TWI666195B - 丙烯腈反應器啟動程序 - Google Patents

丙烯腈反應器啟動程序 Download PDF

Info

Publication number
TWI666195B
TWI666195B TW104107601A TW104107601A TWI666195B TW I666195 B TWI666195 B TW I666195B TW 104107601 A TW104107601 A TW 104107601A TW 104107601 A TW104107601 A TW 104107601A TW I666195 B TWI666195 B TW I666195B
Authority
TW
Taiwan
Prior art keywords
reactor
ammonia
propylene
oxygen concentration
vol
Prior art date
Application number
TW104107601A
Other languages
English (en)
Other versions
TW201542503A (zh
Inventor
提摩西R 麥克唐諾
傑R 考奇
大衛R 華格納
保羅T 華奇坦朵爾夫
Original Assignee
瑞士商億諾斯歐洲公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 瑞士商億諾斯歐洲公司 filed Critical 瑞士商億諾斯歐洲公司
Publication of TW201542503A publication Critical patent/TW201542503A/zh
Application granted granted Critical
Publication of TWI666195B publication Critical patent/TWI666195B/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C253/00Preparation of carboxylic acid nitriles
    • C07C253/24Preparation of carboxylic acid nitriles by ammoxidation of hydrocarbons or substituted hydrocarbons
    • C07C253/26Preparation of carboxylic acid nitriles by ammoxidation of hydrocarbons or substituted hydrocarbons containing carbon-to-carbon multiple bonds, e.g. unsaturated aldehydes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00628Controlling the composition of the reactive mixture
    • B01J2208/00646Means for starting up the reaction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00716Means for reactor start-up
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

在丙烯腈反應器的啟動期間形成爆炸混合物通過將氨包括在催化劑預熱期間充入反應器中的氣體中來防止。除生成熱之外,該氨的氧化減小了丙烯腈反應器內以及反應器流出氣體中的氣體的氧含量,從而降低了爆炸混合物將形成在該流出氣體中的風險。

