TWI667619B - 動態手寫驗證之方法與電腦系統 - Google Patents

動態手寫驗證之方法與電腦系統 Download PDF

Info

Publication number
TWI667619B
TWI667619B TW103136790A TW103136790A TWI667619B TW I667619 B TWI667619 B TW I667619B TW 103136790 A TW103136790 A TW 103136790A TW 103136790 A TW103136790 A TW 103136790A TW I667619 B TWI667619 B TW I667619B
Authority
TW
Taiwan
Prior art keywords
data
value
stream
handwritten
pen
Prior art date
Application number
TW103136790A
Other languages
English (en)
Other versions
TW201535274A (zh
Inventor
馬丁 霍登
尼可拉斯 麥特伊爾
Original Assignee
和冠股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US14/080,723 external-priority patent/US9235748B2/en
Application filed by 和冠股份有限公司 filed Critical 和冠股份有限公司
Publication of TW201535274A publication Critical patent/TW201535274A/zh
Application granted granted Critical
Publication of TWI667619B publication Critical patent/TWI667619B/zh

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/30Writer recognition; Reading and verifying signatures
    • G06V40/37Writer recognition; Reading and verifying signatures based only on signature signals such as velocity or pressure, e.g. dynamic signature recognition
    • G06V40/394Matching; Classification
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/048Interaction techniques based on graphical user interfaces [GUI]
    • G06F3/0487Interaction techniques based on graphical user interfaces [GUI] using specific features provided by the input device, e.g. functions controlled by the rotation of a mouse with dual sensing arrangements, or of the nature of the input device, e.g. tap gestures based on pressure sensed by a digitiser
    • G06F3/0488Interaction techniques based on graphical user interfaces [GUI] using specific features provided by the input device, e.g. functions controlled by the rotation of a mouse with dual sensing arrangements, or of the nature of the input device, e.g. tap gestures based on pressure sensed by a digitiser using a touch-screen or digitiser, e.g. input of commands through traced gestures
    • G06F3/04883Interaction techniques based on graphical user interfaces [GUI] using specific features provided by the input device, e.g. functions controlled by the rotation of a mouse with dual sensing arrangements, or of the nature of the input device, e.g. tap gestures based on pressure sensed by a digitiser using a touch-screen or digitiser, e.g. input of commands through traced gestures for inputting data by handwriting, e.g. gesture or text
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T9/00Image coding
    • G06T9/005Statistical coding, e.g. Huffman, run length coding
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/70Arrangements for image or video recognition or understanding using pattern recognition or machine learning
    • G06V10/74Image or video pattern matching; Proximity measures in feature spaces
    • G06V10/75Organisation of the matching processes, e.g. simultaneous or sequential comparisons of image or video features; Coarse-fine approaches, e.g. multi-scale approaches; using context analysis; Selection of dictionaries
    • G06V10/754Organisation of the matching processes, e.g. simultaneous or sequential comparisons of image or video features; Coarse-fine approaches, e.g. multi-scale approaches; using context analysis; Selection of dictionaries involving a deformation of the sample pattern or of the reference pattern; Elastic matching
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V30/00Character recognition; Recognising digital ink; Document-oriented image-based pattern recognition
    • G06V30/10Character recognition
    • G06V30/14Image acquisition
    • G06V30/142Image acquisition using hand-held instruments; Constructional details of the instruments
    • G06V30/1423Image acquisition using hand-held instruments; Constructional details of the instruments the instrument generating sequences of position coordinates corresponding to handwriting
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V30/00Character recognition; Recognising digital ink; Document-oriented image-based pattern recognition
    • G06V30/10Character recognition
    • G06V30/22Character recognition characterised by the type of writing
    • G06V30/226Character recognition characterised by the type of writing of cursive writing
    • G06V30/2268Character recognition characterised by the type of writing of cursive writing using stroke segmentation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V30/00Character recognition; Recognising digital ink; Document-oriented image-based pattern recognition
    • G06V30/10Character recognition
    • G06V30/32Digital ink
    • G06V30/333Preprocessing; Feature extraction
    • G06V30/347Sampling; Contour coding; Stroke extraction
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/30Writer recognition; Reading and verifying signatures
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/30Writer recognition; Reading and verifying signatures
    • G06V40/33Writer recognition; Reading and verifying signatures based only on signature image, e.g. static signature recognition
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/30Writer recognition; Reading and verifying signatures
    • G06V40/37Writer recognition; Reading and verifying signatures based only on signature signals such as velocity or pressure, e.g. dynamic signature recognition
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/30Writer recognition; Reading and verifying signatures
    • G06V40/37Writer recognition; Reading and verifying signatures based only on signature signals such as velocity or pressure, e.g. dynamic signature recognition
    • G06V40/382Preprocessing; Feature extraction
    • G06V40/388Sampling; Contour coding; Stroke extraction
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M7/00Conversion of a code where information is represented by a given sequence or number of digits to a code where the same, similar or subset of information is represented by a different sequence or number of digits
    • H03M7/30Compression; Expansion; Suppression of unnecessary data, e.g. redundancy reduction
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N1/00Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
    • H04N1/32Circuits or arrangements for control or supervision between transmitter and receiver or between image input and image output device, e.g. between a still-image camera and its memory or between a still-image camera and a printer device
    • H04N1/32101Display, printing, storage or transmission of additional information, e.g. ID code, date and time or title
    • H04N1/32144Display, printing, storage or transmission of additional information, e.g. ID code, date and time or title embedded in the image data, i.e. enclosed or integrated in the image, e.g. watermark, super-imposed logo or stamp
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M7/00Conversion of a code where information is represented by a given sequence or number of digits to a code where the same, similar or subset of information is represented by a different sequence or number of digits
    • H03M7/30Compression; Expansion; Suppression of unnecessary data, e.g. redundancy reduction
    • H03M7/60General implementation details not specific to a particular type of compression
    • H03M7/6064Selection of Compressor

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Multimedia (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Human Computer Interaction (AREA)
  • General Engineering & Computer Science (AREA)
  • Computing Systems (AREA)
  • Artificial Intelligence (AREA)
  • Health & Medical Sciences (AREA)
  • Databases & Information Systems (AREA)
  • Evolutionary Computation (AREA)
  • General Health & Medical Sciences (AREA)
  • Medical Informatics (AREA)
  • Software Systems (AREA)
  • Signal Processing (AREA)
  • Collating Specific Patterns (AREA)
  • Character Discrimination (AREA)
  • User Interface Of Digital Computer (AREA)

Abstract

揭示手寫驗證方法及相關的電腦系統、以及手寫為基礎的使用者認證方法及相關的電腦系統。手寫驗證方法包括取得含有眾多可利用的參數之手寫測試樣本;取出幾何參數;導出用於測試樣本中眾多特徵點中的各特徵點之包括x位置值及y位置值的幾何特徵;執行測試樣本與參考樣本的幾何特徵之間的特徵比對;至少部份地根據特徵比對,決定手寫驗證結果;以及,輸出手寫驗證結果。也揭示用於產生及保存電子手寫資料的技術及工具。原始手寫資料轉換成保存原始手寫資料的原始內容之串流格式。也揭示用於將電子手寫資料插入數位影像之技術及工具。

