p型半導體區域215之目的係定製穿隧接面中之Mg之分佈,並增加實際發生電荷載體之穿隧處之緊接附近之Mg濃度。換言之,穿隧接面207C中之鎂濃度在向第二p型半導體區域215之一方向上增加。替代地,第二p型半導體區域215可用作良好緊鄰電荷載體穿隧之位置之一中間孔。
圖2D係根據本發明之一實施例之用於圖1中之紫外光發光二極體之一五層穿隧接面207D之一圖解說明。穿隧接面207D在許多方面類似於穿隧接面207C;然而,穿隧接面207D包含第四n型半導體區域223,使得第三n型半導體區域217經安置於第四n型半導體區域223與窄帶隙半導體區域219之間。在一些實施例中,第三n型半導體區域217可具有高Si濃度。換言之,穿隧接面中之矽濃度在第三n型半導體區域之一方向上增加。通常,高Si濃度可粗糙化半導體層,因此第四n型半導體區域223可視為一形態恢復層。類似於其他實施例,層可在組分上分級。第三n型半導體區域217亦可視為一電子井。
圖2E係展示根據本發明之一實施例之用於圖2C中描繪之穿隧接面之處理條件之一表。可瞭解,可在穿隧接面之前或之後形成主動區域(在其他處描繪)。
在所描繪之實施例中,在一第一溫度(例如,~1000°C)下藉由將含鎵前驅物(例如
,三甲基鎵或三乙基鎵)—及視情況三甲基鋁—及雙(環戊二烯基)鎂流入於一反應器中而形成穿隧接面中之第一p型半導體區域(例如
,圖2C中之第三p型半導體區域221)。反應器之氛圍可包含N2
及NH3
。接著,切斷半導體前驅物,且反應器經斜升至~750°C。
接著,在~750°C(一第二溫度)下藉由將含鎵前驅物流入於反應器中而形成穿隧接面中之第二p型半導體區域(例如,第二p型半導體區域215)。可瞭解,處理溫度可在反應器之間偏離,因此~750°C僅係第二溫度之一項實例,更一般而言,然而,第二p型半導體區域可在小於第一p型半導體區域之>100°C下生長。在一項實施例中,此可為一恢復層以在來自摻雜之晶體結構中修復缺陷。恢復層之厚度可為30 nm至100 nm,且在一些實施例中,此可為足以修復所有缺陷之一臨界厚度範圍。在所描繪之實例中,可首先製造兩個P型區域(儘管其等在圖2C中之頁面之頂部處描繪)。
一視情況窄帶隙半導體區域(例如
,圖2C中之窄帶隙半導體區域219)經形成於第二p型半導體區域上。如其他處所描述,窄帶隙區域可具有小於周圍裝置層之一帶隙能量。
接著係在半導體前驅物(有機物)切斷之情況下至1000°C之一斜率(例如
,高於用於形成恢復區域之溫度之>100°C)。反應器之氛圍可包含N2
及NH3
。
在斜升至1000°C之後,在穿隧接面中生長一第一n型半導體區域(例如,圖2C中之第三n型半導體區域)。可在≥1000°C(一第三溫度)下藉由將一含鎵前驅物(例如
,三甲基鎵或三乙基鎵)連同一含矽前驅物(例如
,矽烷或乙矽烷)—及視情況三甲基鋁流入於反應器中而形成此區域。如所示,第二p型半導體區域及窄帶隙半導體區域可經安置於穿隧接面中之第一p型半導體區域與第一n型半導體區域之間。此外,窄帶隙半導體區域可具有窄於穿隧接面中之第一p型半導體區域及第一n型半導體區域之一帶隙。
可瞭解,穿隧接面中之所描繪之第一p型半導體區域、第二p型半導體區域及第一n型半導體區域包含GaN(其如所描述可為P摻雜的(例如
,用Mg)或N摻雜的(例如
,用Si))。然而,可使用Al、In、Ga及N(及其他元素)之任何組合以形成本文中論述之裝置架構之任何部分。
儘管在其他處所描繪,但可形成一第一接點及一第二接點以接觸主動區域及穿隧接面,其中主動區域及穿隧接面經安置於第一接點與第二接點之間。
圖3係根據本發明之一實施例之用於圖1中之紫外光發光二極體之一穿隧接面307及隨附頻帶圖351/353之一圖解說明。在所描繪之實施例中,穿隧接面307係一兩層穿隧接面(如圖2A中描繪之穿隧接面);然而,穿隧接面307具有安置於第二p型半導體區域315與第三n型半導體區域317之間之中間能隙狀態331。中間能隙狀態331允許藉由提供電荷載體可停留處之第二p型半導體區域315與第三n型半導體區域317之間之中間狀態而在施加於第二p型半導體區域315與第三n型半導體區域317之間之一給定偏壓處之增加的穿隧電流。例如,如頻帶圖351中所繪示,一中間能隙狀態331經繪示為p-n接面之中間中之一開放空間。電荷載體可自一個半導體材料「跳躍」至中間能隙狀態331,且接著至另一半導體材料。此將第二p型半導體區域315之價帶中之電子之總穿隧可能性增加至第三n型半導體區域317之導帶中之空狀態。