Description

丙烯腈反應器啟動程序
本發明係有關於丙烯腈反應器啟動程序。
發明背景
在丙烯腈的商業製造中,丙烯、氨和氧根據以下反應方案一起反應:CH2=CH-CH3+NH3+3/2 O2→CH2=CH-CN+3 H2O通常被稱為氨氧化的該程序在存在適合的流化床氨氧化催化劑的情況下在升高的溫度下以氣相執行。
圖1示出了用於執行該程序的典型的氨氧化反應器。如這裡所示,反應器10包括反應器外殼12、空氣格柵14、給送噴灑器16、冷卻盤管18和旋風分離器20。在正常操作期間,製程空氣(process air)經由空氣入口22充入反應器10中,同時丙烯和氨的混合物經由給送噴灑器16充入反應器10中。兩者的流速高到足以使反應器內部中的氨氧化催化劑床24流化,在該處發生丙烯和氨催化氨氧化成丙烯腈。
由反應產生的產物氣體經由反應器流出物出口26流出反應器10。在這樣做之前,它們穿過旋風分離器20, 旋風分離器20除去這些氣體可夾帶的任何氨氧化催化劑用於回到催化劑床24。氨氧化是極為發熱的,並且因此冷卻盤管18用於回收餘熱,並且因此將反應溫度保持在適當的水準。
如下文進一步論述的,丙烯腈反應器的啟動中的早期步驟中的一個為將氨氧化催化劑預熱至升高的溫度。出於該目的,啟動加熱器28提供成在該催化劑預熱步驟期間加熱給送至空氣入口22的製程空氣。
丙烯和氨,以及反應器流出氣體的可燃組分(例如,丙烯腈、未反應的丙烯、未反應的氨、氫氰酸、丙烯醛、丙烯酸和乙腈)可與氧形成爆炸混合物。因此,在正常操作期間,以及在啟動期間,必須小心來避免其中可發生爆炸的情形。在正常操作期間,在正常操作溫度下的反應器內,這由於氨氧化反應防止爆炸發生而不是問題。因此,反應器10設計和操作成以便允許製程空氣在正常操作期間接觸丙烯和氨的唯一位置在氨氧化催化劑24的流化床內,並且接著僅在催化劑的溫度高到足以催化氨氧化反應時。
然而,在啟動和關閉期間,氨氧化催化劑的溫度通常並未高到足以防止爆炸。因此,通常採用不同的途徑來防止爆炸,它們所有都首先基於避免形成爆炸混合物的構想。
在該方面,要成為爆炸物,可燃成分和氧的混合物需要含有某一最低濃度的可燃成分,其被稱為該成分的“可燃性下限”濃度。此外,該混合物還必須含有某一最低 氧濃度來支持可燃成分的燃燒,其被稱為混合物的“極限氧濃度”。因此,在所有相關氣體混合物中,用於在啟動期間避免爆炸混合物的早期途徑依靠“燃料限制途徑”或“氧限制途徑”,在該燃料限制途徑中,可燃成分的濃度保持低於其可燃性下限濃度,在該氧限制途徑中,氧的濃度保持低於其極限氧濃度。
例如,在用於啟動丙烯腈反應器的典型氧限制途徑中,加熱的製程空氣用於將催化劑預熱至適合的升高溫度。一旦這發生,則加熱的製程空氣流由加熱的惰性氣流(典型地是蒸汽或氮)替換,直到反應器流出氣體中的氧濃度下降至安全水準,即,低於正常操作期間流出氣體的極限氧濃度的水準。僅在這發生之後,丙烯和氨至反應器的流動才開始。爆炸混合物並未形成在反應器流出氣體中,因為反應器流出氣體中的氧濃度在可燃成分(諸如丙烯腈、HCN、未反應的丙烯和未反應的氨)出現在該流出氣體中之前下降至其極限氧濃度以下。
蒸汽可具有對氨氧化催化劑和反應器內部的不利影響,並且因此蒸汽出於該目的不是優選的。儘管在氮用作惰性氣體的情況下避免了這些問題,但需要大量氮,這在許多情形中可為成本過高的。因此,使用氧限制途徑來用於避免氨氧化反應器啟動期間的爆炸氣體由於這些不合乎需要的特徵而並未經常使用。
在用於啟動氨氧化反應器的典型的燃料限制途徑中,加熱的製程空氣也用於將催化劑預熱至適合的升高 溫度。一旦達到該溫度,則丙烯和氨至反應器的流動開始,但這僅非常慢地完成。由於這些反應物通過氨氧化反應快速被消耗,並且還由於其流速慢,故反應器流出氣體中的可燃成分的濃度總是保持在其可燃性下限濃度以下。所以,該途徑的構想在於,即使反應器中以及反應器流出氣體中的氧濃度相對高,只要在啟動期間丙烯和氨至反應器的流速為慢的,出現在反應器流出氣體中的可燃成分的量將總是小於其可燃性下限濃度。
然而,該燃料限制途徑的問題在於一旦系統達到正常操作狀態,則防止了流出氣體中的爆炸混合物,因為該氣體中的氧濃度太低,並非因為可燃成分的濃度太低。這意味著當使用該途徑時,由於系統從啟動發展至正常操作,故系統在用於避免爆炸混合物的燃料限制途徑與氧限制途徑之間過渡。問題在於,在該過渡期間,在一方面是流出氣體中的可燃成分的濃度,並且在另一方面是該流出氣體中的氧的濃度可在產生爆炸混合物方面相當接近彼此。
在該方面,應當記住的是,氣體混合物中的可燃成分的可燃性下限濃度和該氣體混合物中的對應極限氧濃度相對於彼此相反地改變。即是說,如果氣體混合物的氧濃度增大,則該氣體混合物中的可燃成分的可燃性下限濃度下降,並且反之亦然。此外,氣體混合物中的可燃成分的可燃性範圍(即,其可燃性上限與可燃性下限之差)以及混合物的最大極限氧濃度和最小極限氧濃度之間的差隨升高 的溫度而增大。
因此,當系統在用於避免啟動早期期間的爆炸混合物的燃料限制途徑與啟動後期期間的氧限制途徑之間過渡時,它們可來到流出氣體中的可燃成分和氧的濃度在產生爆炸混合物方面相當接近彼此的時刻。因此,如果使用該途徑,不但需要反應溫度以及丙烯和氨的給送速率的精確控制,而且即便提供了該精確控制也仍存在流出氣體可變為爆炸物的相當高的風險。
使該問題甚至更壞的是氨氧化反應的產物和副產物(例如,丙烯腈、HCN、乙腈、丙烯酸和丙烯醛)也可燃。所以即使流出氣體相對於丙烯或氨可不為爆炸物,其仍可相對於這些產物和副產物為爆炸物。
該燃料限制途徑的又一個問題在於,氨氧化反應的產物和副產物中的一些(例如,丙烯醛)儘管在以足夠低的濃度存在的情況下不是爆炸物,但在反應器流出氣體中遇到的溫度和氧濃度下仍不穩定。該不穩定性可導致出現於流出氣體中的燃燒反應(被稱為“流出物後燃”),這導致不合乎需要的高流出物溫度。
發明概要