Description

動態手寫驗證之方法與電腦系統
本發明係關於動態手寫驗證、基於手寫之使用者認證、手寫資料產生以及手寫資料資料之保存。
在各種情形中,電子手寫日愈重要。舉例而言,現在通常使用電子手寫以取代筆和紙來取得信用卡交易之信用卡持有人的確認。隨著電子手寫愈來愈常見,所以,驗證電子手寫認證之能力也愈來愈重要。
美國專利6,487,310說明「彈性比對」法,用於比較一簽名與另一簽名,其包括下述操作:產生開始寫下簽名後在不同時間測得之要比較的二簽名中對應點之間的對映,使測量點的局部空間近鄰之間的關聯性最大化以及同時使與對映之彈性空間扭曲最小化;提供對映中不均勻空間失真的程度與空間關聯性程度之定量測量,藉以提供簽名之間類似性的測量。
除了簽名驗證的準確性之外,手寫資料的記錄是重要的主題。近來的手寫輸入裝置不限於習知的數位化器且有很多型式的硬體具有類似但不相同的能力。為了確保所有型式的裝置捕捉到的手寫資料之共容性,需要彈性資料格式。
提供本發明內容,以簡化形式介紹下述「實施方式」一節中進一步說明之概念的選取。本發明內容不是要分辨申請專利之標的之關鍵特徵,也不是要作為決定申請專利之標的之範圍的輔助。
在本揭示的至少一態樣中,手寫驗證方法包括:取得含有眾多可利用的參數之手寫測試樣本,其中,眾多可利用的參數包括幾何參數以及一或更多非幾何參數;從眾多可利用的參數中取出幾何參數;根據幾何參數,導出用於手寫測試樣本中眾多均勻分佈的特徵點中的各特徵點之包括x位置值及y位置值的幾何特徵;執行手寫測試樣本的幾何特徵與參考樣本的幾何特徵之間的第一特徵比對;至少部份地根據特徵比對,決定手寫驗證結果;以及,輸出手寫驗證結果。幾何特徵又包括從幾何參數導出的值,例如方向及曲率值。手寫驗證結果的決定又根據未連結的特徵點之計數。
第一特徵比對包含找出測試樣本中均勻分佈的特徵點中之一或更多與參考樣本中一或更多均勻分佈的特徵點之 間的對映。第一特徵比對包含模擬退火處理。模擬退火處理包含選取參考樣本中的特徵點;產生擬隨機值;比較擬隨機值與常數;以及,根據比較,決定是否從參考樣本中的選取點移除連結或是界定參考樣本中選取的特徵點與測試樣本中的選取特徵點之間的新連結。根據常數值,決定步驟可以在界定新連結與移除現有的連結之間偏向界定新連結。假使界定新的連結時,移除由新連結交會的任何先前存在的連結。
也執行第二特徵比對,包含非幾何參數(舉例而言,時間有關的參數,例如速度、加速度、或是隨著時間之筆壓力)的評估。第二特徵比對包含比較從參考樣本的啟始點至參考樣本的第i點之壓力時間圖的面積與從測試樣本的啟始點至測試樣本的第i點之壓力時間圖的面積。手寫驗證結果又根據第二特徵比對。
在另一態樣中,手寫驗證方法包括執行手寫測試樣本的幾何特徵與參考樣本的幾何特徵之間的特徵比對,其中,特徵比對包括界定測試樣本中一或更多均勻散佈的特徵點與參考樣本中一或更多均勻散佈的特徵點之間的一或更多連結;取得測試樣本中連續的未連結特徵點之計數;以及,輸出手寫驗證結果,其中,手寫驗證結果至少部份地根據測試樣本中連續的未連結特徵點之計數及特徵比對。
在另一態樣中,使用者認證方法包括:從使用者裝置接收測試簽名資料及使用者裝置識別符(ID);搜尋與測試 簽名資料相關聯的名稱ID;取得名稱ID;搜尋與名稱ID相關聯的參考裝置ID;比較參考裝置ID與使用者裝置ID;以及,根據比較,提供認證資訊(例如,認證結果)給使用者裝置。舉例而言,裝置ID可為與筆或探針相關聯的筆或探針ID。
在另一態樣中,使用者認證方法包括:從使用者裝置接收測試簽名資料(例如,加密的測試簽名資料)、裝置識別符(ID)、及服務識別符,其中,服務識別符與在使用者裝置上執行的服務有關;比較測試簽名資料與參考簽名資料;根據比較結果,取得與使用者裝置上執行的服務相關聯之認證資訊(例如,與在使用者裝置上執行的服務相關聯之使用者ID及密碼);以及,提供認證資訊給使用者裝置。假使測試簽名資料與參考簽名資料一致時,測試簽名資料可以加至參考簽名資料(例如,作為用於進一步認證的補充資訊)。
在另一態樣中,在配置成由手寫資料輸入裝置使用的電腦中執行的方法,包括:取得包括一系列筆事件之原始手寫資料,各筆事件均包含眾多不同屬性的值;從原始手寫資料產生包含眾多串流的串流資料,各串流包含與不同屬性的單一屬性有關的資料;從原始手寫資料產生筆畫資料及/或影像資料;以及,選擇性地計算串流資料或筆畫資料及/或影像資料。選擇性的輸出可以部份地根據來自應用的請求以及包含將串流資料與筆畫資料及/或影像資料整合(例如,作為隱寫處理),藉以將原始手寫資料的 原始內容與筆畫資料及/或影像資料再合併在單一檔案中。
產生串流資料包含無損失資料處理,以及,產生筆畫資料及/或影像資料包含損失資料處理。無損失資料處理包含保存時戳資訊,以及,損失資料處理包含廢棄時戳資訊。無損失資料處理包含以原始精準程度保存值。損失資料處理包含對至少某些值降低原始精準程度。
產生串流資料包含插入(例如,在串流資料的標頭中)與眾多串流相關聯的識別符。產生串流資料也包含根據識別符而從眾多可利用的壓縮技術中選取壓縮技術以用於眾多串流中的各串流,以及,對眾多串流中的各串流施加選取的壓縮技術。
眾多可利用的壓縮技術包含(i)無壓縮及(ii)差異碼化。差異碼化包含差值的運行長度碼化。施加選取的壓縮技術可以包含施加差異碼化至x座標值及y座標值。
選取的壓縮技術也包含下述:取得手寫資料值系列中的第k值作為目前目標值,其中,k是索引值;根據在第k值編碼之前取得的值,計算用於第k值的預測值;根據目前目標值及用於第k值的預測值,計算用於第k值的預測餘數值;以及,藉由使用熵碼化方法,將預測餘數值編碼,熵碼化方法將較小的絕對預測餘值對映較短的位元串及將較大的絕對預測餘數值對映較長的位元串。熵碼化方法包含根據串流型式而在可變長度的碼表格之間切換。
在另一態樣中,電腦系統包括:串流資料產生部,配 置成根據原始手寫資料以產生串流資料,其中,串流資料包括眾多串流,其中,串流資料產生部包括無損失串流適應編碼器,配置成將眾多串流適應地編碼;以及,損失資料處理部,配置成根據原始手寫資料以產生筆畫資料及/或影像資料。電腦系統也包含整合部,配置成將串流資料以及筆畫資料及/或影像資料整合成整合資料。整合資料包含數位影像,數位影像具有編碼的手寫資料插入於其中。
1‧‧‧雲端電腦配置
100‧‧‧手寫資料處理部
200‧‧‧串流產生部
300‧‧‧損失資料處理部
400‧‧‧整合部
700‧‧‧手寫驗證伺服器
5400‧‧‧電腦裝置
圖1A是說明配置成驗證樣本手寫資料的認證之雲端電腦配置的高階圖;圖1B是說明手寫資料處理部之功能方塊圖;圖2A顯示包括眾多筆事件的手寫簽名;圖2B顯示用於筆裝置之偵測到的旋轉角、高度角及方位角參數。圖2C顯示用以代表筆事件及這些筆事件的資料順序次序之舉例說明的資料結構;圖3是在手寫驗證伺服器實施之手寫驗證服務的功能方塊圖;圖4是舉例說明的動態手寫驗證處理之流程圖;圖5顯示延著手寫路徑之特徵點;圖6顯示各別特徵點的x位置及y位置之計算;圖7A及7B分別顯示根據先前特徵點及後續特徵點 之x位置和y位置,計算用於目前特徵點之方向及曲率;圖8是由特徵比對技術在測試樣本與參考樣本之間建立的對映圖;圖9A是在手寫驗證處理中使用的舉例說明的退火處理之流程圖;圖9B顯示在手寫驗證處理中使用的退火處理期間允許能量增加之條件;圖9C是手寫驗證處理中使用的退火處理中藉以改變連結組之舉例說明的處理之流程圖;圖9D顯示手寫驗證處理中使用的退火處理期間連結組的改變;圖9E是手寫驗證處理中藉以重複退火之舉例說明的處理之流程圖;圖10是圖形,顯示來自測試之結果,其中,被連結的特徵的部份相對於用於大量簽名之平均連結能量作圖;圖11是包含連續的未連結特徵點之計數的舉例說明之樣本比對處理;圖12A及12B分別顯示測試樣本及參考樣本,它們由根據包含連續未連結特徵點的計數之取樣比對處理所處理;圖13A顯示對應於二手寫樣本中的特徵點之消逝的時間值之比較結果;圖13B是圖形,顯示從簽名的啟始至特徵i之壓力-時間圖的面積; 圖13C是圖形,顯示對應於二手寫樣本中的特徵點之壓力-時間值的比較結果;圖14是在決定測試樣本是否與參考樣本一致之後使用的舉例說明之後置處理的流程圖;圖15顯示電腦系統及驗證簽名的認證處理;圖16顯示根據一或更多識別符之用以查詢參考簽名的表格;圖17顯示適當地配置的電腦系統之手寫為基礎的使用者認證處理;圖18A顯示根據簽名資料之用以查詢識別符的表;圖18B顯示根據其它識別符用以查詢裝置識別符之表;圖19A是適當配置的電腦系統中另一說明的手寫為基礎的使用者認證處理;圖19B顯示圖19A中所示的使用者認證處理中使用的資料表格;圖20顯示配置成產生整合的手寫資料之系統的高階圖;圖21A是圖20中所示的手寫資料處理部的說明實施例之功能方塊圖;圖21B是手寫資料處理組件的另一說明實施例的功能方塊圖;圖21C及21D顯示根據所述的實施例所使用的雲端電腦配置; 圖22及23分別顯示使用電磁共振盪技術之系統所偵測之包括手寫簽名及藝術體描繪之電子手寫中的座標位置,其中,標示筆畫向上及筆畫向下。
圖24顯示用以代表舉例說明之筆事件之舉例說明的資料結構以及提供給手寫資料處理部之這些筆事件的資料順序次序;圖25是功能方塊圖,顯示串流產生部的實施例;圖26是表格,顯示來自串流產生器的輸出中代表的舉例說明的手寫資料;圖27是流程圖,顯示串流適應編碼器執行的舉例說明的適應編碼處理。
圖28是流程圖,顯示圖27中所示的適應編碼處理中所使用的第一編碼設計的實例;圖29A顯示32v編碼技術;圖29B是流程圖,顯示32v編碼技術;圖30是從串流編碼器輸出的舉例說明之資料結構圖;圖31是流程圖,顯示替代的第一編碼設計;圖32顯示圖31中所示的替代之第一編碼設計執行的預測餘數計算;圖33顯示設有各別差值、預測值、及預測餘數之多個舉例說明的x座標值;圖34是直方圖,顯示圖33中所示的差值及預測餘數的頻率; 圖35及36顯示99個樣本手寫簽名之實驗研究的結果之表格及直方圖;圖37顯示表格,說明可用以將例如差值或預測餘數等值編碼之舉例說明的可變長度碼化設計;圖38及39顯示表格,說明圖37的可變長度碼化設計分別應用至用於x座標值的預測餘數及壓力值之結果;圖40是流程圖,顯示背景為基礎的編碼設計選取處理;圖41A及41B顯示用於說明的背景為基礎的編碼設計之舉例說明的可變長度碼(VLC)表;圖42是流程圖,說明涉及將具有編碼的預測餘數之值解碼的解碼處理;圖43是說明影像資料處理部之實施例的功能方塊圖;圖44是說明筆畫及影像資料處理部的實施例之功能方塊圖;圖45及46顯示從損失的資料處理部產生之影像資料所造成的影像;圖47是筆畫資料處理部之說明實施例的功能方塊圖;圖48是用於將串流資料插入影像資料中之隱寫法的方塊功能圖;圖49是用於將編碼的二進位手寫資料插入影像之一般技術的流程圖; 圖50顯示像素的擬隨機選取時16位元之二進位資料的分佈;圖51是詳細流程圖,顯示將編碼的二進位手寫資料插入數位影像之隱寫處理;圖52是整合部的說明實施例之功能方塊圖;圖53是整合部的另一說明實施例之功能方塊圖;以及圖54是方塊圖,顯示根據本揭示的實施例之適合使用的舉例說明的電腦裝置的態樣。
於下,配合附圖,揭示詳細說明,其中,類似元件的類似代號是要作為揭示的標的之各種實施例的說明,而不是要僅代表實施例。本揭示中所述的各實施例僅作為舉例說明或顯示且不應被解釋為相較於其它實施例是較佳的或是有利的。此處提供的說明實例並非竭盡性的或是要將申請專利之標的侷限於所揭示之精準形式。
在下述說明中,揭示各式各樣的特定細節以提供舉例說明之本揭示的實施例的完整瞭解。但是,習於此技藝者將瞭解,沒有某些或所有這些特定細節,仍可實施本揭示的很多實施例。在某些情形中,將不詳述習知的處理步驟以免不必要地模糊各式各樣之本揭示的態樣。此外,將瞭解本揭示的實施例可以採用此處所述的多個特徵之任何組合。
I.動態手寫驗證及手寫為基礎的使用者認證
本揭示的某些實施例是關於驗證電子簽名或其它電子手寫。決定簽名是否是非假冒的會具有很多挑戰。一挑戰是由相同人所作的認證簽名將總是具有某些程度的變化性。另一挑戰是非假冒的簽名之間的變化程度將隨著不同人而變化。以往,藉由將不同時間收集的多個參考樣本合併成可用於驗證之樣板,而決定變化程度。但是,在不同時間收集多個參考樣本無法良好地適配很多業務處理。因此,增進驗證處理的準確性並使用單一參考之能力將是有利的。
因此,在說明的實施例中,動態手寫驗證引擎配置成比較與手寫測試樣本(例如簽名)相關聯的手寫資料以及與參考樣本相關聯的手寫資料,以決定測試樣本是否是非假冒的。雖然此處說明的某些實施例意指簽名的驗證,但是,應瞭解此處說明的實施例可以用以驗證所有種類的手寫,且不侷限於簽名的驗證。
根據此處所述的實施例,驗證處理涉及比對測試樣本及參考樣本中的幾何特徵並允許導因於相同人所作的樣本之間的自然不一致性之次要差異。除了幾何特徵之外,驗證處理也將目前的手寫收集技術所產生的更多資料(例如筆畫之間的筆移動、筆壓力、筆角度、等等)列入考慮,增進驗證結果的品質。由於不同的輸入裝置提供不同型式的資料,所以,根據此處所述的實施例,驗證處理可以適 應特定裝置提供的資料型式。舉例而言,假使測試樣本包含壓力資訊而參考樣本未包含壓力資訊,則驗證處理在比較二樣本共同的資料時,可以省略壓力資訊及焦點的分析。
圖1A是說明配置成根據此處所述的技術之驗證樣本手寫資料的認證之雲端計算配置1的高階圖。在圖1A中所示的實例中,經由網路20(例如網際網路),手寫輸入裝置10、12、及14提供各種型式的手寫資料給手寫驗證伺服器700。手寫輸入裝置10、12、及14可以實施作為專用的手寫收集裝置或是一般用途裝置,例如適當地配置之智慧型電話或是平板電腦。雖然手寫輸入裝置10、12、及14於此稱為「輸入裝置」,但是,這些裝置不侷限於收集輸入,典型上也包含其它功能(例如,顯示功能、資料傳輸功能、等等)。
當在紙上手寫簽名時,墨水筆留下連續的墨筆跡,形成簽名。數位版的手寫簽名通常包括以規律時間間隔測得的離散資料點之收集。
再參考圖1A,任何輸入裝置10、12、14可使用電磁共振(EMR)技術,其中,數位化器包含感測器板,感測器板偵測筆的移動以及由感測器板表面產生的磁場在筆的共振電路中感應出的能量。筆的共振電路接著使用此能量以將磁訊號歸還給感測器板表面。只要筆維持在感測器足夠緊密近處之內,即使電子筆未碰觸感測器板表面,板仍會以規律的時間間隔來偵測筆的座標位置,以致於仍然能從 筆接收訊號。(有效的訊號範圍可視使用的特定技術而變,但是,一般是數毫米等級)。
替代地,可以使用其它手寫輸入技術。舉例而言,電子筆可以使用其它無線技術或由線連接至數位化器。關於另一實例,電子筆離開數位化器的表面是可以或不可以偵測的。關於另一實例,電子筆可以被供電或不被供電。被供電的筆可以經由連接至外部電源的線或是經由板上電池而接收電力。關於另一實例,能夠輸入手寫資料而不用電子筆(舉例而言,經由壓力偵測數位寫入墊上的尖筆、觸控螢幕、或某些其它不要求電子筆之輸入裝置)。
但是,可以收集手寫資料,由輸入裝置10、12、及14提供的手寫資料可以包含筆事件資訊、裝置資訊、及/或關於手寫的背景之背景資訊。在所述的實施例中,筆事件資訊包含在數位化器表面上或上方的筆尖之x、y位置以及自手寫開始的時間。此外,筆事件資訊選加地包含受制於輸入裝置10、12、及14的能力之其它資訊,例如壓力(筆的力量)、角度(方位角、高度角及/或旋轉角)及筆朝下狀態。典型上,在簽名處理期間,以規律間隔,收集筆事件資訊。
裝置資訊包含從數位化器單位轉換成真實世界單位所需的資訊。用於簽名的背景資訊包含簽名人的名稱;簽名的日期和時間;簽名原因;主裝置上使用的作業系統的型式及版本;數位化器的型式;數位化器裝置驅動程式的版本;從主裝置的網路介面控制器(NIC)位址取得的獨特 識別符;假使使用密碼雜湊函數,則為關於雜湊函數的型式;及/或由捕捉時由應用軟體添加之補充資料。背景資訊也包含關於被簽名的文件之資訊,例如密碼訊息摘要。
再參考圖1A,手寫驗證伺服器700執行驗證處理,以比較手寫測試樣本與參考樣本以決定測試樣本是否是非假冒的。驗證處理的結果由手寫驗證伺服器700輸出。在至少一實施例中,如同下述中更詳細說明般,手寫驗證伺服器700執行圖4中所示的驗證處理。在圖1A中所示的實例中,驗證處理的結果由手寫驗證伺服器提供給後置處理部790以用於進一步處理(例如,用於顯示器的格式結果、儲存結果、分析結果、將結果傳送給其它裝置、等等)。後置處理部790可以在手寫驗證伺服器700中及/或在一或更多其它裝置中實施。
手寫驗證伺服器700可以驗證以各種型式(例如,整合資料、串流資料、原始筆事件資料)提供的手寫輸入資料。舉例而言,如圖1A中所示,輸入裝置10和12將原始手寫資料傳送給手寫資料處理部100,如同下述更詳細說明般,手寫資料處理部100可以產生及於網路20上傳送串流資料或整合資料給手寫驗證伺服器700。
圖1B是說明手寫資料處理部100之功能方塊圖。手寫資料處理部100可以在手寫輸入裝置或是在可以與輸入裝置直接(例如,經由USB連接)通訊或是在網路上通訊的某些其它裝置內實施(例如作為軟體或硬體)。
在圖1B中所示的實例中,手寫資料處理部100包括 輸入手寫部101、串流產生部200、損失資料處理部300、及整合部400。輸入處理部101負責遞送原始手寫資料,用於由例如串流產生部200及損失資料處理部300進一步處理。串流產生部200接收原始手寫資料作為輸入以及產生串流資料(例如,用於x座標、y座標、及壓力資訊、以及標頭資訊之分別的串流)。在至少一實施例中,串流產生部200使用無損失編碼技術以產生包括眾多串流之壓縮的串流資料。
在圖1B中所示的實例中,損失資料處理部300也接收原始輸入資料作為輸入。損失資料處理部300使用損失資料處理技術(亦即,涉及資料損失的技術)以產生筆畫資料(可被用以使手寫作為影像)及/或影像資料(例如,PNG格式或某些其它影像資料格式的影像資料)。舉例而言,損失資料處理部300包含墨水引擎,墨水引擎配置成執行用於顯示之手寫(例如簽名)的視覺展示所需之資料格式化及處理。關於根據原始手寫資料而產生筆畫資料及/或影像資料之圖1B中所示的配置之替代,損失資料處理部300可以根據串流產生部200提供的串流資料而產生輸出。
在圖1B中所示的實例中,整合部400接收串流資料以及筆畫及/或影像資料作為輸入以及輸出整合的手寫資料。整合部400以單一輸出檔案(例如,影像檔案)輸出整合資料或是其可分開地輸出串流資料及/或筆畫/影像資料。在至少一實施例中,串流資料可以轉換成編碼的二進 位格式,以及,整合資料採取數位影像的形式並以編碼的二進位資料隱寫地插入數位影像中。
圖1A及1B中所示的配置僅是舉例說明。很多其它配置是可能的。舉例而言,雖然參考圖1A而將手寫輸入及手寫驗證說明成發生於不同裝置中(例如,分別在輸入裝置及手寫驗證伺服器700中),但是,手寫輸入及手寫驗證也可以在相同裝置中執行。關於另一實例,雖然參考圖1A而將手寫輸入裝置及手寫驗證伺服器說明成經由例如網際網路20等廣域網路而在雲端電腦配置1內通訊,但是,手寫輸入裝置及手寫驗證伺服器也可以某些其它方式(例如在區域網路上)通訊。關於另一實例,手寫資料處理部100如何操作的細節會視實施及/或環境而變。關於另一實例,未要求手寫資料處理部100提供要根據此處所述的技術來驗證之手寫資料。在圖1A中所示的實例中,輸入裝置14產生原始筆事件資料及在網路20上傳送原始筆事件資料給手寫驗證伺服器700,而不用由手寫資料處理部100中間處理。
根據此處所述的實施例,要驗證的手寫樣本(或是「測試樣本」)可為手寫簽名(請參見圖2A)或是任何其它型式的手寫,例如印刷體文字或是藝術體描繪。
在所述的實施中,手寫資料可以表示成筆事件序列。典型地,筆事件記錄特定時間之筆尖的位置(例如,當在數位化器的表面上或有限範圍內時)。除了x/y座標值之外,某些手寫輸入裝置也偵測例如筆角度、書寫速度、書 寫壓力、等等其它資訊。取決於裝置能力,與筆事件相關聯的筆資料包含例如筆壓力及角度等增加的測量。在圖2B中所示的實例中,旋轉角、高度角、及方位角是在對筆裝置(以大黑箭頭208表示)偵測的參數中。
再參考圖2A,顯示之手寫簽名206A包括眾多筆事件,使用當筆從數位化器的表面抬高但只要筆還維持在訊號範圍內時,允許連續偵測筆事件之技術(例如,EMR技術),由筆裝置及數位化器偵測到這些眾多筆事件。在圖2A中所示的實例中,當筆朝上時偵測到的座標顯示為較淡的點,而當筆朝下時偵測到的座標顯示為較濃的點。
圖2C顯示可用以代表筆事件及此筆事件的資料序列順序212之舉例說明的資料結構210。筆事件序列以原始形式及/或預先處理的形式(舉例而言,經由用以使筆事件資料成為串流資料及/或整合資料的形式之手寫資料處理部100),提供給例如手寫驗證伺服器700作為輸入。在圖2C中所示的實例中,資料結構210實施成為「構」或「等級」型式。替代地,資料結構210以某其它方式實施。在所述實施例中,依筆事件在資料序列次序212中發生的次序,提供筆事件。
圖3是可在手寫驗證伺服器(例如,圖1A中所示的手寫驗證伺服器700)中實施之手寫驗證服務700A的功能方塊圖。在圖3中所示的實例中,手寫驗證服務700A包括手寫測試樣本資料處理部710,手寫測試樣本資料處理部710包括配置成處理不同形式的手寫資料之子部 720、730、及740。在所示的實例中,整合資料操作子部720、串流資料操作子部730、及原始手寫資料操作子部740配置成分別接收整合資料、串流資料、及原始手寫資料作為輸入,以及產生筆事件參數作為輸出。某些這些資料處理部也能夠輸出其它資料。舉例而言,在圖3中所示的實例中,整合資料操作子部720配置成從整合資料取出影像資料以及傳送影像資料給後置處理部790A,以用於進一步處理。
在圖3中所示的實例中,驗證部750從手寫測試樣本資料處理部710接收筆事件參數以及從儲存庫760接收參考樣本。(如圖3所示,儲存庫760可以實施於與手寫驗證服務700A分別的裝置上,或是,儲存庫760可以實施於與服務700A相同的裝置上。)驗證部750藉由比較從筆事件參數導出的特徵與參考樣品的特徵,以驗證手寫測試樣本的認證。
圖4顯示舉例說明的動態手寫驗證處理。圖4中所示的驗證處理由手寫驗證處理伺服器(例如圖1A中的手寫驗證伺服器700)或某其它裝置執行。圖4中所示的驗證處理可以在雲端電腦配置中(例如圖1A中所示的雲端電腦配置1)或某其它配置中實施。在所述實施例中,驗證處理使用手寫測試樣本中的手寫幾何參數以導出可以與參考樣本中的特徵相比較之手寫特徵。
在圖4中所示的實例中,在步驟S101,從可利用的手寫事件參數中選擇手寫的幾何參數。在本實例中,手寫 的幾何參數包含x座標值及y座標值。可從其中選擇幾何參數之可利用的筆事件參數除了包含x座標值及y座標值之外,還包含壓力值、角度值、時戳值、等等。可利用的筆事件參數取決於例如用以產生手寫之輸入裝置的能力等因素。
由於一般手寫的速度會變化,所以,依規律時間間隔之x座標和y座標位置之偵測會在偵測到的位置之間造成可變間隔。再參考圖2A中所示的舉例說明之簽名,以規律間隔(例如,以每秒133點、每秒200點、的取樣速率、或某個其它取樣速率),偵測筆事件的座標位置206B。因此,在座標位置206B之間較大的間隔表示筆移動較快的簽名之部份,以及,較窄的間隔表示筆移動較慢的簽名之部份。
再參考圖4,為了便於比較手寫測試樣本與參考樣本中的特徵點,在步驟S103,從手寫的幾何參數導出特徵點。依此方式導出的特徵點會跟隨樣本的手寫路徑但不需要與筆事件共同定位。在至少一實施例中,特徵點延著手寫路徑均勻地散佈。但是,特徵點可以以其它方式散佈。
圖5顯示延著手寫路徑之特徵點的間隔。在圖5中示的實例中,特徵點均勻地散佈。一般而言,降低間隔傾向於增加特徵點的數目,導致增加的處理時間。另一方面,增加間隔傾向於降低特徵點的數目,導致於降低準確度及省略手寫中的重要特徵。在至少一實施例中,使用1mm的規律間隔作為妥協以平衡重要的手寫特徵之準確偵測與 合理的處理時間。
所使用之特別的間隔會視實施而變。舉例而言,特徵點之間的間隔無需均勻。根據一替代方式,根據密度歸一化處理而將特徵點定位,其中,稠密擁塞的筆事件之間的間隔會為對應的特徵點擴展。在此方式中,特徵點與原始筆事件共同定位或不共同定位。密度歸一化處理也包含將特徵點插入筆事件稀疏的手寫路徑之部份中。密度歸一化處理可以施加至測試樣本及參考樣本以解決樣本之間的點密度差異,並仍然允許特徵點之間的間隔變化,這有助於保存與手寫速度及加速度有關的資訊。密度歸一化處理有助於提供裝置以不同取樣速率取得的樣本間之可比較的特徵點組。
再參考圖4,將各特徵點(請參見步驟S103)與延著手寫路徑之規律空間間隔計算的對應的x位置及y位置相關連。在至少一實施例中,如圖6所示,計算各別特徵點的x位置和y位置。
在圖6中所示的實施例中,將特徵點的x位置(X)和y位置(Y)界定為x座標值或y座標值分別相對於手寫或手寫的某部份(例如筆畫)之各別維度(例如寬度(w)或長度(h))的整體值之比例。
在至少一實施例中,界定用於手寫樣本的整體長度之特徵點,包含筆未與平板表面接觸的筆朝上面區。在某些情形中,在筆畫之間無法取得筆朝上資訊。舉例而言,當使用未支援筆朝上資料之捕捉裝置時、或是當筆保存離數 位化器一段距離以致於無法偵測筆朝向資料時,這會發生。假使筆朝上資訊是無法取得時,則在筆朝下筆事件的限制之內,產生特徵點。