頻帶圖353描繪僅與具有一不同組分/密度之狀態之半導體材料相同之現象。在一些實施例中,中間能隙狀態331可包含一半導體晶格、諸如以由稀土原子構成之量子點或替代晶體結構之形式橫向非均勻地沈積窄帶隙材料之設計狀態中之碳原子、鎂原子、點缺陷之至少一者。熟習此項技術者將瞭解,可能改良穿隧接面307之此方法可應用於本發明中之穿隧接面之任何實施例。穿隧接面中之層之位置可經調整以達成具有最小偏壓之最大穿隧電流。例如,對於由更接近於價帶之一狀態構成之一層,層可經定位於更靠近穿隧層內之標稱p型塊狀層以達成最高諧振。穿隧層可包含多個類型之中間能隙狀態,以進一步增強穿隧電流(例如,具有接近於價帶之一狀態之一個層,具有接近於導帶之一狀態之一個層及具有中間能隙中之狀態之一個層,其中各層在穿隧區域中在空間上分離)。
在所繪示之頻帶圖351/353中,在一反向偏壓下,第二p型半導體區域315之價帶能量大於或等於第三n型半導體區域317之一導帶能量。因此,電荷載體通過穿隧接面自第二p型半導體區域315之價帶跳躍於第三n型半導體區域317之導帶中。
此文獻之以下部分將論述用於形成上文所描述並在圖1至圖3中展示之裝置架構之其他方法/技術。熟習此項技術者將瞭解,製造下文所描述之一UV LED之方法可用於形成上文所揭示之任何結構,及不在圖1至圖3中描繪之其他結構。此外,根據本發明之教示,方法可含有不論述或繪示之其他步驟。
此處揭示之生長配方在一UV LED中摻雜一基於氮化物之穿隧接面。在穿隧接面中,一高濃度之Mg可需要作為一p型層以在接面之一側上銷接價帶(儘管諸如極化引入帶彎曲之其他方案亦可增加改良Mg有效性之電離率)。Mg必須為足夠高濃度的並具有一足夠尖銳「接通」(即
,依據裝置中之位置而變化之摻雜劑之濃度具有一陡坡—可能階狀—增加)或「切斷」(即
,依據裝置中之位置而變化之摻雜劑之濃度具有一陡坡—可能階狀—下降),以允許穿隧接面之另一側上之N型物質不足以形成一有效接面。換言之,必須細緻控制摻雜劑之位置(或缺少摻雜劑)以實現清晰界定的經摻雜裝置架構之體系(不僅混合在一起之半導體材料之層)。Mg之控制在金屬有機化學氣相沈積(MOCVD)反應器中有時係有挑戰性的,因為其可形成表面層及塗覆反應器部分,所以切斷及接通係有挑戰性的。此外,Mg之一表面層可存在於Mg經併入於其中之半導體材料上,以便實現整合於晶體中之合理Mg。更一般而言,得到p型寬帶隙材料可為有挑戰性的,此係因為材料(例如,藉由整合氫氣或存在於氣相中之其他物質)趨於被補償。此涉及由用於寬帶隙材料中之所有已知p型摻雜劑之高電離能量,導致在正常操作條件下摻雜劑之低電離。
一穿隧接面(例如
,圖1中之穿隧接面107、圖2A至圖2D中之接面207及圖3中之接面307)中之p型材料/摻雜劑之優化可不同於一塊狀材料應用,此係因為一穿隧接面中之半導體層可為非常窄的(幾奈米)。此係因為使用塊狀材料,通常優化半導體之電阻。然而,在一穿隧接面中,電阻可為低於穿隧接面介面處之載體濃度之一優先權,因此可需要使用不同摻雜方案及方法(相對於塊狀半導體架構)來形成一適當穿隧接面。
圖4繪示根據本發明之一實施例之一例示性流程圖401及展示如何達成增強合金接通之一例示性組分對位置圖403。將參考圖2A中之穿隧接面論述以下程序,但熟習此項技術者將瞭解,程序適用於所描繪之任何其他裝置架構。
流程圖401描繪所列出之元素(即
,Si、Al、In及Mg)之前驅物流入反應腔室中以形成穿隧接面(例如
,穿隧接面207A)。熟習此項技術者將瞭解,其他前驅物(例如
,含Ga、Ge、N或類似物之前驅物化合物)及氣體(例如
,N2
、H2
、Ar或類似物)可如所描繪物質般經同時流入於反應器中,但不經繪示以避免混淆某些態樣。如所描繪,在程序開始時,一含鋁物質(例如
,AlGaN)正在生長。接著,接通一鎂源(例如
,雙(環戊二烯基)鎂[縮寫Cp2
Mg])以生長一p摻雜區域(例如
,第二P型半導體區域215)。在接通鎂之後,銦前驅物(例如
,三甲基銦[縮寫TMIn])經引入於反應器中。沈積的In可降低將Mg併入於GaN/AlGaN半導體晶體之能量。此增強的併入在In之位置處產生一尖銳Mg峰值(例如參見
,位置圖403,其中在接面介面處對準並明確界定Mg及In濃度)。在Mg經併入於半導體晶體中之後,一n型摻雜劑(例如
,Si)經引入於反應器中,以產生一n摻雜區域(例如
,第三N型半導體區域217)。