根據本發明,新程序提供成用於避免在啟動期間形成爆炸混合物,該新程序執行起來比過去執行的類似程序更容易且廉價。
用於丙烯腈反應器的啟動程序包括將氨氧化催 化劑充入至少一個氨氧化反應器中;將氨氧化催化劑加熱至至少最低氨氧化溫度;以及將氨和可選的丙烯引入反應器中,其中,在反應器流出物中保持大約0到大約0.02的丙烯與氨的莫耳比,直到反應器流出物中的氧濃度低於極限氧濃度。
在另一方面,用於丙烯腈反應器的啟動程序包括將氨氧化催化劑充入至少一個氨氧化反應器中;將氨氧化催化劑加熱至至少最低氨氧化溫度;以及將氨和可選的丙烯以有效用於將催化劑溫度升高至大約415℃至大約425℃的臨時反應溫度的量來引入反應器中,其中,丙烯以有效用於防止非穩定放熱反應的量引入反應器中。
在一方面,一種用於產生丙烯腈的程序包括將氨氧化催化劑充入至少一個氨氧化反應器中;將氨氧化催化劑加熱至至少最低氨氧化溫度;將氨以有效用於在反應器中提供低於極限氧濃度的氧濃度的量引入反應器中;以及將丙烯以有效用於產生丙烯腈的量引入反應器中。該程序可包括保持大約0到大約0.02的丙烯與氨的比直到反應器中的氧濃度低於極限氧濃度。
在另一方面,一種用於啟動包含新填充的鉬酸鉍氨氧化催化劑的丙烯腈反應器的程序,一種用於減少鉬的昇華的方法,該方法包括將丙烯和氨以有效用於在大約1小時至大約400小時的時間段內將催化劑的溫度從大約415℃至大約425℃的臨時反應溫度升高至大約435℃至大約445℃的穩態反應溫度的量來引入反應器。
在另一方面,本發明提供了一種在丙烯腈反應器的啟動期間以一種方式加熱空氣流化氨氧化催化劑以避免形成爆炸氣體混合物的新程序,該程序包括:(a)將空氣流化的氨氧化催化劑預熱至氨活性溫度,該溫度足夠高,以便催化劑將催化氨氧化成氮和水,(b)此後包括氣體中的氨充入反應器中來通過氨的催化氧化生成用於催化劑預熱的附加熱,其中,充入反應器中的氨流足以將反應器流出氣體中的氧濃度減小到低於該流出氣體的極限氧濃度,即,至如此低以致於流出氣體由於氧不足而不再是爆炸物的濃度,以及(c)延遲將丙烯給送至氨氧化催化劑,直到反應器流出氣體中的氧濃度減小到低於其極限氧濃度。
作為優選,氨添加是步驟(b)在氨氧化催化劑的溫度達到大約380℃、大約365℃或甚至大約350℃時開始。此外,還優選的是,一旦該氨添加開始,則充入反應器中的氨量足以在丙烯給送至反應器開始之前將反應器流出氣體中的氧濃度降低至10vol.%以下或甚至8vol.%以下。
此外,步驟(a)中的氨氧化催化劑的預熱優選為使用直接燃燒聯線加熱器而非通常用於該目的的間接燃燒加熱器來執行,因為這進一步顯著地降低了反應器內以及反應器流出氣體中的氧濃度。
除以上氨協助的催化劑加熱程序之外,本發明還提供了一種用於在使用該氨協助的催化劑加熱程序的反應器啟動期間避免給送噴灑器的堵塞或污染的新噴灑器淨化 程序,該噴灑器淨化程序包括在啟動的初始階段期間使用空氣淨化給送噴灑器,並且接著在氨給送至反應器開始之前不久將用於淨化噴灑器的氣體從空氣變至氮。
10‧‧‧反應器
12‧‧‧外殼
14‧‧‧空氣格柵
16‧‧‧噴灑器
18‧‧‧冷卻盤管
20‧‧‧旋風分離器
22‧‧‧空氣入口
24‧‧‧催化劑床/氨氧化催化劑
26‧‧‧流出物出口
28‧‧‧加熱器
圖1示出了用於執行氨氧化程序的典型的氨氧化反應器。
具體實施方式
商業流化床丙烯腈反應器的啟動以氨氧化催化劑處於停留在反應器的空氣格柵14的頂部上的安定(未流化)狀態來開始。在一方面,可使用單個反應器,在另一方面,可使用多於一個反應器,在另一方面,可使用兩個反應器。反應器流出物可在該製程中的隨後的點處組合。
典型的反應器啟動程序的第一步驟涉及給送噴灑器的氮淨化,即,以足以防止流化的氨氧化催化劑進入或堵塞噴灑器的流速經由給送噴灑器充入氮氣。同時或此後不久,加熱的製程空氣以足以引起氨氧化催化劑流化的流速給送至空氣入口22。該加熱步驟繼續,直到氨氧化催化劑的溫度達到或略微超過其最低氨氧化反應溫度,其典型地花費8小時到16小時,這主要取決於反應器的尺寸。一旦達到該溫度,則系統通過終止到來的製程空氣的加熱、以丙烯和氨的混合物替換經由給送噴灑器充入的氮,以及將到來的製程空氣的流速調整至其正常操作值來變為正常操作狀態。為了防止爆炸混合物形成,採用如本公開的背 景部分中描述的附加步驟。
根據本發明,一種燃料限制途徑也用於在啟動期間避免反應器流出氣體中的爆炸氣體混合物的形成。然而,本發明的燃料限制途徑與本文獻的背景部分中描述的燃料限制途徑的不同在於氨至給送噴灑器的流動是一旦氨氧化催化劑的溫度高到足以催化將氨氧化成氮和水(其“氨活性溫度”)之後或之後不久開始的,而非如常規實踐中出現的與丙烯給送同時。因此,在丙烯給送至反應器之前,反應器流出氣體中的氧濃度可降低至低到以致於該氣體由於氧濃度不足而不再是爆炸物的水準。
在給定的氧濃度下,氨的可燃性下限濃度顯著高於丙烯的可燃性下限濃度。換言之,對於給定的氧濃度,氣體混合物可在變為爆炸物之前忍受大於丙烯的氨量。因此,根據本發明,將氨給送到反應器中在比其它情況下的啟動的更早階段開始,並且此外,在丙烯給送開始之前。儘管流出氣體中的氧濃度在啟動的這些較早階段高於隨後階段,但這不是重要的問題,因為流出氣體可在變為爆炸物之前忍受大於丙烯的氨濃度。
因此,該氨的較早引入用於引起流出氣體的氧濃度在將丙烯給送至反應器開始之前下降至安全水準(即,在正常操作期間低於其極限氧濃度)。正常操作期間由流出氣體經歷的升高溫度(例如,~440℃)下空氣中的丙烯的混合物的極限氧濃度不是準確已知的,而是估計在~8vol.%到~10vol.%之間。因此,根據本發明,在丙烯給送到反應器 開始之前,早期引入氨繼續,直到流出氣體的氧濃度下降至大約10vol%或更小,在另一方面,大約9vol%或更小,在另一方面,大約8vol%或更小,在另一方面,大約7vol%或更小,並且在另一方面,大約6vol%或更小。