再參考圖4,在步驟S105,從導出的特徵點之x位置和y位置導出方向(D)和曲率(C)。在本實例中,在步驟S105導出的方向和曲率值不是根據來自原始筆事件的x/y座標值。在至少一實施例中,如圖7A及7B中所示般,根據先前的特徵點和後續的特徵點之x位置和y位置,導出用於目前特徵點之方向和曲率。
在圖7A中所示的實例中,將用於目前特徵點802的方向D計算為先前特徵點804與下一特徵點806之間的線之角度(相對於水平方向,以弳度為單位)。在圖7B中所示的實例中,將用於目前特徵點802的曲率C計算為連接目前特徵點802至先前特徵點804之線與連接目前特徵點802至下一特徵點806的線之間的角度(弳度為單位)。
再參考圖4,在步驟S107,使用特徵點的幾何特徵(例如,x位置、y位置、方向、曲率),執行特徵比對。在本實例中,特徵點比對的目標是將要驗證的手寫樣本(或測試樣本)與參考樣本中對應的幾何特徵連結並提供彈性以負責認證的手寫之自然變化。如下更詳細說明般,步驟S107的特徵比對包含一個以上的特徵比對合格。
圖8顯示由特徵比對技術在測試樣本810與參考樣本 820之間建立的對映(例如,在圖4中的步驟S107)。在圖8中所示的實例中,對映包括在測試樣本810與參考樣本820中對應的特徵點(分別以圓圈表示)之間建立的連結(以虛線表示)。在連結的各端之手寫線的一致性稱為連結的「能量」。在本實例中,以連結的特徵點之x位置(X)、y位置(Y)、方向(D)、及曲率(C)值之間的差異,測量能量。
在至少一實施例中,根據下述等式,測量能量: e i =k x (X r -X t ) 2 +k y (Y r -Y t ) 2 +k d (D r -D t ) 2 +k c (C r -C t ) 2 其中,ei是連接參考樣本r與測試樣本t之第i個連結的能量;Xr、Yr、Dr、及Cr是用於參考樣本的x、y、方向及曲率值;Xt、Yt、Dt、及Ct是用於測試樣本的x、y、方向及曲率值;以及,kx、ky、kd及kc是用於不同的能量成分之加權因數。
在至少一實施例中,最佳連結組是取得根據下述等式界定之系統的最小總能量(E): 其中,ei是第i個連結的能量;ku是代表未連結的特徵之能量的常數;以及,nu是未連結的特徵之數目(假使有)。
在至少一實施例中,使用數值退火以使在各連結的端部之特徵點之間的差異最小化,藉以使能量E最小。特別地,在至少一實施例中,使用模擬退火方法以對連結作擬 隨機改變,而增加或降低整體能量。
在現在參考圖9A-9D而說明之一舉例說明的退火處理中,造成整體能量的縮減之改變總是被接受的,以及,可視例如逐步地降低之系統的目前溫度等因素而接受造成能量增加的改變。此處使用的「溫度」一詞係指系統的數學能量且並未意指任何真實的熱能。類似地,例如「冷卻」等相關詞係用以意指數學能量的縮減,並非意指真實熱能的任何改變。
「能量」及「溫度」是用以將退火處理模型化的相關詞。在至少一實施例中,退火處理的目的是找出二簽名中對應的特徵之間的最佳的連結組。藉由評估例如在鏈結的特徵點之位置、線方向及曲率等幾何特徵的類似性,可以決定任何可能的連結圖案之相關準則。連結的能量是二特徵點之間的差異之度量。零能量表示具有相同特徵的狀態,以及,能量隨著差異變得更大而增加。
退火處理嘗試藉由調整連結組而使系統的總能量最小。但是,假使增加總能量之個別調整絕不被允許,則退火處理陷於總能量的局部最小化之機率將增加。為了克服此情形,退火處理設計成藉由允許造成能量增加之某些改變而降低處理陷於局部最小化的機率,藉以允許後續改變可以取得較低的總能量之可能性。
系統的溫度可以用以控制增加總能量的改變之可能性。在至少一實施例中,溫度起先被設於相當高的值,允許能量增加更頻繁地發生。溫度隨著退火處理的進行而降 低。當溫度下降時,增加的能量之可能性會降低直到達到系統穩定為止。
現在參考圖9A中所示的舉例說明之退火處理,在步驟S201,將變數E(能量)、T(溫度)、I_step、及I_cycle初始化。在步驟S203,鏈結改變。在此情形中,「鏈結」一詞是用以一般意指一測試樣本與參考樣本之間的一或更多連結。因此,在步驟S203,以某些方式改變測試樣本與參考樣本之間的連結組。(參考圖9C,於下詳述藉以改變連結組的舉例說明的處理)。
在步驟205,將改變的鏈結之總能量(E_new)與鏈結的先前狀態之總能量(E_prev)相比較。假使E_new小於或等於E_prev,則在步驟S207,保存對鏈結的改變。假使E_new大於E_prev,則在步驟S217決定是否仍接受對鏈結的改變。
在至少一實施例中,可視涉及改變的量值(dE)與目前溫度之比例而接受能量的增加。在圖9B中所示的實例中,當符合下述條件時允許能量增加(正dE): 其中,U是均勻偏離值,在0≦U≦1.0之範圍,dE是導因於對鏈結的改變之整體能量的改變,T是系統的目前溫度。使用均勻偏離以產生一或更多擬隨機值U。單一均勻偏離產生器用於測試樣本與參考樣本之間的整體比較,以及,總是以相同的種子初始化。這確保測試樣本與參考樣 本的比較總是歸還相同的結果。
現在,將參考圖9C,說明藉以改變鏈結(請參考圖9A中的步驟S203)的舉例說明之處理。在步驟S203-1,在參考樣本中選取特徵點。在步驟S203-2,決定均勻偏離值U是否小於常數K_RemoveLink。
在至少一實施例中,在對鏈結的各改變時,執行步驟S203-2,而藉由比較值U與常數K_RemoveLink以擬隨機地決定移除連結或設定新的連結。K_RemoveLink的值可以設定成使決定偏向移除現有的連結或是設定新的連結。 實驗顯示較佳的是假使約30%的改變由移除連結所組成,則在此情形中,K_RemoveLink將設定於0.3。常數K_RemoveLink的值會視實施而變。
假使U小於K_RemoveLink時,在步驟S203-3,從選取的特徵點移除連結。(此步驟允許退火處理移除連結,而未插入任何其它連結來取代它,以確保可取得對鏈結的更可能改變)。在其它情形中,在步驟S203-4,選取測試樣本中的特徵點,以及,在步驟S203-5,在參考樣本與測試樣本中選取的特徵點之間插入連結。在步驟S203-6,從鏈結中移除新近插入連結所交會之任何先前存在的連結。 在圖9D中所示的實例中,新的連結830會與根據圖9C中所述的舉例說明的處理而從鏈結移除之三個先前存在的連結交會。
一般而言,希望確保對鏈結作出足夠的改變以允許取得最小能量狀態及確保溫度充份降低以允許解答穩定在最 佳狀態。再參考圖9A,使用步驟S209-S215以決定退火處理是否到達結束。在圖9A中所示的實例中,在步驟S211,I_cycle增量直到達到最大值(Max_cycles)(請參見步驟S209),以及,在步驟S215,I_step增量直到達到最大值(Max_steps)(請參見步驟S213)。當在步驟S215中I_step增量時,藉由將整體系統的溫度(T)乘以冷卻因數(K_cool),也降低整體系統的溫度(T)。步驟的數目是在各階段以冷卻因數降低溫度而作的溫度改變次數。例如Max_cycles、Max_steps、及K_cool等值會視實施而變。
藉由使用較大數目的循環及更緩和的溫度降低,以處理速度為代價,更準確地執行退火處理。在至少一實施例中,在主要情形中,選擇退火參數(例如,循環次數、用於溫度降低的冷卻因數)以快速地取得適當的準確性。但是,假使退火適當時,這有時會在在其它情形中具有可接受的鏈路之二樣本之間造成不良的鏈路。
為了決定不良鏈路是否是樣本間的不相似性之結果或是不準確的初始退火處理之結果,以不同的初始種子,執行第二退火處理。藉以重複退火之舉例說明的處理顯示於圖9E中。在步驟S301,將均勻偏離初始化至固定值。在步驟S303,執行例如圖9A中所示的處理等退火處理。在步驟S305,假使在二樣本之間發現良好的比對,則在步驟S311決定樣本是一致的。在步驟S315也檢查其它屬性(例如,時間值、壓力值、角度值),以確認樣本的一致 性。
假使在步驟S305未發現良好符合,則在步驟S307執行檢查以決定是否將作另一退火嘗試。在步驟S307執行的檢查涉及比較已經執行的退火步驟之數目與最大值。舉例而言,在至少一實施例中,假使尚未作2退火嘗試,則重複退火步驟S303而不重設均勻偏離產生器,以確保在後序的退火步驟中將不使用相同的隨機順序。否則,以已作的2退火嘗試,在步驟S313決定樣本是不一致的。
在執行退火後,造成的鏈結將包含連結組,各連結具有已知的能量。但是,除非樣本相同或是幾乎相同,否則並非所有特徵點將被連接。根據下述等式,計算連接之特徵點(P1)與平均連結能量(Em)的比例,以評估鏈結的品質: 其中,P1是被連接的特徵比例,n1是連結的總數,nr是參考樣本中的特徵數目,nt是測試樣本中的特徵數目。在使用上述等式以評估鏈結品質的實施例中,一致的簽名將具有高P1值及低Em值。相反地,不類似的樣本將具有低的P1值及高的Em值。
經驗地測量用於一致簽名及不一致簽名的P1及Em值之預期差異。在圖10中,顯示來自測試的結果,其中, 以用於大數目的簽名之平均連結能量Em與比例P1作圖。 在虛線內的區域1010中的作圖點均與來自不同人的樣本之比較相關聯,因而容易不一致。在點虛線內的區域1020中的作圖點均與來自相同人的比較樣本相關聯,因而容易一致。
在圖10中所示的實例中,在區域1010中大量大多數的資料點反應與一致樣本相關聯的P1和Em值,在區域1020中大量大多數的資料點反應與一致樣本相關聯的P1和Em值。在標示為「邊線」的面積中之區域1010和1020之間有某些重疊,其中,P1和Em值未清楚地標示樣本是否一致或不一致。但是,圖10中的結果顯示在很多情形中可能根據手寫幾何以初始評估測試樣本與參考樣本是否一致。在至少一實施例中,在此階段被辨識為不一致的測試樣本會被自動地給予0的驗證分數,且不會進行進一步的處理以決定測試樣本是否與參考樣本一致。
雖然在很多情境中P1及Em值對於測量鏈結品質是有效的,但是,假使樣本的實質部份很類似,則它們未反應測試樣本與參考樣本之間的顯著差異。藉由執行額外檢查以決定測試樣本與參考樣本之間是否有未連接的特徵點之顯著區,能夠增進手寫驗證的準確度。
再參考圖4,在步驟S109,決定測試樣本及參考樣本是否充份符合。在圖4中所示的實例中,假使在步驟S109中,測試樣本及參考樣本被判定為充份符合,則在步驟S113,在輸出驗證結果之前,執行進一步的處理 (請參見步驟S111,下述將更詳細說明)。但是,假使 在步驟S109中,測試樣本及參考樣本被判定為未充份符合,則在步驟S113,輸出顯示樣本不一致的結果,而無進一步處理。
在步驟S113產生的輸出可為適合表示驗證結果之任何輸出,例如,布林值。替代地,使用允許比僅有二進位或真/假結果更多地標示之不同值。在至少一實施例中,在步驟S113產生的輸出包括從0(表示測試樣本及參考樣本很不同)至1.0(表示測試樣本及參考樣本很類似)之浮動點值。
圖11顯示包含連續的未連接特徵點之計數的舉例說明之比對處理S109。在圖11中所示的實例中,在步驟S109-1,藉由決定用於測試樣本與參考樣本之間的鏈結之P1和Em值,執行鏈結品質的初始測量。如上述參考圖10所述般,在步驟S109-2,假使P1和Em值表示測試樣本及參考樣本不一致時,則在步驟S109-5,處理S109會將表示測試樣本與參考樣本不是良好符合(不一致)之結果歸還,以及,比對處理S109中的進一步處理會被省略。但是,假使P1及Em值表示測試樣本與參考樣本是一致時,則在步驟S109-3,計數連續的未連結特徵點。
圖12A及12B分別顯示測試樣本和參考樣本,可根據圖11中所示的比對處理S109處理它們。圖12A顯示具有Z形的樣本實例,以及,圖12B顯示具有類似Z形但有增加的迴路之參考樣本實例。圖12A和12B中所示 的二樣本之實質部份相同或是很類似。因此,圖12A及12B中所示的特徵之高比例可以以很低的連結能量相連結。在圖12B中所示的參考樣本中增加的迴路未連接,但是,整體鏈結及連結能量可以類似於認證的簽名之間的自然變化將預期的。
儘管在測試樣本中有顯著損失的特徵,但是,圖12A及12B中所示的樣本顯示P1及Em值仍顯示測試樣本和參考樣本一致之情境。可以使用用於連續未連接的特徵點之額外檢查(如圖11所示),以增進比對處理的準確度。 在圖12A及12B中所示的說明情境中,圖11中所示的比對處理可用以決定各別樣本因損失特徵而不一致。
再參考圖11,在步驟109-4,決定未連接的特徵點是否顯著。假使未連接的特徵點顯著時,則在步驟S109-5,處理S109將表示測試樣本與參考樣本不是良好符合(不一致)之結果歸還。假使未連接的特徵點不顯著時,則在步驟S109-6,處理S109將表示測試樣本與參考樣本是良好符合(一致)之結果歸還。
在至少一實施例中,決定未連接的特徵點是否顯著係包含決定未連接區中連續的未連接特徵點之計數是否大於預定值NU。大於NU的計數會相加,以及,這些計數的總長度以整體樣本長度之比例(稱為「自由比例」或是Pf)表示。小於或等於NU的計數可以忽略。NU的值可以視實施而變。具有超過預定值的Pf值之樣本可以被視為不一致的。
再參考圖4,假使根據手寫幾何,在步驟S109,將測試樣本及參考樣本初始地判定為充份符合時,則使用不限於手寫幾何之其它筆事件參數,在步驟S111,執行額外評估。
在至少一實施例中,在步驟S111執行的額外評估包括非幾何特徵比對,非幾何特徵比對包含例如書寫速度等時間有關的筆事件參數之分析。個體以他們用筆書寫之方式發展出慣用節奏,這意指相同人所作的手寫(例如簽名)之筆速度及加速度是很類似的(雖然不相同)。因此,與其它步驟中分析之幾何特徵不同之時間有關的筆事件參數在手寫驗證處理中是有用的(例如,作為幾何特徵比對之補充)。在至少一實施例中,從原始手寫資料取出幾何特徵以及對應於各別特徵之消逝時間,允許比較消逝的時間值。
圖13A顯示對應於二手寫樣本中的特徵點之消逝的時間值之比較結果。這些結果於圖13中顯示為對應於用於連接的特徵點之消逝時間的作圖。在作圖中的各點對應於連結以及代表對應於參考樣本中的特徵點之消逝時間(水平軸)及對應於測試樣本中的連接特徵點之消逝時間(垂直軸)。對於一致的簽名,從簽名開始的消逝時間對各成對連接的特徵點應是類似的。
在圖13A中所示的實例中,點作圖於長方形內部,長方形代表速度之整體一致性(根據長方形的對角線斜率、或是相對於水平之角度)及變異性(根據長方形的較窄尺 度,如垂直箭頭所示般)。在此情形中的整體一致性意指各別樣本之消逝的平均總時間(因而為速度)。在本實例中,約1:1之長方形的斜率表示樣本具有一致的平均速度。在此情形中的變異性意指速度之局部變化的差異。經由測試已知是由相同人所作之簽名樣本,測量速度的整體一致性及變異性之可接受的極限。
再參考圖4,在步驟S111執行的額外評估也包含其它參數的分析,例如筆壓力或筆角度。藉由評估在各特徵點的壓力之狀態(例如,增加的、減少的、或穩定的),可以可靠地比較筆壓力。壓力的一致性可以計算為在連結的各端具有相同壓力狀態之連結的比例Pp。藉由測量已知是來自相同人之大數目的簽名樣本中的壓力變異,決定可接受的Pp的值。
典型地,筆壓力測量成相對值而不是絕對力值。壓力值是裝置相依的,即使在相同模式的裝置之間,也會因例如筆材料的老化、遲滯、及構造上的差異等因素,而發生靈敏度變化。因此,使用絕對力值,通常是、特別是假使相同人使用不同的輸入裝置以提供複數樣本時,無法在樣本之間作出可靠的比較。
在第一顯示的筆壓力值比較方法中,藉由評估在各特徵的壓力之狀態,例如壓力在各點是否是增加的、減少的、或穩定的,以比較筆壓力。接著,以在各端具有相同壓力狀態之連結的比例Pp,計算一致性。但是,在至少一實施例中,發現當壓力對於顯著的週期是接近固定時,第 一方法是不適當的。當這發生時,稍微的差異可能被視為不同的符號梯度,而造成顯著誤差。
在第二說明的壓力值比較方法中,根據下述等式,計算Pi,以可靠地比較筆壓力,Pi是從簽名開始至特徵i之壓力時間圖的面積被歸一化成整體簽名之整體壓力時間面積的比例: 其中,Pi是直到特徵i之壓力時間圖的比例,p是筆壓力,t是從簽名開始至特徵i的時間,以及,T是整體簽名時間。圖13B是顯示上述等式的圖。在圖13B中,水平軸顯示從簽名開始消逝的時間,以及,垂直軸顯示筆尖記錄的壓力。在虛線界定的區域中圖形的陰影面積顯示從時間0至時間t之筆壓力p(t)的總合。
圖13C是圖形,顯示對應於二手寫樣本中的特徵點之壓力-時間值的比較結果。結果於圖13C中顯示為對應於用於連接的特徵點之壓力時間值之作圖。圖中的各點對應於連結及代表關於參考樣本中特徵點之壓力時間圖比例(水平軸)以及關於測試樣本中連接的特徵點之壓力時間圖比例(垂直軸)。對於一致的簽名,則壓力時間圖對於各成對之連接的特徵點是類似的。注意,在本實例中,圖形的最後一點將總是定義為(1.0,1.0)。
圖14是在決定測試樣本是否與參考樣本一致之後使用的舉例說明之後置處理的流程圖。在圖14中所示的舉 例說明的處理中,假使在步驟S401中判定測試樣本與參考樣本一致時,則在步驟S403,將測試樣本加至儲存庫作為另一參考樣本。當發現測試樣本與參考樣本一致時,使用測試樣本以補充現存的參考樣本以及潛在地增進未來的驗證處理之準確度。此外,在圖14中所示的舉例說明的處理中,在步驟S405,輸出驗證結果以及分別的影像資料以用於顯示。舉例而言,假使用於測試樣本的手寫資料與影像資料整合時,手寫的影像可以與驗證處理的結果之標示符(例如,手寫是否已被驗證)一起顯示。
圖15顯示電腦系統及驗證簽名的認證處理。可用於圖15中所示的系統及處理中之特別的簽名驗證技術可以視實施而與此處所述不同。在圖15中所示的實例中,簽名是在金融交易情形中的合約上作的簽名。
如圖15所示,由ABC銀行提供的伺服器1510提供原始的合約文件給用於簽名之手寫輸入裝置10。輸入裝置10產生簽名資料以回應使用者在合約上簽名以及將簽名資料與已簽名的合約之影像相整合。輸入裝置10經由網路20(例如,網際網路)而提供整合的檔案給簽名驗證伺服器700B。手寫輸入裝置10可以實施為專用的手寫收集裝置或是一般裝置,例如適當地配置之具有筆輸入能力的智慧型電話或是平板電腦。
在圖15中所示的實例中,伺服器1510(或是由ABC銀行控制之某其它伺服器)提供使用者ID給簽名驗證伺服器700B。簽名驗證伺服器700B使用使用者ID以在儲存 庫760選取適當的參考簽名,以用於驗證處理。
圖16顯示簽名驗證伺服器700B用以根據一或更多識別符(例如,服務ID(辨識提供用於簽名的文件之實體)及由伺服器1510提供的使用者ID)以查詢參考簽名的表格1690。服務ID可由伺服器1510、輸入裝置10、或某些其它實體提供。如表格1960中所示般,參考簽名可為任何語言,以及一個以上的參考簽名可供用於單一使用者。
再參考圖15,簽名驗證伺服器700B藉由比較簽名與參考簽名,以驗證輸入裝置10提供的簽名。簽名驗證伺服器700B將表示簽名是否驗證(“OK”)或未驗證(“NG”)之驗證結果歸還給輸入裝置10。
圖17顯示可用以根據使用者簽名以認證使用者之電腦系統及手寫為基礎的使用者認證處理。在圖17中所示之電腦系統及手寫為基礎的使用者認證處理,可以視實施而使用此處所述的手寫驗證技術或是其它手寫驗證技術,以用於使用者認證。
在圖17中所示的實例中,輸入裝置10產生測試簽名資料,以回應嘗試以筆/探針裝置11簽名來登入電腦系統之使用者。經由網路20(例如網際網路),輸入裝置10提供簽名資料與使用者裝置ID(例如,與筆/探針裝置11相關連的探針ID)給簽名登入服務1720。
在圖17中所示的實例中,簽名登入服務1720根據輸入裝置10提供的測試簽名資料以搜尋「名稱ID」。簽名 登入服務1720使用驗證處理以決定輸入裝置10提供的測試簽名資料是否與儲存在資料庫1730中與一或更多參考簽名相關聯的對應參考簽名資料一致。
圖18A顯示根據簽名資料之用以查詢識別符(例如在資料庫1730中)的表格。特別地,圖18A顯示表格1890,簽名登入服務1720使用表格1890以根據輸入裝置10提供的簽名資料來查詢名稱ID(例如,與服務ID結合的本地ID)。本地ID可以與使用者相關聯,以及,服務ID可以與裝置ID服務1710相關聯(請參見圖17)。
再參考圖17,簽名登入服務1720將使用者裝置ID及名稱ID(例如本地ID加上服務ID)提供給裝置ID服務1710。圖18B顯示表格,使用所示表格以根據其它識別符來查詢參考裝置ID(例如探針ID)。特別地,圖18B顯示表格1892,裝置ID服務1710使用表格1892以查詢對應於簽名登入服務1710提供的名稱ID之參考裝置ID。假使表格登錄中的參考裝置ID符合簽名登入服務1720傳送的使用者裝置ID時,裝置ID服務1710將認證資訊傳回給輸入裝置10。在圖17中所示的實例中,認證資訊包含「成功」或「失敗」的認證結果。除了成功/失敗結果之外,本實例中傳送的認證資訊包含(例如,在「成功」的情形中)還包含完成登入處理所要求之使用者ID以及密碼。
圖19A是適當配置的電腦系統中另一說明的手寫為基礎的使用者認證處理之圖示。在本實例中,使用者認證處 理是用以提供接取稱為「Book+」的社交網路之登入處理;但是,以類似方式也可以接取其它服務。
如圖19A中所示,手寫輸入裝置10致動與服務相關連的登入處理(舉例而言,藉由使用瀏灠器應用軟體,瀏灠與服務相關連的網站,或是,藉由致動與服務相關連之專用的應用軟體)。裝置10捕捉為回應使用者以筆/探針裝置(未顯示)簽名而產生的簽名資料(例如,在簽名區1902中)。裝置10將簽名資料送出作為要驗證的測試簽名資料。經由網路20(例如網際網路),測試簽名資料以及與裝置10及/或筆/探針裝置相關連的裝置ID和與服務相關連的服務ID(例如「BOOK+」)傳送給簽名登入服務1920。
在圖19A中所示的實例中,簽名登入服務1920驗證測試簽名資料(舉例而言,根據此處所述的技術或其它技術,比較測試簽名資料與參考簽名資料)以及至少部份地根據驗證結果而取得認證資訊(例如,使用者ID及密碼資訊)。簽名登入服務1920實施成「一次通過」登入服務,「一次通過」登入服務允許使用裝置10提供的單一輸入(簽名)實例而非要求多重使用者輸入(例如,使用者ID及密碼)實例,以認證使用者。
圖19B顯示表格1990,表格1990顯示提供給簽名登入服務(例如登入服務1920)以認證使用者之資訊、以及假使使用者認證成功時從簽名登入服務歸還的認證資訊(例如使用者ID及密碼)。在圖19B中所示的實例中, 可從使用者裝置(例如輸入裝置10)接收筆/裝置ID、與要驗證的測試簽名相關連的簽名資料、以及服務ID(例如「Book+」)、以及使用它們以認證與服務ID識別的服務有關之使用者裝置的使用者。
再參考圖19A,簽名登入服務1920使用例如裝置ID及服務ID等資訊以查詢與資料庫1930中的使用者相關聯的一或更多參考簽名。簽名登入服務1920接著使用手寫驗證處理以決定輸入裝置10提供的簽名資料是否與參考簽名一致。一旦以簽名登入服務1920認證使用者時,服務1920將使用者ID及密碼傳送給裝置10。然後,使用使用者ID及密碼以完成登入處理。舉例而言,裝置10在使用者介面中適當的欄位中自動地填入使用者名稱(例如電子郵件位址)及密碼。
實際上,允許使用者由簽名登入服務(例如,簽名登入服務1920)可靠地認證之資訊收集可用於使用者認證。可用以查詢資料庫(例如資料庫1930)中的特定使用者之特定資訊會隨著例如傳送給簽名登入服務的資訊、儲存在資料庫中的資訊、及資料庫設計的方式等因素而變。
為了安全目的,與手寫驗證及相關使用者認證處理有關的任何資訊(例如,手寫資料、裝置識別符、服務識別符、認證資訊、等等)會被加密(例如,使用對稱的(例如共用的密鑰)或不對稱的(例如公用鑰)加密)。在對基礎資訊執行進一步處理之前,將加密的資訊解密。舉例 而言,在比較測試簽名資料與參考簽名資料之前,將加密的測試簽名資料解密。
II.手寫資料產生及保存
本揭示的某些實施例是關於產生及保存電子手寫資料。在某些說明的實施例中,由數位化器產生原始電子手寫資料,以及,原始資料被轉換成串流格式。雖然手寫資料的格式相對於其原始形式被改變,但是,藉由採用無損失資料處理技術並也允許涉及資料損失(例如使手寫資料顯示為影像)的資料處理,串流格式可以保存原始手寫資料的原始內容。
原始手寫資料的原始內容可以以各種資料格式保存,以及,要使用的格式可以視各種因素而變,這些因素包含要對資料執行的處理本質。在某些實施例中,使用提供多重優點的手寫資料格式:其保存原始資料且完全未改變它,以致於它可在法庭上被使用而無任何損失資料的危險;其包含關於源裝置的充份資訊,以致於原始資料可以被轉換成共同瞭解的量度系統;最佳地小巧化以使儲存及傳輸開銷最小;以及,其為二進位級的裝置相依,以致於它可在任何型式的硬體上被操作。
在某些情形中,硬體資料可轉換成多重格式而無資料損失,並仍允許轉換成其它格式(例如,用於以標準化單位顯示之筆畫資料格式),根據所述其它格式,假使手寫資料未以其它方式保存,則將造成資料損失。無損失壓縮 技術被用以降低儲存及傳輸頻寬需求並允許所有需要的手寫資料被保存。
本揭示的某些實施例係關於將資料(例如,電子手寫資料)插入於數位影像中,而當由適當配置的解碼器解碼時,提供與影像本身分開但是可能是有關的資訊。在所述實施例中,原始電子手寫資料的原始內容轉換成串流資料,以及,當被顯示時,以對觀看者一般並不明顯的方式,將串流資料插入數位影像(例如,含有手寫簽名描寫的數位影像),因而允許原始手寫資料的原始內容被保存,而不會使影像品質明顯變差以及不會有額外的儲存要求。在這些實施例中,保存手寫輸入期間取得的手寫資料,以用於未來的描寫、認證、或其它處理。