已知將銦前驅物引入於一MOCVD反應器中以獲得殘餘Mg。Mg正常地跨置GaN之表面,但In或(Al)GaN與InGaN之間之異質介面之存在可允許Mg併入於半導體晶體中之一標記增加,此係因為In降低Mg併入於晶體中所需之能量。由於Mg正跨置表面,故可能在塊生長期間在晶體表面上具有一大量非併入Mg,接著當接通TMIn時,半導體晶體之Mg含量可增加。替代地,可切斷Al前驅物,且可預期晶體中之Mg中之一大增加。銦類似地「跨置」表面,但可由Cl流移除。
在一項實施例中,TMIn可經脈衝以製造可捕捉更多Mg之許多異質介面。替代地或另外地,可以一脈衝模式切斷Al,形成具有增加的Mg之一AlGaN/GaN超晶格。
在另一實施例中,可在接通銦之前或在切斷Al之後使用一暫停以進一步增強Mg併入效應。在暫停期間,NH3
及環境氣體仍可為流動的,但切斷金屬有機物。然而,在一些實施例中,Cp2
Mg可保留接通。
圖5A繪示根據本發明之一實施例之一例示性流程圖501及展示如何達成對接通之增強合金控制之一例示性組分對位置圖503。更特定言之,圖描繪如何使用Mg預流以改良接通。將參考圖2A中之穿隧接面論述以下程序,但熟習此項技術者將瞭解,程序適用於所描繪之任何其他裝置架構。
流程圖501描繪流入於反應腔室中以形成穿隧接面(例如
,穿隧接面207A)之所列出之元素(即
,Si、Al、In及Mg)及其他未列出之元素之前驅物(例如
,N前驅物)。在此方案中,切斷Al及Ga前驅物(更通常為III族前驅物)達一段時間,且接著僅允許Mg前驅物(Cp2
Mg)以流動於具有烷基及攜帶氣體(例如
,NH3
、N2
、H2
、Ar)之反應器中。此係「預塗覆」具有Mg之半導體之表面以銳化穿隧接面之一p型區域(例如
,第二p型半導體區域215)中之Mg之接通。在暫停生長之後與合金之組分改變組合,可在最終晶體中增加Mg密度(如圖503中之尖銳Mg接通所示)。
圖5B繪示一例示性流程圖501及展示如何達成對接通之增強合金控制之一例示性組分對位置圖503。類似於圖5A,圖描繪如何使用Mg預流以改良接通。代替一暫停(如圖5A中所示),為了使半導體晶體表面飽和,可暫時將Cp2
Mg增加至非常高能階(例如參見
圖501中之高能階之Mg,而Al及Ge以恆定速率流動)。此高接通能階導致穿隧接面中之Mg濃度中之一階梯狀增加(例如
,以形成圖2A之第二P型半導體區域215)。接著,如圖501中所描繪,在半導體之表面用Mg飽和之後,Mg前驅物之流動降低至一較低能階。
推測在半導體晶體表面上形成液體之一濕潤層,且在Mg經併入於底層GaN/AlGaN晶體中之前,Mg表面層需要達成一定濃度。此處,Mg前驅物之高初始流動速率導致表面快速飽和,產生尖銳Mg接通。
圖6繪示根據本發明之一實施例之用於合金切斷之一程序。更特定言之,圖6及相關聯論述涵蓋形成一穿隧接面中之用於一富含Mg層(例如
,圖2A之第二P型半導體區域215)之一明確界定停止點之方式。
通常顯著量之Mg來自周圍反應器部分。此係來自作為形成裝置架構之一副產物而在反應器部分上沈積之Mg。在後續沈積步驟期間,Mg可自反應器部分重新沈積至晶圓,此可導致不期望的結果。如所示,在反應器之一部分冷卻期間,此等部分可經換出(尤其是經塗覆之部分),以提供清潔部分。此可藉由使用晶圓605周圍及在晶圓固持器607之頂部上之一額外薄石英頂部層(擋板603)而完成,其可在沈積含Mg層而不完全冷卻反應器之後(例如
,機械性地)移除。可移除石英擋板603可允許晶圓仍在反應器中之情況下對反應器部分進行高溫烘烤。具有一可移除擋板603防止沈積於擋板603上之Mg在後續處理步驟中重新沈積於晶圓605上(此係因為在Mg沈積後移除擋板603)。
在另一或相同實施例中,可藉由中斷金屬有機物之流動並使用熱脫附以移除殘餘Mg而停止半導體晶體生長。換言之,在Mg用於摻雜半導體晶體(例如
,形成第二P型半導體區域215)之後,可藉由加熱晶圓而「燒除」殘餘Mg,因此防止殘餘Mg排出於裝置架構之其他層中。
在另一或相同實施例中,可藉由停止生長並執行一原位
蝕刻(例如,使用Cl2
)而控制Mg。此方法停止生長,或替代地,供應足夠Ga、Al及In以保持表面處於平衡,並將另一化學物質引入於反應腔室中以化學地移除Mg。Cl2
係一項實例,但NH3
可用於聚合並移除Mg。單獨H2
亦可足以移除Mg,或若H經引入為一原子(例如經由電漿)以產生Mg之氫化物,接著例如可使用另一化學品(諸如H2
O)來蝕除Mg氫化物。
在另一實例中,可使用一In(GaAl)N蓋,移除樣品(視情況),改變反應器部分,昇華(或蝕刻)蓋,並接著持續製造其他穿隧接面層來停止Mg摻雜的晶體之生長。類似地,可使用一犧牲(Al)GaN蓋,移除樣品(視情況),改變反應器部分,(例如