該途徑的實際效果在於基本上完全消除了系統從啟動期間的燃料限制方式過渡至正常操作期間的氧限制方式時爆炸混合物將形成在反應器流出氣體中的風險。這是因為8vol.%或更小的目標氧濃度低於流出氣體將經歷的升高溫度下的丙烯/氧氣混合物的極限氧濃度,而大約6vol.%至7vol.%的優選的目標氧濃度遠低於該極限氧濃度。因此,通過延遲丙烯引入直到系統的氧含量這樣低,丙烯爆炸由於存在的氧不足就不可發生,而不管流出氣體最終可包含的丙烯量。在另一方面,可在沒有任何延遲的情況下引入少量丙烯。在該方面,大約0到大約0.02的丙烯與氨的比被保持,直到反應器中的氧濃度低於極限氧濃度。在另一方面,保持大約0.001至大約0.02的丙烯與氨的比,在另一方面是大約0.005至大約0.02,在另一方面是大約0.01至大約0.02,並且在另一方面是大約0.015至大約0.02。
在本發明的優選實施例中,直接燃燒聯線加熱器用於加熱給送至反應器的製程空氣用於預熱催化劑。在該背景下,“直接燃燒聯線加熱器”意味著構造成使得由爐具生成的燃燒氣體包括在給送至反應器10的由爐具產生的加熱製程空氣中的燃燒爐具。直接燃燒聯線加熱器與啟動期 間通常用於加熱製程空氣的間接燃燒加熱器的不同在於間接燃燒加熱器將其燃燒產物排出而廢棄,而非使它們與它們產生的加熱的製程空氣組合。
當間接燃燒加熱器加熱用於催化劑預熱的製程空氣時,該製程空氣和因此反應器內的空氣以及反應器流出氣體具有與正常空氣相同的氧濃度,即,~21vol.%。相反,由直接燃燒聯線加熱器產生的加熱製程空氣僅含有~18vol.%的氧。因此,當直接燃燒聯線加熱器加熱用於催化劑預熱的製程空氣時,在啟動開始時在反應器內和在反應器流出氣體中的空氣具有僅~18vol.%的氧濃度。這繼而意味著當系統在啟動的早期階段的燃料限制途徑與啟動的後期階段期間的氧限制途徑之間過渡時,如果直接燃燒聯線加熱器用於替代間接燃燒加熱器,則該過渡以少了~3vol.%的氧開始。由於正常操作期間反應器流出氣體的極限氧濃度高於8vol.%,故在開始的氧濃度從~21vol.%到~18vol.%這樣的~3vol.%的減小代表在該過渡期間氧濃度必須減少23%(3/(21-8))的量來避免爆炸混合物形成在流出氣體中。
這樣減小的實際效果不僅在於流出氣體的極限氧濃度比其它情況下更快達到,而且流出氣體中的可燃成分的濃度並未如其它情況下那樣達到接近其可燃性下限濃度。因此,在該臨界過渡時段期間的反應溫度以及丙烯和氨的給送速率不需要如之前確保避免流出氣體中的爆炸風險所需那樣精確地控制。
根據本發明的另一個特徵,空氣代替常規地用於該目的的氮氣來用於在啟動的初始階段期間淨化給送噴灑器16。接著,在氨給送至反應器開始之前不久,用於淨化噴灑器的氣體從空氣變成氮。在該背景下,“之前不久”將理解為表示在開始氨給送之前的30分鐘內。還構想出噴灑器給送從空氣變至氮發生在用於淨化噴灑器的氣體從空氣變至氮之前的20分鐘內、之前的10分鐘內或甚至之前的5分鐘內。該途徑優於氮用於整個噴灑器淨化程序的常規實踐的優點在於節約了顯著量的氮。
下文描述了使用本發明的原理的詳細氨氧化反應器啟動程序的實例:
預啟動
在啟動開始之前,所有下游的和輔助的設備(例如,淬火部、吸收體、回收塔、汽化器、蒸汽系統、公用設施等)以及所有必需的反應器儀器(例如,反應器溫度感測器、給送流感測器和用於反應器流出物的氧分析器)準備好運行。此外,流化床氨氧化催化劑充入反應器中,並且處於安定(未流化)狀態,停留在空氣格柵14上。製程空氣給送壓縮機接著啟動,並且設置成排至大氣。
噴灑器淨化
氮氣流或空氣流(如果期望)被引入噴灑器16中來阻止流化的催化劑堵塞或以其它方式污染噴灑器。
形成至反應器的空氣流
接著,反應器10中的氨氧化催化劑24通過開始緩慢地 開啟反應器空氣流控制器(未示出)來流化,並且接著增大經由啟動加熱器28、反應器10和相關聯的下游設備(未示出)的製程空氣流。通常,製程空氣的流速將增大,直到其達到正常操作狀態。在該上下文中,“正常操作狀態”意思是在啟動完成並且氨氧化反應進行至正常穩態狀態之後反應器10中經歷的狀態。
觸動啟動加熱器
在製程空氣流已經形成至反應器10之後,啟動加熱器28啟動並且操作,以便流出加熱器的製程空氣的溫度高於氨氧化催化劑的最低氨氧化溫度。實際上,流出空氣啟動加熱器28的溫度將操作成實現可能的最高製程空氣溫度,典型地大約480℃至500℃,因為這使得催化劑能夠盡可能快地預熱,這典型地取決於反應器尺寸而花費大約8小時至12小時。
儘管啟動加熱器28可為間接燃燒加熱器,但出於上述原因聯線的直接燃燒類型的加熱器合乎需要地用於該目的,即,由於此類加熱器將啟動開始時的反應器流出氣體中的氧濃度減小到~18vol.%,與如果使用間接燃燒加熱器將實現的通常的~21vol.%相對比。
預熱催化劑
進入反應器10中的加熱的製程空氣流繼續,至少直到氨氧化催化劑的溫度達到其最低氨氧化溫度,即,氨氧化催化劑能夠催化氨氧化成氮和水所處的最低溫度,其典型地為大約180℃至200℃。然而,典型地,加熱製程空氣將 用於將氨氧化催化劑預熱至較高的溫度,例如,至至少350℃、至少375℃或甚至至少390℃,因為這減小了下文所述的後續氨燃燒步驟中所需的氨量,這更為經濟。
用於初始氨引入的準備
在氨引入反應器中之前不久,如果期望,則製程空氣的流速可略微減小,因為這減少了在該步驟和隨後的氨引入步驟中所需的氨量。構想出了發生在氨首次引入反應器中之前30分鐘內、之前20分鐘內或甚至之前10分鐘內的流速減小,這是實現正常操作狀態期間製程空氣流速的30%至95%、40%至85%或甚至50%至75%的製程空氣流速的減小。
除該可選的製程空氣流速的減小之外,如果空氣用作如上文結合本發明的一個實施例描述的用於防止噴灑器16的污染的淨化氣體,則穿過噴灑器16的該空氣流需要停止,並且在氨引入開始之前由氮替換來作為淨化氣體。如果減小空氣流速,則其在初始和繼續氨給送引入期間保持在其減小的流速下,同時反應器流出氣體氧濃度減小。當丙烯進料首先被引入並且接著以逐步的方式增大時,空氣流速和氨流速也以逐步的方式增大,直到丙烯、空氣和氨的給送速率達到其正常的最終值。