在某些所述的實施例中,原始電子手寫資料的原始內容(例如,與對應的數位化器有關之由電子筆的移動所產生之高品質筆資料)被保存。舉例而言,在顯示的使用情境中,電子手寫資料儲存在包含代表手寫本身的影像之像素資料的數位影像中。電子手寫資料由一或更多感測器(例如,在筆裝置及/或數位化器中的感測器)收集及被轉換成可以被描寫及顯示為一或更多筆畫(例如,作為簽名的一部份)之筆畫資料。但是,原始手寫資料也被保存以避免資料損失。在說明的實施例中,以串流格式保存原始手寫資料,可以被轉換成編碼的二進位格式,所述編碼的二進位格式適用於可攜地跨越範圍寬廣的應用、平台、及技術而散佈、分析、及描寫手寫資料。
當在紙上作手寫簽名時,墨水筆會留下形成簽名之連續的墨水軌跡。數位版本的手寫簽名大致上包括以規律時間間隔測得的離散資料點之收集。
在所述的實施例中,數位化器(例如簽名平板裝置)藉由以頻繁間隔記錄電子筆的位置、測量各點的x(水平)及y(垂直)位置而工作。舉例而言,在使用電磁共振技術的系統中,數位化器包含偵測筆的移動之感測器板。由感測器板表面產生的磁場,在筆的共振電路中感應出能量。筆的共振電路接著使用此能量以將磁訊號返回感測器表面。即使電子筆未碰觸感測器板表面,但只要筆仍維持足夠緊密接近感測器板,則板仍可以規律的時間間隔偵測筆的座標位置,以致於仍可從筆接收訊號。(有效的訊號範圍會視使用的特定技術而變,但是大致上在數毫米的等級)。
替代地,可以使用其它手寫輸入技術。舉例而言,電子筆可以使用其它無線技術或是由線連接至數位化器。關於另一實例,離開數位化器的表面,電子筆是可或不可偵測的。關於另一實例,電子筆可以被供電或不被供電。被供電的筆可以經由線或經由板上電池而接收電力。關於另一實例,不用電子筆,能夠輸入手寫資料(例如,經由壓力感測數位書寫板上的探針、觸控螢幕、或是不要求電子筆之某其它輸入裝置)。
描寫及顯示電子手寫的筆畫之處理典型上涉及分析電子手寫資料,以決定顯示器中哪些像素是要被調整以在顯 示器上呈現筆畫。用以視覺地呈現筆畫之像素有時稱為筆畫的「墨水」。描寫用於顯示的筆畫之處理由稱為墨水引擎的組件處理。除了使用筆位置資料以描寫筆畫的形狀及位置之外,墨水引擎也可使用其它手寫屬性(例如壓力)的測量來決定墨水厚度。
在某些情境中,將原始手寫資料廢棄是可接受的(例如,在其由用於描寫及顯示的墨水引擎使用之後)。廢棄原始資料可以提供與要節省的資料大小有關的某效率。但是,由墨水引擎作的原始資料的轉換涉及資料損失。舉例而言,假使高解析度原始手寫資料被轉換而用於以標準化單位描寫在低解析度顯示器上,則假使其未以其它方式保存,很多資料會損失。假使原始資料未以某形式保存,則會損失例如為了認證目的而分析手寫資料之能力或是在具有不同描寫特性之墨水引擎中使用手寫資料的能力等優點。
因此,根據各式各樣說明的實施例,電子手寫資料的原始內容會被保存。於需要時,手寫資料由墨水引擎轉換成標準單位,而不會有不希望的資料損失。筆的位置(例如x座標及y座標)可以以原始感測器測量單位(可以視使用的感測器型式而變)來儲存,以及,輸入裝置的特徵也被記錄以允許轉換成不同單位。舉例而言,假使包含關於各軸的尺度及方向的資訊時,x、y位置資訊可以從本地感測器單位轉換成傳統單位(例如偏離原點之毫米)。
特別地,提供技術及工具以用於將手寫資料記錄及儲 存在數位影像中。以此方式儲存的手寫資料可以可攜地跨越不同的軟體應用、平台及裝置而被使用。
在此處所述的任何實例中,以設計成用於跨越不同裝置及平台的可攜性之形式,保存手寫資料,以例如字尺寸(例如16位元、32位元、等等)、位元組排列法(例如小在前排列法、大在前排列法)、及浮點支援的觀點而言,所述不同裝置及平台具有不同的要求。此外,在此處所述的任何實例中,能夠擴充保存的資訊之範圍而不會影響現存的軟體。在至少一實施例中,使用允許軟體安全地廢棄未被認可的串流型式之串流資料架構。使用此處所述的原理,新應用可以設計成有效率地處理老式資料(缺少例如由新的或重設計的感測器收集的資訊等最新式的資訊型式)且無非預期的結果,這有利於需要被儲存很多年的簽名文件。
圖20是顯示根據至少一說明的實施例之配置成產生整合的手寫資料之系統2010的高階圖。如圖20所示,輸入裝置2020(例如,電子筆及對應的數位化器(例如簽名墊裝置)、或是可用於手寫輸入之例如觸控墊裝置等某其它輸入裝置)產生裝置輸入資料2030,裝置輸入資料2030在通訊鏈(例如USB連接)上傳送至電腦2040。裝置輸入資料2030由在電腦2040上運行的裝置相依裝置驅動程式2050處理。裝置驅動程式2050產生原始電子手寫資料。
在圖20中所示的實例中,筆裝置及數位化器用以提 供手寫輸入。數位化器可以實施成專用的手寫電子裝置、或是例如適當地配置的智慧型電話或平板電腦等一般用途的裝置。在筆裝置及/或數位化器中的感測器偵測筆位置及也偵測例如壓力資訊等其它資訊。在至少一實施例中,裝置驅動程式2050產生包含座標資訊、壓力資訊、及時序資訊等原始手寫資料。
手寫資料包含在簽名處理期間以規律間隔收集的筆事件資訊、裝置資訊、及/或作簽名的背景有關的背景資訊。筆事件資訊包含在數位化器表面上或上方筆尖的x、y位置以及自簽名開始的時間。此外,筆事件資訊可以選加地包含受制於輸入裝置2020的能力之其它資訊,例如壓力(筆力量)、角度(方位角、高度角、及/或旋轉角)及筆朝下狀態。裝置資訊包含從數位化器單位轉換至真實世界單位所需的資訊。背景資訊包含簽名人的名字;簽名的日期及時間;簽名原因;在主裝置上使用的作業系統之型式及版本;數位化器的型式;數位化器裝置驅動程式的版本;從主裝置的網路介面控制器(NIC)位址取得的獨特的識別符;假使使用密碼雜湊函數,則為關於雜湊函數的型式之資訊;及/或在捕捉時由軟體應用添加的補充資料。背景資訊也包含關於被簽名的文件之資訊,例如密碼訊息摘要。
在圖20中所示的實例中,手寫資料處理部2100A接收原始手寫資料作為輸入以及產生整合的手寫資料作為輸出。如下更詳細說明般,產生整合的手寫資料之處理、以 及整合的手寫資料之內容會視背景及實施而變。
圖21A是圖20中所示的手寫資料處理部2100A的說明實施例的功能方塊圖。在圖21A中所示的實例中,手寫資料處理部2100A包括輸入操作部101、串流產生部200、損失資料處理部300、及整合部400。輸入操作部101負責遞送用於由例串流產生部200及損失資料處理部300進一步處理的原始手寫資料。
在圖21A中所示的實例中,串流產生部200接收原始手寫資料作為輸入以及產生串流資料(在圖21A中標示為「FIRST_CONV_DATA」)。舉例而言,串流產生部200提供用於x座標、y座標、及壓力之分開串流、資訊、以及標頭資訊。(在某些實施例中,用於特別筆事件的時間資訊是根據已知的取樣速率而計算取得的、以及無需儲存在它自己的串流中或是為各筆事件而被發訊)。在至少一實施例中,串流產生部200使用無損失編碼技術以產生包括眾多串流之壓縮的串流資料。
損失資料處理部300也接收原始手寫資料作為輸入。 損失資料處理部300產生筆畫資料(可被用以描寫手寫成為影像)及/或影像資料(例如,依PNG格式或某其它影像資料格式的影像資料)。在至少一實施例中,損失資料處理部300使用損失資料處理技術(亦即,涉及資料損失的技術)以產生畫筆資料及/或影像資料。舉例而言,損失資料處理部300包含墨水引擎,墨水引擎配置成執行描寫手寫以用於顯示所需的資料格式化以及處理。舉例而 言,墨水引擎產生包含手寫(例如簽名)的視覺呈現之影像資料。
關於根據原始手寫資料以產生筆畫資料及/或影像資料之圖21A中所示的配置之替代,也可以根據編碼的手寫資料來產生此資料(請參見圖21B)。圖21B是手寫資料處理組件2100B的另一說明實施例的功能方塊圖。在圖21B中所示的實例中,損失資料處理部300根據串流產生部200提供的編碼資料(「FIRST_CONV_DATA」)而產生輸出(「SECOND_CONV_DATA」)。
如圖21A及21B中所示,整合部400接收串流資料以及筆畫及/或影像資料作為輸入,以及將整合的手寫資料輸出。整合部400以單一輸出檔單(例如影像檔案)輸出串流資料及筆畫/影像資料,或者其可選擇性地輸出串流資料及/或筆畫/影像資料。在至少一實施例中,影像資料可以與編碼的串流資料合併以形成整合資料(例如,具有隱寫地插入之編碼的二進位資料的數位影像)。如下述更詳細地說明般,整合部400如何操作的細節將視實施而變。
圖20、21A、及21B中所示的配置僅為舉例說明。此處所述的資料(例如,原始資料、串流資料、筆畫資料、影像資料、及整合資料)及此處所述的手寫資料處理模組可以以不同方式儲存及實施。舉例而言,資料及處理模組可以儲存在及實施於數位化器內、某其它裝置中(例如個人電腦)、或是散佈於多個裝置中。此處所述的資料可以 從一裝置傳送至另一裝置(例如,以影像檔案的形式),或是其可儲存在相同裝置內或在相同裝置內被處理。舉例而言,在個人電腦中,串流資料可以與影像資料合併、被轉換成整合資料、及以數位影像檔案儲存在個人電腦內。
圖21C及21D顯示根據所述的實施例所使用的雲端電腦配置。圖21C和21D提供圖20中所示的配置之替代,其中,手寫資料處理部2100A顯示為實施於單一電腦2040上。
在圖21C中所示的實例中,經由網路2110,輸入裝置2020將原始手寫資料傳送給手寫資料處理部2100C。 特別地,輸入手寫伺服器2101接收原始手寫資料,將原始手寫資料傳送給串流產生伺服器2102以及筆畫及/或影像資料處理伺服器2103。伺服器2102和2103分別產生會傳送給整合伺服器及資料儲存器2104之串流資料以及筆畫及/或影像資料。
在圖21D中所示的實例中,不同的應用(例如應用2180和2190)可以從不同的裝置取得不同型式的資訊。 舉例而言,從伺服器2103取得損失影像資料,以及,從整合伺服器及資料儲存器2104取得整合資料(例如,包括損失資料及無損失編碼的手寫資料之數位影像)。實際上,應用2180及2190可在不同的電腦裝置上或相同的電腦裝置上運轉。
再參考圖21A及21B,圖21C及21D中所示的伺服器可以實施成為執行軟體之分別的電腦,例如分別為串流 產生部200、損失資料處理部300、及整合部400。
再參考圖21D,應用2180及2190包含配置成將損失或無損失編碼資料解碼之解碼器,或者應用可以將編碼資料傳送給配置成用於將損失或無損失編碼資料解碼之其它應用或是裝置。雖然在雲端電腦配置之圖21D中顯示應用2180和2190,這些應用及解碼器也根據其它配置而取得及處理資訊。
圖22及23分別顯示例如使用電磁共振技術的系統所偵測到之包括手寫簽名2200A及藝術體描繪2200B之電子手寫中的座標位置,其中,標示筆朝上點2202及筆朝下點2204。由於以規律間隔偵測位置,所以,在電子手寫2200A及2200B中點之間較大的間隔表示筆移動較快的簽名部份,以及較窄的間隔表示筆移動較慢的簽名部份。注意,如圖22及23中所示般,在筆朝上點2202與後續的筆朝下點2204之間,座標持續被偵測。亦即,假使筆維持在訊號範圍內時,當筆從數位化器的表面抬起時座標繼續被偵測。在圖23中,當筆朝上時偵測到的座標(例如,在筆朝上點2202與後續的筆朝下點2204之間)被顯示為較淡的點,而當筆朝下時偵測到的座標(例如,在筆朝下點2204與後續的筆朝上點2202之間)被顯示為較濃的點。板(或某其它感測器)也偵測例如筆角度、書寫速度、書寫壓力等其它資訊。
根據此處所述的實施例,手寫可為手寫簽名(請參見圖22)或是任何其它型式的手寫,例如印刷體文字或藝術 體描繪(請參見圖23)。用於給定的手寫的筆畫之原始手寫資料含有允許筆畫被分析及顯示之資訊(例如,x座標、y座標、等等)。其它與筆有關的手寫資料包含壓力資料(例如,施加至筆尖的力量)、傾斜度(筆管與垂直方向之間的角度、方向資料(始於筆尖之筆的平面方向)、及扭轉資料(在簽名期間筆管的旋轉)。在很多數位化器中,以毫秒等級、或更佳的(例如1毫秒)精準度,記錄簽名中的每一點。時序資訊使得觀察筆移動的方向以及推導在各位置的速度及加速度成為可能。如此,原始手寫資料將通常包含時序資訊,例如取樣速率及/或時戳。如同下述將更詳細地說明般,原始手寫資料也包含與手寫有關的其它資料,例如與筆裝置或數位化器本身有關的資訊、背景資訊(例如,要被簽名的文件的說明、簽名的時間及日期、等等)、等等。
在所述的實施例中,原始手寫資料表示成筆事件序列(請參見圖24)。典型地,筆事件記錄特定時間時筆尖的位置(例如,當在數位化器的表面上或是有限範圍內時)。取決於裝置能力,與筆事件相關連的筆資料包含例如筆壓力及角度等額外的量測。圖24顯示用以代表筆事件之舉例說明的資料結構108以及提供給手寫資料處理部(請參見例如圖20中的手寫資料處理部2100A)的這些筆事件的資料序列次序110。如圖24中所示,資料結構2408可實施成為「構」或「等級」型式。替代地,資料結構2408可以以某其它方式實施。在所述實施例中,隨 著各事件依資料序列次序2410發生,提供筆事件作為輸入。根據所述實施例,筆事件轉換成串流格式(例如,藉由串流產生部200)。
在至少某些實施例中,手寫資料包含筆朝下資訊(亦即,當筆尖與表面接觸時收集的筆資料)及筆朝上資訊(亦即,當筆尖未與表面接觸時收集的筆資料),但是排除被辨識為姿勢資訊的資訊。舉例而言,在某些使用情境中,筆裝置可以用於輸入手寫資訊以及姿勢資訊(舉例而言,例如敲打、拖曳、捲動、等等與使用者介面元件的各種互動之姿勢)。在一舉例說明的情境中,使用者在指定區內以筆裝置簽名,然後使用筆裝置敲打使用者介面元件(例如標示為「OK」或「DONE」之察核框或鍵)以標示簽名完成。在此情境中,與簽名有關的手寫資料可以被保存,並放棄放察核框或敲鍵事件資料。替代地,保存姿勢資料,且於需要時簽名資料一起被保存。
在此處所述的任何實例中,使用筆裝置及數位化器以提供手寫輸入。由感測器記錄的資訊可以最初以原始手寫資料格式儲存。由感測器記錄的資訊可以伴隨有由筆裝置及/或數位化器(例如裝置ID資訊、取樣速率資訊、等等)提供的額外資訊。原始手寫資料可以轉換成筆畫資料以用於由墨水引擎處理。將原始資料轉換成筆畫資料之處理(包含以感測器特定的單位記錄之資料轉換成標準化單位,例如像素或毫米)不是可逆的。舉例而言,在至少某些實施例中,將原始手寫資料轉換成標準化單位之處理會 造成資料損失。但是,相同的原始手寫資料也可以無資料損失地轉換成串流資料。未經壓縮的串流資料可無資料損失地轉換成編碼的(壓縮的)串流資料(例如,依適用於在影像檔案中編碼的格式之二進位資料)。根據此處所述的實施例,編碼的串流資料可以插入於數位影像檔案(未顯示)中,舉例而言,所述數位影像檔案含有對應於筆裝置及數位化器提供的手寫輸入之手寫的影像。
圖25顯示串流產生部200的說明實施例,其中,原始手寫資料由串流產生器2520處理,串流產生器2520產生要提供給串流適應編碼器2540的未經壓縮之串流資料(例如,標頭及個別串流)。串流適應編碼器選擇性地施加壓縮方法至某些資料,而其它資料保留未壓縮。舉例而言,以串流接串流為基礎,施加壓縮,而不是壓縮全部資料,以致於取得各型式串流的形式之優點。在至少一實施例中,僅有含有相當大量的資料(例如x座標串流、y座標串流、壓力資訊串流、時序資訊串流、角度資訊串流)之串流會被壓縮。選擇性壓縮比全部串流還少的串流可以造成稍微較大的資料尺寸,但是提供複雜度及處理時間降低的優點。
在圖25中所示的實例中,標頭資料通過串流適應編碼器2540而不被壓縮,而個別串流(標示為「streamID#1」、「streamID#2」、...「streamID#n」)由串流適應編碼器2540壓縮。串流適應編碼器2540的輸出包括標頭資料及壓縮的串流。如下述更詳細地說明般,串流適應編碼器2540 可使用例如差量編碼、運行長度編碼、熵碼化、個別地或結合地位元擠塞等無損失壓縮方法,以降低儲存的串流資料的尺寸。使用的特定編碼技術、以及從可利用的編碼技術適應地選取之處理可以視背景或實施而變化。替代地,可以省略壓縮。
串流資料可以採取很多形式。在至少某些實施例中,串流資料包含串流組,各串流負責儲存資料的一成分(例如,一串流用於x座標、一串流用於y座標、等等)。串流型式(亦即,特定串流的資料格式)可視被儲存的資料而定。可能的串流型式包含但非限定整數值(例如32位元有正負號或無正負號(U32)的整數)、整數值對、浮點值(例如32位元浮點值)、UTF8或是其它文字值、或是這些值的陣列或緩衝器。舉例而言,x座標串流可以採取整數陣列的形式,但是不同的串流型式可以用於儲存其它資訊。
在某些實施例中,二串流資料可以總體地提供用於特定型式的測量之資訊,一串流資料是原始資料本身(例如,x座標、y座標、等等)及另一串流是由裝置供應之允許墨水引擎將原始資料轉換成真實單位之校正(或度量)資料。在至少一實施例中,x座標串流包含由裝置供應的x座標值,x座標度量串流包含關於這些x座標值的尺度及範圍之資訊。舉例而言,x座標度量說明值的可能範圍、尺度資訊、及正負號轉換資訊(例如,負及正值的意義)。
呈現在串流產生器220輸出中的手寫資料實例顯示於圖26中所示的表格2600。表格2600中的列對應於串流中呈現的筆事件。在表格2600中標示為「筆畫」的行是與串流ID=3相關連以及提供手寫中與筆事件相關連的筆畫的標示符。(在本實例中,筆畫「0」表示對應的筆事件是在手寫的第一筆畫中)。在表格2600中標示為「Btn」的行是與串流ID=4相關連以及提供表示筆是否朝上(0)或朝下(1)之二進位資料。標示為「X」及「Y」的行是與串流ID=1及串流ID=2相關連以及分別提供x座標及y座標。在表格2600中標示為「Ti」的行提供時序資訊。時序資訊包含用於個別筆事件的時戳。但是,在圖26中所示的實例中,在第一列之後此行是空白的,以顯示數位化器以固定時間間隔(例如每5ms)收集筆事件之共同情境,因而允許從取樣速率推導各筆事件的時間以及避免需要用於各筆事件之明確的時戳發訊。在表格2600中標示為「P」的行與串流ID=7相關連以及提供筆壓力值。
圖27顯示可由串流適應編碼器2540(請參見圖25)執行的舉例說明的適應編碼處理S240。在步驟S241,辨識串流ID,以及,根據串流ID選取對應的編碼設計。舉例而言,選取用於串流ID=1、2、或7之第一編碼設計S242(例如,x座標、y座標、或壓力值),以及,選取用於串流ID=3、或4之第二編碼設計S243(例如,標示筆朝上或朝下之「Btn」值或筆畫ID號)。選取的編碼設計可 利用要編碼的資料特點。舉例而言,根據與早先筆事件相關連之值,第一編碼設計S242可以利用頻繁但是以有點可預測的方式而改變的x座標、y座標、及壓力值之趨勢。關於另一實例,第二編碼設計S242可以利用筆畫ID號及「Btn」值的趨勢以不頻繁地改變,造成相同值的長運行。
在圖27中所示的實例中,根據串流ID,對各串流進行適當編碼設計的選取,以及,當所有串流已被執行時,在步驟S245輸出串流資料(FIRST_CONV_DATA)。可以適當地跳過或放棄未呈現或未由串流適應編碼器2540認可的任何串流ID。被使用之特定的編碼設計以及被選取用於編碼之特定資料可以視實施而變。在圖27中所示的實例中,編碼設計S244包括此處所述的任何編碼技術或是某其它編碼技術以及可被用以將此處所述的任何串流或其它串流編碼。
圖28中顯示第一編碼設計S242(請參見圖27)的實例。在圖28中所示的實例中,與筆事件相關連的x座標值被編碼,但是其它值(例如,y座標值、壓力值)可以類似地編碼。在步驟242A-1,取得目前的x座標值(索引k)。在步驟242A-2,藉由將先前的x座標值從目前的x座標值減掉,以計算差值。(在某些情形中,跳過步驟242A-2,例如,在目前的x座標值與初始筆事件(k=0)相關連之情形)。對後續的筆事件,重複步驟242A-1及242A-2。當在本串流中的所有值已被處理時,在步驟 242A-3,將用於初始筆事件(k=0)的初始x座標值與用於後續筆事件(k=1、...n)的差值一起編碼。舉例而言,步驟242A-3的編碼包含用於差值之運行長度碼化或熵碼化。用於將初始值與差異編碼之特定技術可視實施而變。
在至少一實施例中,使用無正負號的32位元整數(U32)陣列系統以儲存x座標,當儲存資料時使用下述程序:
1.將值儲存為初始值而有用於陣列餘數的差值組跟隨於後。
2.差值是運行長度編碼。計算需要儲存的最大值,然後找出最大重複計數。
3.然後將資料寫成:(a)點的數目,儲存為32v值;(b)第一值,儲存為32v值;(c)儲存最大差值所需的位元數目,儲存為8位元值;以及(d)儲存最大運行長度所需的位元數目,儲存為8位元值。在此情形中,「32v」意指儲存大小達到32位元的值但是僅使用儲存該值時真正需要的位元組數目之方法。因此,32v值是可變長度值的實例,特別地,具有可變位元組數目的值(可變位元組值)。圖29A顯示說明的32v編碼技術。如圖29A中所示,在32v值中,使用各位元組以儲存需要儲存的值之7位元。前7個位元儲存在第一位元組中而以正負號位元設為(1)。這一直重複直到所有非零位元被儲存為止。最後的位元組以清除正負號位元(0)表示。舉例而言,在圖29B中所示的處理中,在步驟2910取得整數V。在步驟 2920,V與十六進位值0x7F相比較。假使V大於十六進位值0x7F,則在步驟2940,V的最低7位元寫入單一位元組中並以正負號位元設定為(1),以及,在步驟2950,執行7位元向右移。重複步驟2920、2940、2950直到V不大於0x7F為止,在此點,在步驟2930,寫入V的最後位元組而正負號位元清除(0)。再參考圖29A中所示的實例,2位元組值的第二位元組具有清除正負號位元,而n位元組的第n個位元組具有清除正負號位元。在載入32v值時,讀取各位元組,以及,取出最低效7位元直到以清除正負號位元標示之最後位元組為止。
4.然後,將全組差值寫成位元擁塞二進制大型物件,於適當時以運行長度編碼儲存。(於下將更詳細說明二進制大型物件)。
在至少某些實施例中,任何串流型式的串流資料可以轉換成輸出資料,包括平坦化位元系列,也稱為編碼的二進位手寫資料或是「二進制大型物件」。對應於串流的二進制大型物件接著合併成單一實體,可能有其它二進位資訊伴隨,例如與一個以上的串流或是整體輸出資料有關的標頭資訊(例如,格式及/或版本資訊、串流號數、等等)。在手寫簽名的情形中,此單一實體稱為「簽名二進制大型物件」。應用可以直接操作簽名二進制大型物件中的二進位資訊,或是二進位資訊可以轉換成例如16進位為基礎或64進位為基礎的編碼等不同格式。
圖30是舉例說明的資料結構3000,其包括至少三串 流及標頭資訊,標頭資訊包括串流總數的標示。資料結構3000是二進制大型物件或是編碼的二進位資料的一實例。根據此處所述的實施例,資料結構3000可以從串流編碼器輸出(例如,圖25中的串流適應編碼器2540)。
在至少一實施例中,如圖25中所示,獨特的整體識別符(例如,ID=1用於x座標,ID=2用於y座標,ID=3用於x座標尺度、等等)指派給各串流。串流ID值可以由單一管理機關定義及控制。串流ID值可以與特定串流型式相關連,而允許用於給定的串流之串流型式從串流ID決定及不被明確發訊。被獨特地識別之不同串流仍可具有相同的串流型式。舉例而言,x座標及y座標串流可以都是整數陣列但是具有不同的串流識別符。串流也包含其它資訊,例如標示含於串流中的酬載資料(對應於x座標串流中真實x座標的資料)的位元組數目之長度欄。
如圖30所示,從上至下及從左至右讀取,資料結構3000包含標示簽名二進制大型物件中串流的總數,而對應於個別串流的資料跟隨在後(例如,串流ID、位元組的酬載資料長度、及酬載資料本身)。藉由讀取串流ID、含有的二進位酬載資料的長度、及酬載資料本身,順序地讀取各串流。假使串流ID被識別時,則使用相關連的資料操作器而酬載資料被轉換成適當格式。(如圖30中所示,省略串流ID 3、4、5、及6,對應於所有可能的串流ID之串流並不需要呈現)。假使串流ID未被識別(例如,較老式的解碼器無法識別新近定義的資料串 流),則串流可以被安全地廢棄以及下一串流接著被處理。
如上所述,用於此處所述的資料編碼之特定的編碼技術(舉例而言,包含編碼的二進位手寫資料)、以及從可利用的編碼技術適當地選取之處理可視實施而變。在本節中,將參考圖31-44,說明替代的編碼技術。
在某些實施例中,以用於某些資料型式的壓縮效率之觀點而言,使用熵碼化之可變長度碼化設計是較佳的。此外,在某些實施例中,使用預測碼化以將某些值(例如x座標、y座標、及壓力值)編碼。在此處所述的實例中,預測碼化涉及計算預測餘數,亦即,預測值與真實值之間差值。預測值是根據先前取得的值。在編碼器中,先前取得的資料可以儲存在記憶體中。在解碼器中,先前取得的資料可以是新近解碼的資料。預測碼化是根據下述假設:手寫移動在方向及速度上傾向於以類似於先前移動的方向及速度繼續進行。類似於差值資料,預測餘數也編碼。
替代的第一編碼設計S242的流程圖(請參見圖28)顯示於圖31中。在圖31中所示的實例中,將與筆事件相關連的x座標值編碼,但是,其它值(例如y座標值、壓力值)可以被類似地編碼。當應用圖31中所示的此編碼設計時,執行下述步驟(例如,在圖20中的手寫資料處理部2100A中)。在步驟242B-1,取得目前的x座標值(索引k)。在步驟242B-2,根據先前取得的值,計算目前的x座標值(索引k)的預測值。舉例而言,從二已解 碼值(例如X[k-2]及X[k-1]),藉由對第三點施加線性預測法,導出預測值。在步驟242B-3,藉由將預測值從目前的x座標值減掉,計算預測餘數值。在本實例中,預測餘數是在(i)預測的x座標位置與真實測量的x座標位置之間的差值。(在某些情形中,可以跳過步驟242B-2及242B-3,例如,目前的x座標值與初始的筆事件(k=0)相關連且沒有先前取得的資料可供用於計算預測值)。對後續的筆事件,重複步驟242B-1、242B-2、及242B-3。 當在本串流中所有的值都被處理時,在步驟242A-4,用於初始筆事件(k=0)的初始x座標值被編碼,且用於後續筆事件(k=1...n)的預測餘數也伴隨著被編碼。如同下述更詳細說明般,用於將初始值及預測餘數編碼的特定技術會視實施而變。