,使用H2
)昇華或蝕刻蓋,並持續製造其他穿隧接面層來停止Mg摻雜的晶體生長。在沈積含Mg層之後,此等方案之兩者使用一保護犧牲層來罩蓋晶圓。在生長犧牲(In)(Al)GaN之後,移除晶圓,原位
移除或清潔反應器部分,接著晶圓經重新引入至反應器,且化學地回蝕或熱脫附罩蓋層,以暴露期望的介面。在移除蓋之後,生長剩餘穿隧接面。替代地,可保留所有反應器部分,接著可在蝕刻程序期間較佳冷卻反應器部分,使得蝕刻在晶圓上更快發生。接著,將Mg埋入於反應器部分中,且將穿隧接面表面保留暴露於晶圓上並準備後續生長。可使用外部差別地泵送殘餘氣體分析器監測Mg控制程序,該外部差別地泵送殘餘氣體分析器啟用可包含一高In含量或其他物質之一蝕刻停止層,或替代地可使用反射技術來監測此程序。此之一簡單實施方案係移除無一蓋之樣品,蝕刻王水或如HCl之其他酸中之晶圓,將清潔部分引入於反應器中,接著進行N型生長(例如
,第三N型半導體區域217)。
圖7描繪根據本發明之一實施例之控制穿隧接面生長條件之一方法。熟習此項技術者將瞭解,方法700中之方塊不係限制性的:額外方塊可經添加至方法700,可自方法700移除方塊,且可以各種順序發生所描繪之方塊。
方塊701展示同時接通Mg及N型(例如
,Ge)源。方塊703繪示形成具有Mg及Ge兩者(或其他具高度移動性N型物質(例如
,H或Si))之一半導體晶體。方塊705描繪熱退火半導體材料以遍及一大體積之半導體晶體擴散n型物質。因此,由於Mg不具高移動性,故Mg之P型特徵變成在沈積Mg之晶體之區域中之多數電荷載體類型。與一具高度移動性N型物質共摻雜減少活性MgH位點之形成能量作為趨向導帶之費米能階。若沈積Ge或其他N型摻雜劑,則可能藉由與該等物質共摻雜並使用一類似非原位
處理(諸如一熱退火)而進一步增加表面處之Mg濃度。
在另一或相同實施例中,基板之NH3
流量及溫度通常經優化以給出p型材料之最佳片電阻。在一穿隧接面中,電荷密度係主要設計問題。因此,可在接面附近優化V/III比率及溫度兩者以提供最高電荷密度,同時移動性可為低的(相對於LED中之其他半導體層—例如圍繞穿隧接面之半導體層)。存在一些指示,一般而言,電荷可隨著V/III比率增加及/或用於GaN之生長溫度降低而增加。
本發明之所繪示實施例之上文描述(包含[摘要]中描述之內容)並不意欲為詳盡的或將本發明限制於所揭示之精確形式。儘管為闡釋性目的本文中描述本發明之特定實施例及實例,但如熟習相關技術者將認知,多種修改在本發明之範疇內係可行的。
可根據上文詳細描述對本發明進行此等修改。下文申請專利範圍中使用之術語不應解譯為將本發明限制於本說明書中揭示之具體實施例。實情係,應完全藉由以下申請專利範圍判定本發明之範疇,應根據申請專利範圍詮釋之既定原則而解釋以下申請專利範圍。
100‧‧‧紫外光(UV)發光二極體(LED)
101‧‧‧第一n型半導體區域
103‧‧‧主動區域
105‧‧‧第一p型半導體區域
107‧‧‧穿隧接面
109‧‧‧第二n型半導體區域
111‧‧‧第二電接點
113‧‧‧第一電接點
207A‧‧‧兩層穿隧接面
207B‧‧‧三層穿隧接面
207C‧‧‧四層穿隧接面
215‧‧‧第二p型半導體區域
217‧‧‧第三n型半導體區域
219‧‧‧窄帶隙半導體區域
221‧‧‧第三p型半導體區域
223‧‧‧第四n型半導體區域
307‧‧‧穿隧接面
315‧‧‧第二p型半導體區域
317‧‧‧第三n型半導體區域
331‧‧‧中間能隙狀態
351‧‧‧隨附頻帶圖
353‧‧‧隨附頻帶圖
401‧‧‧流程圖
403‧‧‧組分對位置圖
501‧‧‧流程圖
503‧‧‧組分對位置圖
603‧‧‧石英擋板
605‧‧‧晶圓
607‧‧‧晶圓固持器
700‧‧‧方法
701‧‧‧方塊
703‧‧‧方塊
705‧‧‧方塊
參考下圖描述本發明之非限制性及非窮舉性實施例,其中相同元件符號指代貫穿各個視圖之相同部分,除非另有指定。圖式不一定按比例繪製,反之重點置於繪示所描述之原理。
圖1係根據本發明之一實施例之一紫外光發光二極體之一圖解說明。
圖2A係根據本發明之一實施例之用於圖1中之紫外光發光二極體之一穿隧接面之一圖解說明。
圖2B係根據本發明之一實施例之用於圖1中之紫外光發光二極體之一穿隧接面之一圖解說明。
圖2C係根據本發明之一實施例之用於圖1中之紫外光發光二極體之一穿隧接面之一圖解說明。