初始氨引入
一旦所有空氣從噴灑器16清除,則氨經由給送噴灑器16進入反應器10中的流動開始並且增大至適合水準,優選為逐步地,以便於反應器的溫度控制。如上文所述,這引 起反應器10中的氨氧化催化劑24將該氨進料催化地氧化成氮氣和水。該氧化反應的一個結果在於反應器10中的氧量和因此離開反應器的反應器流出氣體顯著地減少。該氧化反應的另一個結果在於生成了顯著量的熱,這有助於催化劑預熱,從而減少了該目的所需的丙烯量。冷卻盤管18可投入使用來按需要控制反應器10內的氨氧化催化劑的溫度。儘管可允許反應器內的溫度略微上升,但合乎需要的是保持在正常操作期間遇到的反應器溫度下或附近,該溫度典型地為大約350℃至480℃。
在該初始氨引入的特定實例中,氨進料的流速可首先設置在低水準,例如,在給予13到15的空氣與氨的莫耳給送比的值下。在該初始低氨給送速率下,反應器流出氣體中的氨濃度將為大約6%至7%,這遠低於其在空氣中的可燃性下限濃度。一旦氨氧化開始,如將從反應器流出氣體中的氧濃度清楚的,氨給送速率可進一步增大。
如果期望,則借助於啟動加熱器28來加熱到來的製程空氣可在將氨給送至反應器開始時或之後不久停止。然而,如下文進一步所述,更合乎需要的是保持啟動加熱器操作,直到引入反應器中的丙烯達到其最終期望速率,因為這可顯著地降低催化劑預熱所需的氨的成本。
繼續氨進料引入
氨經由噴灑器16進入反應器10中的流速可突然增大或連續地增大。合乎需要地,如上文所述,為了更好的反應器溫度控制,氨流速逐步增大。氨進料的流速關於到來的 製程空氣的流速增大,直到反應器流出氣體中的氧濃度下降到8vol.%的目標值以下,其低於該流出氣體中的丙烯的極限氧濃度。作為優選,氨進料的流速增大,直到反應器流出氣體中的氧濃度下降至~6vol.%至~7vol.%。實際上,~7vol.%的反應器流出氣體中的氧濃度對應於大約5的空氣與氨的體積給送比。
丙烯進料引入
當反應器流出氣體中的氧的濃度降低至小於8vol.%的期望值,優選為~6vol.%至~7vol.%時,丙烯經由噴灑器16進入反應器10中的流動開始。此後,丙烯流速以逐步方式合乎需要地增大來實現精確的反應器溫度控制,直到實現最終的期望丙烯流速。此時,如果之前未完成,則啟動加熱器28可停止。
在一方面,用於丙烯腈反應器的啟動程序包括將氨氧化催化劑充入至少一個氨氧化反應器中。該程序包括將氨氧化催化劑加熱至至少最低氨氧化溫度。在該方面中,當氨氧化催化劑達到大約350℃或更高的(在另一方面,大約350℃至大約480℃,在另一方面,大約375℃至大約450℃,並且在另一方面,大於400℃至大約425℃)最低氨氧化溫度時,氨和可選的丙烯被引入反應器中。在另一方面,在反應器流出物中保持大約0至大約0.02的丙烯與氨的莫耳比,直到反應器流出物中的氧濃度低於極限氧濃度,在另一方面,保持大約0至大約0.01的比率,並且在另一方面,保持大約0.01至大約0.02的比率。
在另一方面,該程序包括在反應器流出物中保持大約0的丙烯與氨的莫耳比,直到反應器流出物中的氧濃度低於極限氧濃度。在另一方面,反應器流出物中的極限氧濃度可為大約10vol%或更小,在另一方面,大約9vol%或更小,在另一方面,大約8vol%或更小,在另一方面,大約7vol%或更小。在另一方面,當反應器流出物中的氧濃度為大約12vol%或更大時,反應器流出物中的丙烯與氨的比為大約0。在相關的方面,當反應器流出物中的氧濃度為大約7vol%或更小時,反應器流出物中的丙烯與氨的比為大約0.02。在一些方面中,反應器流出物中的氧濃度可保持在至少大約0.5vol%或更大的濃度下,在另一方面,大約0.5vol%至大約7vol%,在另一方面,大約0.5vol%至大約1.5vol%,並且在另一方面,大約0.5vol%至大約2vol%。反應器流出物中的氧濃度可通過任何已知的方法測量,諸如,例如通過連續聯線測氧計。
具有多個反應器的丙烯腈工廠
在典型的商業丙烯腈工廠中,離開反應器10的熱反應器流出氣體首先進入淬火塔中,在該處,它們與酸化水一起被噴灑。這不但將流出氣體的溫度降低至安全且可管理的水準,而且中和了仍可存在的任何未反應的氨。現在清除其未反應的氨的冷卻的反應器流出氣體接著轉移至吸收塔,其中,它們與附加量的水接觸,這通過處於水相的水溶性組分的吸收來使氣體的水溶性組分(例如,丙烯腈、HCN和乙腈)與非水溶性組分(例如,N2、CO2、CO、丙烷、 丙烯)分離。接著,該吸收塔的液體塔底沉積物給送至回收塔,在該處,粗丙烯腈和HCN通過蒸餾來與乙腈分離。
大型商業丙烯腈工廠包括多於一個(兩個、三個或甚至更多)單獨的氨氧化反應器並非是不常見的,並且反應器共用一個或更多個公共的“後端”來回收和淨化丙烯腈、HCN和乙腈反應產物。在這些工廠中的一些中,各個氨氧化反應器將具有其自身的專用淬火塔,其中,離開這些塔的冷卻的反應器流出氣體轉移至單個公共的吸收塔。在這些工廠中的其它中,離開氨氧化反應器的熱反應器流出氣體轉移至公共淬火塔。
如上文所述,本發明的改進的反應器啟動程序也可通過單獨地啟動串接的獨立反應器來用於此類型的商業丙烯腈工廠中,附帶條件在於來自於第二反應器和後續反應器的流出氣體不給送到公共後端設備(即,公共吸收塔或公共淬火塔,視情況而定)中,直到其氧濃度下降至8%或更小,優選為7%或更小。相反,來自於第二反應器和隨後的反應器的流出氣體排出,焚化或以其它方式排放來廢棄,直到它們的氧濃度減小到這些水準的此類時間。在備選方案中,第二反應器和隨後的反應器可利用加至第二反應器進料和後續反應器進料作為以此類量的稀釋劑的氮氣(N2)啟動,以便將來自第二反應器和後續反應器的流出物中的氧濃度保持在8%或更小,優選為7%或更小。