圖32顯示圖31中所示的替代之第一編碼設計S242B執行的預測餘數計算。在圖32中所示的實例中,預測與筆事件相關連的x座標值,但是,可以類似地預測其它值(例如y座標值、壓力值)。根據先前取得的資料,計算目前的x座標值(X[k]=+26)的預測值。在本實例中,根據二先前取得的x座標值(X[k-2]及X[k-1])資料之值,計算預測值(Predicted_X[k])的預測值。特別地,如下所示,藉由將X[k-2]及X[k-1]的值之間的差值加至X[k-1]的值,計算預測值(+25)。
Predicted_X[k]=X[k-1]+(X[k-1]-X[k-2])=20+(20-15)=20+5=+25。
如下所示,藉由將目前的x座標值減掉預測值,以計 算預測餘數值(+1):預測餘數=X[k]-Predicted_X[k]=26-25=+1。
圖33顯示設有各別差值、預測值、及預測餘數之多個舉例說明的x座標值。在圖33中,第一列的值(X[0...])代表真實x座標值,第二列(delta_X[1...])代表差值,第三列(Predicted_X[2...])代表預測值,第四列(Prediction Residual[2...])代表預測餘數值。在圖33中所示的實例中,x座標值(第一列)從15的初始值增加直到改變速率在約50時顯著減緩為止。圖34是直方圖,顯示圖33中所示的差值及預測餘數的頻率。如圖34中所示,預測餘數的量值平均比差值的量值小。此外,預測餘數的頻率以單一峰值為(例如,小絕對值或0)中心,而差值的頻率具有多個峰值(例如,在+5附近的一峰值,以及,在0附近的一峰值)。
如圖35和36中分別顯示的表格3500及3600所示般,99個樣本的手寫簽名之實驗研究顯示較小的x座標預測餘數以及壓力值預測餘數分別傾向於比更大的值更頻繁。圖35中所示的直方圖3510顯示x座標值的預測餘數之頻率以單一峰值為中心(例如,小絕對值或0)而差值的頻率具有多個峰值(例如,在-10附近的一峰值,在+10附近的一峰值,以及,在0附近的一峰值)。圖36中所示的直方圖3610顯示預測餘數及壓力值之頻率都以單一峰值為中心(例如,小絕對值或0)。整體而言,直方圖3510及3610顯示對於壓力值及對於x座標值,預測餘數 值更容易等於或接近0。假使使用適當的編碼設計,則藉由以較少的位元來將這些較小的量值編碼,將能夠利用這些較小的量值。
圖37顯示表格3700,顯示可用以將例如差值或預測餘數等值編碼之舉例說明的可變長度碼化設計。表格3700顯示值與對應的位元串之間的對映。圖37中所示的碼化設計是稱為哥倫布指數(Exponentail-Golomb或Exp-Golomb)碼化的可變長度熵碼型式,其中,使用較短的位元串,將更高的機率值編碼。如圖38及39中所示,圖37中所示的舉例說明的編碼設計特別適用於比值比大值更容易發生之情形。
圖38及39分別顯示表格3800和3900,顯示圖37的可變長度碼化設計分別應用至用於x座標值的預測餘數及壓力值之結果。分別在表格3800及3900中標示為「X_pred_residual_ExpGolomb」及「P_pred_residual_ExpGolomb」之行中的登錄包含在適當地配置的編碼器(例如,圖25中的串流適應編碼器2540)之輸出中(例如,分別與「FIRST_CONV_DATA」中的「streamID#1」及「streamID#7」相關連的串流)。
圖40是流程圖,顯示背景為基礎的編碼設計選取處理4000。在步驟4010,至少部份根據串流ID,決定編碼背景。在步驟4020,根據背景,選取可變長度碼(VLC)表格。在步驟4030,使用選取的VLC表格,將串流ID代表的串流中的值編碼。圖41A及41B分別顯示舉例說明的 可變長度碼(VLC)表格4100和4110。在圖41A中所示的實例中,根據與x座標值相關連的串流ID(例如串流ID=2),決定背景。藉由一般地提供具有給定的量值之較短的用於向右移的位元串,VLC表格4100使向右移比向左移優先。在圖41B中所示的實例中,根據與x座標值相關連的串流ID以及語言(例如,阿拉伯語)、手寫、或字母的標示,而決定背景,其中,畫寫傾向於從右至左。 藉由一般地提供具有給定的量值之較短的用於向左移的位元串,VLC表格4110使向左移比向右移優先。如何決定編碼背景及使用的特別VLC表格及碼之細節會視實施而變。
圖42顯示解碼處理4200之流程圖。在圖42中所示的實例中,解碼處理4200涉及將具有編碼的預測餘數之值解碼(例如x座標值、y座標值、等等)。在步驟4210,將編碼值的第一部份(例如,分別對應於索引k=0及k=1的二初始編碼值)解碼。在步驟4210中第一部份中的值之解碼允許具有編碼的預測餘數之後續值在往後的步驟中被解碼。在步驟4220,根據先前導出的或解碼的值,導出用於與下一索引(例如,k=2或後續的值)相關連的值之預測值。(請參見例如圖32)。在步驟4230,將預測餘數值解碼以用於各別的預測值。在步驟4240,根據導出的預測值及解碼的預測餘數值,取得原始值。(請參見例如圖32)。繼續對其它值進行解碼直到所有要解碼的編碼值已被解碼為止。用於將特定編碼的值及/ 或編碼的預測餘數解碼之技術(請參見例如圖42的步驟4210及4230)將視用以將它們編碼之編碼設計而變。舉例而言,以Exp-Golomb編碼設計而編碼的值將由對應的解碼設計解碼。
再參考圖21A,在某些實施例中,筆畫及/或影像資料處理部300使用損失技術(亦即涉及資料損失的技術)以處理原始手寫資料。資料損失會因特別是例如單向x/y座標平滑化功能、量化(例如,將資料轉換成標準單位)、時戳的未使用及後續廢棄等處理而發生。圖43顯示影像資料處理部300A之實施例,其中,根據描寫配置模組4320提供的配置資料,由影像處理器4340處理原始手寫資料。配置資料包含產生影像資料所需的資料,例如影像尺寸、比例、偏移、筆畫色彩(例如紅、綠、藍、容量)、筆工具資料(例如刷子、鉛筆)、等等。在圖43中所示的實例中,影像處理器4340將原始手寫資料轉換成影像資料(標示為「SECOND_CONV_DATA」)。圖44顯示筆畫及影像資料處理部300B的實施例,其中,根據描寫配置模組4320提供的配置資料,筆畫資料產生器4330處理原始手寫資料。在圖44中所示的實例中,筆畫資料產生器4330將原始手寫資料轉換成可由墨水引擎4340B處理的筆畫資料。墨水引擎4340B將筆畫資料轉換成影像資料(「SECOND_CONV_DATA」)。
圖45及46顯示可從損失資料處理部300(例如圖43及44中所示的實施例之一)產生的影像資料描寫的影像 實例,它們分別顯示簽名4500及藝術體描繪4600的影像。在圖46中所示的實例中,在背景影像4610上描寫藝術體描繪。配置資料可用以規畫影像的描寫。舉例而言,配置資料包含表示簽名4500或藝術體描繪4600的手寫應以特定顏色的墨水描寫。
圖47顯示筆畫資料處理部300C的實施例,其中,根據描寫配置模組4320提供的配置資料,由筆畫資料產生器4330處理原始手寫資料。筆畫資料產生器4330將原始手寫資料轉換成筆畫資料(「SECOND_CONV_DATA」)。 不似圖44中所示的筆畫及影像資料處理部300B,筆畫資料處理部300C缺少墨水引擎。分開的墨水引擎(未顯示)將筆畫資料轉換成影像資料。舉例而言,分開的墨水引擎在雲端電腦配置中的伺服器上運行。在此處所述的實施例中用以產生及處理配置資料、筆畫資料及影像資料之特定的技術會視實施及/或背景而變。
再參考圖21A,在某些實施例中,整合部400將影像資料與以串流格式保存之手寫資料相結合。圖48顯示整合部400的實施例,其中,從串流產生部200(請參見圖21A)接收的資料(「FIRST_CONV_DATA」)與從損失資料處理部300(請參見圖21A)接收的影像資料(「SECOND_CONV_DATA」)相整合。在圖48中所示的實例中,使用隱寫處理4820以將串流資料插入影像資料。如下詳述般,用以產生整合資料的特定技術可以視實施及/或背景而變。
雖然能夠以標準的影像格式描寫簽名或被簽名的文件之影像而不用保存手寫資料的原始內容,但是,如此作的一缺點是捕捉到的簽名資訊中的大部份將會損失。藉由將手寫資料的原始內容與影像資料(例如,藉由將編碼的二進位手寫資料隱寫地插入於影像中)相整合,可以克服此問題。另外的優點是很多現存的應用操作影像而不是手寫資料的處理。藉由將手寫資料插入影像中,即使原始手寫資料的原始內容在本身無法識別或處理手寫資料的應用之間作為影像傳遞,仍可保存原始手寫資料的原始內容。使用此型式的影像允許完整的手寫資料的原始內容被保存,而不用修改操作被修改的影像之應用。
用於特定手寫情形之串流資料的尺寸是可變的且取決於例如手寫的持續時間等因素;典型地以固定間隔來收集資料點,以致於要儲存的點之數目與簽名及資料收集速率消耗的整體時間成比例。某些數位化器每秒收集400點或是更多。串流資料的尺寸也取決於可以是選項之資料串流的存在或不存在,例如,壓力及筆角度串流。舉例而言,包括以每秒100點(共同頻率)收集的x座標、y座標、時間、及壓力資訊之簽名當以二進位形式儲存時會佔據1與2仟位元組之間的位元件。含有每秒更多點的手寫包含更多資訊。在至少一實施例中,典型的手寫簽名產生尺寸在2與4仟位元組之間的串流資料。
在至少一實施例中,根據圖49中所示的一般化技術4900,編碼的二進位手寫資料插入於影像中。在步驟 4910中,取得數位影像像素資料。未要求特定格式的原始像素資料。但是,較佳的是像素資料的位元深度使得某些位元可以從它們的原始值改變而不會造成描寫的影像顯著變差。在步驟4920中,原始的像資料中的部份由代表電子式手寫之編碼的二進位手寫資料取代(例如上述編碼的二進位格式)。舉例而言,如下更詳細說明般,在選取的影像之像素中,修改一或更多色彩值的一或更多位元。 要修改的像素之數目取決於數個因素,包含要編碼的資料尺寸以及各像素中被修改的位元數目。在步驟4930中,包含被修改的像素值之影像資料以修改的數位影像儲存。 修改的影像可以以壓縮或未壓縮格式儲存。為了避免資料損失,修改的數位影像不會以例如JPEG等損失壓縮格式儲存。
在至少一實施例中,在具有用於三色彩值(例如,紅、綠、及藍)中的各顏色之8位元的24位元組成的像素中,色彩值的較低效位元由電子式手寫資料取代。在至少一實施例中,每像素四位元(例如,紅色值的最低效元件、綠色值的最低效元件、及藍色值的2最低效元件)被取代,藉以允許4位元的手寫資料儲存於單一像素中,以及,1位元組(8位元)的手寫資料儲存於2像素中。每一像素4位元的手寫資料可以轉譯成16進位(hex)值。
一般較佳的是,手寫資料未全部儲存在影像中連續順序的像素中。在某些實施例中,雖然某些資料(例如標頭資料)可以儲存在一系列的順序像素中,很多資料(例如 x座標資料、y座標資料)儲存在散佈於全影像中之擬隨機選取的像素中。在至少一實施例中,標頭資訊插入於始於影像的第一像素的順序像素系列,及順序地持續直到插入所有標頭資訊為止。在個別串流中的資料接著插入於擬隨機選取的像素中。標頭資訊包含資料儲存機制的版本號數;串流資料的尺寸;及資料儲存於其中的影像之寬度及高度。
除了標頭資訊及串流資料之外,驗證資料可以插入於影像中以提供用於決定影像是否含有有效的手寫資料之機制。在至少一實施例中,代表二預定的十六進位值的8位元插入於影像的前二個像素中。當資料往後被取出時,適當配置的解碼器會檢查這二個十六進位值的存在,以初始判斷影像是否含有有效的手寫資料。替代地,驗證資料可以採取其它形式(例如,代表2個以上的十六進位值、64進位值、等等的二進位制資料)。
在圖50中所示的實例中,顯示16位元的二進位資料散佈於擬隨機選取的像素中。如圖50中所示,在各紅色值中的1位元、在各綠色值中的1位元、及在各藍色值中的2位元被修改。各色值中其餘的位元(在圖50中以「X」表示)不受影響。替代地,二進位資料可以以某其它方式插入於像素值中。舉例而言,在紅、綠、及藍色值中不同數目的位元可以被修改,或是某子集合的色值(例如,紅色及藍色)可以被修改,而其餘色值(例如綠色)不修改。要修改的特定數目的位元及特定值也取決於影像 資料的格式。舉例而言,可以以不同方式,調整含有不同色值、或具有不同位元深度的色值(例如10位元或16位元)之格式的影像。一般而言,造成很小量的影像劣化之整合設計是較佳的。
可以以很多方式,執行像素的擬隨機選取。在至少一實施例中,均勻偏離產生器以影像尺寸為種子而初始化,然後被用以決定要修改的像素序列。這確保像素均勻地散佈以及使得第三方難以決定哪些像素已被修改。假使給定的像素被第二次選取時,則其僅會被忽略,以及,根據擬隨機演繹法,選取另一像素。當嵌入的資料被解碼時,以相同的演繹法,使用影像尺寸作為種子,決定像素序列。 這意指雖然資訊雜散於影像中,仍可再生相同的序列(藉由以相同種子來初始化均勻的偏離)以及由適當配置的解碼器依正確次序讀取修改的像素。
圖51顯示詳細的流程圖,其顯示在至少一實施例中將編碼的二進位手寫資料插入數位影像中的隱寫處理3200。在步驟5110中,初始決定影像是否足夠大(以像素的數目觀點而言)以儲存編碼的手寫資料。用以作此決定的演繹法可以視實施而變。舉例而言,演繹法可以決定在各像素中要修改之給定數目的位元(例如4位元)情形下,需要被修改以儲存編碼的手寫資料之像素的數目是否超過影像中的總像素的預定臨界百分比。假使影像足夠大,則在步驟5120,標示資料寫入於序列像素中。對於其餘的編碼手寫資料,在步驟5130,擬隨機地選取像 素。在步驟5140,執行檢查以決定像素先前是否被選取。假使像素先前已被選取,則再執行擬隨機選取處理。 假使像素先前未被選取,則在步驟5150,適當數目位元(例如1/2位元組(4位元))的編碼手寫資料寫入於像素中。重複步驟5130-5150直到在步驟5160判定所有編碼的手寫資料已寫入於影像中為止。在步驟5170,設定狀態旗標以表示成功。
另一方面,假使影像不夠大以儲存編碼的手寫資料,則在步驟5180,狀態旗標設定成表示失敗。但是,處理5100也包含適應特徵以有效地處理不夠大以儲存編碼的手寫資料之某些影像。舉例而言,處理5100可用以修改各選取的像素中較大數目的位元(例如,藉由修改每像素6位元(例如,每色值2位元)而不是每像素4位元)以降低將需要修改的像素數目。依此方式,在影像中要修改的像素之百分比可以降低,以及,儘管影像中有較小數目的像素,隱寫處理仍可繼續。
不需要總是將串流資料與影像資料或筆畫資料合併。 圖52顯示整合部400B的說明實施例,其中,從串流產生部200(請參見圖21A)接收的資料與從損失資料處理部300(請參見圖21A)接收的筆畫資料相整合。在圖52中所示的實例中,整合部400B根據作為選取模組5201的輸入之旗標的狀態(「FIRST_CONV_DATA_EXIST_FLAG」),決定從串流產生部200接收的資料(「FIRST_CONV_DATA」)是否與筆畫資料多工化器5202中的筆畫資料(「SECOND_CONV_DATA」) 相整合。圖53顯示整合部400C的另一說明實施例,其中,從串流產生部200(請參見圖21A)接收的資料與從損失資料處理部300(請參見圖21A)接收的筆畫及/或影像資料相整合。在圖53中所示的實例中,整合部400C根據作為選取模組5301及5303的輸入之控制訊號(「ctrl」),決定從串流產生部200接收的串流資料(「FIRST_CONV_DATA」)是否將與再合併模組5302中的筆畫及/或影像資料(「SECOND_CONV_DATA」)相整合。用以整合資料及決定資料是否應整合及/或分開處理之特定技術可視實施及/或其它因素而變,例如應用是否正請求特定資料。舉例而言,假使應用僅請求影像資料(例如,PNG檔案)時,則控制訊號設定成使得整合部400C僅輸出影像資料。關於另一實例,假使應用請求串流資料及影像資料,則控制訊號設定成整合部400C輸出包括串流資料及影像資料之整合資料。
在此處所述的任何實例中,使用一或更多解碼器以將損失或無損失編碼資料解碼。解碼器接收編碼資料作為輸入以及產生解碼資料作為輸出。典型地,解碼器包括解碼邏輯,解碼邏輯配置成將以特定方式編碼之資料解碼。舉例而言,PNG(可攜式網路圖形)解碼器配置成將已以PNG格式編碼的資料解碼。解碼邏輯駐於與對應的編碼邏輯不同的電腦裝置上、或是在相同裝置上。
根據此處所述的實施例,編碼的手寫資料解碼器包括用於讀取編碼的二進位手寫資料(例如,位元擁塞、exp- Golomb碼化二進位手寫資料)以及將其轉換成可由例如墨水引擎、鑑識簽名資料分析工具、或其它電子手寫工具等工具使用的形式。編碼的手寫資料解碼器可以與例如影像資料解碼器等其它解碼器結合使用。舉例而言,在編碼的手寫資料解碼器讀取已插入於影像檔案中的像素資料中的編碼的手寫資料之後,影像檔案由適當的影像資料解碼器解碼以及被描寫顯示。
由解碼器使用的解碼處理的細節取決於提供給解碼器的背景及/或資訊。舉例而言,根據此處所述的實施例,編碼的手寫資料解碼器接收編碼的手寫資料的標頭部份中的資訊,所述資訊標示像素的各色值中有多少位元含有編碼的二進位手寫資料、或是特定碼表格是否被用於熵碼化設計。根據此資訊,解碼器選擇適當技術以用於將編碼資料解碼。
雖然上述實施例關於儲存在數位影像中的電子式手寫資料,但是,應瞭解,在很多上述技術及工具中,電子式手寫資料可以由不限於電子式手寫資料之其它型式的資料補充或取代,以及,根據此處所述的原理,此資料可以儲存於數位影像中或是從數位影像中取出此資料。
III.電腦環境
除非在特定實例的背景中另外指明,否則所述的技術及工具可由任何適當的電腦裝置實施,電腦裝置包含但不限於膝上型電腦、桌上型電腦、智慧型電話、平板電腦、 等等。舉例而言,雖然在此處所述的某些實例中手寫資料的產生會要求例如電子筆等某些硬體特點,但是,由電子筆產生的原始資料可以傳送至適當配置的一般用途的電腦裝置並由其處理,一般用途的電腦裝置包含但不限於膝上型電腦、桌上型電腦、智慧型電話、平板電腦、等等。
此處所述的某些功能在客戶端-伺服器關係的背景中實施。在此背景中,伺服器裝置包含配置成提供此處所述的資訊及/或服務之適當的電腦裝置。伺服器裝置可以包含任何適當的電腦裝置,例如專用的伺服器裝置。由伺服器裝置提供的伺服器功能在某些情形中可由在非專用伺服器裝置之電腦裝置上執行的軟體(例如,虛如電腦的情形或是應用物件)提供。「客戶端」一詞用以表示取經由通訊鏈路而取得資訊及/或接取伺服器提供的服務。但是,指定特定裝置作為客戶端裝置不一定要求伺服器存在。在不同時間,單一裝置可視背景及配置而作為伺服器、客戶端、或是伺服器及客戶端等二者。客戶端及伺服器的真實實體位置不一定是重要的,但是,對於客戶端,位置可以說明成「本地」,對於伺服器,位置可以說明成「遠端」,以說明客戶端正接收遠端位置的伺服器提供的資訊之一般使用情境。
圖54是方塊圖,顯示根據本揭示的實施例之適合使用的舉例說明的電腦裝置5400的態樣。下述說明可應用至伺服器、個人電腦、行動電話、智慧型電話、平板電腦、嵌入式電腦裝置、及其它根據本揭示的實施例之可使 用的目前可利用或尚未開發的裝置。
在其最基本的配置中,電腦裝置5400包含藉由通訊匯流排5406連接的至少一處理器5402及系統記憶體5404。取決於裝置之正確的配置及型式,系統記憶體5404可為依電性或非依電性記憶體,例如唯讀記憶體(「ROM」)、隨機存取記憶體(「RAM」)、EEPROM、快閃記憶體、或其它記憶體技術。具有此技藝等等的一般技術者可認知到系統記憶體5404典型上儲存資料及/或程式模組,資料及/或程式模組是可由處理器5402立即接取及/或正在其上操作。關於此點,藉由支援指令的執行,處理器5402可以作為電腦裝置5400的計算中心。
又如圖54中所示般,電腦裝置5400包含網路介面5410,網路介面5410包括用於在網路上與其它裝置通訊的一或更多組件。本揭示的實施例可以接取基本服務,基本服務使用網路介面5410以使用共同的網路協定來執行通訊。網路介面5410也包含無線網路介面,無線網路介面配置成經由例如WiFi、2G、3G、4G、LTE、WiMAX、藍芽、等等一或更多無線通訊協定而通訊。
在圖54中所示的舉例說明的實施例中,電腦裝置5400也包含儲存媒體5408。但是,可以使用未包含用於存留資料至本地儲存媒體的機構之電腦裝置,以接取服務。因此,圖54中所示的儲存媒體5408是選加的。在任何事件中,儲存媒體5408可為依電性或非依電性的、可移除或不可移除的、使用能夠儲存資訊的任何技術實施 的,例如硬碟機、固態驅動器、CD-ROM、DVD、或其它碟片儲存器、磁帶、磁碟儲存器、等等。
如同此處所使用般,「電腦可讀取的媒體」一詞包含以能夠儲存例如電腦可讀取的指令、資料結構、程式模組、或其它資料等資訊的任何方法或技術實施之依電性及非依電性以及不可移除的媒體。關於此點,圖54中所示之系統記憶體5404及儲存媒體5408是電腦可讀取的媒體的實例。
為了易於顯示及由於對於申請專利範圍的標的之瞭解 並不重要,所以,圖54未顯示很多電腦裝置的某些典型組件。關於此點,電腦裝置5400包含輸入裝置,例如鍵盤、小鍵盤、滑鼠、軌跡球、麥克風、攝影機、觸控墊、觸控螢幕、探針、等等。這些輸入裝置藉由有線或無線連結而耦合至電腦裝置5400,有線或無線連結包含RF、紅外線、串列、並列、藍芽、或是使用無線或實體連結之其它適當的連結協定。
在任何所述的實例中,資料由輸入裝置捕捉且傳送或儲存用於未來的處理。處理包含將資料串流編碼,編碼的資料串流後續被接碼而由輸出裝置呈現。媒體資料由多媒體輸入裝置捕捉,且藉由將媒體資料串流作為檔案儲存於電腦可讀取的儲存媒體上(例如,在客戶端裝置上、伺服器上、管理裝置、或某其它裝置上的記憶體或存留儲存器中),以儲存媒體資料。輸入裝置是與電腦裝置5400(例如,客戶端裝置)分開及通訊地耦合,或者是電腦裝 置5400的整體組件。在某些實施例中,多個輸入裝置可以合併成單一、多功能輸入裝置(例如,具有整合的麥克風之攝影機)。任何目前已知或未來開發之適當的輸入裝置可以與此處所述的系統一起使用。
電腦裝置5400也包含例如顯示器、揚音器、印表機、等等視訊輸出裝置。輸出裝置包含視頻輸出裝置,例如顯示器或觸控螢幕。輸出裝置也包含例如外部揚音器或耳機等音頻輸出裝置。輸出裝置與電腦裝置5400分開且通訊地耦合至電腦裝置5400,或者是電腦裝置5400的整體組件。在某些實施例中,多個輸出裝置可以與單一裝置合併(例如設有內建揚音器的顯示器)。任何適當的輸出裝置可以是目前所知的或是未來開發的可以與此處所述的系統一起使用。
一般而言,此處所述的電腦裝置的功能可以由嵌入於硬體或軟體指令中的計算邏輯實施,軟體指令可以是由例如C、C++、COBOL、JAVATM、PHP、Perl、HTML、CSS、JavaScript、VBScript、ASPX、Microsoft、例如C#等NETTM語言、等等程式語言撰寫。計算邏輯可以編譯成可執行的程式或是以解譯程式語言撰寫。一般而言,此處所述的功能可以實施成邏輯模組,邏輯模組可以複製以提供更大的處理能力、與其它模組合併、或是分成子模組。計算邏輯可以儲存於任何型式的電腦可讀取的媒體(舉例而言,例如記憶體或儲存媒體等非暫時媒體)或是電腦儲存裝置中、以及儲存於一或更多一般用途或特別用途處理器上或是由 一或更多一般用途或特別用途處理器執行,因而產生配置成提供此處所述的功能之特別用途電腦裝置。
IV.擴充及替代
此處所述的系統及裝置的很多替代是可能的。舉例而言,個別模組或是子系統可以分開成其它模組或子系統或是合併成更少的模組或子系統。關於另一實例,模組或子系統可以省略或由其它模組或子系統補充。關於另一實例,表示成由特定裝置、模組、或子系統執行的功能可由一或更多其它裝置、模組、或子系統執行。雖然在本揭示中的某些實例包含裝置說明,而這些裝置說明包括特定配置的特定硬體配置,但是,此處所述的技術及工具可以修改成容納不同的硬體組件、組合、或配置。此外,雖然在本揭示中的某些實施例包含特定使用情境的說明,但是,此處所述的技術及工具可以修改以容納不同的使用情境。說明成以軟體實施的功能可由硬體替代地實施,反之亦然。
此處所述的技術之後多替代是可能的。舉例而言,在各種技術中的處理階段可以分成其它階段或是合併成較少的階段。關於另一實例,在各種技術中的處理階段可以省略或由其它技術或處理階段補充。關於另一實例,說明成以特定次序發生的處理階段可以替代地以不同次序發生。關於另一實例,說明成以系列步驟執行的處理階段取代地被以平行方式操作,而以多個模組或軟體處理同時操作一 或更多顯示的處理階段中之一或更多。關於另一實例,被表示成由特定裝置或模組執行的處理階段可以替代地由一或更多其它裝置或模組執行。
在前述說明中已說明本揭示的原理、代表實施例、及操作模式。但是,要受保護之本揭示的態樣不應被解釋為受限於此處所述的特定實施例。此外,此處所述的實施例是要被視為說明性的而非限定的。將瞭解,在不悖離本揭示的精神之下,可以作改變及變化、以及採用均等性。因此,在說明上是要將所有這些變化、改變、及均等性都落在申請專利的標的之精神及範圍之內。