圖2D係根據本發明之一實施例之用於圖1中之紫外光發光二極體之一穿隧接面之一圖解說明。
圖2E係展示根據本發明之一實施例之用於圖2C中描繪之穿隧接面之處理條件之一表。
圖3係根據本發明之一實施例之用於圖1中之紫外光發光二極體之一穿隧接面及隨附頻帶圖之一圖解說明。
圖4繪示根據本發明之一實施例之一例示性流程圖及展示如何達成增強合金接通之一例示性組分對位置圖。
圖5A及圖5B係根據本發明之若干實施例之一例示性流程圖及展示如何達成增強合金接通之一例示性組分對位置圖。
圖6繪示根據本發明之一實施例之用於增強合金切斷之一程序。
圖7描繪根據本發明之一實施例之控制穿隧接面生長條件之一方法。
Claims (16)
- 一種製造一發光二極體(LED)之方法,其包括:形成安置於一第一n型半導體區域與一第一p型半導體區域之間經結構化以發射紫外(UV)光之一主動區域;形成一穿隧接面,其中該第一p型半導體區域經安置於該主動區域與該穿隧接面之間,且其中該穿隧接面經電耦合以將電荷載體通過該第一p型半導體區域注入至該主動區域中,其中形成該穿隧接面包含:使用一反應器來生長一第二p型半導體區域;生長一第三n型半導體區域,其中該第二p型半導體區域經安置於該第一p型半導體區域與該第三n型半導體區域之間;及生長安置於該第二p型半導體區域與該第三n型半導體區域之間之一窄帶隙半導體區域,其中該窄帶隙半導體區域具有窄於該第二p型半導體區域及該第三n型半導體區域之一帶隙;及形成一第二n型半導體區域,其中該穿隧接面經安置於該第二n型半導體區域與該第一p型半導體區域之間。
- 如請求項1之方法,其進一步包括生長一第三p型半導體區域,其中該第二p型半導體區域經安置於該第三p型半導體區域與該第三n型區域之間。
- 如請求項2之方法,其中該第二p型半導體區域係一恢復區域。
- 如請求項2之方法,其中該第二p型半導體區域、該第三p型半導體區域及該第三n型半導體區域包含GaN。
- 如請求項4之方法,其中生長該第三p型半導體區域包含在一第一溫度下將一含鎵前驅物及雙(環戊二烯基)鎂流入於一反應器中。
- 如請求項4之方法,其中生長該第三n型半導體區域包含將該含鎵前驅物及一含矽前驅物流入於該反應器中。
- 如請求項6之方法,其中該含鎵前驅物及該含矽前驅物在大於或等於該第一溫度之一第二溫度下經流入於該反應器中。
- 如請求項1之方法,其中該穿隧接面包含一電位障,且其中該等電荷載體經由量子穿隧通過該電位障。
- 如請求項1之方法,其進一步包括:形成一第一接點;及形成一第二接點,其中該主動區域及該穿隧接面經安置於該第一接點與該第二接點之間。
- 一種製造一發光二極體(LED)以發射紫外(UV)光之方法,其包括:形成包含經結構化以發射該UV光之一或多個量子井之一主動區域;及 形成一穿隧接面,其經電耦合至該主動區域以將電荷載體注入於該主動區域以發射該UV光,其中該穿隧接面包含一電位障,且該等電荷載體經由量子穿隧通過該電位障,其中形成該穿隧接面包含:生長一第一p型半導體區域;生長一第一n型半導體區域;及生長安置於該第一p型半導體區域與該第一n型半導體區域之間之一窄帶隙半導體區域,其中該窄帶隙半導體區域具有窄於該第一p型半導體區域及該第一n型半導體區域之一帶隙。
- 如請求項10之方法,其中形成該穿隧接面進一步包含:生長安置於該第一p型半導體區域與該第一n型半導體區域之間之一第二p型半導體區域,其中該第二p型半導體區域係一恢復區域。
- 如請求項11之方法,其中該第一p型半導體區域、該第二p型半導體區域及該第一n型半導體區域包含GaN。
- 如請求項12之方法,其中生長該第一p型半導體區域包含在一第一溫度下將一含鎵前驅物及雙(環戊二烯基)鎂流入於一反應器中。
- 如請求項13之方法,其中生長該第二p型半導體區域包含在低於該第一溫度之一第二溫度下將該含鎵前驅物流入於該反應器中。
- 如請求項13之方法,其中生長該第一n型半導體區域包含將該含鎵前 驅物及一含矽前驅物流入於該反應器中。
- 如請求項15之方法,其中該含鎵前驅物及該含矽前驅物在大於或等於該第一溫度之一第三溫度下經流入於該反應器中。
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201762505717P | 2017-05-12 | 2017-05-12 | |
US62/505,717 | 2017-05-12 | ||