在一方面,用於丙烯腈反應器的啟動程序包括將氨氧化催化劑充入至少一個氨氧化反應電抗器中,並且將 氨氧化催化劑至少加熱至如本文所述的最低氨氧化溫度。該程序還包括將氨和可選的丙烯以有效用於將催化劑溫度增大至大約415℃至大約425℃的臨時反應溫度的量引入反應器中,其中,丙烯以有效用於防止非穩定放熱反應的量引入反應器中。在該方面,大約415℃至大約425℃的臨時反應溫度在丙烯引入反應器中之後的大約5小時或更短內達到。非穩定放熱反應是指其中溫度不可在期望的時間量內保持在大約415℃至大約425℃的範圍內並且不可控地超過該範圍的反應。
在另一方面,該程序還可包括將丙烯以有效用於將臨時催化劑溫度增大至大約435℃至大約445℃的穩態反應溫度的量引入反應器中。在該方面,大約435℃的溫度在將丙烯引入反應器之後的大約200小時或更久達到,在另一方面,大約440℃的溫度在將丙烯引入反應器之後大約250小時或更久達到,並且在另一方面,大約435℃至大約445℃的溫度在將丙烯引入反應器之後大約1小時至大約3小時達到。
利用新鮮催化劑啟動
典型的商業氨氧化反應器利用保持在大約435℃至445℃(例如,440℃)的溫度下的氨氧化催化劑操作。因此,當啟動的丙烯腈反應器含有平衡的催化劑時,即,已經使用足夠久以便其成分在一定時間內保持基本上恒定的氨氧化催化劑,反應器溫度被帶至該水準(大約435℃至445℃)而沒有延遲。即是說,一旦氨氧化反應開始,則丙烯和氨至氨 氧化催化劑的給送迅速增大至實現這些溫度下的穩態操作所需的水準,這典型地花費1小時至3小時。
然而,新鮮的或新的鉬酸鉍氨氧化催化劑(即,為未平衡催化劑的催化劑)在啟動時(即,暴露於反應器操作溫度)已知的是經歷化學變化,其中,它們的鉬含量的一部分由於昇華而失去。儘管該現象不以任何顯著程度不利地影響催化劑的操作,但從催化劑昇華的金屬鉬通常冷凝在氨氧化反應器的冷卻盤管上,這可導致多種操作問題和設備問題。
根據本發明的另一個特徵,用於啟動含有新的一批鉬酸鉍類型的氨氧化催化劑的商業氨氧化反應器的正常程序通過將達到大約435℃至大約445℃的最終穩態氨氧化催化劑反應溫度延遲大約兩星期左右來修改。根據該途徑,丙烯和氨至氨氧化催化劑的流速首先以常規方式增大用於實現反應溫度的迅速增大。然而,在該情況下,當氨氧化催化劑達到大約415℃至425℃(例如,420℃)的臨時反應溫度時,反應溫度的該迅速增大中斷。此時,丙烯和氨的流速改變,以便氨氧化催化劑的溫度僅非常逐漸地在大約兩星期左右的時間段內(即,在大約275小時至400小時的時間段內,更常見的是大約325小時至350小時)增大至大約435℃至445℃(例如,440℃)的其最終穩態值。已經發現該途徑顯著地減小了鉬從催化劑釋放的速率,並且因此減小了金屬鉬冷凝在反應器冷卻盤管上的速率。
在另一方面,大約415℃至大約425℃之間的臨時 反應溫度在丙烯引入反應器的大約5小時內達到。在另一方面,大約435℃至大約445℃之間的反應溫度在丙烯引入反應器的大約一小時至大約3小時內達到。在另一方面,當達到臨時反應溫度時,丙烯給送速率逐漸增大,使得大約435℃或更大的反應溫度在丙烯引入反應器之後大約200小時或更久達到。在另一方面,大約440℃或更大的溫度在丙烯引入反應器之後大約250小時或更久達到。
在另一個相關方面,空氣與丙烯的莫耳比在丙烯引入反應器之後保持在穩態空氣與丙烯莫耳比之上大約3小時至大約96小時,在另一方面,大約10小時至大約90小時,在另一方面,大約30小時至大約70小時,在另一方面,並且大約40小時至大約60小時。在另一方面,空氣與丙烯的莫耳比在高於大約0.02的丙烯與氨的莫耳比下將丙烯引入反應器之後保持在穩態空氣與丙烯莫耳比之上大約3小時至大約96小時,在另一方面,大約10小時至大約90小時,在另一方面,大約30小時至大約70小時,在另一方面,並且大約40小時至大約60小時。
在另一方面,反應器流出物中的氨穿透在大約0.02的丙烯與氨的莫耳比之上將丙烯引入反應器之後保持在穩態氨穿透範圍內。在該方面,穩態氨穿透範圍為氨進料的大約6mol%至大約9mol%。在另一方面,在大約0.02的丙烯與氨的莫耳比之上將丙烯引入反應器之後,氨與丙烯的莫耳比保持在大於穩態氨與丙烯的莫耳比大約0.05至大約0.15之間達大約3小時至大約96小時。在另一個相關方 面,反應器氨穿透基於保持淬火系統中的恒定pH所需的硫酸給送速率來保持。
在另一方面,反應器流出物在大約0.02的丙烯與氨的莫耳比之上將丙烯引入反應器之後保持在穩態過量氧濃度範圍內,其中,穩態過量氧濃度範圍為大約0.05mol%至大約1.5mol%。
在另一方面,空氣與丙烯的莫耳比保持在大於穩態空氣與丙烯的莫耳比大約0.5至大約1.5之間,直到在大約0.02的丙烯與氨的莫耳比之上將丙烯引入反應器之後的大約3小時至大約96小時。反應器過量氧濃度可基於反應器流出物的通過連續聯線測氧計的測量來保持。
在另一方面,某些類型的催化劑可需要一定的氧水準來防止減小。在該方面,氧濃度可在反應器流出物中保持在大約0.5vol%至大約7vol%之間,在另一方面,大約0.5vol%至大約6vol%,在另一方面,大約0.5vol%至大約5vol%,在另一方面,大約0.5vol%至大約4vol%,在另一方面,大約0.5vol%至大約3vol%,在另一方面,大約0.5vol%至大約2vol%,並且在另一方面,大約0.5vol%至大約1.5vol%。
如可從前述描述中看到的,本發明的改進的氨氧化反應器啟動程序提供了反應器啟動的新途徑,其不但通過更好避免爆炸性氣體混合物(尤其是在反應器流出氣體中)來實現了較安全的操作,而且操作非常簡單和廉價。
儘管上文已經描述了本發明的僅一些特定實施 例,但應當顯而易見的是,可在不脫離本發明的精神和範圍的情況下作出許多改型。所有此類改型旨在包含在僅由以下申請專利範圍限制的本發明的範圍內。