Claims (15)

  1. 一種動態手寫驗證之方法,包括:取得包括筆事件序列之原始手寫資料,各筆事件均包含眾多不同屬性的值;從該原始手寫資料產生包含眾多串流的串流資料,各串流包含與不同屬性中的單一屬性有關的資料;從該原始手寫資料產生筆畫資料及/或影像資料;以及,選擇性地計算(i)該串流資料或(ii)該筆畫資料及/或影像資料。
  2. 如申請專利範圍第1項之方法,其中,產生該串流資料包括插入與該眾多串流相關聯的識別符,以及,其中,插入該識別符包括將該識別符插入在該串流資料的標頭中。
  3. 如申請專利範圍第2項之方法,其中,產生該串流資料又包括根據該識別符而從眾多可利用的壓縮技術中選取壓縮技術以用於該眾多串流中的各串流,以及,對該眾多串流中的各串流施加該選取的壓縮技術。
  4. 如申請專利範圍第3項之方法,其中,該眾多可利用的壓縮技術包括(a)無壓縮及(b)差異碼化,其中,該差異碼化包含差值的運行長度碼化,以及,其中,施加該選取的壓縮技術包括施加該差異碼化至x座標值及y座標值。
  5. 如申請專利範圍第3項之方法,其中,該選取的壓縮技術也包括:取得手寫資料值序列中的第k值作為目前目標值,其中,k是索引值;根據在該第k值編碼之前取得的值,計算用於該第k值的預測值;根據該目前目標值及用於該第k值的該預測值,計算用於該第k值的預測餘數值;以及,藉由使用熵碼化方法,將該預測餘數值編碼,該熵碼化方法將較小的絕對預測餘值對映較短的位元串及將較大的絕對預測餘數值對映較長的位元串。
  6. 如申請專利範圍第5項之方法,其中,該熵碼化方法包含根據串流型式而在可變長度碼表格之間切換。
  7. 如申請專利範圍第1項之方法,其中,該選擇性輸出包括:將該串流資料與該筆畫資料及/或該影像資料整合,藉以將該原始手寫資料的原始內容與該筆畫資料及/或該影像資料再合併在單一檔案中。
  8. 如申請專利範圍第7項之方法,其中,該整合包括隱寫處理。
  9. 如申請專利範圍第1項之方法,其中,該選取輸出至少部份地根據來自應用的請求。
  10. 如申請專利範圍第1項之方法,其中,產生該串流資料包括無損失資料處理,以及,其中,產生該筆畫資料及/或該影像資料包括損失資料處理。
  11. 如申請專利範圍第10項之方法,其中,該無損失資料處理包括保存時戳資訊,以及,其中,該損失資料處理包含廢棄該時戳資訊。
  12. 如申請專利範圍第10項之方法,其中,該無損失資料處理包括以原始精準程度保存該眾多值,以及,其中,該損失資料處理包括對該眾多值中的至少某些值降低該原始精準程度。
  13. 一種動態手寫驗證之電腦系統,包括:串流資料產生部,配置成根據原始手寫資料以產生串流資料,其中,該串流資料包括眾多串流,其中,該串流資料產生部包括無損失串流適應編碼器,該無損失串流適應編碼器配置成將該眾多串流適應地編碼;以及,損失資料處理部,配置成根據該原始手寫資料以產生筆畫資料及/或影像資料。
  14. 如申請專利範圍第13項之電腦系統,又包括整合部,該整合部配置成將該串流資料以及該筆畫資料及/或影像資料整合成整合資料。
  15. 如申請專利範圍第14項之電腦系統,其中,該整合資料包括數位影像,該數位影像具有編碼的手寫資料插入於其中。
TW103136790A 2013-10-25 2014-10-24 動態手寫驗證之方法與電腦系統 TWI667619B (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201361895895P 2013-10-25 2013-10-25
US61/895,895 2013-10-25
US14/080,723 2013-11-14
US14/080,723 US9235748B2 (en) 2013-11-14 2013-11-14 Dynamic handwriting verification and handwriting-based user authentication