US15/970,277 US20180331255A1 (en) | 2017-05-12 | 2018-05-03 | Fabrication of ultraviolet light emitting diode with tunnel junction |
US15/970,277 | 2018-05-03 |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201901983A TW201901983A (zh) | 2019-01-01 |
TWI667810B true TWI667810B (zh) | 2019-08-01 |
Family
ID=64098044
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW107116202A TWI667810B (zh) | 2017-05-12 | 2018-05-11 | 具有穿隧接面紫外光發光二極體的製造 |
Country Status (3)
Country | Link |
---|---|
US (1) | US20180331255A1 (zh) |
TW (1) | TWI667810B (zh) |
WO (1) | WO2018208957A1 (zh) |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3442026B1 (en) * | 2017-08-11 | 2023-03-08 | IMEC vzw | Gate for an enhancement-mode transistor |
US11158760B2 (en) * | 2018-02-07 | 2021-10-26 | The Regents Of The University Of California | Metal organic chemical vapor depostion (MOCVD) tunnel junction growth in III-nitride devices |
JP7262965B2 (ja) * | 2018-10-17 | 2023-04-24 | スタンレー電気株式会社 | 半導体発光素子 |
US11690160B2 (en) * | 2019-09-10 | 2023-06-27 | The Board Of Trustees Of The University Of Illinois | Plasma photonic crystals with integrated plasmonic arrays in a microtubular frame |
US11923398B2 (en) | 2019-12-23 | 2024-03-05 | Lumileds Llc | III-nitride multi-wavelength LED arrays |
US11404473B2 (en) | 2019-12-23 | 2022-08-02 | Lumileds Llc | III-nitride multi-wavelength LED arrays |
JP7101347B2 (ja) * | 2019-12-27 | 2022-07-15 | 日亜化学工業株式会社 | 発光素子の製造方法 |
TWI750664B (zh) * | 2020-05-19 | 2021-12-21 | 錼創顯示科技股份有限公司 | 微型發光二極體晶片 |
CN112086856B (zh) * | 2020-10-13 | 2021-09-21 | 江苏华兴激光科技有限公司 | 一种半导体超短脉冲激光器及其制备方法 |
US11631786B2 (en) | 2020-11-12 | 2023-04-18 | Lumileds Llc | III-nitride multi-wavelength LED arrays with etch stop layer |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW200417057A (en) * | 2002-09-30 | 2004-09-01 | Lumileds Lighting Llc | Light emitting devices including tunnel junctions |
TW200425543A (en) * | 2003-02-14 | 2004-11-16 | Cree Inc | Inverted light emitting diode on conductive substrate |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5585648A (en) * | 1995-02-03 | 1996-12-17 | Tischler; Michael A. | High brightness electroluminescent device, emitting in the green to ultraviolet spectrum, and method of making the same |
US8124957B2 (en) * | 2006-02-22 | 2012-02-28 | Cree, Inc. | Low resistance tunnel junctions in wide band gap materials and method of making same |
DE102007003991A1 (de) * | 2007-01-26 | 2008-07-31 | Osram Opto Semiconductors Gmbh | Optoelektronischer Halbleiterchip mit einem Tunnelübergang |
DE102008028036A1 (de) * | 2008-02-29 | 2009-09-03 | Osram Opto Semiconductors Gmbh | Optoelektronischer Halbleiterkörper mit Tunnelübergang und Verfahren zur Herstellung eines solchen |
US8653550B2 (en) * | 2010-12-17 | 2014-02-18 | The United States Of America, As Represented By The Secretary Of The Navy | Inverted light emitting diode having plasmonically enhanced emission |
JP5558454B2 (ja) * | 2011-11-25 | 2014-07-23 | シャープ株式会社 | 窒化物半導体発光素子および窒化物半導体発光素子の製造方法 |
CN105873190B (zh) * | 2015-01-20 | 2019-04-30 | 深圳市中兴微电子技术有限公司 | 一种闭环的时钟校准方法及终端 |
WO2016160720A1 (en) * | 2015-03-27 | 2016-10-06 | Ohio State Innovation Foundation | Ultraviolet light emitting diodes with tunnel junction |
-
2018
- 2018-05-03 US US15/970,277 patent/US20180331255A1/en not_active Abandoned
- 2018-05-09 WO PCT/US2018/031861 patent/WO2018208957A1/en active Application Filing
- 2018-05-11 TW TW107116202A patent/TWI667810B/zh not_active IP Right Cessation
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW200417057A (en) * | 2002-09-30 | 2004-09-01 | Lumileds Lighting Llc | Light emitting devices including tunnel junctions |
TW200425543A (en) * | 2003-02-14 | 2004-11-16 | Cree Inc | Inverted light emitting diode on conductive substrate |
Also Published As
Publication number | Publication date |
---|---|
WO2018208957A1 (en) | 2018-11-15 |
TW201901983A (zh) | 2019-01-01 |
US20180331255A1 (en) | 2018-11-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI667810B (zh) | 具有穿隧接面紫外光發光二極體的製造 | |
Kneissl et al. | The emergence and prospects of deep-ultraviolet light-emitting diode technologies | |
US6720570B2 (en) | Gallium nitride-based semiconductor light emitting device | |
US5432808A (en) | Compound semicondutor light-emitting device | |
TW409447B (en) | Semiconductor manufacture method and semiconductor laser apparatus | |
US8242484B2 (en) | Vertical deep ultraviolet light emitting diodes | |
US8304756B2 (en) | Deep ultraviolet light emitting device and method for fabricating same | |
US7714350B2 (en) | Gallium nitride based semiconductor device and method of manufacturing same | |
Zhang et al. | On the effect of step-doped quantum barriers in InGaN/GaN light emitting diodes | |
JP4485510B2 (ja) | 半導体層構造の成長方法 | |
JPWO2006025407A1 (ja) | 発光素子及びその製造方法 | |
US10600934B2 (en) | Light emitting device with transparent conductive group-III nitride layer | |
CN102064471B (zh) | 一种氮化镓基半导体激光器及其制作方法 | |
Cao et al. | Investigation of radiative tunneling in GaN/InGaN single quantum well light-emitting diodes | |
JP2007227832A (ja) | 窒化物半導体素子 | |
JP2006313890A (ja) | 窒化ガリウム系半導体素子及びその製造方法 | |
CN101289173A (zh) | 选择超晶格位置掺杂的p型III族氮化物材料的制备方法 | |
WO2007021549A2 (en) | Ligh emitting diodes with quantum dots | |
US9705287B2 (en) | Method of fabricating a P type nitride semiconductor layer doped with carbon | |
WO2014196437A1 (ja) | SiC材料の製造方法及びSiC材料積層体 | |
JP2995186B1 (ja) | 半導体発光素子 | |
JP2010116621A (ja) | ZnO系半導体層とその製造方法、ZnO系半導体発光素子、及びZnO系半導体素子 | |
US20240304754A1 (en) | ELECTRON OVERFLOW OF AIGaN DEEP ULTRAVIOLET LIGHT EMITTING DIODES | |
JP3279226B2 (ja) | Iii族窒化物半導体発光素子 | |
Osinsky et al. | ZnO-based light emitters |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | Annulment or lapse of patent due to non-payment of fees |