Claims (28)

  1. 一種用於丙烯腈反應器的啟動程序,包括:將氨氧化催化劑充入至少一個氨氧化反應器中;將所述氨氧化催化劑加熱至至少最低氨氧化溫度;以及將氨和可選的丙烯引入所述反應器中,其中,在反應器流出物中保持0至0.02的丙烯與氨的莫耳比,直到所述反應器流出物中的氧濃度為10vol%或更小。
  2. 如請求項1之程序,其中,在所述反應器流出物中保持0的丙烯與氨的莫耳比,直到所述反應器流出物中的氧濃度為10vol%或更小。
  3. 如請求項1之程序,其中,所述反應器流出物中的所述氧濃度為9vol%或更小。
  4. 如請求項3之程序,其中,所述反應器流出物中的所述氧濃度為8vol%或更小。
  5. 如請求項4之程序,其中,所述反應器流出物中的所述氧濃度為7vol%或更小。
  6. 如請求項1之程序,其中,當所述反應器中的氧濃度為12vol%或更大時,所述反應器流出物中的丙烯與氨的比為0。
  7. 如請求項1之程序,其中,當所述反應器中的氧濃度為7vol%或更小時,所述反應器流出物中的丙烯與氨的比為0.02或更大。
  8. 如請求項1之程序,其中,反應器流出物中的所述氧為0.5vol%至7vol%。
  9. 如請求項1之程序,其中,當所述氨氧化催化劑具有350℃或更大的溫度時,氨引入所述反應器中。
  10. 如請求項1之程序,其中,所述反應器流出物中的氧濃度由連續聯線測氧計測量。
  11. 一種用於丙烯腈反應器的啟動程序,包括:將氨氧化催化劑充入至少一個氨氧化反應器中;將所述氨氧化催化劑加熱至至少最低氨氧化溫度;以及將氨和可選的丙烯以有效用於將催化劑溫度增大至415℃至425℃的臨時反應溫度的量引入所述反應器中,其中,丙烯以有效用於防止非穩定放熱反應的量引入所述反應器中;且其中,在所述反應器流出物中保持0至0.02的丙烯與氨的莫耳比。
  12. 如請求項11之程序,其中,當所述氨氧化催化劑具有350℃或更高的溫度時,引入氨。
  13. 如請求項11之程序,其中,在將丙烯引入所述反應器之後5小時或更短達到415℃至425℃的所述臨時反應溫度。
  14. 如請求項11之程序,其中,還包括將丙烯以有效用於將所述臨時催化劑溫度增大至435℃至445℃的穩態反應溫度的量引入所述反應器中。
  15. 如請求項14之程序,其中,在將丙烯引入所述反應器之後200小時或更久達到435℃的溫度。
  16. 如請求項14之程序,其中,在將丙烯引入所述反應器之後250小時或更久達到440℃的溫度。
  17. 如請求項14之程序,其中,在將丙烯引入所述反應器之後1小時至3小時達到435℃至445℃的溫度。
  18. 一種用於產生丙烯腈的程序,所述程序包括:將氨氧化催化劑充入至少一個氨氧化反應器中;將所述氨氧化催化劑加熱至至少最低氨氧化溫度;將氨和丙烯以有效用於在所述反應器流出物中提供10vol%或更小的氧濃度的量引入所述反應器中;以及將丙烯以有效用於產生丙烯腈的量引入所述反應器中;其中,在所述反應器流出物中保持0至0.02的丙烯與氨的莫耳比,直到所述反應器中的氧濃度為10vol%或更小。
  19. 如請求項18之程序,其中,當所述氨氧化催化劑具有350℃或更高的溫度時,引入氨。
  20. 如請求項19之程序,其中,在所述反應器流出物中保持0的丙烯與氨的莫耳比,直到所述反應器流出物中的氧濃度為10vol%或更小。
  21. 如請求項20之程序,其中,所述反應器流出物中的氧濃度為9vol%或更小。
  22. 如請求項21之程序,其中,所述反應器流出物中的氧濃度為8vol%或更小。
  23. 如請求項22之程序,其中,所述反應器流出物中的氧濃度為7vol%或更小。
  24. 如請求項18之程序,其中,將所述氨氧化催化劑加熱至最低氨氧化溫度使用直接燃燒聯線加熱器來執行。
  25. 如請求項18之程序,其中,所述反應器包括用於接收所述氨氧化反應的丙烯和氨反應物的給送噴灑器,並且進一步其中,在反應器啟動期間由流化的氨氧化催化劑堵塞所述給送噴灑器通過噴灑器淨化程序防止,所述噴灑器淨化程序包括在啟動的所述初始階段期間使用空氣來淨化所述給送噴灑器,並且接著在氨給送至所述反應器開始之前將用於淨化所述噴灑器的氣體從空氣變為氮。
  26. 如請求項18之程序,其中,所述丙烯腈反應器為丙烯腈工廠的一部分,所述丙烯腈工廠包含第一丙烯腈反應器和第二丙烯腈反應器,以及用於從由所述第一丙烯腈反應器和所述第二丙烯腈反應器產生的所述反應器流出氣體回收丙烯腈的回收和淨化區段,其中,所述第一丙烯腈反應器和所述第二丙烯腈反應器兩者在請求項1之程序之後啟動,並且進一步其中,由所述第二丙烯腈反應器產生的所述反應器流出氣體未給送至所述丙烯腈工廠的回收和淨化區段,直到其氧濃度減小至8vol%或更小。
  27. 如請求項26之程序,其中,由所述第一丙烯腈反應器產生的所述反應器流出氣體給送至所述回收和淨化區段,其中,由所述第二丙烯腈反應器產生的所述反應器流出氣體具有大於6vol%的氧濃度。
  28. 如請求項27之程序,其中,由所述第一丙烯腈反應器產生的所述反應器流出氣體給送至所述回收和淨化區段,其中,由所述第二丙烯腈反應器產生的所述反應器流出氣體具有大於8vol%的氧濃度。
TW104107601A 2014-03-11 2015-03-10 丙烯腈反應器啟動程序 TWI666195B (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
??PCT/US14/23348 2014-03-11
PCT/US2014/023348 WO2015137926A1 (en) 2014-03-11 2014-03-11 Acrylonitrile reactor startup procedure
CN201410124819.9A CN104907013B (zh) 2014-03-11 2014-03-31 丙烯腈反应器启动过程
??201410124819.9 2014-03-31

Publications (2)

Publication Number Publication Date
TW201542503A TW201542503A (zh) 2015-11-16
TWI666195B true TWI666195B (zh) 2019-07-21

Family

ID=50391505

Family Applications (1)

Application Number Title Priority Date Filing Date
TW104107601A TWI666195B (zh) 2014-03-11 2015-03-10 丙烯腈反應器啟動程序

Country Status (5)

Country Link
CN (1) CN104907013B (zh)
EA (1) EA032235B1 (zh)
SA (1) SA516371821B1 (zh)
TW (1) TWI666195B (zh)
WO (1) WO2015137926A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109225076B (zh) 2017-07-10 2021-02-09 中国石油化工股份有限公司 氨氧化反应器开车程序
TWI801419B (zh) * 2018-09-19 2023-05-11 大陸商中國石油化工科技開發有限公司 氨氧化反應的起動方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4228098A (en) * 1977-12-31 1980-10-14 Asahi Kasei Kogyo Kabushiki Kaisha Process for the preparation of acrylonitrile
CN1080284A (zh) * 1990-03-19 1994-01-05 标准石油公司 改进了的氨氧化丙烯制丙烯腈的方法和催化剂
CN1188105A (zh) * 1996-11-06 1998-07-22 日东化学工业株式会社 生产丙烯腈的方法
JP2002265431A (ja) * 2001-03-06 2002-09-18 Daiyanitorikkusu Kk アンモ酸化反応の停止方法
CN1379758A (zh) * 1999-10-18 2002-11-13 三菱丽阳株式会社 生产丙烯腈的方法、其中所用的催化剂及其制备方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4843096B1 (zh) * 1970-01-31 1973-12-17
JPH0662526B2 (ja) * 1986-02-05 1994-08-17 三井東圧化学株式会社 アクリルアミド反応器の休止方法
US5262547A (en) * 1990-10-31 1993-11-16 The Boc Group, Inc. Process for the production of petrochemicals

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4228098A (en) * 1977-12-31 1980-10-14 Asahi Kasei Kogyo Kabushiki Kaisha Process for the preparation of acrylonitrile
CN1080284A (zh) * 1990-03-19 1994-01-05 标准石油公司 改进了的氨氧化丙烯制丙烯腈的方法和催化剂
CN1188105A (zh) * 1996-11-06 1998-07-22 日东化学工业株式会社 生产丙烯腈的方法
CN1379758A (zh) * 1999-10-18 2002-11-13 三菱丽阳株式会社 生产丙烯腈的方法、其中所用的催化剂及其制备方法
JP2002265431A (ja) * 2001-03-06 2002-09-18 Daiyanitorikkusu Kk アンモ酸化反応の停止方法

Also Published As

Publication number Publication date
EA032235B1 (ru) 2019-04-30
CN104907013A (zh) 2015-09-16
SA516371821B1 (ar) 2021-02-24
CN104907013B (zh) 2017-04-12
EA201691823A1 (ru) 2016-12-30
TW201542503A (zh) 2015-11-16
WO2015137926A1 (en) 2015-09-17

Similar Documents

Publication Publication Date Title
JP4885947B2 (ja) グリセロールからのアクリル酸の製造方法
KR101631713B1 (ko) 니트로벤젠의 연속적인 제조 방법
CN110225900B (zh) 生产烯烃的方法和设备
TWI666195B (zh) 丙烯腈反應器啟動程序
KR20170023847A (ko) 암모산화 반응기로의 암모니아 및/또는 공기 공급의 제어
KR102415176B1 (ko) 암모산화 반응기 제어
RU2420451C2 (ru) Пассивация металла
TWI653217B (zh) 丙烯腈反應器啟動程序
WO2012090691A1 (ja) アクリロニトリルの精製方法
US20060199127A1 (en) Heating hydrocarbon process flow using flameless oxidation burners
EP3315187A1 (en) Denitration device and denitration method
US9138680B2 (en) Method for removing nitrogen oxides
SA98190278B1 (ar) عملية وجهاز لتصنيع الميلامين
US1488730A (en) Process for the manufacture of nitrobenzoic acids
RU2732137C2 (ru) Управление установкой для сжигания газообразных отходов
JP2017031114A (ja) ペンタメチレンジイソシアネートの製造方法およびペンタメチレンジイソシアネートの製造装置
CA2357282A1 (en) Process for the selective oxidation of hydrogen sulphide to elemental sulphur
JP4907652B2 (ja) 蒸発によりシクロドデカトリエンを回収する方法
JPH0219370A (ja) 無水マレイン酸の製造法
RU2650153C2 (ru) Способ и система удаления аммиака из потока отходящего газа установки получения мочевины
JP4791203B2 (ja) 酸化物触媒の製造方法
CN106745066A (zh) 制取、提纯氰化氢的安全工艺及系统
CN109225076B (zh) 氨氧化反应器开车程序
JP2010248068A (ja) オンライン分析及び制御用の装置を含む、ガス状流出物の脱硫法
RU2675014C1 (ru) Способ интерактивной сушки теплоизолированной печи каталитического окисления природного газа