Publications (2)

Publication Number Publication Date
TW201535274A TW201535274A (zh) 2015-09-16
TWI667619B true TWI667619B (zh) 2019-08-01

Family

ID=52992543

Family Applications (1)

Application Number Title Priority Date Filing Date
TW103136790A TWI667619B (zh) 2013-10-25 2014-10-24 動態手寫驗證之方法與電腦系統

Country Status (8)

Country Link
US (1) US10846510B2 (zh)
EP (1) EP3061067B1 (zh)
JP (3) JP5841297B1 (zh)
CN (1) CN105556566B (zh)
HK (1) HK1220031A1 (zh)
SG (2) SG11201601314RA (zh)
TW (1) TWI667619B (zh)
WO (1) WO2015059930A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11783045B2 (en) 2020-06-18 2023-10-10 Micron Technology, Inc. Authenticating software images

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5841297B1 (ja) 2013-10-25 2016-01-13 株式会社ワコム 手書きデータ出力方法及びコンピュータシステム
US9710701B2 (en) 2015-03-26 2017-07-18 Lenovo (Singapore) Pte. Ltd. Handwriting data search
KR101575577B1 (ko) * 2015-07-09 2015-12-08 주식회사 시큐브 수기서명 인증 시스템 및 방법
KR101584045B1 (ko) * 2015-09-02 2016-01-11 주식회사 시큐브 세그먼트 기반 수기서명 인증 시스템 및 방법
TWI552119B (zh) * 2015-09-25 2016-10-01 Univ Hungkuang Computer writing sense system
CN105844726B (zh) * 2016-03-18 2018-04-17 吉林大学 一种手写签名签到管理系统
CN106843714B (zh) * 2016-11-15 2020-05-12 广州视源电子科技股份有限公司 触控笔笔迹的优化方法及系统
JP6387207B1 (ja) * 2016-12-30 2018-09-05 株式会社ワコム デジタルインクの符号化方法、復号化方法
WO2018155107A1 (ja) * 2017-02-21 2018-08-30 日本電気株式会社 認証処理装置、認証処理方法、およびコンピュータ読み取り可能な記録媒体
CN106951832B (zh) * 2017-02-28 2022-02-18 广东数相智能科技有限公司 一种基于手写字符识别的验证方法及装置
CN107358148B (zh) * 2017-05-24 2022-04-29 广东数相智能科技有限公司 一种基于手写识别的防作弊网络调研的方法及装置
US11164025B2 (en) 2017-11-24 2021-11-02 Ecole Polytechnique Federale De Lausanne (Epfl) Method of handwritten character recognition confirmation
JP7108784B2 (ja) * 2018-08-21 2022-07-28 華為技術有限公司 データ記憶方法、データ取得方法、及び機器
EP3629230A1 (en) * 2018-08-23 2020-04-01 Tata Consultancy Services Limited Clipboard system, and method of operating the same, for real time form digitization
AU2019388293A1 (en) * 2018-11-26 2021-06-10 Forticode Limited Mutual authentication of computer systems over an insecure network
CN111079491B (zh) * 2019-05-29 2023-11-24 广东小天才科技有限公司 一种书写内容识别方法、电子设备及存储介质
US10733325B1 (en) 2019-11-15 2020-08-04 Capital One Services, Llc Securing user-entered text in-transit
US11514695B2 (en) * 2020-12-10 2022-11-29 Microsoft Technology Licensing, Llc Parsing an ink document using object-level and stroke-level processing
CN113468987B (zh) * 2021-06-17 2023-04-18 重庆傲雄在线信息技术有限公司 一种电子笔迹鉴定方法、系统、电子设备及存储介质

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0542557A2 (en) * 1991-11-12 1993-05-19 Texas Instruments Incorporated Systems and methods for handprint recognition acceleration
TW200602976A (en) * 2004-06-18 2006-01-16 Microsoft Corp Handwritten input for asian languages
TW200839623A (en) * 2006-11-22 2008-10-01 Ibm An apparatus and a method for correcting erroneous image identifications generated by an OCR device

Family Cites Families (112)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH503336A (de) 1968-08-23 1971-02-15 E Balk Michael Verfahren zum Identifizieren von Personen sowie Vorrichtung zur Ausführung des Verfahrens
US4453267A (en) 1979-03-19 1984-06-05 Ncr Corporation Signal compression apparatus and method
US4495644A (en) 1981-04-27 1985-01-22 Quest Automation Public Limited Company Apparatus for signature verification
JPS58178488A (ja) * 1982-04-12 1983-10-19 Mitsubishi Electric Corp 手書き図形符号化装置
JPS59192A (ja) 1982-06-25 1984-01-05 株式会社東芝 個人照合装置
US4656662A (en) 1983-07-18 1987-04-07 Ncr Corporation Personal identification method and apparatus
US4701960A (en) 1983-10-28 1987-10-20 Texas Instruments Incorporated Signature verification
JPS626385A (ja) * 1985-07-03 1987-01-13 Oki Electric Ind Co Ltd 文字認識装置
US4724542A (en) 1986-01-22 1988-02-09 International Business Machines Corporation Automatic reference adaptation during dynamic signature verification
JPS62287387A (ja) 1986-06-06 1987-12-14 Yukio Sato 手書き文字のオンライン認識方式
EP0276109B1 (en) 1987-01-20 1993-05-12 Btg International Limited Method and apparatus for capturing information in drawing or writing
US5054088A (en) 1989-09-20 1991-10-01 International Business Machines Corporation Signature verification data compression for storage on an identification card
US5109426A (en) 1989-11-10 1992-04-28 National Research Development Corporation Methods and apparatus for signature verification
US5091975A (en) 1990-01-04 1992-02-25 Teknekron Communications Systems, Inc. Method and an apparatus for electronically compressing a transaction with a human signature
US5038392A (en) 1990-02-12 1991-08-06 International Business Machines Corporation Method and apparatus for adaptive image processing by recognizing a characterizing indicium in a captured image of a document
US5101437A (en) 1991-02-11 1992-03-31 Ecole Polytechnique Method and apparatus for comparing a test handwritten signature with a reference signature by using information relative to curvilinear and angular velocities of the signature
US5285506A (en) 1991-04-30 1994-02-08 Ncr Corporation Method of recording a handwritten message
US5111512A (en) 1991-05-14 1992-05-05 At&T Bell Laboratories Method for signature verification
US6487310B1 (en) 1991-09-06 2002-11-26 Penop Ltd. Signature matching
JP2800538B2 (ja) * 1992-03-23 1998-09-21 日本電気株式会社 可変長ビット列処理プロセッサ
US5699445A (en) 1992-04-10 1997-12-16 Paul W. Martin Method for recording compressed data
DE69230031T2 (de) 1992-04-30 2000-04-20 Ibm Mustererkennung und -echtheitsprüfung, insbesondere für handgeschriebene Unterschriften
WO1994004992A1 (en) 1992-08-20 1994-03-03 Communication Intelligence Corporation A method for dynamic reconstruction of handwritten data
JPH06162268A (ja) * 1992-11-24 1994-06-10 Nippondenso Co Ltd サイン認識装置
US5528699A (en) 1992-11-24 1996-06-18 Nippondenso Co., Ltd. Information medium recognition device
US5454046A (en) 1993-09-17 1995-09-26 Penkey Corporation Universal symbolic handwriting recognition system
US5434928A (en) 1993-12-06 1995-07-18 At&T Global Information Solutions Company Method for verifying a handwritten signature entered into a digitizer
WO1995016974A1 (en) 1993-12-17 1995-06-22 Quintet, Incorporated Method of automated signature verification
US5699456A (en) 1994-01-21 1997-12-16 Lucent Technologies Inc. Large vocabulary connected speech recognition system and method of language representation using evolutional grammar to represent context free grammars
US5577135A (en) 1994-03-01 1996-11-19 Apple Computer, Inc. Handwriting signal processing front-end for handwriting recognizers
GB9409773D0 (en) 1994-05-13 1994-07-06 Atomic Energy Authority Uk Identification system
US5687254A (en) 1994-06-06 1997-11-11 Xerox Corporation Searching and Matching unrecognized handwriting
US6091835A (en) 1994-08-31 2000-07-18 Penop Limited Method and system for transcribing electronic affirmations
US5544255A (en) 1994-08-31 1996-08-06 Peripheral Vision Limited Method and system for the capture, storage, transport and authentication of handwritten signatures
US5528003A (en) 1994-12-14 1996-06-18 International Business Machines Corporation Data compression for pen stroke input
US5812698A (en) 1995-05-12 1998-09-22 Synaptics, Inc. Handwriting recognition system and method
US5991441A (en) 1995-06-07 1999-11-23 Wang Laboratories, Inc. Real time handwriting recognition system
US5828772A (en) 1995-12-27 1998-10-27 Lucent Technologies Inc. Method and apparatus for parametric signature verification using global features and stroke-direction codes
US5892824A (en) 1996-01-12 1999-04-06 International Verifact Inc. Signature capture/verification systems and methods
US6259043B1 (en) * 1996-01-23 2001-07-10 International Business Machines Corporation Methods, systems and products pertaining to a digitizer for use in paper based record systems
US6512840B1 (en) 1996-05-30 2003-01-28 Sun Microsystems, Inc. Digital encoding of personal signatures
NO963903D0 (no) 1996-09-18 1996-09-18 Gary A Mcconnell Fremgangsmåte til registrering av validering av en personlig signatur, kompilering av databaser for bruk ved fremgangsmåten, en elektronisk skriveinnretning for signaturegistrering samt anvendelse av fremgangsmåter og innretning
GB9625661D0 (en) * 1996-12-11 1997-01-29 Hewlett Packard Co A method and apparatus for compression of electronic ink
JP3492874B2 (ja) * 1996-12-26 2004-02-03 株式会社デンソーウェーブ サイン照合システム
JPH10240866A (ja) * 1997-02-24 1998-09-11 Mitsubishi Electric Corp 文字認識装置
BR9812559A (pt) 1997-10-01 2000-08-01 Cadix Inc Método e dispositivo para autenticar cartão ic
US6055552A (en) * 1997-10-31 2000-04-25 Hewlett Packard Company Data recording apparatus featuring spatial coordinate data merged with sequentially significant command data
US6055592A (en) 1998-02-09 2000-04-25 Motorola, Inc. Smart card authentication system comprising means for converting user identification and digital signature to pointing device position data and vice versa using lut
US6011873A (en) 1998-04-29 2000-01-04 Penware, Inc. Method and apparatus for lossless compression of signature data
JPH11341456A (ja) * 1998-05-29 1999-12-10 Matsushita Graphic Communication Systems Inc 家庭用マルチメディア通信システム
JP2000163514A (ja) * 1998-09-25 2000-06-16 Sanyo Electric Co Ltd 文字認識方法、文字認識装置および記憶媒体
US6307955B1 (en) 1998-12-18 2001-10-23 Topaz Systems, Inc. Electronic signature management system
DE60042165D1 (de) 1999-01-13 2009-06-18 Computer Ass Think Inc Unterschriften-erkennungs-system und -verfahren
WO2000057349A1 (en) * 1999-03-24 2000-09-28 British Telecommunications Public Limited Company Handwriting recognition system
US7170499B1 (en) 1999-05-25 2007-01-30 Silverbrook Research Pty Ltd Handwritten text capture via interface surface
SG121851A1 (en) 1999-06-30 2006-05-26 Silverbrook Res Pty Ltd Method and system for conferencing using processing sensor
JP2001331802A (ja) * 2000-05-22 2001-11-30 Interlink Kk 筆跡イメージの生成装置及び表示装置並びに筆跡イメージ生成用プログラムを記憶した記憶媒体
US7397949B2 (en) * 2000-06-21 2008-07-08 Microsoft Corporation Serial storage of ink and its properties
JP2002108822A (ja) 2000-09-28 2002-04-12 Nec Corp セキュリティ管理方式
US6975750B2 (en) 2000-12-01 2005-12-13 Microsoft Corp. System and method for face recognition using synthesized training images
US6549675B2 (en) * 2000-12-20 2003-04-15 Motorola, Inc. Compression of digital ink
JP4346814B2 (ja) 2000-12-27 2009-10-21 キヤノン株式会社 情報処理装置及びその方法、コンピュータ可読メモリ、プログラム
US6741749B2 (en) 2001-01-24 2004-05-25 Advanced Digital Systems, Inc. System, device, computer program product, and method for representing a plurality of electronic ink data points
JP2002269272A (ja) 2001-03-13 2002-09-20 Nippon Telegr & Teleph Corp <Ntt> 認証代行方法及び装置、認証代行プログラム並びにそのプログラムを記録した記録媒体
US7197167B2 (en) 2001-08-02 2007-03-27 Avante International Technology, Inc. Registration apparatus and method, as for voting
US6694045B2 (en) 2002-01-23 2004-02-17 Amerasia International Technology, Inc. Generation and verification of a digitized signature
AUPR890201A0 (en) * 2001-11-16 2001-12-06 Silverbrook Research Pty. Ltd. Methods and systems (npw005)
CA2363372A1 (en) 2001-11-20 2003-05-20 Wayne Taylor System for identity verification
US7391906B2 (en) 2001-12-05 2008-06-24 Microsoft Corporation Methods and system for providing image object boundary definition by particle filtering
ATE354834T1 (de) 2002-03-15 2007-03-15 Computer Sciences Corp Verfahren und vorrichtungen zur analyse von schrift in dokumenten
JP4070001B2 (ja) * 2002-03-19 2008-04-02 日本サイバーサイン株式会社 署名認証システム、署名認証プログラム
JP2003271967A (ja) 2002-03-19 2003-09-26 Fujitsu Prime Software Technologies Ltd 手書き署名認証プログラム、方法、及び装置
JP2003271966A (ja) 2002-03-19 2003-09-26 Fujitsu Ltd 手書き入力認証装置、手書き入力認証方法、および手書き入力認証プログラム
JP2003271965A (ja) 2002-03-19 2003-09-26 Fujitsu Ltd 手書き署名認証プログラム、方法、及び装置
JP2003345505A (ja) 2002-05-23 2003-12-05 Takeo Igarashi 固有のデバイスidを有する入力操作手段を用いるコンピュータシステム
JP2004021663A (ja) * 2002-06-18 2004-01-22 Hitachi Ltd ネットワークを利用した商取引システムの個人認証方法
GB0223074D0 (en) 2002-10-04 2002-11-13 Motion Touch Ltd Recording writing movements
US7433499B2 (en) 2003-08-22 2008-10-07 Dynasig Corporation Method and apparatus for capturing and authenticating biometric information from a writing instrument
US7362901B2 (en) 2003-09-05 2008-04-22 Gannon Technology Holdings Llc Systems and methods for biometric identification using handwriting recognition
JP4357935B2 (ja) 2003-11-14 2009-11-04 株式会社東芝 情報処理装置およびサインデータ入力プログラム
US7136054B2 (en) * 2004-01-06 2006-11-14 Microsoft Corporation Camera-pen-tip mapping and calibration
US7190815B2 (en) 2004-05-26 2007-03-13 Topaz Systems, Inc. Method for authenticating an electronic signature
DE102004057157A1 (de) 2004-08-21 2006-04-27 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren und Vorrichtung zum Erfassen einer eigenhändig ausgeführten Unterschrift oder Signatur und zum Erkennen der Echtheit der Unterschrift oder Signatur
CN101044746B (zh) 2004-10-06 2012-05-02 赛贝斯365有限公司 用于基于消息的接入的系统和方法
US20060136731A1 (en) 2004-12-21 2006-06-22 Signaturelink, Inc. System and method for providing an online electronic signature
US7933840B2 (en) 2004-12-30 2011-04-26 Topaz Systems, Inc. Electronic signature security system
RO121497B1 (ro) 2005-02-09 2007-06-29 Softwin S.R.L. Sistem informatic şi metodă pentru achiziţia, analiza şi autentificarea semnăturii olografe
US7536051B2 (en) * 2005-02-17 2009-05-19 Microsoft Corporation Digital pen calibration by local linearization
US7917761B2 (en) 2005-03-21 2011-03-29 Microsoft Corporation Digitally signing an electronic document with a user-entered signature image
WO2006111979A2 (en) 2005-04-18 2006-10-26 Belal Lehwany Apparatus and method for incorporating signature into electronic documents
US8732025B2 (en) 2005-05-09 2014-05-20 Google Inc. System and method for enabling image recognition and searching of remote content on display
JP2006352628A (ja) 2005-06-17 2006-12-28 Viva Computer Co Ltd デジタル画像の作成・送信・受信装置およびその配受信システム
US7474770B2 (en) 2005-06-28 2009-01-06 Beigi Homayoon S M Method and apparatus for aggressive compression, storage and verification of the dynamics of handwritten signature signals
US20070065021A1 (en) 2005-07-14 2007-03-22 David Delgrosso System for encoding signatures for compressed storage using a signature encoding algorithm
US7529391B2 (en) 2005-12-29 2009-05-05 Microsoft Corporation Signature verification
US8090161B2 (en) 2006-06-19 2012-01-03 Christiane Kaplan Systems and method for signature verification
JP2009543181A (ja) 2006-06-28 2009-12-03 アノト アクティエボラーク 電子ペンにおける動作制御およびデータ処理
US20080019575A1 (en) 2006-07-20 2008-01-24 Anthony Scalise Digital image cropping using a blended map
TWI336854B (en) 2006-12-29 2011-02-01 Ibm Video-based biometric signature data collecting method and apparatus
JP2010198341A (ja) 2009-02-25 2010-09-09 Fujitsu Fsas Inc 認証処理プログラム及び装置
US20110060985A1 (en) 2009-09-08 2011-03-10 ABJK Newco, Inc. System and Method for Collecting a Signature Using a Smart Device
RO126248B1 (ro) 2009-10-26 2012-04-30 Softwin S.R.L. Sistem şi metodă pentru aprecierea autenticităţii semnăturii olografe dinamice
JP5604176B2 (ja) * 2010-05-12 2014-10-08 日本放送協会 認証連携装置およびそのプログラム、機器認証装置およびそのプログラム、ならびに、認証連携システム
JP2012033042A (ja) * 2010-07-30 2012-02-16 Hitachi Information Systems Ltd シングルサインオンシステム及びシングルサインオン方法
US9361509B2 (en) 2011-12-23 2016-06-07 Prosense Technology (Proprietary) Limited Electronic signature authentication method and system
CN102789576B (zh) 2012-06-29 2015-09-09 鸿富锦精密工业(深圳)有限公司 签名特征提取系统及方法
US9898186B2 (en) * 2012-07-13 2018-02-20 Samsung Electronics Co., Ltd. Portable terminal using touch pen and handwriting input method using the same
US9741085B2 (en) * 2013-03-14 2017-08-22 Artificial Intelligence Research Group Limited System and method of encoding content and an image
US9235748B2 (en) 2013-11-14 2016-01-12 Wacom Co., Ltd. Dynamic handwriting verification and handwriting-based user authentication
JP5841297B1 (ja) * 2013-10-25 2016-01-13 株式会社ワコム 手書きデータ出力方法及びコンピュータシステム
US9489048B2 (en) 2013-12-13 2016-11-08 Immersion Corporation Systems and methods for optical transmission of haptic display parameters
JP2015125620A (ja) 2013-12-26 2015-07-06 キヤノン株式会社 情報処理装置、その制御方法、プログラム、及び情報処理システム

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0542557A2 (en) * 1991-11-12 1993-05-19 Texas Instruments Incorporated Systems and methods for handprint recognition acceleration
US6128409A (en) * 1991-11-12 2000-10-03 Texas Instruments Incorporated Systems and methods for handprint recognition acceleration
TW200602976A (en) * 2004-06-18 2006-01-16 Microsoft Corp Handwritten input for asian languages
TW200839623A (en) * 2006-11-22 2008-10-01 Ibm An apparatus and a method for correcting erroneous image identifications generated by an OCR device

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
"Automatic Signature Verification: The State of the Art" by Donato etc. 2008/09/30
"Template Protection for On-Line Signature-Based Recognition Systems" by Emanuele etc. 2008/05/31
"Template Protection for On-Line Signature-Based Recognition Systems" by Emanuele etc. 2008/05/31 "Automatic Signature Verification: The State of the Art" by Donato etc. 2008/09/30 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11783045B2 (en) 2020-06-18 2023-10-10 Micron Technology, Inc. Authenticating software images
TWI823596B (zh) * 2020-06-18 2023-11-21 美商美光科技公司 用於驗證軟體影像之方法、系統及電腦可讀媒體

Also Published As

Publication number Publication date
JP7050725B2 (ja) 2022-04-08
EP3061067A1 (en) 2016-08-31
US10846510B2 (en) 2020-11-24
SG11201601314RA (en) 2016-03-30
CN105556566B (zh) 2019-06-14
JP5841297B1 (ja) 2016-01-13
JP6562461B2 (ja) 2019-08-21
CN105556566A (zh) 2016-05-04
WO2015059930A1 (en) 2015-04-30
SG10201901111UA (en) 2019-03-28
JP2016505907A (ja) 2016-02-25
JP2016076233A (ja) 2016-05-12
EP3061067B1 (en) 2023-11-29
TW201535274A (zh) 2015-09-16
EP3061067A4 (en) 2017-08-02
HK1220031A1 (zh) 2017-04-21
US20200082153A1 (en) 2020-03-12
JP2020009452A (ja) 2020-01-16

Similar Documents

Publication Publication Date Title
TWI667619B (zh) 動態手寫驗證之方法與電腦系統
US10496872B2 (en) Dynamic handwriting verification, handwriting-based user authentication, handwriting data generation, and handwriting data preservation
US9747491B2 (en) Dynamic handwriting verification and handwriting-based user authentication
US10977761B2 (en) Digital watermark embedding method and extraction method, digital watermark embedding apparatus and extraction apparatus, and digital watermark system
RU2634194C1 (ru) Верификация результатов оптического распознавания символов
JP6480710B2 (ja) 手書きデータ検証方法及びユーザ認証方法
US9934422B1 (en) Digitized handwriting sample ingestion systems and methods
CN113343958A (zh) 一种文本识别方法、装置、设备及介质
US10346034B2 (en) Dynamically generating characters with personalized handwriting character font characteristics method and system thereof
US20170277423A1 (en) Information processing method and electronic device
CN111275683A (zh) 图像质量评分处理方法、系统、设备及介质
WO2022156088A1 (zh) 指纹签名生成方法、装置、电子设备及计算机存储介质
CN104637496A (zh) 计算机系统及音频比对方法
KR102178172B1 (ko) 단말, 서비스 제공 장치, 그 제어 방법, 컴퓨터 프로그램이 기록된 기록 매체 및 이미지 검색 시스템
US9654140B1 (en) Multi-dimensional run-length encoding
US9075847B2 (en) Methods, apparatus and system for identifying a document
CN112541378A (zh) 一种图像拾取运动轨迹的生成方法
CN112540687A (zh) 一种运动轨迹生成方法

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees