TWI652046B - 通用超音波裝置及相關設備和方法 - Google Patents

通用超音波裝置及相關設備和方法 Download PDF

Info

Publication number
TWI652046B
TWI652046B TW106120361A TW106120361A TWI652046B TW I652046 B TWI652046 B TW I652046B TW 106120361 A TW106120361 A TW 106120361A TW 106120361 A TW106120361 A TW 106120361A TW I652046 B TWI652046 B TW I652046B
Authority
TW
Taiwan
Prior art keywords
ultrasonic
mode
value
frequency
transducer
Prior art date
Application number
TW106120361A
Other languages
English (en)
Other versions
TW201801679A (zh
Inventor
強納森M 羅斯貝格
蘇珊A 阿里
尼瓦達J 桑雪茲
泰勒S 拉司頓
克里斯托弗 湯瑪斯 麥克納爾帝
傑米 史考特 拉赫利恩
保羅 弗朗西斯 克里斯特門
瓊吉 馬修 迪
凱斯G 法菲
Original Assignee
美商蝴蝶網路公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 美商蝴蝶網路公司 filed Critical 美商蝴蝶網路公司
Publication of TW201801679A publication Critical patent/TW201801679A/zh
Application granted granted Critical
Publication of TWI652046B publication Critical patent/TWI652046B/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/13Tomography
    • A61B8/14Echo-tomography
    • A61B8/145Echo-tomography characterised by scanning multiple planes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/12Diagnosis using ultrasonic, sonic or infrasonic waves in body cavities or body tracts, e.g. by using catheters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/42Details of probe positioning or probe attachment to the patient
    • A61B8/4209Details of probe positioning or probe attachment to the patient by using holders, e.g. positioning frames
    • A61B8/4236Details of probe positioning or probe attachment to the patient by using holders, e.g. positioning frames characterised by adhesive patches
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/44Constructional features of the ultrasonic, sonic or infrasonic diagnostic device
    • A61B8/4483Constructional features of the ultrasonic, sonic or infrasonic diagnostic device characterised by features of the ultrasound transducer
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/44Constructional features of the ultrasonic, sonic or infrasonic diagnostic device
    • A61B8/4483Constructional features of the ultrasonic, sonic or infrasonic diagnostic device characterised by features of the ultrasound transducer
    • A61B8/4494Constructional features of the ultrasonic, sonic or infrasonic diagnostic device characterised by features of the ultrasound transducer characterised by the arrangement of the transducer elements
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/46Ultrasonic, sonic or infrasonic diagnostic devices with special arrangements for interfacing with the operator or the patient
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/46Ultrasonic, sonic or infrasonic diagnostic devices with special arrangements for interfacing with the operator or the patient
    • A61B8/461Displaying means of special interest
    • A61B8/465Displaying means of special interest adapted to display user selection data, e.g. icons or menus
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/54Control of the diagnostic device
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/58Testing, adjusting or calibrating the diagnostic device
    • A61B8/585Automatic set-up of the device
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N7/00Ultrasound therapy
    • A61N7/02Localised ultrasound hyperthermia
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B1/00Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
    • B06B1/02Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy
    • B06B1/0292Electrostatic transducers, e.g. electret-type
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/88Sonar systems specially adapted for specific applications
    • G01S15/89Sonar systems specially adapted for specific applications for mapping or imaging
    • G01S15/8906Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques
    • G01S15/8909Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques using a static transducer configuration
    • G01S15/8915Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques using a static transducer configuration using a transducer array
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/88Sonar systems specially adapted for specific applications
    • G01S15/89Sonar systems specially adapted for specific applications for mapping or imaging
    • G01S15/8906Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques
    • G01S15/8909Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques using a static transducer configuration
    • G01S15/8915Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques using a static transducer configuration using a transducer array
    • G01S15/8927Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques using a static transducer configuration using a transducer array using simultaneously or sequentially two or more subarrays or subapertures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/88Sonar systems specially adapted for specific applications
    • G01S15/89Sonar systems specially adapted for specific applications for mapping or imaging
    • G01S15/8906Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques
    • G01S15/895Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques characterised by the transmitted frequency spectrum
    • G01S15/8952Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques characterised by the transmitted frequency spectrum using discrete, multiple frequencies
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/44Constructional features of the ultrasonic, sonic or infrasonic diagnostic device
    • A61B8/4427Device being portable or laptop-like
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/44Constructional features of the ultrasonic, sonic or infrasonic diagnostic device
    • A61B8/4444Constructional features of the ultrasonic, sonic or infrasonic diagnostic device related to the probe
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/44Constructional features of the ultrasonic, sonic or infrasonic diagnostic device
    • A61B8/4483Constructional features of the ultrasonic, sonic or infrasonic diagnostic device characterised by features of the ultrasound transducer
    • A61B8/4488Constructional features of the ultrasonic, sonic or infrasonic diagnostic device characterised by features of the ultrasound transducer the transducer being a phased array
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/46Ultrasonic, sonic or infrasonic diagnostic devices with special arrangements for interfacing with the operator or the patient
    • A61B8/467Ultrasonic, sonic or infrasonic diagnostic devices with special arrangements for interfacing with the operator or the patient characterised by special input means
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/56Details of data transmission or power supply
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N7/00Ultrasound therapy
    • A61N2007/0052Ultrasound therapy using the same transducer for therapy and imaging
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N7/00Ultrasound therapy
    • A61N2007/0073Ultrasound therapy using multiple frequencies
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N7/00Ultrasound therapy
    • A61N2007/0078Ultrasound therapy with multiple treatment transducers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B1/00Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
    • B06B1/02Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy
    • B06B1/06Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction
    • B06B1/0607Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction using multiple elements
    • B06B1/0622Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction using multiple elements on one surface

Abstract

本發明提供一種系統,其包括:一多模式超音波探棒,被配置成用以操作在和個別複數個配置描述檔相關聯的複數個操作模式中;以及一計算裝置,被耦合至該手持式多模式超音波探棒並且被配置成用以響應於接收表示使用者所選擇之操作模式的輸入而讓該多模式超音波探棒操作於該選定操作模式中。

Description

通用超音波裝置及相關設備和方法
本申請案關於能夠操作在多重不同頻率範圍中的一種超音波裝置,用以取得不同深度處的受測者的高解析度影像。
相關申請案之交叉參考
本申請案係2017年1月25日提申的美國專利申請案序號第15/415,434號(法律檔案編號第B1348.70030US01號)的部分接續案,於35 U.S.C.§120的規範下主張該案的權利,該案標題為「通用超音波裝置及相關設備和方法(UNIVERSAL ULTRASOUND DEVICE AND RELATED APPARATUS AND METHODS)」;美國專利申請案序號第15/415,434號於35 U.S.C.§119(e)的規範下主張2016年6月20日提申的美國臨時專利申請案序號第62/352,337號(法律檔案編號第B1348.70030US00號)的權利,該案標題為「通用超音波裝置及相關設備和方法(UNIVERSAL ULTRASOUND DEVICE AND RELATED APPARATUS AND METHODS)」;本文以引用的方式將前述每一案完全併入。
本申請案同樣係於35 U.S.C.§119(e)的規範下主張2016年6月20日提申的美國臨時專利申請案序號第62/352,337號(法律檔案編號第 B1348.70030US00號)的權利的申請案,該案標題為「通用超音波裝置及相關設備和方法(UNIVERSAL ULTRASOUND DEVICE AND RELATED APPARATUS AND METHODS)」,本文以引用的方式將其完全併入。
超音波成像系統通常包含一超音波探棒,其藉由一類比纜線被連接至一主機。該超音波探棒係由該主機控制,用以發射與接收超音波訊號。所接收的超音波訊號係被處理,用以產生一超音波影像。
某些實施例關於一種超音波裝置,其包含一超音波探棒,包含一半導體晶粒以及整合於該半導體晶粒上的複數個超音波換能器,該複數個超音波換能器被配置成用以操作在和第一頻率範圍相關聯的一第一模式中以及和第二頻率範圍相關聯的一第二模式中,其中,該第一頻率範圍至少部分不重疊該第二頻率範圍;以及控制電路系統,被配置成用以:控制該複數個超音波換能器,用以響應於接收於該第一模式中操作該超音波探棒的一指示符而產生及/或偵測頻率在該第一頻率範圍中的超音波訊號;以及控制該複數個超音波換能器,用以響應於接收於該第二模式中操作該超音波探棒的一指示符而產生及/或偵測頻率在該第二頻率範圍中的超音波訊號。
某些實施例關於一種系統,其包括:一多模式超音波探棒(舉例來說,手持式多模式超音波探棒),被配置成用以操作在和個別複數個配置描述檔相關聯的複數個操作模式中;以及一計算裝置(移動式計算裝置),被耦合至該多模式超音波探棒並且被配置成用以響應於接收表示使用者所 選擇之操作模式的輸入而讓該多模式超音波探棒操作於該選定操作模式中。
某些實施例關於一種方法,用於控制一多模式超音波探棒的操作,該多模式超音波探棒被配置成用以操作在和個別複數個配置描述檔相關聯的複數個操作模式中,該方法包括:於一計算裝置處接收表示使用者所選擇之操作模式的輸入;以及利用和該選定操作模式相關聯的一配置描述檔所指定的參數數值讓該多模式超音波探棒操作於該選定操作模式中。
某些實施例關於一種系統,其包括:一超音波裝置,包括複數個超音波換能器以及控制電路系統;以及一計算裝置,具有至少一電腦硬體處理器以及至少一記憶體,該計算裝置被通訊耦合至一顯示器並且被通訊耦合至該超音波裝置,該至少一電腦硬體處理器被配置成用以:透過該顯示器呈現一圖形使用者介面(Graphical User Interface,GUI),顯示代表用於該超音波裝置的個別複數個操作模式的複數個GUI元件,該複數個操作模式包括第一操作模式與第二操作模式;響應於透過該GUI所接收之表示該第一操作模式或該第二操作模式的選擇結果的輸入,提供該選定操作模式的一指示符給該超音波裝置,其中,該控制電路系統被配置成用以:響應於接收該第一操作模式的指示符,取得一第一配置描述檔,其指定和該第一操作模式相關聯的第一組參數數值;以及利用該第一配置描述檔控制該超音波裝置,用以操作在該第一操作模式中,以及響應於接收該第二操作模式的指示符,取得一第二配置描述檔,其指定和該第二操作模式相關聯的第二組參數數值,該第二組參數數值不同於該第一組參數數值;以及 利用該第二配置描述檔控制該超音波裝置,用以操作在該第二操作模式中。
某些實施例關於一種方法,其包括:透過一圖形使用者介面接收用於一超音波裝置的操作模式的選擇結果,該超音波裝置被配置成用以操作在包含第一操作模式和第二操作模式的複數個模式中;響應於接收一第一操作模式的選擇結果,取得一第一配置描述檔,其指定和該第一操作模式相關聯的第一組參數數值;以及利用該第一配置描述檔控制該超音波裝置,用以操作在該第一操作模式中,以及響應於接收該第二操作模式的選擇結果,取得一第二配置描述檔,其指定和該第二操作模式相關聯的第二組參數數值,該第二組參數數值不同於該第一組參數數值;以及利用該第二配置描述檔控制該超音波裝置,用以操作在該第二操作模式中。
某些實施例關於一種手持式多模式超音波探棒,其被配置成用以操作在和個別複數個配置描述檔相關聯的複數個操作模式中,該手持式超音波探棒包括:複數個超音波換能器;以及控制電路系統,其被配置成用以:接收一選定操作模式的指示符;存取和該選定操作模式相關聯的的一配置描述檔;以及利用該已存取配置描述檔中指定的參數數值控制該手持式多模式超音波探棒,用以操作在該選定操作模式中。
某些實施例關於能夠操作在包含第一操作模式和第二操作模式的複數個操作模式中的一種超音波裝置,該超音波裝置包括:複數個超音波換能器;以及控制電路系統,其被配置成用以:接收一選定操作模式的指示符;響應於確定該選定操作模式為該第一操作模式而取得一第一配置描述檔,其指定和該第一操作模式相關聯的第一組參數數值;以及利用該第一配置描述檔控制該超音波裝置,用以操作在該第一操作模式中, 以及響應於接收該第二操作模式的指示符,響應於確定該選定操作模式為該第二操作模式而取得一第二配置描述檔,其指定和該第二操作模式相關聯的第二組參數數值,該第二組參數數值不同於該第一組參數數值;以及利用該第二配置描述檔控制該超音波裝置,用以操作在該第二操作模式中。
某些實施例關於被通訊耦合至超音波裝置的一種行動計算裝置,該行動計算裝置包括:至少一電腦硬體處理器;一顯示器;以及至少一非暫時性電腦可讀取的儲存媒體,用以儲存一應用程式,當被該至少一電腦硬體處理器執行時會讓該至少一電腦硬體處理器:產生一圖形使用者介面(GUI),具有代表用於該多模式超音波裝置的個別複數個操作模式的複數個GUI元件;透過該顯示器呈現該GUI;透過該GUI接收表示該複數個操作模式中其中一者的選擇結果的輸入;以及提供該選定操作模式的指示符給該超音波裝置。
100‧‧‧超音波探棒
101‧‧‧受測者
102‧‧‧換能器裝置(陣列)
103‧‧‧有線連接線
104‧‧‧傳送(TX)電路系統
105‧‧‧計算裝置
106‧‧‧接收(RX)電路系統
107‧‧‧成像點
108‧‧‧時序和控制電路
109‧‧‧成像點
110‧‧‧訊號調整/處理電路
112‧‧‧半導體晶粒
114‧‧‧輸出埠
116‧‧‧輸入埠
118‧‧‧功率管理電路
120‧‧‧高密度聚焦超音波(HIFU)控制器
202‧‧‧切換器
204‧‧‧換能器元件
206‧‧‧波形產生器
208‧‧‧脈衝器
210‧‧‧類比處理方塊
212‧‧‧類比至數位轉換器(ADC)
214‧‧‧數位處理方塊
216‧‧‧多工器(MUX)
218‧‧‧多工數位處理方塊
302‧‧‧基板
304‧‧‧超音波電路系統模組
306‧‧‧超音波元件
308‧‧‧超音波換能器
400‧‧‧裝置
402‧‧‧工程基板
404‧‧‧互補式金屬氧化物半導體(CMOS)晶圓
406‧‧‧凹腔
408‧‧‧第一矽裝置層
410‧‧‧第二矽裝置層
412‧‧‧矽氧化物層
414‧‧‧氧化物層
416a‧‧‧接合點
416b‧‧‧接合點
418‧‧‧基底層
420‧‧‧絕緣層
422‧‧‧金屬層
424‧‧‧接點
425‧‧‧焊線
426‧‧‧焊墊
428‧‧‧隔絕結構
430‧‧‧鈍化層
500‧‧‧外部裝置
502‧‧‧藥丸
504‧‧‧藥丸
506‧‧‧藥丸
506a‧‧‧外殼部分
506b‧‧‧外殼部分
506c‧‧‧電子裝配件
508a‧‧‧藥丸
508b‧‧‧剖面
508c‧‧‧剖面
508d‧‧‧剖面
508e‧‧‧剖面
512‧‧‧CMUT陣列
514‧‧‧焊線囊封劑
516‧‧‧影像重建晶片
518‧‧‧撓性電路
520‧‧‧Wi-Fi晶片
522‧‧‧FPGA
524‧‧‧電池
600‧‧‧受測者
602‧‧‧手持式裝置
604‧‧‧顯示器
710‧‧‧貼片
712‧‧‧患者
714‧‧‧上殼體
716‧‧‧下殼體
718‧‧‧電路板
720‧‧‧散熱片
722‧‧‧電池
724‧‧‧通訊電路系統
726‧‧‧貫穿通孔
728‧‧‧敷料
730‧‧‧開口
732‧‧‧開口
734‧‧‧互補式金屬氧化物半導體(CMOS)晶片
736‧‧‧聲透鏡
800‧‧‧手持式探棒
900‧‧‧超音波系統
901‧‧‧受測者
902‧‧‧超音波裝置
904‧‧‧計算裝置
906‧‧‧顯示器
910‧‧‧選單
912‧‧‧通訊鏈路
1100‧‧‧圖形使用者介面(GUI)
1102‧‧‧第一部分
1104‧‧‧圖形使用者介面(GUI)元件
1106‧‧‧圖形使用者介面(GUI)元件
1108‧‧‧圖形使用者介面(GUI)元件
1110‧‧‧圖形使用者介面(GUI)元件
1112‧‧‧第二部分
1202‧‧‧圖形使用者介面(GUI)
1204‧‧‧圖形使用者介面(GUI)元件
1206‧‧‧圖形使用者介面(GUI)元件
1208‧‧‧圖形使用者介面(GUI)元件
1210‧‧‧圖形使用者介面(GUI)元件
1212‧‧‧圖形使用者介面(GUI)元件
1214‧‧‧圖形使用者介面(GUI)元件
1216‧‧‧圖形使用者介面(GUI)元件
1218‧‧‧操作模式指示符
1302‧‧‧配置描述檔記憶體
1400‧‧‧圖形使用者介面
1402‧‧‧狀態列
1404‧‧‧比例尺
1406‧‧‧影像部
1408‧‧‧可選擇的選項
1410‧‧‧可選擇的選項
1412‧‧‧可選擇的選項
1414‧‧‧可選擇的選項
1500‧‧‧換能器陣列
1502‧‧‧線形射束形狀
1602‧‧‧扇形射束形狀
1702‧‧‧3D射束形狀
本揭示技術的各項觀點與實施例將參考下面圖式來說明。應該明白的係,該些圖式未必依照比例繪製。出現在多個圖式中的項目在它們所出現的所有圖式中係以相同的元件符號表示。
圖1A所示的係根據本文中所述技術的某些實施例的圖式,其圖解如何使用一通用超音波裝置來對一受測者進行成像。
圖1B所示的係根據本文中所述技術的某些實施例的一通用超音波裝置的解釋性範例的方塊圖。
圖2所示的係根據本文中所述技術的某些實施例的方塊圖,其圖解於某些實施例中如何使用一通用超音波裝置的一給定換能器元件的傳送(TX) 電路系統和接收(RX)電路系統來供能給該元件用以發射一超音波脈衝或者用以接收與處理來自該元件代表被該換能器元件感測到之超音波脈衝的訊號。
圖3所示的係根據本文中所述技術的某些實施例之整合一通用超音波裝置之基板的超音波換能器的解釋性排列。
圖4所示的係根據本文中所述技術的某些實施例的一裝置的剖視圖,其包含整合具有密封凹腔之基板的一CMOS晶圓。
圖5A至5H所示的係根據本文中所述技術的某些實施例的藥丸,其包括一超音波探棒。
圖6A至6B所示的係根據本文中所述技術的某些實施例的手持式裝置,其包括一超音波探棒和一顯示器。
圖7A至7D所示的係根據本文中所述技術的某些實施例的貼片,其包括一超音波探棒。
圖8所示的係根據本文中所述技術的某些實施例的手持式探棒的圖式,其包括一超音波探棒。
圖9所示的係根據本文中所述技術的某些實施例的另一圖式,其圖解如何使用一通用超音波裝置來對一受測者進行成像。
圖10所示的係根據本文中所述技術的某些實施例之用於操作一通用超音波裝置的解釋性方法的流程圖。
圖11所示的係根據本文中所述技術的某些實施例的一圖形使用者介面的範例,使用者可以經由此圖形使用者介面選擇用以操作一通用超音波裝置的操作模式。
圖12A至12B所示的係根據本文中所述技術的某些實施例的一圖形使用者介面的額外範例,使用者可以經由此圖形使用者介面選擇用以操作一通用超音波裝置的操作模式。
圖13所示的係根據本文中所述技術的某些實施例的一通用超音波裝置的另一解釋性範例的方塊圖。
圖14所示的係根據本文中所述技術的某些實施例的一圖形使用者介面的另一範例,使用者可以經由此圖形使用者介面來與一通用超音波裝置互動。
圖15至17所示的係根據非限制性實施例可以本文中所述類型的超音波裝置產生的超音波射束形狀的非限制性範例。
本揭示內容說明一種「通用(universal)」超音波裝置的觀點,其被配置成用以在多個不同頻率範圍對一受測者進行成像。該通用超音波裝置包含多個超音波換能器,該些超音波換能器中的至少一部分能夠操作在不同的頻率範圍處,從而允許使用單一超音波裝置產生不同深度處的受測者的醫學相關影像。因此,醫學專業人員或是其它使用者可以使用單一裝置(本文中所述的通用超音波裝置)實施目前需要使用多個習知超音波探棒的不同成像工作。
某些實施例關於一種超音波裝置,其包括一超音波探棒。該超音波探棒包括:一半導體晶粒;整合於該半導體晶粒上的複數個超音波換能器,該複數個超音波換能器被配置成用以操作在和第一頻率範圍相關聯的一第一模式中以及和第二頻率範圍相關聯的一第二模式中,其中,該 第一頻率範圍至少部分不重疊該第二頻率範圍;以及控制電路系統。該控制電路系統被配置成用以:控制該複數個超音波換能器,用以響應於接收於該第一模式中操作該超音波探棒的一指示符而產生及/或偵測頻率在該第一頻率範圍中的超音波訊號;以及控制該複數個超音波換能器,用以響應於接收於該第二模式中操作該超音波探棒的一指示符而產生及/或偵測頻率在該第二頻率範圍中的超音波訊號。
本案發明人已發現,習知超音波探棒受到限制,因為每一個習知超音波探棒僅操作在數個醫學相關頻率範圍的單一頻率範圍處。舉例來說,某些習知超音波探棒僅操作在1至3MHz範圍中的頻率處(舉例來說,諸如產科、腹部、以及婦科成像的應用),而其它習知探棒則僅操作在3至7MHz範圍中的頻率處(舉例來說,諸如胸腔、血管、甲狀腺、以及骨盆腔成像的應用)。還有其它習知超音波探棒僅操作在7至15MHz範圍中的頻率處(舉例來說,諸如肌肉骨骼以及表淺靜脈和團塊成像的應用)。因為較高頻率超音波訊號在組織中衰減速度高於較低頻率超音波訊號,所以,僅操作在較高頻率處的習知探棒係用於產生患者在淺深度處(舉例來說,5cm或更少)的影像,用在諸如中線放置或是前面提及的僅位於皮膚底下的表淺團塊成像的應用中。相反地,僅操作在較低頻率處的習知探棒係用於產生患者在較大深度處(舉例來說,10至25cm)的影像,用在諸如心臟和腎臟成像的應用中。因此,醫學專業人員需要使用多支不同探棒,既不方便而且昂貴,因為需要取得被配置成用以操作在不同頻率範圍處的多支不同探棒。
相反地,本案發明人所開發並且於本文中所述的通用超音波裝置則被配置成用以操作在多個不同的醫學相關頻率範圍處並且以夠高的 解析度來對患者進行成像以便形成各種深度範圍處的醫學相關影像。因此,藉由本文中所述的單一通用超音波裝置便能夠取代全部多支習知超音波探棒,而且醫學專業人員或其他使用者可以使用單一通用超音波探棒來實施多種成像工作,而不需要使用各具有有限應用性的多支習知超音波探棒。
據此,某些實施例提供具有多個超音波換能器的寬頻超音波探棒,被配置成用以操作在多個模式的每一個模式中,該多個模式包含具有第一頻率範圍的一第一模式以及具有第二頻率範圍的一第二模式,該第二頻率範圍至少部分不重疊該第一頻率範圍。該多頻率超音波探棒進一步包括控制電路系統,其被配置成用以控制該複數個超音波換能器,用以響應於接收於該第一模式中操作該超音波探棒的一指示符而產生及/或偵測頻率在該第一頻率範圍中的超音波訊號;以及控制該複數個超音波換能器,用以響應於接收於該第二模式中操作該超音波探棒的一指示符而產生及/或偵測頻率在該第二頻率範圍中的超音波訊號。該些超音波換能器可被整合於單一基板上,例如,單一互補式金屬氧化物半導體(Complementary Metal Oxide Semiconductor,CMOS)晶片;或者,可以在一超音波探棒內的多個晶片上(舉例來說,如圖5G和5H中所示)。
於某些實施例中,該第一頻率範圍可以包含在1至5MHz的範圍中的頻率。舉例來說,該第一頻率範圍可以完全位於1至5MHz的範圍內(舉例來說,在2至5MHz、1至4MHz、1至3MHz、2至5MHz、及/或3至5MHz的範圍內)。據此,當該通用超音波探棒的超音波換能器係操作用以產生及/或偵測頻率在該第一頻率範圍中的超音波訊號時,被該些超音波 換能器偵測到的超音波訊號可以用來形成深達一受測者之目標深度處的受測者的影像,該些目標深度在10至25cm的範圍內(舉例來說,在10至20cm、15至25cm、10至15cm、15至20cm、及/或20至25cm的範圍內)。
於某些實施例中,該第二頻率範圍可以完全位於5至12MHz的範圍內(舉例來說,在5至10MHz、7至12MHz、5至7MHz、5至9MHz、6至8MHz、7至10MHz、及/或6至9MHz的範圍內)。據此,當該通用超音波探棒的超音波換能器係操作用以產生及/或偵測頻率在該第二頻率範圍中的超音波訊號時,被該些超音波換能器偵測到的超音波訊號可以用來形成深達一受測者之目標深度處的受測者的影像,該些目標深度在1至10cm的範圍內(舉例來說,在1至5cm、5至10cm、3至8cm、3至6cm、及/或3至5cm的範圍內)。
於某些實施例中,該通用超音波探棒的多重模式組合跨越至少10MHz或是介於8至15MHz之間。基於此理由,一通用超音波探棒有時候可以稱為「寬頻」探棒、多模式探棒(有多個頻率範圍模式)、及/或多頻探棒。
應該明白的係,一通用超音波探棒不受限於僅操作在兩個模式中並且可以操作在任何合宜數量(舉例來說,3個、4個、5個、…等)的模式中,該些模式中的每一者皆和一個別頻率範圍相關聯。舉例來說,於某些實施例中,該通用超音波探棒可以操作在分別和第一、第二、以及第三頻率範圍相關聯的第一、第二、以及第三模式中。該些第一、第二、以及第三頻率範圍可以為三個範圍所組成的任何集合,它們兩兩不完全相互重疊。舉例來說,該第一頻率範圍可以完全位於1至3MHz的範圍內,該第二 頻率範圍可以完全位於3至7MHz的範圍內,以及該第三頻率範圍可以完全位於7至12MHz的範圍內。於另一範例中,該第一頻率範圍可以完全位於1至5MHz的範圍內,該第二頻率範圍可以完全位於3至7MHz的範圍內,以及該第三頻率範圍可以完全位於5至10MHz的範圍內。此外,每一個模式亦可以有不同的仰角聚焦區,這係無法以利用仰角聚焦聲透鏡的單一1D陣列達成的特點。每一個模式亦可以有基於操作頻率的不同元件間距。舉例來說,該不同間距可以藉由子集選擇以及多個換能器單元的組合來施行。
從前面的頻率範圍範例中可以明白,於某些實施例中,該超音波探棒的一操作模式可以和至少1MHz的一頻率頻寬相關聯。於其它實施例中,該超音波探棒的一操作模式可以和至少2MHz、至少3MHz、或是至少4MHz、或者更高的頻寬相關聯,本文中所述技術的觀點於此方面並無限制。該超音波探棒的該些換能器中的至少一部分,以及於某些實施例中為每一個換能器,可以不僅操作在不同的頻率範圍處,還可以操作在具有寬頻寬的一特殊頻率範圍中(舉例來說,在該頻率範圍的中心頻率處)。於其它實施例中(舉例來說,在都卜勒成像中),該超音波探棒的一操作模式可以跨越窄於1MHz的頻寬。
如所述,根據本文中所述各項觀點中一或更多項觀點的超音波裝置可以用於都卜勒成像一也就是,使用在都卜勒模式中。該超音波裝置可以測量範圍從約1cm/s至1m/s的速度,或是任何其它合宜範圍。
當操作在一特殊模式中時,一探棒的超音波換能器可以產生在該模式的尖峰功率頻率處(舉例來說,其可以為和該模式相關聯的頻率範圍的中心頻率)有最大功率數額的超音波訊號。舉例來說,當操作在和1至 5MHz的頻率範圍相關聯的模式中時,該些超音波換能器可以被配置成用以產生在3MHz處有最大功率數額的超音波訊號。所以,於此範例中,此模式的尖峰功率頻率為3MHz。於另一範例中,當操作在和5至9MHz的頻率範圍相關聯的模式中時,該些超音波換能器可以被配置成用以產生在7MHz處有最大功率數額的超音波訊號,於此範例中,7MHz為尖峰功率頻率。
從頻率範圍的前面範例中可以明白,一通用超音波探棒可以被配置成用以操作在多個模式中,其包含和具有第一尖峰功率頻率的第一頻率範圍相關聯的第一模式以及和具有第二尖峰功率頻率的第二頻率範圍相關聯的第二模式。於某些實例中,該第一尖峰功率頻率和第二尖峰功率頻率之間的差異為至少一臨界數額(舉例來說,至少1MHz、至少2MHz、至少3MHz、至少4MHz、至少5MHz、…等)。
應該明白的係,當操作在一頻率範圍中時,於某些實施例中,一超音波換能器可能產生位在該操作頻率範圍以外的頻率處的訊號。然而,此些訊號被產生的數額小於一訊號在該範圍的中心頻率處被產生的最大功率的某一比例(舉例來說,1/2、1/3、1/5、…等),舉例來說,從最大功率下降3dB或6dB。
本文中所述的通用超音波探棒可用於各式各樣的醫學成像工作範圍中,包含,但是並不受限於,對患者的肝臟、腎臟、心臟、膀胱、甲狀腺、頸動脈、下靜脈末端進行成像,以及實施中線放置。多支習知超音波探棒必須被用來實施所有此些成像工作。相反地,藉由針對每一項工作操作在適合該工作的頻率範圍處便可以使用單一通用超音波探棒來實施所有此些工作,如表1中所示,表示一起顯示受測者被成像的對應深度。
應該明白的係,表1提供用於在個別深度和頻率處進行成像的某些器官的非限制性範例;然而,其它器官或目標亦可對應於表列的頻率範圍。舉例來說,2至5MHz範圍通常可用於腹部、骨盆腔、以及胸部超音波檢查。此頻率範圍內的解剖目標的進一步範例包含膽囊、膽管、胰腺、胃腸道、尿道、脾臟、腎上腺、腹主動脈、腹股溝、前腹壁、腹膜、乳房、以及骨盆肌肉。除此之外,2至5MHz範圍或是3至6MHz範圍通常可用於產科,例如,胎兒成像或是胎盤的成像。除此之外,在7至12MHz範圍中,表1中所列以外的解剖目標的範例包含副甲狀腺、乳房、陰囊、旋轉肌群、肌腱、以及顱外腦血管。應該明白的係,此範例列表沒有限制性,並且任何合宜器官和頻率範圍組合皆可使用於本文中。
圖1A進一步圖解一通用超音波探棒可以如何操作在和不同頻率範圍相關聯的不同模式中,用以在不同的深度處來對一受測者進行成 像。如圖1A中所示,超音波探棒100係用於成像受測者101。當操作在和第一頻率範圍(舉例來說,1至3MHz)相關聯的第一模式中時,探棒100中的超音波換能器可被配置成用以對受測者位於和受測者皮膚相距深度D2(舉例來說,15至20cm)的點109(亦標記為P2)或附近進行成像。當操作在和第二頻率範圍(舉例來說,6至8MHz)相關聯的第二模式中時,探棒100中的超音波換能器可被配置成用以對受測者位於和受測者皮膚相距深度D1(舉例來說,1至5cm)的點107(亦標記為P1)或附近進行成像。於某些實施例中,距離D2大於距離D1至少一臨界距離(舉例來說,至少5cm、至少7cm、介於3和7cm之間、或者此些範圍內的任何範圍或數值)。
超音波探棒100可被配置成用以將被該探棒100收集的資料傳送至一或更多個外部裝置,用以作進一步處理。舉例來說,如圖1A中所示,超音波探棒100可被配置成用以透過有線連接線103將被探棒100收集的資料傳送至計算裝置105(於此非限制性範例中為一膝上型電腦),其可以處理該資料用以於一顯示器上產生和顯示該受測者101的影像111。
有各種因素促成該通用超音波探棒能夠操作在和不同且醫學相關頻率範圍相關聯的多種模式中。其中一項因素係該些超音波換能器可以藉由電容式微加工超音波換能器(Capacitive Micromachined Ultrasonic Transducer,CMUT)形成,並且於某些實施例中,該通用超音波探棒中的多個超音波換能器中的至少某些超音波換能器(於某些實施例中為每一個超音波換能器)被配置成用以操作在塌陷模式(collapsed mode)和非塌陷模式(non-collapsed mode)中。如本文中所述,「塌陷模式」係指一CMUT超音波換能器薄膜的至少一部分為機械性固定並且該薄膜的至少一部分為自由以 便以該電極和該薄膜之間的變化電壓差為基礎振動的操作模式。當操作在塌陷模式中時,一CMUT超音波換能器能夠在較高頻率處產生較多功率。多個超音波換能器從非塌陷模式至塌陷模式(反之亦可)的切換操作允許該超音波探棒改變最高功率超音波訊號被發射的頻率範圍。
據此,於某些實施例中,一超音波探棒藉由在非塌陷模式中操作其換能器而操作在和第一頻率範圍(舉例來說,1至5MHz,尖峰功率頻率為3MHz)相關聯的第一模式中,並且藉由在塌陷模式中操作其換能器而操作在和第二頻率範圍(舉例來說,5至9MHz,尖峰功率頻率為7MHz)相關聯的第二模式中。於某些實施例中,該超音波探棒包含控制電路系統(舉例來說,圖1B中所示的電路系統108),其被配置成用以控制該探棒操作在第一模式或第二模式中,並且為達此目的,可以施加適當電壓至該些超音波換能器用以讓它們操作在塌陷模式中或非塌陷模式中。舉例來說,於某些實施例中,該控制電路系統被配置成用以藉由施加超過一臨界電壓(其有時候亦稱為「塌陷」電壓)的電壓至該些換能器而讓該探棒中的超音波換能器操作在塌陷模式中。該塌陷電壓可以在30至110伏特的範圍中,並且於某些實施例中,可以為約50伏特。應該注意的係,於某些實施例中,在塌陷模式和非塌陷模式中操作一探棒的換能器雖然可以為幫助該探棒操作於多個頻率範圍模式中的因素,亦可以有其它因素允許該探棒達成此目的(舉例來說,具有約1至15MHz的寬頻訊號放大功能的類比接收器)。
促成該通用超音波探棒能夠操作在和不同且醫學相關頻率範圍相關聯的多種模式中的另一因素係該些超音波換能器可被排列在間距適合高頻掃描器和低頻掃描的陣列中。舉例來說,於某些實施例中,該些 超音波換能器中的至少一部分可以和其最近相鄰者分隔小於一波長之一半的距離,該波長對應於該探棒被設計用來操作的最高頻率,以便減少(舉例來說,消除)疊頻效應(aliasing effect)。至少某些模式,於某些情況中為每一個模式,可以有基於操作頻率的不同元件間距。該不同的間距係藉由子集選擇以及多個CMOS超音波換能器(CUT)單元的組合來達成。一頻率的足夠間距通常分隔介於約λ和λ/4之間,其中,λ為該指定頻率處的波長。示範性間距可以包含,但是並不受限於,500微米(μm)(超低頻)、200μm(中頻)、以及125μm(高頻)。另外,於特定實施例中,因為有助於抑制疊頻瑕疵的元件方向性的關係,間距可以較寬(舉例來說,λ的等級)。前面列出的間距沒有限制性,因為其它間距亦可採用。於某些實施例中,該間距可以遵照用於扇區掃描(sector scanning)的換能器而落在約150至250微米的範圍內(包含該範圍內的任何數值)。舉例來說,208微米間距可以對應於3.7MHz操作。
促成該通用超音波探棒能夠操作在和不同且醫學相關頻率範圍相關聯的多種模式中的另一因素係,該些超音波換能器可被排列在具有一光圈(由該陣列的寬度和高度決定)的陣列中,該光圈允許實施淺掃描器和深掃描。舉例來說,每一個模式可以有一不同的有效光圈。總光圈適應於覆蓋任一探棒的應用空間所需要的最大視場。範例包含下面的所有組合:幅角方向1cm、2cm、3cm、4cm、5cm以及仰角方向1cm、2cm、3cm、4cm、5cm。
促成該通用超音波探棒能夠操作在和不同且醫學相關頻率範圍相關聯的多種模式中的另一因素係CUT單元尺寸的選擇。將多個CUT單元聚合在一起提高方向性和靈敏性。此外,當該元件的尺寸保持固定時, 方向性則隨著頻率增加。因此,針對較低頻率將多個CUT單元聚合在一起會與針對較高頻率的較小聚合達成平衡,用以保持一致的方向性。
促成該通用超音波探棒能夠操作在和不同且醫學相關頻率範圍相關聯的多種模式中的另一因素係,除了能夠操作在多個頻率範圍中之外,該探棒中的超音波換能器還能夠產生具有寬廣頻寬(舉例來說,至少100KHz、至少500KHz、至少1MHz、至少2MHz、至少5MHz、至少7MHz、至少15MHz、至少20MHz、…等)的低頻和高頻聲波。
促成該通用超音波探棒能夠操作在和不同且醫學相關頻率範圍相關聯的多種模式中的另一因素係,於某些實施例中,該探棒可以包含可程式化延遲網格電路系統,其可以傳送射束成形(beamforming)用以聚焦在多個深度處,包含在2至35cm的範圍中的深度。可程式化延遲網格電路系統在美國專利案第9,229,907號中有進一步說明,該案受讓給本申請案的受讓人,本文以引用的方式將其內容完全併入。
促成該通用超音波探棒能夠操作在和不同且醫學相關頻率範圍相關聯的多種模式中的又一因素係,於某些實施例中,該探棒可以包含允許接收射束成形的電路系統,用以聚焦在多個深度處,包含在2至35cm的範圍中的深度。
於其中一示範性實施例中,一通用超音波探棒可以包含一由576x256個超音波換能器組成的陣列,分隔52μm的間距,並且具有約3cmx1.33cm的陣列光圈。該些換能器中的至少一部分能夠操作在1至15MHz的頻率範圍中,頻寬為0.1至12MHz。於另一示範性實施例中,一通用超音波探棒可以包含一由64x140個換能器組成的陣列,分隔208μm,並且具有 約3cmx1.33cm的陣列光圈,操作在1.5至5MHz的頻率範圍中,並且從5至12MHz。
於某些實施例中,一通用超音波探棒(舉例來說,探棒100)可以眾多實體配置中的任何配置來施行,並且能夠在以下面之中的二或更多者進行成像時所使用的模式中實施成像:一線形探棒、一扇形探棒、一相控陣列探棒、一曲線形探棒、一凸形探棒、及/或一3D成像探棒。除此之外,於某些實施例中,該超音波探棒可被具現在一手持式裝置中。該手持式裝置可以包含一螢幕,用以顯示所取得的影像(舉例來說,如圖6A至6B中所示)。除此之外,或者,該手持式裝置可被配置成用以傳送(透過無線或有線連接)資料給一外部裝置,用以作進一步處理(舉例來說,用以形成一或更多個超音波影像)。於另一範例中,於某些實施例中,該超音波探棒可被具現在一藥丸中(舉例來說,如圖5A至5H中所示),用以讓受測者吞嚥並且被配置成用以在其前進通過他/她的消化系統時對該受測者進行成像。於另一範例中,於某些實施例中,該超音波探棒可被具現在一貼片中,其被配置成用以貼附至該受測者(舉例來說,如圖7A至D中所示)。
下面進一步說明上面所述的觀點與實施例以及額外的觀點與實施例。此些觀點及/或實施例可以單獨使用,一起使用,或者以二或更多者之任何組合的方式使用,本文中所述技術於此方面並不受限。
圖1B顯示一體成形超音波裝置100的一解釋性範例,用以具現本文中所述技術的各項觀點。如圖示,該裝置100可以包含一或更多個換能器裝置(舉例來說,陣列)102、傳送(TX)電路系統104、接收(RX)電路系統106、一時序和控制電路108、一訊號調整/處理電路110、一功率管理 電路118、及/或一高密度聚焦超音波(High-Intensity Focused Ultrasound,HIFU)控制器120。於圖中所示的實施例中,所有圖中所示元件雖然被形成在單一半導體晶粒112上;然而,應該明白的係,於替代實施例中,圖中所示元件中的一或更多者可以位於晶片外。此外,圖中所示的範例雖然顯示TX電路系統104和RX電路系統106;不過,於替代實施例中,可以僅運用TX電路系統或是僅運用RX電路系統。舉例來說,此些實施例可被運用於使用一或更多個只會傳送的裝置100來傳送聲波訊號以及使用一或更多個只會接收的裝置100來接收已被傳送通過正在被超音波成像的受測者或是從該受測者反射的聲波訊號的環境中。
應該明白的係,圖中所示器件中一或更多者之間的通訊可以眾多方式中的任何方式來實施。於某些實施例中,舉例來說,一或更多條高速匯流排(圖中未顯示),例如,統一北橋(unified Northbridge)所運用的匯流排;或者,具有任何合宜組合頻寬(舉例來說,10Gbps、20Gbps、40Gbps、60Gbps、80Gbps、100Gbps、120Gbps、150Gbps、240Gbps)的的一或更多條高速序列鏈路(舉例來說,1Gbps、2.5Gbps、5Gbps、10Gbps、20Gbps)可以用來允許高速晶片內通訊或者和一或更多個晶片外器件進行通訊。於某些實施例中,和晶片外器件的通訊可以利用類比訊號在類比域中進行。
該一或更多個換能器陣列102可以有任何眾多形式,並且本技術的觀點未必需要使用任何特殊類型或排列的換能器單元或換能器元件。當然,本說明中雖然使用「陣列」一詞;但是,應該明白的係,於某些實施例中,該些換能器元件可以不被組織在一陣列中並且可以取代地以特定非陣列的方式排列。於不同的實施例中,舉例來說,陣列102中的該 些換能器元件中每一者可以包含一或更多個電容式微加工超音波換能器(CMUT)、一或更多個CMOS超音波換能器(CMOS Ultrasonic Transducer,CUT)、一或更多個壓電式微加工超音波換能器(Piezoelectric Micromachined Ultrasonic Transducer,PMUT)、一或更多個寬頻晶體換能器、及/或一或更多個其它合宜的超音波換能器單元。於某些實施例中,該換能器陣列102的換能器元件可被形成在和TX電路系統104及/或RX電路系統106的電子元件相同的晶片上,或者,可被整合在具有TX電路系統104及/或RX電路系統106的晶片上。又,於其它實施例中,該換能器陣列102的換能器元件、該TX電路系統104及/或RX電路系統106可被拼接在多個晶片上。
於某些實施例中,該換能器陣列102、TX電路系統104、以及RX電路系統106可被整合在單一超音波探棒上。於某些實施例中,該單一超音波探棒可以為一手持式探棒,其包含,但是並不受限於下面參考圖6A至B以及8所述的手持式探棒。於其它實施例中,該單一超音波探棒可被具現在可被耦合至患者的一貼片中。圖7A至D提供此貼片的一非限制性圖解。該貼片可被配置成以無線方式傳送該貼片所收集的資料至一或更多個外部裝置,用以作進一步處理。於其它實施例中,該單一超音波探棒可被具現在可被患者吞嚥的一藥丸中。該藥丸可被配置成以無線方式傳送該藥丸內的超音波探棒所收集的資料至一或更多個外部裝置,用以作進一步處理。圖5A至5H圖解此藥丸的非限制性範例。
舉例來說,一CUT可以包含被形成在CMOS晶圓中的一凹腔,有一薄膜疊置在該凹腔上方,並且於某些實施例中密封該凹腔。電極可被提供用以從該被覆蓋的凹腔結構產生一換能器單元。該CMOS晶圓可 以包含該換能器單元可連接的整合電路系統。該換能器單元和CMOS晶圓可以一體成形整合,因而在單一基板(該CMOS晶圓)上形成一整合式超音波換能器單元和積體電路。此些實施例於下面參考圖4作進一步說明,關於微型製造的超音波換能器的額外資訊亦可以在美國專利案第9,067,779號以及美國專利申請公開案第2016/0009544 A1號中發現,兩案皆受讓給本申請案的受讓人,並且本文以引用的方式將兩案的內容完全併入。應該明白的係,前面僅為一超音波換能器的其中一範例。於某些實施例中,該超音波換能器(舉例來說,CMUT)可被形成在和具有電路系統的基板分離的一晶圓上。具有該些超音波換能器的晶圓可被接合至一電基板,其可以為一中介片、一印刷電路板(Printed Circuit Board,PCB)、一特殊應用電路(Application Specific Circuit,ASIC)基板、一具有類比電路系統的基板、一具有整合CMOS電路系統的基板(CMOS基板)、或是具有電功能的任何其它基板。於某些實施例中,該些超音波換能器可以不被形成在一晶圓上。舉例來說,寬頻晶體換能器可以單獨被擺放在一合宜的基板上並且被耦合至一電基板。亦可以設計出進一步替代例。
舉例來說,該TX電路系統104(如果包含的話)可以產生驅動該(些)換能器陣列102的單獨元件或是該(些)換能器陣列102內一或更多個群元件的脈衝,以便產生用於成像的聲波訊號。相反地,該RX電路系統106可以在聲波訊號撞擊該(些)換能器陣列102的該些單獨元件時接收與處理由該些單獨元件所產生的電子訊號。
於某些實施例中,舉例來說,時序和控制電路108可以負責產生用於同步化和協調裝置100中之其它元件的操作的所有時序和控制訊 號。於所示的範例中,該時序和控制電路108係由被供應至一輸入埠116的單一時脈訊號CLK來驅動。舉例來說,該時脈訊號CLK可以為用來驅動該些晶片上電路器件中一或更多者的一高頻時脈。於某些實施例中,舉例來說,該時脈訊號CLK可以為用來驅動訊號調整/處理電路110中的高速序列式輸出裝置(圖1中未顯示)的一1.5625GHz或2.5GHz時脈,或是用來驅動晶粒112上的其它數位器件的一20MHz、40MHz、100MHz、200MHz、250MHz、500MHz、750MHz、或1000MHz時脈,並且該時序和控制電路108可於必要時分除或倍增該時脈CLK,用以驅動晶粒112上的其它器件。於其它實施例中,不同頻率(例如,上面引用的頻率)的二或更多個時脈可以從一晶片外來源被分開供應至該時序和控制電路108。
舉例來說,功率管理電路118可以負責將來自一晶片外來源的一或更多個輸入電壓VIN轉換成用以實行該晶片之操作所需要的電壓,並且用於管理該裝置100內的功率消耗。舉例來說,於某些實施例中,單一電壓(舉例來說,0.4V、0.9V、1.5V、1.8V、2.5V、3.3V、5V、12V、80V、100V、120V、…等)可以被供應至該晶片並且該功率管理電路118可以於必要時利用一電荷泵電路或是透過特定其它DC至DC電壓轉換機制逐步提升或降低該電壓。於其它實施例中,多個不同電壓可以分開被供應至該功率管理電路118,用以處理及/或分配至其它晶片上器件。
如圖1B中所示,於某些實施例中,一HIFU控制器120可以被整合在該晶粒112上,以便能夠透過該(些)換能器陣列102的一或更多個元件來產生HIFU訊號。於其它實施例中,用於驅動該(些)換能器陣列102的一HIFU控制器可以位於晶片外;或者,即使在一裝置內,和該裝置100 分離。也就是,本揭示內容的觀點關於提供具有和不具有超音波成像功能的晶片上超音波HIFU系統。然而,應該明白的係,某些實施例可以不具有任何HIFU功能,且因此,可以不包含HIFU控制器120。
又,應該明白的係,HIFU控制器120於提供HIFU功能的實施例中可能不代表不同的電路系統。舉例來說,於某些實施例中,圖1B的其餘(HIFU控制器120以外的)電路系統可以適合提供超音波成像功能及/或HIFU,也就是,於某些實施例中,相同共用的電路系統可以操作為一成像系統及/或用於HIFU。成像或HIFU功能是否存在相依於被提供至該系統的功率。HIFU通常操作在高於超音波成像的功率處。因此,提供該系統適合成像應用的第一功率位準(或電壓位準)可以讓該系統操作為一成像系統;而提供一較高功率位準(或電壓位準)可以讓該系統操作用於HIFU。於某些實施例中,此功率管理可以由晶片外控制電路系統提供。
除了使用不同功率位準之外,成像和HIFU應用亦可以運用不同波形。因此,波形產生電路系統可以被用來提供用於操作該系統作為成像系統或HIFU系統的合宜的波形。
於某些實施例中,該系統可以操作為兼具成像系統和HIFU系統(舉例來說,能夠提供影像引導HIFU)。於特定此些實施例中,可以運用相同的晶片上電路系統提供兩項功能,使用合宜的時序序列來控制兩種模式之間的操作。
於圖示的範例中,一或更多個輸出埠114可以輸出由訊號調整/處理電路110的一或更多個器件產生的一高速序列資料串。舉例來說,此些資料串可以由整合在晶粒112上的一或更多個USB 2.0、3.0、以及3.1 模組及/或一或更多個1Gb/s、10Gb/s、40Gb/s、或100Gb/s乙太網路模組產生。於某些實施例中,在輸出埠114上所產生的訊號串會被饋送至電腦、平板、或是智慧型電話,用以產生及/或顯示2維、3維、及/或斷層影像。應該明白的係,所列影像僅為可能影像類型的範例。其它範例可以包含一維影像、0維頻譜都卜勒影像、以及包含結合3D與時間的影像的時變影像(時變3D影像)。於訊號調整/處理電路110中併入影像形成功能的實施例中,即使相對低功率的裝置(例如,僅有有限數額的處理功率和記憶體可用於應用執行的智慧型電話或平板)亦能夠僅利用來自輸出埠114的序列資料串來顯示影像。如上面提及,使用晶片上類比至數位轉換以及一高速序列資料鏈路來卸載一數位資料串係有助於促成根據本文中所述技術之某些實施例的「晶片上超音波」方案的其中一項特點。
諸如圖1A和1B中所示的裝置100可用於許多成像及/或處理(舉例來說,HIFU)應用的任何應用中,並且本文中討論的特殊範例不應被視為限制性。舉例來說,於其中一解釋性施行方式中,包含由多個CMUT元件組成的NxM平面或實質上平面陣列的一成像裝置本身可藉由下面方式被用來獲取一受測者(舉例來說,人體腹部)的超音波影像:在一或更多個傳送階段期間供能給該(些)陣列102中的一部分或全部元件(一起或單獨),並且在一或更多個接收階段期間接收與處理由該(些)陣列102中的一部分或全部元件產生的訊號,俾使得在每一個接收階段期間,該些CMUT元件會感測被該受測者反射的聲波訊號。於其它施行方式中,該(些)陣列102中的一部分元件可以僅被用來傳送聲波訊號,並且該(些)相同陣列102中的其它元件可以同步僅被用來接收聲波訊號。又,於某些施行方式中,單一成像裝 置可以包含一由多個獨特裝置組成的PxQ陣列,或是由多個CMUT元件組成的獨特NxM平面陣列組成的PxQ陣列,該些器件能夠平行、依序、或是根據特定其它時序技術操作,以便允許資料從大於能夠具現在單一裝置100或單一晶粒112中之數量的CMUT元件處被累積。
傳送與接收電路系統
圖2所示的係一方塊圖,其圖解於某些實施例中如何使用一給定換能器元件204中的TX電路系統104和RX電路系統106來供能給該換能器元件204用以發射一超音波脈衝或者用以接收與處理來自該換能器元件204代表被其感測到之超音波脈衝的訊號。於某些施行方式中,該TX電路系統104可以在「傳送」階段期間被使用,而該RX電路系統可以在不重疊該傳送階段的「接收」階段期間被使用。如上面提及,於某些實施例中,一裝置100可以替代僅運用TX電路系統104或僅運用RX電路系統106,並且本技術的觀點未必需要存在兩種類型的電路系統。於不同實施例中,TX電路系統104及/或RX電路系統106可以包含和單一換能器單元(舉例來說,CUT或CMUT)、單一換能器元件204內的一群二或更多個換能器單元、包括一群換能器單元的單一換能器元件、一陣列102內的一群二或更多個換能器元件204、或是整個換能器元件204陣列102相關聯的一TX電路及/或一RX電路。
於圖2中所示的範例中,該TX電路系統104/RX電路系統106雖然包含用於該(些)陣列102中每一個換能器元件的一分離TX電路和一分離RX電路;但是,卻僅有該時序和控制電路108以及該訊號調整/處 理電路110中每一者的一實例。據此,於此施行方式中,該時序和控制電路108可以負責同步化和協調晶粒112上所有TX電路系統104/RX電路系統106組合的操作,以及該訊號調整/處理電路110可以負責處理來自晶粒112上所有RX電路系統106的輸入。於其它實施例中,時序和控制電路108可以被複製用於每一個換能器元件204或是用於一群換能器元件204。
如圖2中所示,除了產生及/或分配時脈訊號用以驅動該裝置100中的各種數位器件之外,該時序和控制電路108還可以輸出一「TX致能」訊號用以致能該TX電路系統104的每一個TX電路的操作,或是輸出一「RX致能」訊號用以致能該RX電路系統106的每一個RX電路的操作。於所示的範例中,RX電路系統106中的一切換器202可以在TX電路系統104被致能期間一直張開,以便防止該TX電路系統104的輸出驅動該RX電路系統106。當RX電路系統106的操作被致能時,該切換器202可以閉合,以便讓該RX電路系統106接收並且處理由該換能器元件204所產生的訊號。
如圖示,用於一個別換能器元件204的TX電路系統104可以包含一波形產生器206和一脈衝器208。舉例來說,該波形產生器206可以負責產生要被施加至該脈衝器208的一波形,以便讓該脈衝器208輸出對應於所產生波形的一驅動訊號給該換能器元件204。
於圖2中所示的範例中,用於一個別換能器元件204的RX電路系統106包含一類比處理方塊210、一類比至數位轉換器(Analog-to-Digital Converter,ADC)212、以及一數位處理方塊214。舉例來說,該ADC 212包括5位元、6位元、7位元、8位元、10位元、12位元、或14 位元以及5MHz、20MHz、25MHz、40MHz、50MHz、或80MHz的ADC。該ADC時序可被調整用以運轉在對應於基於模式之應用頻率需求的取樣率處。舉例來說,1.5MHz的聲波訊號可以20MHz的設定值來偵測。較高以及較低ADC率的選擇分別在靈敏性和功率以及較低資料率和低功率之間提供平衡。所以,較低ADC率有助於較快脈衝重複頻率,提高一特定模式中的採獲率(acquisition rate),並且於至少某些實施例中,降低記憶體和處理需求同時在淺模式中允許高解析度。
在數位處理方塊214中進行處理之後,晶粒112上所有RX電路的輸出(於此範例中,其數量等於該晶片上的換能器元件204的數量)係被饋送至該訊號調整/處理電路110中的一多工器(MUX)216。於其它實施例中,換能器元件的數量大於RX電路的數量,並且數個換能器元件提供訊號給一RX電路。該MUX 216多工處理來自該些RX電路的數位資料,並且該MUX 216的輸出被饋送至該訊號調整/處理電路110中的一多工數位處理方塊218,用以在該資料從該晶粒112處輸出(舉例來說,透過一或更多個高速序列輸出埠114)之前作最後處理。該MUX 216係非必要,並且於某些實施例中,平行訊號處理係被實施,舉例來說,當每一個RX電路的輸出被饋送至一合宜的專屬數位處理方塊之中時。高速序列資料埠可以被提供在方塊之間或裡面的任何介面處、晶片之間的任何介面處、及/或連接至一主機的任何介面處。類比處理方塊210及/或數位處理方塊214中的各種器件可以減少需要透過一高速序列資料鏈路或其它鏈路從該晶粒112被輸出的資料量。於某些實施例中,舉例來說,類比處理方塊210及/或數位處理方塊214中的一或更多個器件可以因而允許RX電路系統106以改良的訊噪比 (Signal-to-Noise Ratio,SNR)並且以相容於各種波形的方式接收被傳送及/或被分散的超音波壓力波。併入此些元件可以因而進一步促成及/或增強於某些實施例中所揭示的「晶片上超音波」方案。
下面雖然說明可視情況被併入類比處理方塊210中的特殊器件;不過,應該明白的係,此些類比器件的對應數位器件亦可額外或替代運用於數位處理方塊214中。反之亦然。也就是,下面雖然說明可視情況被併入數位處理方塊214中的特殊器件;不過,應該明白的係,此些數位器件的對應類比器件亦可額外或替代運用於類比處理方塊210中。
超音波換能器佈局
圖3所示的係一超音波裝置的基板302(舉例來說,半導體晶粒),其上形成多個超音波電路系統模組304。如圖示,一超音波電路系統模組304可以包括多個超音波元件306。一超音波元件306可以包括多個超音波換能器308,有時候稱為超音波換能器。
於圖中所示實施例中,基板302包括144模組,排列成兩列和72行。然而,應該明白的係,單基板超音波裝置的基板可以包括任何合宜數量的超音波電路系統模組(舉例來說,至少兩個模組、至少十個模組、至少100個模組、至少400個模組、至少1000個模組、至少5000個模組、至少10,000個模組、至少25,000個模組、至少50,000個模組、介於兩個與一百萬個模組之間、或是此些範圍內的任何數量或任何數量範圍),它們可以被排列成具有任何合宜數量的列與行的二維模組陣列或是以任何其它合宜方式排列。
於圖中所示實施例中,每一個超音波電路系統模組304雖然包括被排列成具有32列和兩行之陣列的64個超音波元件;然而,應該明白的係,一超音波電路系統模組可以包括任何合宜數量的超音波元件(舉例來說,一個超音波元件、至少兩個超音波元件、至少四個超音波元件、至少八個超音波元件、至少16個超音波元件、至少32個超音波元件、至少64個超音波元件、至少128個超音波元件、至少256個超音波元件、至少512個超音波元件、介於兩個與1024個元件之間、至少2500個超音波元件、至少5,000個超音波元件、至少10,000個超音波元件、至少20,000個超音波元件、介於5000個與15000個元件之間、介於8000個與12000個元件之間、介於1000個與20,000個元件之間、或是此些範圍內的任何數量或任何數量範圍),它們可以被排列成具有任何合宜數量的列與行的二維超音波元件陣列或是以任何其它合宜方式排列。
於圖中所示實施例中,每一個超音波元件306雖然包括被排列成具有四列和四行之陣列的二維陣列;然而,應該明白的係,一超音波元件可以包括任何合宜數量及/或群組的超音波換能器單元(舉例來說,一個、至少兩個、至少四個、9個、至少9個、至少16個、25個、至少25個、至少36個、至少49個、至少64個、至少81個、至少100個、介於一個與200個之間、或是此些範圍內的任何數量或任何數量範圍),它們可以被排列成具有任何合宜數量的列與行的二維陣列或是以任何其它合宜方式排列。此外,舉例來說,該些換能器單元亦可以包含諸如圓形、橢圓形、方形、六角形、或是其它規則或不規則的形狀。
應該明白的係,上面所述器件(舉例來說,超音波傳送單元、 超音波元件、超音波換能器)中任何器件可被排列成一維陣列、二維陣列、或是以任何其它合宜方式排列。
於某些實施例中,一超音波電路系統模組還可以包括一或更多個超音波元件之外的電路系統。舉例來說,一超音波電路系統模組可以包括一或更多個波形產生器及/或任何其它合宜的電路系統。
於某些實施例中,模組互連電路系統可以和基板302整合並且被配置成用以相互連接超音波電路系統模組,以便讓資料在該些超音波電路系統模組之間流動。舉例來說,該裝置模組互連電路系統可以提供相鄰超音波電路系統模組之間的連接能力。依此方式,一超音波電路系統模組可被配置成用以提供資料給該裝置上的一或更多個其它超音波電路系統模組及/或從該一或更多個其它超音波電路系統模組處接收資料。
超音波換能器
一通用超音波探棒中的超音波換能器可以眾多方式中的任何方式被形成,於某些實施例中,可以參考圖4被形成。
圖4所示的係根據本申請案一非限制性實施例的一超音波裝置的剖視圖,其包含整合具有密封凹腔之工程基板的一CMOS晶圓。裝置400可以任何合宜方式被形成,並且舉例來說,可以藉由前面提及的美國專利案第9,067,779號中所述的方法來施行。
該裝置400包含與一CMOS晶圓404整合的一工程基板402。該工程基板402包含複數個凹腔406,被形成在一第一矽裝置層408與一第二矽裝置層410之間。一矽氧化物(SiO2)層412(舉例來說,一熱的矽 氧化物-藉由矽的熱氧化所形成的矽氧化物)可以被形成在該些第一矽裝置層408與第二矽裝置層410之間,該些凹腔406係形成於其中。於此非限制性範例中,該第一矽裝置層408可以被配置成一底電極,而該第二矽裝置層410可以被配置成一薄膜。因此,該第一矽裝置層408、第二矽裝置層410、以及該些凹腔406的組合可以形成一超音波換能器(舉例來說,一CMUT),於此非限制性剖視圖中圖解六個超音波換能器。為幫助操作成為一底電極或薄膜,該第一矽裝置層408和第二矽裝置層410中的一或兩者可被摻雜用以充當導體,並且於某些情況中被高度摻雜(舉例來說,摻雜濃度大於1015個或更多摻雜物/cm3)。於某些實施例中,含有該些已形成凹腔的矽氧化物層412可被形成為複數個絕緣層。舉例來說,該矽氧化物層412可以包括具有該些已形成凹腔的一第一層;以及沒有任何凹腔的一第二連續層,舉例來說,作為用於塌陷模式操作的絕緣層。
該工程基板402可以進一步包含位於該第二矽裝置層410頂端的氧化物層414,其可以代表用以形成該工程基板402的一絕緣體上矽(Silicon-On-Insulator,SOI)晶圓的BOX層。該氧化物層414可以於某些實施例中充當一鈍化層,並且如所示,可被圖樣化而不存在於該些凹腔406上方。接點424以及鈍化層430可被併入於該工程基板402上。該鈍化層430可被圖樣化而允許近接一或更多個接點424,並且可以由任何合宜鈍化材料形成。於某些實施例中,該鈍化層430係由矽氮化物(Si3N4)形成;以及於某些實施例中,係由SiO2和Si3N4的堆疊形成;不過,亦可採用替代物。
該工程基板402和CMOS晶圓404可於接合點416a和416b被接合在一起。該些接合點可以代表共晶接合點,舉例來說,由工程基板 402上的一層和CMOS晶圓404上的一層所組成的共晶接合;或者,可以為本文中所述的任何其它合宜的接合類型(舉例來說,矽化物接合或熱壓接合)。於某些實施例中,接合點416a和416b可以導電,舉例來說,由金屬形成。該些接合點416a可以於某些實施例中單獨充當接合點;並且於某些實施例中,可以形成一密封環,舉例來說,封閉式密封該裝置400的該些超音波換能器,並且改良裝置可靠度。於某些實施例中,該些接合點416a可以定義也會在該工程基板與CMOS晶圓之間提供電連接的一密封環。同樣地,該些接合點416b可以於某些實施例中有兩種用途,舉例來說,充當接合點以及在該工程基板402的該些超音波換能器與該CMOS晶圓404的IC之間提供電連接。於該工程基板沒有和一CMOS晶圓接合的實施例中,該些接合點416b可以提供電連接至該工程基板被接合的一基板上的任何電結構。
該CMOS晶圓404包含一基底層(舉例來說,一本體矽晶圓)418、一絕緣層420(舉例來說,SiO2)、以及一金屬層422。該金屬層422可以由鋁、銅、或是任何其它合宜的金屬化材料形成,並且可以代表該CMOS晶圓中所形成的一積體電路的至少一部分。舉例來說,金屬層422可以充當一路由層,可被圖樣化用以形成一或更多個電極,或者可用於其它功能。實際上,該CMOS晶圓404可以包含多個金屬層及/或經過後製處理的重新分配層,但是,為簡化起見,僅圖解單一金屬層。
該些接合點416b可以於CMOS晶圓404的該金屬層422以及該工程基板的第一矽裝置層408之間提供電連接。依此方式,該CMOS晶圓404的該整合電路系統可以和該工程基板的該些超音波換能器電極及/ 或薄膜進行通訊(舉例來說,發送電訊號至該些電極及/或薄膜及/或從該些電極及/或薄膜處接收電訊號)。於圖中所示實施例中,圖中雖然將一分離的接合點416b圖解為提供電連接至每一個被密封的凹腔(且所以用於每一個超音波換能器);不過,並非所有實施例皆依此方式限制。舉例來說,於某些實施例中,所提供的電接點的數量可以少於超音波換能器的數量。
連接至由第二矽裝置層410所表示的超音波換能器薄膜的電接點於此非限制性範例中係由接點424提供,其可以由金屬或任何其它合宜的導電接點材料形成。於某些實施例中,一電連接線可被提供在該些接點424與該CMOS晶圓上的焊墊426之間。舉例來說,一焊線425可被提供或者一導電材料(舉例來說,金屬)可被沉積在該裝置的上表面上方,並且被圖樣化用以形成從該些接點424至該焊墊426的一導電路徑。然而,亦可以使用替代方式將該些接點424連接至該CMOS晶圓404上的IC。於某些實施例中,一埋置通孔(圖4中未顯示)可從該第一矽裝置層408處被提供至該第二矽裝置層410的底側,因此在該第二矽裝置層410頂側不需要任何接點424。於此些實施例中,合宜的電隔絕可以任何此通孔為基準被提供,用以避免電短路該些第一矽裝置層與第二矽裝置層。
該裝置400還包含隔絕結構(舉例來說,隔絕溝槽)428,被配置成用以電隔絕多群超音波換能器(本文中稱為「超音波換能器元件」),或者,如圖4中所示,多個獨特超音波換能器。該些隔絕結構428可以包含貫穿第一矽裝置層408的溝槽,於某些實施例中,該些溝槽充滿一絕緣材料。或者,該些隔絕結構428可以藉由合宜的摻雜形成。隔絕結構428係非必要。
現在說明裝置400的各項特點。舉例來說,應該明白的係, 該工程基板402和CMOS晶圓404可以一體成形整合,因而用於一體成形整合多個超音波換能器和多個CMOS IC。於所示的實施例中,該些超音波換能器以該CMOS IC為基準被垂直定位(或堆疊),其可以因縮減用以整合該些超音波換能器和CMOS IC所需要的晶片面積而促成形成一小型超音波裝置。
除此之外,該工程基板402還僅包含兩個矽層408和410,該些凹腔406係被形成在它們之間。該第一矽裝置層408和第二矽裝置層410可以為薄型,舉例來說,每一者的厚度小於50微米、厚度小於30微米、厚度小於20微米、厚度小於10微米、厚度小於5微米、厚度小於3微米、或者厚度約2微米、以及其它非限制性範例。於某些實施例中,較佳地,該工程基板中的兩個晶圓中的其中一者(矽層408或矽層410)夠厚,以便最小化振動、防止振動、或者將不必要振動的頻率移到該裝置的操作範圍外面的範圍,從而防止干擾。經由模擬和該CMOS整合的換能器的實體堆疊中的幾何形狀,便能夠以最小的干擾振動針對換能器中心頻率和頻寬最佳化所有層的厚度。這可以包含,但是並不受限於改變該換能器工程基板中的層厚度與特徵圖樣以及改變該CMOS晶圓418中的厚度。此些層厚度亦經過選擇以便利用市售晶圓提供跨越該陣列區域的均勻性,且所以,提供較嚴格的頻率均勻性。該陣列可以為實質上平坦,因為該基板可以缺乏曲率。又,如本文中所述,多個超音波成像模式可被達成,包含通常使用彎曲換能器陣列的超音波成像模式。缺乏基板曲率可於某些實施例中被量化,因為該基板於該陣列中和平面的偏差不大於.5cm,舉例來說,偏差0.2cm、0.1cm、或更小。
因此,當該工程基板可以為薄型時,舉例來說,其厚度可以於某些實施例中為至少4微米、於某些實施例中為至少5微米、於某些實施例中為至少7微米、於某些實施例中為至少10微米、或者其它合宜厚度,以便防止不必要的振動。此些大小有助於達成小型裝置並且可以促成電接觸該超音波換能器薄膜(舉例來說,第二矽裝置層410),而不需要貫矽通孔(Thru-Silicon Via,TSV)。TSV的施行通常複雜且昂貴,且因此,避免使用TSV可以提高製造產量並且降低裝置成本。又,形成TSV需要用到許多商業半導體代工廠所沒有的特殊製造治具,且因此,避免此些治具的需求能夠改良形成該些裝置的供應鏈,使得它們的商業實用性大於使用TSV。
如圖4中所示的工程基板402可以為相對薄型,舉例來說,總厚度小於100微米、總厚度小於50微米、總厚度小於30微米、總厚度小於20微米、總厚度小於10微米、或者任何其它合宜厚度。此些薄型大小的意義包含缺乏結構完整性以及無法以具有此些初始薄型大小的層來實施各種類型製造步驟(舉例來說,晶圓接合、金屬化、微影術、以及蝕刻)。因此,值得注意的係,此些薄型大小可以透過一製程序列於該裝置400中達成。
另外,矽裝置層408和410可以由單晶矽形成。單晶矽的機械特性與電特性為穩定且完全理解,且因此,於一超音波換能器中使用此些材料(舉例來說,作為一CMUT的薄膜)可以促成設計與控制該超音波換能器行為。
於其中一實施例中,在該CMOS晶圓404的一部分和該第一矽裝置層408之間有一間隙,因為該兩者係在分離的接合點416b處被接合,而並非在覆蓋該CMOS晶圓404的整個表面的一接合點處。此間隙的 意義為該第一矽裝置層408如果很薄的話可能會振動。此振動可能非所希望,舉例來說,其代表不必要的振動,不同於該第二矽裝置層410的所希望的振動。據此,於至少某些實施例中,對該第一矽裝置層408而言有利的係夠厚,以便最小化振動、防止振動、或者將任何不必要振動的頻率移到該裝置的操作範圍外面。
於替代實施例中,可能希望該第一矽裝置層408和第二矽裝置層410兩者振動。舉例來說,它們可以被建構成用以呈現不同的共振頻率,因而創造一多頻裝置。舉例來說,該多個共振頻率(於某些實施例中,它們可能和諧振有關)可被使用在一超音波換能器的不同操作狀態中。舉例來說,該第一矽裝置層408可被配置成用以共振於該第二矽裝置層410的中心頻率的一半處。
又,於另一實施例中,矽裝置層410和矽氧化物層412之間的接合強度允許被形成在矽氧化物層412裡面的凹腔406相較於以層410與412之間有較弱接合強度所形成的凹腔406有較大的直徑。一凹腔的直徑於圖4中表示為「w」。接合強度至少部分藉由使用下面的製程來提供,其中:該工程基板402先藉由接合(舉例來說,溫度小於約400℃)兩個晶圓所形成,其中一晶圓含有矽裝置層408,而另一晶圓含有矽裝置層410;接著,進行高溫退火(舉例來說,約1000℃)。相較於利用具有較小直徑的凹腔所施行的超音波換能器於一特殊頻率處所產生的超音波訊號,利用寬凹腔施行的超音波換能器可以產生在相同特殊頻率處具有較高功率的超音波訊號。接著,較高功率的超音波訊號會穿透至正在被成像的受測者的更深處,因而可相較於具有較小凹腔的超音波換能器達成一受測者之較大深度處的高解 析度成像。舉例來說,習知的超音波探棒可能使用高頻超音波訊號(舉例來說,頻率在7至12MHz範圍中的訊號)來產生高解析度影像;但是,因為高頻超音波訊號於正在被成像的受測者的身體中快速衰減的關係,僅可在淺深度處成像。然而,提高一超音波探棒所發射的超音波訊號的功率(舉例來說,如經由使用具有較大直徑的凹腔,可藉由層410與412之間的接合強度達成)則可以讓該些超音波訊號穿透至該受測者的更深處,導致可相較於先前的習知超音波探棒達成該受測者之較大深度處的高解析度成像。
除此之外,相較於具有較小直徑的凹腔,利用較大直徑凹腔所形成的超音波換能器還可以產生較低頻率的超音波訊號。這會延伸該超音波換能器可以操作的頻率範圍。一額外技術可能係選擇性蝕刻與薄化該換能器頂端薄膜410的一部分。這在該換能器薄膜中造成彈簧軟化(spring softening),從而降低中心頻率。這可以以任何圖樣組合於該陣列中的全部、部分、或是沒有任何換能器上完成。
通用超音波裝置的形式
一通用超音波裝置可以任何各式各樣實體配置來施行,舉例來說,包含:作為一內部成像裝置的一部分,例如,要被受測者吞嚥的藥丸或者要被安置在內窺鏡或導管之一端的藥丸;作為一手持式裝置的一部分,其包含用以顯示所取得之影像的螢幕;作為一貼片的一部分,其被配置成被貼附至該受測者;或是作為一手持式探棒的一部分。
於某些實施例中,一通用超音波探棒可被具現在要被受測者吞嚥的一藥丸中。當該藥丸前進通過該受測者時,該藥丸內的超音波探棒 可以對該受測者進行成像並且將所取得的資料以無線方式傳送至一或更多個外部裝置,以便處理接收自該藥丸的資料並且產生該受測者的一或更多個影像。舉例來說,如圖5A中所示,包括一超音波探棒的藥丸502可被配置成以無線方式和外部裝置500通訊,該外部裝置可以為桌上型電腦、膝上型電腦、手持式計算裝置、及/或在藥丸502外部並且被配置成用以處理接收自藥丸502的資料的任何其它裝置。人體可以吞嚥藥丸502,並且當藥丸502前進通過該人體的消化系統時,藥丸502可以從內部對該人體進行成像並且將由該藥丸內的超音波探棒所取得的資料傳送至外部裝置500,用以作進一步處理。於某些實施例中,該藥丸502可以包括一板載記憶體(onboard memory)並且該藥丸502可以將資料儲存於該板載記憶體上,俾使得當該藥丸502離開該人體時,資料可以從該藥丸502處恢復。
於某些實施例中,包括一超音波探棒的藥丸可藉由將該超音波探棒置入一外殼體內來施行,如圖5B中所示的藥丸504的立體視圖所示。圖5C為圖5B中所示的藥丸504的剖視圖,露出電子裝配件和電池的視圖。於某些實施例中,包括一超音波探棒的藥丸可藉由將該超音波探棒包在一外殼體內來施行,如圖5D中所示的藥丸506的立體視圖所示。圖5E為圖5D中所示的藥丸506的爆炸圖,顯示被用來包住電子裝配件510c的外殼部分510a和510b。
於某些實施例中,被施行為藥丸的一部分的超音波探棒可以包括一或多個超音波換能器(舉例來說,CMUT)陣列、一或更多個影像重建晶片、一FPGA、通訊電路系統、以及一或更多個電池。舉例來說,如圖5F中所示,藥丸508a可以包含剖面508b和508c中所示的多個超音波換能器 陣列、如剖面508c和508d中所示的多個影像重建晶片、如剖面508d中所示的Wi-Fi晶片、以及如剖面508d和508e中所示的電池。
圖5G和5H進一步圖解圖5E中所示的電子模組506c的實體配置。如圖5G和5H中所示,電子模組506c包含四個CMUT陣列512(不過,於其它實施例中可以使用更多或較少的CMUT陣列)、焊線囊封劑514、四個影像重建晶片516(不過,於其它實施例中可以使用更多或較少的影像重建晶片)、撓性電路518、Wi-Fi晶片520、FPGA 522、以及電池524。該些電池中每一者可以為13 PR48的尺寸。該些電池中每一者可以為300mAh 1.4V電池。亦可以使用其它電池,本文中所述技術的觀點於此方面並無限制。
於某些實施例中,一藥丸中的超音波探棒的超音波換能器係實體配置為使得該藥丸內的探棒的視場盡可能等於或接近360度。舉例來說,如圖5G和5H中所示,該四個CMUT陣列中每一者可以有約60度的視場(在垂直於該CMUT陣列之表面的扇區的每一側為30度)或是落在40至80度的範圍中的視場,俾便該藥丸因此有約240度的視場或是落在160至320度的範圍中的視場。於某些實施例中,該視場可以為該陣列底下的直線、該探棒空間底下的直線、以及30度開展的梯形或舉例來說介於15度和60度之間的任何數值,以上皆為非限制性範例。
於某些實施例中,一通用超音波探棒可以被被具現在圖6A和6B中所示的一手持式裝置602中。手持式裝置602可以被持握頂住(或靠近)一受測者600並且用來對該受測者進行成像。手持式裝置602可以包括一超音波探棒(舉例來說,一通用超音波探棒)以及顯示器604,於某些實施 例中,其可以為一觸控螢幕。顯示器604可被配置成立用手持式裝置602內的超音波探棒所收集的超音波資料來顯示於裝置602內產生的該受測者的影像。
於某些實施例中,手持式裝置602可以類似聽筒的方式被使用。醫學專業人員可以將手持式裝置602放置在患者身體的各種位置。手持式裝置602內的超音波探棒可以對該患者進行成像。由該超音波探棒取得的資料可被處理並且用來產生該患者的(多個)影像,該(些)影像可透過顯示器604顯示給醫學專業人員。因此,一醫學專業人員可攜帶手持式裝置(舉例來說,放在他們的脖子或口袋),而不必攜帶多個習知探棒,麻煩且不實用。
於某些實施例中,一通用超音波探棒可被具現在可被耦合至患者的一貼片中。舉例來說,圖7A和7B圖解被耦合至患者712的一貼片710。貼片710可被配置成將由該貼片710收集到的資料,舉例來說,以無線方式,傳送至一或更多個外部裝置(圖中未顯示)用以作進一步處理。為達解釋的目的,該貼片710的一頂殼體以透明方式描繪,以便描繪該貼片的各種內部器件的示範性位置。
圖7C和7D所示的係貼片710的爆炸圖。如圖7C中特別圖解,貼片710包含上殼體714、下殼體716、以及電路板718。電路板718可被配置成用以支撐各種器件,例如,散熱片720、電池722、以及通訊電路系統724。於其中一實施例中,通訊電路系統724包含一或更多個短程或長程通訊平台。示範性短程通訊平台包含藍芽(BlueTooth,BT)、低能量藍芽(Bluetooth Low Energy,BLE)、近場通訊(Near-Field Communication,NFC)。 長程通訊平台包含Wi-Fi和蜂巢式通訊。圖中雖然未顯示;但是,該通訊平台可以包含前端無線電、天線、以及被配置成用以將無線電訊號傳送至一輔助裝置(圖中未顯示)的其它處理電路系統。該無線電訊號可以包含貼片710所取得的超音波成像資訊。
於一示範性實施例中,通訊電路系統傳送根據IEEE 802.11和其它現行標準的週期性信標訊號(beacon signal)。該信標訊號可以包含一BLE廣告。在接收該信標訊號或該BLE廣告時,一輔助裝置(圖中未顯示)可以回應貼片710。也就是,對該信標訊號的回應可以在貼片710和該輔助裝置之間啟動一通訊交握。
該輔助裝置可以包含膝上型電腦、桌上型電腦、智慧型電話、或是被配置成用於無線通訊的任何其它裝置。該輔助裝置可以充當連接至雲端或網際網路通訊的一閘道器。於一示範性實施例中,該輔助裝置可以包含患者自己的智慧型裝置(舉例來說,智慧型電話),其通訊耦合至貼片710並且自貼片710處週期性接收超音波資訊。該輔助裝置接著可以將所收到的超音波資訊傳送至外部源。
電路板718可以包括一或更多個處理電路系統,其包含用以指導經由通訊電路系統724的通訊的一或更多個控制器。舉例來說,電路板718可以週期性或依照需要連接通訊電路系統,用以和一或更多個輔助裝置交換資訊。超音波資訊可以包含用以定義被貼片710捕捉的超音波影像的訊號和資訊。超音波資訊還可以包含從該輔助裝置傳送至貼片710的控制參數。該些控制參數可以表示要被貼片710獲得的超音波影像的範圍。
於其中一實施例中,該輔助裝置可以儲存接收自貼片710 的超音波資訊。於另一實施例中,該輔助裝置可以將接收自貼片710的超音波資訊轉送至另一接收站。舉例來說,該輔助裝置可以使用Wi-Fi將接收自貼片710的超音波資訊傳送至一基於雲端的伺服器。該基於雲端的伺服器可以為一醫院伺服器或是醫師可存取的伺服器,用以指導超音波成像。於另一示範性實施例中,貼片710可以發送足夠的超音波資訊給該輔助裝置,俾使得該輔助裝置可以從該資訊建構一超音波影像。依此方式,可以最小化貼片710處的通訊頻寬和功率消耗。
於又一實施例中,該輔助裝置可以經由無線電通訊(也就是,經由通訊電路系統724)連接貼片710,用以主動指導貼片710的操作。舉例來說,該輔助裝置可以指導貼片710於週期性間隔產生患者的超音波影像。該輔助裝置可以指導貼片710所拍攝的超音波影像的深度。於又一範例中,該輔助裝置可以控制該貼片的操作方式,以便保存電池722的功率消耗。在從貼片710處接收超音波資訊時,該輔助裝置可以操作用以中止成像、提高成像率、或是傳送一警示給患者或第三方(舉例來說,醫師或緊急人員)。
應該注意的係,配合圖7所述的通訊平台亦可以本文中所揭的其它形狀因子來施行。舉例來說,該通訊平台(包含控制電路系統和任何介面)可被施行在如圖5A至5H中所示的超音波藥丸中、如圖6A至6B中所示的手持式裝置中、或是如圖8中所示的手持式探棒中。
如圖7C中所示,複數個貫穿通孔726(舉例來說,銅)可用於在散熱片720以及一或更多個影像重建晶片(舉例來說,CMOS)(圖7C中未顯示)之間的熱連接。如圖7C中進一步所示,貼片710亦可以包含敷料 728,其提供用於該貼片殼體以及患者皮膚的一黏著表面。此敷料728的其中一非限制性範例為3M公司販售的透明醫用敷料TegadermTM。下殼體716包含一大體上為矩形形狀的開口730,其對齊敷料728中的另一開口732。
參考圖7D,貼片710的另一「向上開展(bottom up)」爆炸圖圖解電路板718上的超音波換能器和整合CMOS晶片(大體上以734表示)的位置。安置在換能器/CMOS 734上的一聲透鏡736係被配置成用以突穿開口730、732,以便接觸患者的皮膚。圖7A至7D雖然描繪一黏著性敷料728作為將貼片710貼附至患者712的手段;不過,應該明白的係,亦可採用其它緊固裝置。舉例來說,可以使用一綁帶(圖中未顯示)取代敷料728(或者,除了敷料728之外額外使用一綁帶),以便將該貼片710固定在一合宜的成像位置。
於某些實施例中,一通用超音波探棒可被具現在圖8中所示的手持式探棒800。手持式探棒800可被配置成用以將探棒800所收集的資料以無線方式傳送至一或更多個外部主裝置(圖8中未顯示)用以作進一步處理。於其它實施例中,手持式探棒800可被配置成用以將探棒800所收集的資料利用一或更多條有線連接傳送至一或更多個外部裝置,本文中所述技術的觀點於此方面並無限制。
本文中所述技術的某些實施例關於可被配置成用以操作在多種操作模式的任一模式中的一種超音波裝置。該些操作模式中的每一者可以和指定用於操作該超音波裝置的複數個參數數值的一個別配置描述檔相關聯。於某些實施例中,該超音波裝置的操作模式可以由使用者選擇,舉例來說,透過由被通訊耦合至該超音波裝置的一行動計算裝置所呈現的 一圖形使用者介面。接著,該使用者所選定的操作模式的表示符可以被傳送至該超音波裝置,並且該超音波裝置可以:(1)存取和該選定操作模式相關聯的配置描述檔;以及利用該已存取配置描述檔指定的參數數值,用以操作在該選定操作模式中。
據此,某些實施例提供一種系統,其包括:(1)一超音波裝置(舉例來說,一手持式超音波探棒或是一穿戴式超音波探棒),其具有複數個超音波換能器和控制電路系統;以及(2)一計算裝置(舉例來說,一行動計算裝置,例如,智慧型電話),其可以讓使用者選擇該超音波裝置的操作模式(舉例來說,透過被耦合至及/或整合於該計算裝置的一顯示器呈現給使用者的一圖形使用者介面)並且提供該選定操作模式的一指示符給該超音波裝置。接著,超音波裝置中的控制電路系統可以:(1)接收該選定操作模式的指示符;(2)響應於接收該第一操作模式之指示符:取得一第一配置描述檔,其指定和該第一操作模式相關聯的第一組參數數值;以及利用該第一配置描述檔控制該超音波裝置,用以操作在該第一操作模式中;以及(3)響應於接收該第二操作模式的指示符,取得一第二配置描述檔,其指定和該第二操作模式相關聯的第二組參數數值;以及利用該第二配置描述檔控制該超音波裝置,用以操作在該第二操作模式中。
於某些實施例中,不同操作模式的不同配置描述檔包含用於操作該超音波裝置的一或更多個參數的不同參數數值。舉例來說,於某些實施例中,不同的配置描述檔可以指定不同的幅角光圈值、仰角光圈值、幅角聚焦值、仰角聚焦值、換能器偏壓電壓值、傳送尖峰至尖峰電壓值、傳送中心頻率值、接收中心頻率值、極性值、ADC時脈率值、抽取率值、 及/或接收持續長度值。應該明白的係,其它參數可被使用在該些配置描述檔中,例如,接收開始時間、接收偏移、傳送空間振幅、傳送波形、脈衝重複間隔、軸向解析度、聚焦處橫向解析度、聚焦處仰角解析度、以集訊號增益。應該明白的係,兩個不同操作模式的兩個不同配置描述檔可以有不同的任何合宜數量參數數值(舉例來說,至少一個參數數值、至少兩個參數數值、至少五個參數數值、…等),本文中所述技術的觀點於此方面並無限制。該些配置描述檔在上述參數數值及/或任何其它合宜參數數值中的一或更多個參數數值可以不同。不同操作模式的參數數值範例提供於下面表2至4中。表2至4中每一列表示和一個別操作模式相關聯的一特殊配置描述檔的解釋性參數數值。
於一範例中,用於一第一操作模式的第一配置描述檔可以指定一第一幅角光圈值以及用於一第二操作模式的第二配置描述檔可以指定不同於該第一幅角光圈值的一第二幅角光圈值。於另一範例中,用於一第一操作模式的第一配置描述檔可以指定一第一仰角光圈值以及用於一第二操作模式的第二配置描述檔可以指定不同於該第一仰角光圈值的一第二仰角光圈值。用於一操作模式的幅角光圈值和仰角光圈值可以控制該超音波探棒中的換能器陣列的有效光圈大小。當使用在一特殊操作模式中時,該陣列的實際光圈(取決於該陣列的寬度和高度)可以不同於的該陣列的有效光圈。確切地,該換能器裝置可被配置成用以提供多種可能的有效光圈。舉例來說,該些換能器中僅一部分可用於傳送/接收接收超音波訊號,這導致該陣列的有效光圈不同於全部超音波換能器皆被使用時的光圈。於某些實施例中,幅角光圈值和仰角光圈值可用來決定使用哪一個換能器元件子 集來傳送/接收接收超音波訊號。於某些實施例中,幅角光圈值和仰角光圈值可以長度為函數分別表示於該幅角方位和仰角方位中所使用的換能器陣列的範圍。
於另一範例中,用於一第一操作模式的第一配置描述檔可以指定一第一幅角聚焦值以及用於一第二操作模式的第二配置描述檔可以指定不同於該第一幅角聚焦值的一第二幅角聚焦值。於另一範例中,用於一第一操作模式的第一配置描述檔可以指定一第一仰角聚焦值以及用於一第二操作模式的第二配置描述檔可以指定不同於該第一仰角聚焦值的一第二仰角聚焦值。該些幅角聚焦值和仰角聚焦值可以用來在兩個維度中獨立控制該換能器陣列的焦點。因此,可以針對不同的仰角維度和幅角維度選擇不同的聚焦。焦點可以在不同的操作模式之間獨立或一起改變。該些幅角聚焦值和仰角聚焦值可以用來控制該可程式化延遲網格電路系統,用以操作該超音波探棒以便具有由該些幅角聚焦值和仰角聚焦值所定義的焦點。
於另一範例中,用於一第一操作模式的第一配置描述檔可以指定一第一偏壓電壓值(用以偏壓跨越該超音波探棒的一或更多個超音波換能器的電壓)以及用於一第二操作模式的第二配置描述檔可以指定不同於該第一偏壓電壓值的一第二偏壓電壓值。如本文中所述,超音波換能器可以操作在塌陷模式或非塌陷模式中。於某些實施例中,施加至少一臨界偏壓電壓(「塌陷」電壓)跨越一或更多個超音波換能器可以讓此些換能器操作在塌陷模式中。
於另一範例中,用於一第一操作模式的第一配置描述檔可以指定一第一傳送尖峰至尖峰電壓值(舉例來說,用於代表傳送波形的電訊號 的電壓值)以及用於一第二操作模式的第二配置描述檔可以指定不同於該第一傳送尖峰至尖峰電壓值的一第二傳送尖峰至尖峰電壓值。該傳送尖峰至尖峰電壓值可以代表該換能器驅動器的尖峰至尖峰電壓振幅擺幅(以伏特為單位)。不同的尖峰至尖峰電壓擺幅可以使用在不同的操作模式中。舉例來說,用於近場成像的操作模式可以使用較小的尖峰至尖峰電壓擺幅(小於其它操作模式中可以使用的尖峰至尖峰電壓擺幅),以便防止該些接收器於該近場範圍中飽和。較高電壓的尖峰至尖峰電壓擺幅可以用於較深成像,用於產生組織諧波,或者舉例來說,用於以發散波或平面波進行成像。
於另一範例中,用於一第一操作模式的第一配置描述檔可以指定一第一傳送中心頻率值(舉例來說,由該些超音波換能器傳送的超音波訊號的中心頻率)以及用於一第二操作模式的第二配置描述檔可以指定不同於該第一傳送中心頻率值的一第二傳送中心頻率值。於某些實施例中,該第一中心頻率和第二中心頻率之間的差異可以為至少1MHz、至少2MHz、介於5MHz與10MHz之間。於某些實施例中,該第一中心頻率值可以在1至5MHz範圍內以及該第二中心頻率值可以在5至9MHz範圍內。於某些實施例中,該第一中心頻率值可以在2至4MHz範圍內以及該第二中心頻率值可以在6至8MHz範圍內。
於另一範例中,用於一第一操作模式的第一配置描述檔可以指定一第一接收中心頻率值(舉例來說,由該些超音波換能器接收的超音波訊號的中心頻率)以及用於一第二操作模式的第二配置描述檔可以指定不同於該第一接收中心頻率值的一第二接收中心頻率值。於某些實施例中,一配置描述檔可以指定等於該接收中心頻率值的一傳送中心頻率值。於其它 實施例中,一配置描述檔可以指定不等於該接收中心頻率值的一傳送中心頻率值。舉例來說,該接收中心頻率值可以為該傳送頻率值的倍數(舉例來說,可以為該傳送頻率值的兩倍,因為該情況可以在諧波成像的背景中)。於某些實施例中,該些換能器能夠利用約0.1至1MPa內的各種壓力(包含該範圍內的任何數值)在約5至15cm的範圍上進行諧波成像。該壓力可以包含該組織中的諧波振動,該接收器可以在諧波模式接收訊號及/或濾除基頻。
於另一範例中,用於一第一操作模式的第一配置描述檔可以指定一第一極性值以及用於一第二操作模式的第二配置描述檔可以指定不同於該第一極性值的一第二極性值。於某些實施例中,該極性參數可以表示究竟在單極模式中或雙極模式中操作該傳送鏈中的脈衝器(舉例來說,脈衝器208)。在雙極模式中操作脈衝器可以有好處,因為其在某些組織導致較低的二次諧振失真。相反地,在單極模式中操作脈衝器則可以在特定偏壓電壓中提供較大的換能器聲功率。
於另一範例中,用於一第一操作模式的第一配置描述檔可以指定一第一ADC時脈率值(舉例來說,用以操作該超音波裝置中的一或更多個類比至數位轉換器的時脈率)以及用於一第二操作模式的第二配置描述檔可以指定不同於該第一ADC時脈率值的一第二ADC時脈率值。該ADC時脈率值可以用來設定操作該超音波探棒的接收電路系統中一或更多個ADC的速率(舉例來說,圖2中所示的接收電路系統106的ADC 212部件)。
於另一範例中,用於一第一操作模式的第一配置描述檔可以指定一第一抽取率值以及用於一第二操作模式的第二配置描述檔可以指定不同於該第一抽取率值的一第二抽取率值。於某些實施例中,該抽取率值 可以用來設定由該超音波探棒的接收電路系統中一或更多個器件所實施的抽取速率。該抽取率值和該ADC時脈率值共同決定一操作模式中的接收器的頻寬,該頻寬接著定義該操作模式的軸向解析度。此外,該ADC率和該抽取率的比值則提供該操作模式中該接收器的有效取樣率。
於另一範例中,用於一第一操作模式的第一配置描述檔可以指定一第一接收持續長度值以及用於一第二操作模式的第二配置描述檔可以指定不同於該第一接收持續長度值的一第二接收持續長度值。於某些實施例中,該接收持續長度值表示一接收器獲取取樣的時間長度。
於某些實施例中,一超音波探棒可被配置成用以操作在用於心臟成像的操作模式中、用於腹部成像的操作模式中、用於腎臟成像的操作模式中、用於肝臟成像的操作模式中、用於眼睛成像的操作模式中、用於成像頸動脈的操作模式中、用於成像下腔靜脈的操作模式中、及/或用於小部位成像的操作模式中。於某些實施例中,一超音波探棒可被配置成用以操作在此些操作模式的至少一部分操作模式中(舉例來說,至少兩個、至少三個、至少五個、全部),俾使得一使用者可以使用單一超音波探棒實施多種不同類型的成像。這允許單一超音波探棒實施習知技術中僅藉由多種不同超音波探棒可完成的成像工作。
於某些實施例中,使用者可以經由被耦合至(透過有線或無線連接)一超音波探棒的行動計算裝置(舉例來說,智慧型電話)所呈現的一圖形使用者介面來選擇該超音波探棒的操作模式。舉例來說,該圖形使用者介面可以呈現給使用者一操作模式選單(舉例來說,如圖12A和12B中所示)並且使用者可以選擇(舉例來說,藉由觸擊一觸控螢幕、以一滑鼠點擊、… 等)該圖形使用者介面中的其中一項操作模式。接著,該行動計算裝置可以提供該選定操作模式的一指示符給該超音波裝置。該超音波裝置可以取得和該選定操作模式相關聯的一配置描述檔(舉例來說,藉由在該超音波裝置的記憶體中存取該配置描述檔或式從該行動計算裝置處接收該配置描述檔)並且利用其中指定的參數數值操作於該選定操作模式中。
於某些實施例中,該超音波裝置可以提供經由在一特殊操作模式中的操作所取得的資料給該行動計算裝置。該行動計算裝置可以處理所收到的資料用以產生一或更多個超音波影像並且經由該行動計算裝置的顯示器呈現該(些)被產生的超音波影像給該使用者。
於某些實施例中,該複數個超音波換能器包含複數個金屬氧化物半導體(Metal Oxide Semiconductor,MOS)超音波換能器(舉例來說,CMOS超音波換能器)。於某些實施例中,一MOS超音波換能器可以包含被形成在一MOS晶圓中的一凹腔,有一薄膜疊置在該凹腔上方並且密封該凹腔。於某些實施例中,該複數個超音波換能器包含複數個微加工超音波換能器(舉例來說,電容式微加工超音波換能器)。於某些實施例中,該複數個超音波換能器包含複數個壓電式超音波換能器。
於某些實施例中,操作模式的選擇可經由被耦合至(舉例來說,透過有線連接)一手持式超音波探棒的一行動計算裝置被提供至該超音波探棒。於其它實施例中,操作模式的選擇可直接被提供至該超音波探棒。舉例來說,該超音波探棒可以包括用於選擇操作模式的一機械控制機制(舉例來說,切換器、按鈕、轉輪、…等)。於另一範例中,該超音波探棒可以包括一顯示器(舉例來說,如圖6A至B中所示)並且使用該顯示器呈現一GUI 給使用者,該使用者可以經由該GUI選擇用於該超音波探棒的操作模式。
圖9所示的係根據本文中所述技術的某些實施例的圖式,其圖解如何使用一通用超音波裝置來對一受測者進行成像。明確地說,圖9顯示一解釋性超音波系統900,其包括一超音波裝置902,該超音波裝置透過一通訊鏈路912被通訊耦合至計算裝置904。該超音波裝置902可被用來於複數個操作模式中的任何操作模式對受測者901進行成像,本文中提供該些操作模式的範例。
於某些實施例中,用以操作超音波裝置902的操作模式可以由計算裝置904的使用者來選擇。舉例來說,於所示實施例中,計算裝置904包括一顯示器906並且被配置成用以透過顯示器906呈現一圖形使用者介面,該圖形使用者介面包括由不同操作模式(進一步範例顯示在圖12A至B中)組成的一選單910。該圖形使用者介面可以包括用於可被選擇的操作模式中每一者的一GUI元件(舉例來說,圖符、影像、文字、…等)。使用者可以藉由觸擊該計算裝置的螢幕(當該顯示器包括觸控螢幕時)、使用滑鼠、鍵盤、語音輸入、或是任何其它合宜方式來選擇該些被顯示的選單選項中其中一者。在接收使用者的選擇之後,該計算裝置904可以透過通訊鏈路912提供該選定操作模式的一指示符至超音波裝置902。
於某些實施例中,響應於接收自計算裝置904的選定操作模式的一指示符,超音波裝置902可以存取和該操作模式相關聯的一配置描述檔。該配置描述檔可以指定一或更多個參數的數值,該些數值將用於配置該超音波探棒用以作用於該選定的操作模式中。本文中提供此些參數數值的範例。
於某些實施例中,用於該選定模式的配置描述檔可被儲存在超音波探棒902板上(舉例來說,圖13中所示的配置描述檔記憶體1302中)。於其它實施例中,用於該選定模式的配置描述檔可以透過通訊鏈路912從該計算裝置904被提供至該超音波探棒。又,於其它實施例中,一配置模式的該些參數數值中的一或更多者可被儲存在超音波探棒板上,並且該配置模式的一或更多個其它參數數值可以透過通訊鏈路912從該計算裝置904被提供至該超音波探棒。
於某些實施例中,在一特殊操作模式中進行操作期間由該超音波裝置902取得的資料可以透過通訊鏈路912被提供至計算裝置904。該計算裝置904可以處理所接收的資料用以產生一或更多個超音波影像並且透過顯示器906顯示該(些)被產生的超音波影像(舉例來說,如圖14中所示)。
於某些實施例中,超音波探棒902可以為本文中所述任何合宜類型的手持式超音波探棒,舉例來說,包含圖8中所示的超音波探棒。於某些實施例中,該手持式超音波探棒可以包括一顯示器,並且舉例來說,可以為圖6A至6B中所示種類的手持式超音波探棒(於此些實施例中,由計算裝置904所實施的一部分或全部功能可以在該超音波探棒板上實施)。於其它實施例中,超音波探棒902可以為一穿戴式超音波探棒,並且舉例來說,可以為皮膚鑲貼式超音波貼片,例如,圖7A至7D中所示的貼片。
圖13顯示某些實施例中的超音波裝置902的一方塊圖。如圖13中所示,超音波裝置902可以包含參考圖1B所示及所述的器件,包含一或更多個換能器裝置(舉例來說,陣列)102、傳送(TX)電路系統104、接收(RX)電路系統106、一時序和控制電路108、一訊號調整/處理電路110、 一功率管理電路118、及/或一高密度聚焦超音波(HIFU)控制器120。於圖中所示的實施例中,所有圖中所示元件雖然被形成在單一半導體晶粒112上;然而,應該明白的係,於替代實施例中,圖中所示元件中的一或更多者可以位於晶片外。
除此之外,如圖13中所示,超音波裝置902可以包括一配置描述檔記憶體1302,其可以儲存用於個別一或更多個操作模式的一或更多個配置描述檔。舉例來說,於某些實施例中,配置描述檔記憶體1302可以儲存用於一或更多個配置描述檔中每一者的參數數值。於某些實施例中,控制電路系統(舉例來說,電路系統108)可被配置成用以於該配置描述檔記憶體1302中存取一選定配置描述檔的參數數值並且將該超音波探棒的一或更多個其它器件(舉例來說,傳送電路系統、接收電路系統、超音波換能器、…等)配置成用以根據該些經存取的參數數值來操作。
於某些實施例中,計算裝置904可以為一可攜式裝置。舉例來說,計算裝置904可以為行動電話、智慧型電話、平板電腦、或是膝上型電腦。該計算裝置904可以包括一顯示器,其可以為任何合宜類型,及/或可以被通訊耦合至該計算裝置904外部的一顯示器。於其它實施例中,該計算裝置904可以為一固定式裝置(舉例來說,桌上型電腦、機架式電腦、…等)。
於某些實施例中,通訊鏈路912可以為一有線鏈路。於其它實施例中,通訊鏈路912可以為一無線鏈路(舉例來說,藍芽或Wi-Fi連接)。
圖10所示的係根據本文中所述技術的某些實施例之用於操作一通用超音波裝置的解釋性方法1000的流程圖。解釋性方法1000可以由 任何合宜裝置來實施,並且舉例來說,可以由參考圖9所述的超音波裝置902以及計算裝置904來實施。於另一範例中,於某些實施例中,一超音波裝置可以實施方法1000的所有動作。
方法1000從動作1002開始,於該處,顯示多種操作模式的一圖形使用者介面(GUI)被顯示在一顯示器上。該顯示器可以為被通訊耦合至一超音波探棒的一計算裝置的一部分(舉例來說,一行動智慧型電話的顯示器)。該GUI可以包含用於該多種操作模式中每一者的一GUI元件(舉例來說,圖符、影像、文字部分、選單選項、…等)。於某些實施例中,舉例來說,代表一項操作的每一個GUI元件可以由使用者以手指或尖筆觸擊(當該顯示器係觸控螢幕時)及/或點擊來選擇。除此之外,或者,一GUI元件可以經由鍵盤輸入及/或語音輸入被選擇,本文中所述技術的觀點於此方面並無限制。
於某些實施例中,該GUI可以由在該計算裝置上執行的一應用程式來產生。舉例來說,該GUI可以藉由在一行動智慧型電話上執行的應用程式「app」來產生。該應用程式可被配置成用以不僅產生且顯示該GUI,還可以在動作1004處接收使用者的操作模式選擇結果並且在動作1006處提供該使用者選擇結果的一指示符給該超音波裝置。除此之外,於某些實施例中,該應用程式可被配置成用以接收由該超音波裝置所收集的資料、利用該資料產生一或更多個超音波影像、以及利用該行動計算裝置的顯示器來顯示該(些)被產生的超音波影像。於其它實施例中,該應用程式可以接收在一超音波裝置板上產生的(多個)超音波影像(而非本身產生該(些)超音波影像)並且顯示它們。
圖11所示的係可被顯示為動作1002之一部分的一範例GUI 1100。該GUI 1100包括第一部分1102,其含有代表不同操作模式的GUI元件1104、1106、1108、以及1110。GUI 1100雖然顯示一有四個操作模式的選單,這僅係用於解釋,而沒有限制意義,因為一GUI可以顯示任何合宜數量的操作模式。再者,於某些實施例中,一GUI可以顯示該些操作模式的一部分並且,舉例來說,允許使用者藉由以任何其它合宜方式捲動或瀏覽該GUI來顯現額外的操作模式。該解釋性GUI 1100還包括第二部分1112,其顯示對應於「取消」選項的GUI元件,該選項允許使用者退選顯示在第一部分1102中的任何操作模式。
圖12A所示的係可被顯示為動作1002之一部分的另一範例GUI 1202。該GUI 1202包括對應於個別操作模式的多個可選擇GUI元件,其包含分別對應於用於實施腹部成像、小部位成像、心臟成像、肺部成像、以及眼睛成像的GUI元件1204、1206、1208、以及1210。「商家預置(Shop Preset)」GUI元件1214讓使用者(經由購買)下載用於額外(多個)操作模式的一或更多個配置描述檔。在該些額外配置描述檔被下載之後,它們便可被用來控制該超音波裝置操作於該(些)額外的操作模式中。GUI 1202也包含對應於「取消」選項的一GUI元件1216,其可以允許使用者退選顯示在GUI 1202中的任何操作模式。
除此之外,如圖12A中所示,GUI 1202包含一操作模式指示符1218,其包含一反白的操作模式。當使用者捲動通過不同的操作模式時(舉例來說,藉由掃過一觸控螢幕、利用滑鼠或鍵盤捲動、…等),不同的操作模式可以藉由操作模式指示符1218來反白。使用者可以選擇一反白的 操作模式(舉例來說,藉由觸擊、點擊、…等)。該GUI可以響應而提供該使用者的選擇結果視覺確認給該使用者。舉例來說,如圖12B中所示,在使用者選擇心臟操作模式之後,該GUI藉由改變該操作模式指示符的顏色而提供該使用者的選擇結果視覺確認。應該明白的係,一操作模式指示符未必經由包圍用以辨識該模式之文字的有色方塊或其它形狀來施行。舉例來說,於某些實施例中,一操作模式指示符可以藉由有底線的文字、改變文字的大小、改變字體大小、斜體文字、及/或任何其它合宜方式來提供。於某些實施例中的操作模式指示符雖然可以為視覺來提供;但是,於其它實施例中,該操作模式指示符亦可被提供為一音頻指示符(舉例來說,經由播放用以指示該操作模式的錄音或合成語音)。同樣地,一選擇結果的視覺確認可以任何合宜方式被提供至該使用者;並且於某些實施例中,除了該視覺確認之外,亦可提供一音頻確認,或是以音頻確認取代該視覺確認。
在動作1002處顯示該之後,方法1000前進至動作1004,於該處,因為使用者選擇該些操作模式中其中一者,該操作模式的使用者選擇結果係被接收(舉例來說,被計算裝置904接收)。如討論,使用者可以藉由使用觸控螢幕、滑鼠、鍵盤、語音輸入、及/或任何其它合宜方式經由該GUI選擇該些操作模式中其中一者。
接著,方法1000前進至動作1006,於該處,該選定操作模式的一指示符被提供至該超音波裝置。舉例來說,該選定操作模式的一指示符可以由計算裝置904提供至超音波裝置902。該指示符可以任何合宜格式被提供,本技術的觀點於此方面並無限制。於某些實施例中,該指示符可以包含和該些選定操作模式相關聯的一配置描述檔的至少一部分(舉例來 說,全部)。舉例來說,該指示符可以包含用於該選定操作模式的一或更多個參數數值。然而,於其它實施例中,該指示符可以包含用以辨識該選定操作模式的資訊,而不包含用於該模式的任何參數數值,該些參數數值可被儲存在該超音波裝置板上。
接著,在動作1008處,該超音波裝置取得該選定操作模式的一配置描述檔。於某些實施例中,該配置描述檔可被儲存在該超音波裝置板上的至少一記憶體中(舉例來說,圖13中所示的配置描述檔記憶體1302)。於其它實施例中,該配置描述檔的至少一部分(舉例來說,該些參數數值的至少一部分)可以從一外部裝置被提供至該超音波探棒(舉例來說,計算裝置904可以將該選定操作模式的配置描述檔的至少一或全部傳送至超音波探棒902)。
接著,在動作1010處,於該已取得的配置描述檔中的參數數值可被用來將該超音波裝置配置成用以操作在該選定模式中。為達此目的,該些參數數值可被用來配置該超音波裝置的一或更多個器件,為達此目的,該些參數數值可被載入一或更多個暫存器、記憶體、以及類似物之中,於該選定操作模式中進行操作期間,該超音波探棒電路系統可以從該些位置運用該些參數數值。
接著,在動作1012處,該超音波裝置可以利用該選定操作模式的該配置描述檔中所指定的參數數值被操作在該選定操作模式中。舉例來說,於某些實施例中,一超音波裝置的控制電路系統(舉例來說,圖13中所示的控制電路系統108)可以利用該配置描述檔中所指定的參數數值來控制該超音波探棒的一或更多個器件(舉例來說,波形產生器、可程式化延 遲網格電路系統、傳送電路系統、接收電路系統、…等)。
如本文中所述,由一超音波探棒所取得的資料可經處理用以產生一超音波影像。於某些實施例中,由一超音波探棒所取得的資料可被提供至一計算裝置(舉例來說,計算裝置904)並且經處理用以產生一或更多個超音波影像。接著,該(些)超音波影像可以經由該計算裝置的一顯示器呈現給使用者。
圖14所示的係一圖形使用者介面1400的一範例,其被配置成用以顯示一或更多個超音波影像(舉例來說,單一超音波影像、一系列的超音波影像或是多個超音波影像組成的影片)給使用者。於圖14的範例中,GUI 1400在影像部1406中顯示超音波影像。除了超音波影像之外,GUI 1400可以包含其它組成,例如,狀態列1402、比例尺1404、以及可選擇的選項1408、1410、1412、以及1414。
於某些實施例中,狀態列1402可以顯示和該超音波裝置的狀態有關的資訊,例如,操作頻率及/或電池壽命指示符。於某些實施例中,比例尺1404可以顯示影像部1406的比例。比例尺1404可以顯示影像部1406的比例。比例尺1404可以對應於配合影像部1406顯示的深度、大小、或是任何其它合宜參數。於某些實施例中,影像部1406可被顯示而沒有比例尺1404。
於某些實施例中,可選擇的選項1408可以讓使用者存取一或更多個預設的操作模式,選擇自該超音波裝置的一或更多個操作模式。可選擇的選項1410可以讓使用者拍攝影像部1406的靜態影像。可選擇的選項1412可以讓使用者記錄影像部1406的視訊。可選擇的選項1414可以讓 使用者存取該超音波裝置的該些操作模式中的任何或全部操作模式。於某些實施例中,該些可選擇的選項1408、1410、1412、以及1414可被顯示;而於其它實施例中全部不會顯示。
如上面所述,於某些實施例中,一超音波探棒可以操作在多個操作模式的其中一種操作模式中,每一個操作模式和一個別配置描述檔相關聯。用於一操作模式的配置描述檔可以指定被該超音波探棒使用以便運作在該操作模式中的一或更多個參數數值。下面所示表2至4圖解用於複數個解釋性操作模式的配置描述檔中的參數數值。一特殊配置描述檔的參數數值顯示在所有三個表的一特殊列中(為方便表現起見,顯示所有參數數值的單一表被分割成三個表,前面兩行重複出現在每一個表中,以便簡化交叉參考)。據此,表2至4中的每一列皆指定用於一特殊操作模式的配置描述檔的參數數值。舉例來說,用於腹部成像的操作模式的參數數值可以在表2的第一列、表3的第一列、以及表4的第一列中發現。於另一範例中,用於甲狀腺成像的操作模式的參數數值可以在表2的最末列、表3的最末列、以及表4的最末列中發現。
從表2至4中可以明白,某些參數數值在多種模式中雖然不同;但是,某些參數數值在多種模式中則可以相同,不同模式的所有參數數值並非完全互不相同。然而,在任何兩個給定操作模式中的一或更多個參數數值係不相同。應該明白的係,表2至4中所示數值為可能參數的範例。適合該些操作模式的任何數值範圍皆可採用;舉例來說,針對所列的任何數值,可以使用落在+/-20%內的替代數值。
表2所示的係多種操作模式的參數數值,其包含:(1)「TX Frequency(Hz)」參數的參數數值,其表示傳送中心頻率值,並且於此範例中係以赫茲來表示;(2)「TX #cycles」參數的參數數值,其可以表示換能器陣列我使用的傳送循環的次數;(3)「TX Az.Focus(m)」參數的參數數值,其可以表示幅角聚焦值,並且於此範例中係以公尺來表示;(4)「TX El.Focus(m)」參數的參數數值,其可以表示仰角聚焦值,並且於此範例中係以公尺來表示;(5)「TX Az.F#」參數的參數數值,其可以表示傳送器幅角的F數(並且可以幅角聚焦值除以幅角光圈值來取得);(6)「TX El.F#」參數的參數數值,其可以表示傳送器仰角的F數(並且可以仰角聚焦值除以仰角光圈值來取得);以及(7)「TX Az.Aperture(m)」參數的參數數值,其可以表示幅角光圈值,並且於此範例中係以公尺來表示。於某些實施例中,「TX Az.Aperture(m)」參數的範圍可以從1.8至3.5cm(舉例來說,從1.9至3.4cm或是從2.0至3.3cm)。表2還包含「TX El.Aperture(m)」的欄位,為達簡化的目的,重複出現在表3中,並且於下面配合表3作進一步說明。
表3所示的係多種操作模式的額外參數數值,其包含:(1) 「TX El.Aperture(m)」參數的參數數值,其可以表示仰角光圈值,並且於此範例中係以公尺來表示。於某些實施例中,「TX El.Aperture(m)」參數的範圍可以從1.5至2.5cm(舉例來說,從1.75至2.25cm);(2)「Bias Voltage(V)」參數的參數數值,其可以表示換能器偏壓電壓值,並且於此範例中係以伏特來表示;(3)「TX Pk-Pk Voltage(V)」參數的參數數值,其可以表示傳送尖峰至尖峰電壓值,並且於此範例中係以伏特來表示;以及(4)「Bipolar?」參數的參數數值,其可以表示極性值,並且於此範例中為單極或雙極。
表4所示的係多種操作模式的額外參數數值,其包含:(1)「RX Frequency(Hz)」參數的參數數值,其表示接收中心頻率值,並且於此範例中係以赫茲來表示;(2)「ADC Rate(Hz)」參數的參數數值,其可以表示ADC時脈率值,並且於此範例中係以赫茲來表示;(3)「Decimation Rtae」參數的參數數值,其可以表示抽取率值;(4)「Bandwidth(Hz)」參數的參數數 值,其可以表示接收器的頻寬,並且於此範例中係以赫茲來表示;(5)「Low(Hz)」參數的參數數值以及「High(Hz)」參數的參數數值,其分別表示操作頻率範圍的低截止頻率和高截止頻率,並且於此範例中係以赫茲來表示;(6)「RX Depth(m)」參數的參數數值,其可以公尺來提供;以及(7)「RX Duration(μs)」參數的參數數值,其可以表示接收器持續長度值,並且於此範例中係以微秒來表示。
如先前所述,於至少某些實施例中,不同的操作模式可以達成或具備不同解析度。舉例來說,表2至4中反映的操作模式可以提供範圍介於300μm和2,000μm之間以及其它範圍的軸向解析度,包含該範圍內的任何數值。該些相同操作模式可以提供介於200μm和5,000μm之間以及其它範圍的聚焦橫向解析度,包含該範圍內的任何數值。該些相同操作模式可以提供介於300μm和7,000μm之間以及其它範圍的聚焦仰角解析度,包含該範圍內的任何數值。於一非限制性範例中,第一種「abdomen」模式可以提供約400μm的軸向解析度,約2,000μm的聚焦橫向解析度,以及約 2,700μm的聚焦仰角解析度。相反地,「interleave_cardiac_flow_color」模式可以提供約1,700μm的軸向解析度,約900μm的聚焦橫向解析度,以及約7,000μm的聚焦仰角解析度。這些代表非限制性範例。
如已述,根據本申請案之觀點的超音波裝置(舉例來說,探棒)可使用在具有各種相關聯頻率範圍和深度的各種模式中。因此,根據本文中各項觀點的超音波裝置可用於產生不同的超音波射束。為解釋此點,現在配合圖15至17說明不同的非限制範例。本文中所述的超音波裝置可以於至少某些實施例中產生通常和線形、扇形、曲線形(凸形)、以及機械掃描(移動)探棒相關聯的二或更多個超音波射束類型(舉例來說,射束形狀)。於至少某些實施例中,根據本申請案觀點的超音波探棒可以產生通常和所有線形、扇形、曲線形、以及機械掃描探棒相關聯的超音波射束。
圖15所示的係根據本申請案的一非限制性實施例的超音波探棒的射束形狀的其中一範例。如圖15中所示,該超音波探棒可以運用由換能器陣列1500所產生的一線形射束形狀1502。應該明白的係,射束形狀1502可以基於一空間區域中的累積幅角傳送強度。藉由獲取多個仰角傳送角度及/或聚焦並且同調加總它們,該幅角射束形狀會有效地變成一窄片。該射束形狀1502的腰部深度可以基於所使用的頻率衰減被固定在一適當的位置處。於某些實施例中,一線形射束形狀1502可以使用在3至7MHz處、5至12MHz處、或是7至15MHz處。該線形射束形狀1502可以在高頻處提供較高的解析度以及較淺的成像。
圖16所示的係根據一非限制性實施例的超音波探棒的射束形狀的另一範例。如圖16中所示,該超音波探棒可以運用由換能器陣列1500 所產生的一扇形射束形狀1602。應該明白的係,射束形狀1602可以基於一空間區域中的累積幅角傳送強度。於某些實施例中,一扇形射束形狀1602可以使用在1至3MHz處、2至5MHz處、或是3.6至10MHz處。舉例來說,此些頻率範圍可以用於心臟、腹部、骨盆腔、或是胸椎成像。於某些實施例中,該扇形射束形狀1602可以適合深組織成像。
圖17所示的係一超音波探棒的射束形狀的另一範例。如圖17中所示,該超音波探棒可以運用由換能器陣列1500所產生的一3D射束形狀1702。應該明白的係,射束形狀1702可以基於一空間區域中的累積幅角傳送強度。於某些實施例中,一3D射束形狀1702可以使用在3.5至6.5MHz處或是7.5至11MHz處。於某些實施例中,該3D射束形狀1702可以為電子掃描/掃過一扇形或曲線形輪廓,而沒有機械掃描該探棒。於某些實施例中,該3D射束形狀1702可以適合3D體積成像。
根據本申請案的至少某些實施例,一超音波探棒可以產生圖15至17中所示的所有射束形狀,並且可能產生額外的射束形狀。舉例來說,換能器陣列1500可以產生圖15A至15C中所示的所有射束形狀。又,如本文中已述,該各種操作模式以及該各種相關聯的射束形狀可以一實質上扁平的超音波換能器陣列來產生。因此,於至少某些實施例中,通常和一曲線形換能器陣列相關聯的射束形狀可以以一實質上扁平的超音波換能器排列來達成。
至此已說明本揭示內容中提出之技術的數項觀點和實施例,應該明白的係,熟習本技術的人士便可輕易進行各種變更、修正、以及改良。此些變更、修正、以及改良預期落在本文中所述技術的精神和範 疇內。舉例來說,熟習本技術的人士便可輕易設計各式各樣其它構件及/或結構來實施該項功能及/或達成該些結果及/或本文中所述優點的一或更多項優點,並且此些變更及/或修正中的每一者均被視為落在本文中所述實施例的範疇內。熟習本技術的人士便明瞭,或者僅利用常規試驗便能夠確認本文中所述特定實施例的許多等效例。所以,應該瞭解的係,前面實施例僅透過範例被提出並且發明實施例可以在隨附申請專利範圍的範疇及其等效範疇內以本文中明確說明以外的方式來實行。此外,本文中所述的二或更多項特點、系統、物件、材料、套件、及/或方法的任何組合係涵蓋於本揭示內容的範疇內,只要此些特點、系統、物件、材料、套件、及/或方法沒有相互不一致。
上面所述實施例能夠以任何眾多方式施行。涉及處理或方法之效能的本揭示內容的一或更多項觀點及實施例可以運用可由一裝置(舉例來說,電腦、處理器、或是其它裝置)執行的程式指令來實施或控制該些處理或方法的效能。就此方面來說,各種發明概念可被具現為以一或更多個程式編碼的一種電腦可讀取儲存媒體(或是多種電腦可讀取儲存媒體)(舉例來說,電腦記憶體、一或更多片磁碟片、小型碟片、光碟片、磁帶、快閃記憶體、可場程式化閘陣列或其它半導體裝置中的電路配置、或是其它有形電腦儲存媒體),當該一或更多個程式在一或更多部電腦或其它處理器上被執行時會實施施行上面所述各種實施例之一或更多者的方法。該或該些電腦可讀取媒體為可運送,俾便儲存於其中的一或更多個程式會被載入至一或更多部不同電腦或其它處理器,以便施行上面所述觀點的各項觀點。於某些實施例中,電腦可讀取媒體為非暫時性媒體。
本文中所使用的術詞「程式」或「軟體」係上位意義,用以表示任何類型電腦碼或電腦可執行指令集,其能夠被用來程式化一電腦或其它處理器,以便施行上面所述各項觀點。除此之外,應該明白的係,根據其中一項觀點,當被執行時實施本揭示內容之方法的一或更多個電腦程式不需要駐存在單一電腦或處理器中;而可以模組方式分散在數部不同電腦或處理器中,以便施行本揭示內容的各項觀點。
電腦可執行的指令可以有許多形式,例如,程式模組,由一或更多部電腦或其它裝置執行。一般來說,程式模組包含常式、程式、物件、組件、資料結構、…等,其實施特殊工作或施行特殊的抽象資料類型。一般來說,該些程式模組的功能可以於各種實施例中如所希的方式組合或分散。
另外,資料結構可以任何合宜形式儲存在電腦可讀取媒體中。為達簡化解釋的目的,資料結構可被顯示為具有經由該資料結構中的位置而相關的欄位。此些關係同樣可以藉由指派一電腦可讀取媒體中傳達該些欄位之關係的位置來儲存該些欄位而達成。然而,任何合宜的機制皆可用來建立一資料結構的欄位中的資訊之間的關係,包含使用建立資料元素之間的關係的指標、標籤、或是其它機制。當以軟體施行時,該軟體碼能夠在任何合宜處理器或處理器群中被執行,不論係被提供在單一電腦中或是分散在多部電腦。
進一步言之,應該明白的係,電腦可以任何數種形式來具現,諸如機架式電腦、桌上型電腦、膝上型電腦、或是平板電腦的非限制性範例。除此之外,電腦亦可被具現在通常不被視為電腦但卻具有合宜處 理能力的裝置中,其包含:個人數位助理(Personal Digital Assistant,PDA)、智慧型電話、或是任何其它合宜的可攜式或固定式電子裝置。
另外,電腦可以有一或更多個輸入與輸出裝置。此些裝置也能夠用於呈現使用者介面。能夠被用來提供使用者介面的輸出裝置的範例包含用於視覺呈現輸出的印表機或顯示螢幕以及用於聽覺呈現輸出的揚聲器或是其它聲音產生裝置。能夠用於使用者介面的輸入裝置的範例包含鍵盤,以及指標裝置,例如,滑鼠、觸控板、以及數位板。於另一範例中,電腦可以經由語音辨識或是其它聲音格式來接收輸入資訊。
此些電腦可以任何合宜形式藉由一或更多個網路互連,該些網路包含區域網路或廣域網路,例如,企業網路,以及智能網路(Intelligent Network,IN)或網際網路。此些網路可以基於任何合宜技術並且可以根據任何合宜協定來操作並且包含無線網路、有線網路、或是光纖網路。
下面的非限制示範性實施例係被提供用以解釋本揭示內容的發明觀點。
範例1係關於一種超音波裝置,其包括:一超音波探棒,包含一半導體晶粒以及整合於該半導體晶粒上的複數個超音波換能器,該複數個超音波換能器被配置成用以操作在和第一頻率範圍相關聯的一第一模式中以及和第二頻率範圍相關聯的一第二模式中,其中,該第一頻率範圍至少部分不重疊該第二頻率範圍;以及控制電路系統,被配置成用以:控制該複數個超音波換能器用以響應於接收於該第一模式中操作該超音波探棒的一指示符而產生及/或偵測頻率在該第一頻率範圍中的超音波訊號;以及控制該複數個超音波換能器,用以響應於接收於該第二模式中操作該超 音波探棒的一指示符而產生及/或偵測頻率在該第二頻率範圍中的超音波訊號。
範例2係關於範例1的超音波裝置,其中,該第一頻率範圍的寬度係至少1MHz以及該第二頻率範圍的寬度係至少1MHz。
範例3係關於範例1的超音波裝置,其中,該第一頻率範圍的第一中心頻率和該第一頻率範圍的第二中心頻率之間的差異為至少1MHz。
範例4係關於範例3的超音波裝置,其中,該差異為至少2MHz。
範例5係關於範例4的超音波裝置,其中,該差異介於約6MHz與約9MHz之間。
範例6係關於範例1的超音波裝置,其中,該第一頻率範圍完全內含在1至5MHz的範圍內。
範例7係關於範例6的超音波裝置,其中,該第一頻率範圍完全內含在2至4MHz的範圍內。
範例8係關於範例1的超音波裝置,其中,該第二頻率範圍完全內含在5至9MHz的範圍內。
範例9係關於範例8的超音波裝置,其中,該第二頻率範圍完全內含在6至8MHz的範圍內。
範例10係關於範例1的超音波裝置,該複數個超音波換能器進一步被配置成用以操作在和第三頻率範圍相關聯的一第三模式中,該第三頻率範圍至少部分不重疊該第一頻率範圍和該第二頻率範圍,且其 中,該控制電路系統進一步被配置成用以:控制該複數個超音波換能器用以響應於接收於該第三模式中操作該超音波探棒的一指示符而產生及/或偵測頻率在該第三頻率範圍中的超音波訊號。
範例11係關於範例10的超音波裝置,其中,該第一頻率範圍完全內含在1至3MHz的範圍內,該第二頻率範圍完全內含在3至7MHz的範圍內,以及該第三頻率範圍完全內含在7至15MHz的範圍內。
範例12係關於範例1的超音波裝置,其中:當該複數個超音波換能器被控制用以偵測頻率在該第一頻率範圍中的超音波訊號時,被該複數個超音波換能器偵測到的超音波訊號係被用來形成在受測者之第一深度處的受測者的影像;以及當該複數個超音波換能器被控制用以偵測頻率在該第二頻率範圍中的超音波訊號時,被該複數個超音波換能器偵測到的超音波訊號係被用來形成在受測者之第二深度處的受測者的影像,其中,該第二深度小於該第一深度。
範例13係關於範例12的超音波裝置,其中,該第一深度內含在和該受測者表面相隔8至25cm的範圍內。
範例14係關於範例13的超音波裝置,其中,該第一深度內含在和該受測者表面相隔15至20cm的範圍內。
範例15係關於範例12的超音波裝置,其中,該第二深度內含在和該受測者表面相隔3至7cm的範圍內。
範例16係關於範例1的超音波裝置,其中,該複數個超音波換能器係電容式超音波換能器,且其中,該控制電路系統被配置成用以控制該複數個超音波換能器,用以至少部分藉由讓該複數個超音波換能器 操作在塌陷模式中而產生及/或偵測頻率在該第二頻率範圍中的超音波訊號,其中,該複數個超音波換能器的一薄膜的至少一部分為機械性固定並且該薄膜的至少一部分為自由以便以一電極和該薄膜之間的變化電壓差為基礎振動。
範例17係關於範例1的超音波裝置,其中,該控制電路系統被配置成用以:響應於於該第一頻率範圍中操作該超音波探棒的指示符而讓一第一電壓被施加至該複數個超音波換能器;以及響應於於該第二頻率範圍中操作該超音波探棒的指示符而讓一第二電壓被施加至該複數個超音波換能器,其中,該第二電壓高於該第一電壓。
範例18係關於範例17的超音波裝置,其中,該第二電壓大於該複數個超音波換能器的塌陷電壓,該塌陷電壓包括讓一超音波換能器的薄膜接觸該超音波換能器的一凹腔的底部的電壓。
範例19係關於範例18的超音波裝置,其中,該塌陷電壓係至少30伏特。
範例20係關於範例1的超音波裝置,其中,該複數個超音波換能器包含多個超音波換能器,它們之中至少一者被配置成用以產生在該第一頻率範圍中的超音波訊號以及在該第二頻率範圍中的超音波訊號。
範例21係關於範例1的超音波裝置,其中,該複數個超音波換能器包含複數個CMOS超音波換能器。
範例22係關於範例21的超音波裝置,其中,該複數個CMOS超音波換能器包含一第一CMOS超音波換能器,其包含被形成在CMOS晶圓中的一凹腔,有一薄膜疊置在該凹腔上方並且密封該凹腔。
範例23係關於範例1的超音波裝置,其中,該複數個超音波換能器包含複數個微加工超音波換能器。
範例24係關於範例23的超音波裝置,其中,該複數個微加工超音波換能器包含複數個電容式微加工超音波換能器。
範例25係關於範例23的超音波裝置,其中,該複數個微加工超音波換能器包含複數個壓電式超音波換能器。
範例26係關於範例1的超音波裝置,其中,該超音波探棒進一步包括一手持式裝置。
範例27係關於範例26的超音波裝置,其中,該手持式裝置進一步包括一顯示器。
範例28係關於範例26的超音波裝置,其中,該手持式裝置進一步包括一觸控螢幕。
範例29係關於範例1的超音波裝置,其中,該超音波探棒包括一貼片,其被配置成用以貼附至受測者。
範例30係關於一種皮膚鑲貼式超音波貼片,其包括:一一體成形超音波晶片,包含一半導體晶粒以及整合於該半導體晶粒上的複數個超音波換能器,該複數個超音波換能器中至少一者被配置成用以操作在和第一頻率範圍相關聯的一第一模式中以及和第二頻率範圍相關聯的一第二模式中,其中,該第一頻率範圍至少部分不重疊該第二頻率範圍;以及一敷料,被配置成用以接收與保持該超音波晶片,該敷料進一步被配置成用以耦合至患者的身體。
範例31係關於範例1的超音波貼片,其中,該一體成形超 音波晶片進一步包括一控制電路系統,其被配置成用以控制該複數個超音波換能器,用以響應於接收於該第一模式中操作該超音波探棒的一指示符而產生及/或偵測頻率在該第一頻率範圍中的超音波訊號;以及控制該複數個超音波換能器,用以響應於接收於該第二模式中操作該超音波探棒的一指示符而產生及/或偵測頻率在該第二頻率範圍中的超音波訊號。
範例32係關於範例31的超音波貼片,其中,該控制電路系統定義一CMOS電路系統。
範例33係關於範例30的超音波貼片,其中,該敷料進一步包括一黏著層,用以將該貼片耦合至患者的身體。
範例34係關於範例30的超音波貼片,其中,其進一步包括一外殼,用以接收該一體成形超音波晶片,該外殼有一上方部和一下方部,其中,該下殼部進一步包括一光圈,用以曝露該些超音波換能器至該患者的身體。
範例35係關於範例30的超音波貼片,其進一步包括一通訊平台,用以和該超音波晶片交換超音波訊號。
範例36係關於範例30的超音波貼片,其進一步包括一電路板,用以接收該超音波晶片。
範例37係關於範例30的超音波貼片,其進一步包括一通訊平台,用以和一外部通訊裝置通訊。
範例38係關於範例37的超音波貼片,其中,該通訊平台係選擇自近場通訊(NFC)、藍芽(BT)、低能量藍芽(BLE)、以及Wi-Fi所組成的群之中。
範例39係關於一種穿戴式超音波裝置,其包括:一超音波晶片,包含一超音波換能器陣列,每一個超音波換能器定義一電容式微加工超音波換能器(CMUT),可操作用以傳收訊號;以及一敷料,用以接收與保持該超音波晶片,該敷料進一步被配置成用以耦合至患者的身體;其中,該超音波換能器陣列進一步包括被配置成用以操作在塌陷模式中的第一複數個CMUT以及被配置成用以操作在非塌陷模式中的第二複數個CMUT。
範例40係關於範例39的穿戴式超音波裝置,其中,該超音波晶片進一步包括一控制電路系統,其被配置成用以控制該複數個超音波換能器,用以響應於接收於該第一模式中操作該超音波探棒的一指示符而產生及/或偵測頻率在該第一頻率範圍中的超音波訊號;以及控制該複數個超音波換能器,用以響應於接收於該第二模式中操作該超音波探棒的一指示符而產生及/或偵測頻率在該第二頻率範圍中的超音波訊號。
範例41係關於範例40的穿戴式超音波裝置,其中,該超音波晶片定義一固態裝置。
範例42係關於範例39的穿戴式超音波裝置,其中,該超音波換能器被配置成用以當操作在塌陷模式中時產生一第一頻帶並且用以當操作在非塌陷模式中時產生一第二頻帶。
範例43係關於範例39的穿戴式超音波裝置,其中,該超音波晶片被配置成用以在塌陷操作模式和非塌陷操作模式之間切換。
範例44係關於範例39的穿戴式超音波裝置,其進一步包括一通訊平台,用以和一外部通訊裝置通訊。
範例45係關於範例44的穿戴式超音波裝置,其中,該通訊 平台係選擇自近場通訊(NFC)、藍芽(BT)、低能量藍芽(BLE)、以及Wi-Fi所組成的群之中。
範例46係關於範例45的穿戴式超音波裝置,其中,該通訊平台從一輔助裝置接收成像指令並且響應於該等被接收的指令傳送一或更多個超音波影像至該輔助裝置。
範例47係關於範例39的穿戴式超音波裝置,其中,該敷料進一步包括一開口,用以容納相鄰該超音波換能器陣列的一光學透鏡。
根據本發明的某些觀點,提供一種系統,其包括:一多模式超音波探棒,被配置成用以操作在和個別複數個配置描述檔相關聯的複數個操作模式中;以及一計算裝置,被耦合至該多模式超音波探棒並且被配置成用以響應於接收表示使用者所選擇之操作模式的輸入而讓該多模式超音波探棒操作於該選定操作模式中。
於某些實施例中,該複數個操作模式包含和指定第一組參數數值的第一配置描述檔相關聯的一第一操作模式以及和指定不同於該第一組參數數值的第二組參數數值的第二配置描述檔相關聯的一第二操作模式。
於某些此等實施例中,該計算裝置藉由提供該選定操作模式的一指示符至該多模式超音波探棒而讓該多模式超音波探棒操作於一選定操作模式中。
於某些此等實施例中,該多模式超音波探棒包括複數個超音波換能器以及控制電路系統,該控制電路系統被配置成用以:響應於從該計算裝置處接收該第一操作模式的指示符而取得一第一配置描述檔,其指 定和該第一操作模式相關聯的第一組參數數值;以及利用該第一配置描述檔控制該超音波裝置,用以操作在該第一操作模式中,以及響應於從該計算裝置處接收該第二操作模式的指示符而取得一第二配置描述檔,其指定和該第二操作模式相關聯的第二組參數數值,該第二組參數數值不同於該第一組參數數值;以及利用該第二配置描述檔控制該超音波裝置,用以操作在該第二操作模式中。
於某些此等實施例中,該第一組參數數值指定一第一幅角光圈值以及該第二組參數數值指定不同於該第一幅角光圈值的第二幅角光圈值,並且該控制電路系統被配置成用以控制該複數個超音波換能器,以便至少部分藉由使用該第一幅角光圈值操作在該第一操作模式中並且至少部分藉由使用該第二幅角光圈值操作在該第二操作模式中。
於某些此等實施例中,該第一組參數數值指定一第一仰角光圈值以及該第二組參數數值指定不同於該第一仰角光圈值的第二仰角光圈值,並且該控制電路系統被配置成用以控制該複數個超音波換能器,以便至少部分藉由使用該第一仰角光圈值操作在該第一操作模式中並且至少部分藉由使用該第二仰角光圈值操作在該第二操作模式中。
於某些此等實施例中,該第一組參數數值指定一第一幅角聚焦值以及該第二組參數數值指定不同於該第一幅角聚焦值的第二幅角聚焦值,並且該控制電路系統被配置成用以控制該複數個超音波換能器,以便至少部分藉由使用該第一幅角聚焦值操作在該第一操作模式中並且至少部分藉由使用該第二幅角聚焦值操作在該第二操作模式中。
於某些此等實施例中,該第一組參數數值指定一第一仰角聚 焦值以及該第二組參數數值指定不同於該第一仰角聚焦值的第二仰角聚焦值,並且該控制電路系統被配置成用以控制該複數個超音波換能器,以便至少部分藉由使用該第一仰角聚焦值操作在該第一操作模式中並且至少部分藉由使用該第二仰角聚焦值操作在該第二操作模式中。
於某些此等實施例中,該第一組參數數值指定用於該複數個超音波換能器中至少一者的一第一偏壓電壓值以及該第二組參數數值指定用於該複數個超音波換能器中至少一者的一第二偏壓電壓值,該第二偏壓電壓值不同於該第一偏壓電壓值,並且該控制電路系統被配置成用以控制該複數個超音波換能器,以便至少部分藉由使用該第一偏壓電壓值操作在該第一操作模式中並且至少部分藉由使用該第二偏壓電壓值操作在該第二操作模式中。
於某些此等實施例中,該第一組參數數值指定一第一傳送尖峰至尖峰電壓值以及該第二組參數數值指定不同於該第一傳送尖峰至尖峰電壓值的一第二傳送尖峰至尖峰電壓值,並且該控制電路系統被配置成用以控制該複數個超音波換能器,以便至少部分藉由使用該第一傳送尖峰至尖峰電壓值操作在該第一操作模式中並且至少部分藉由使用該第二傳送尖峰至尖峰電壓值操作在該第二操作模式中。
於某些此等實施例中,該第一組參數數值指定一第一傳送中心頻率值以及該第二組參數數值指定不同於該第一傳送中心頻率值的一第二傳送中心頻率值,並且該控制電路系統被配置成用以控制該複數個超音波換能器,以便至少部分藉由使用該第一傳送中心頻率值操作在該第一操作模式中並且至少部分藉由使用該第二傳送中心頻率值操作在該第二操作 模式中。
於某些此等實施例中,該第一組參數數值指定一第一接收中心頻率值以及該第二組參數數值指定不同於該第一接收中心頻率值的一第二接收中心頻率值,並且該控制電路系統被配置成用以控制該複數個超音波換能器,以便至少部分藉由使用該第一接收中心頻率值操作在該第一操作模式中並且至少部分藉由使用該第二接收中心頻率值操作在該第二操作模式中。
於某些此等實施例中,該第一組參數數值指定一第一極性值以及該第二組參數數值指定不同於該第一極性值的一第二極性值,並且該控制電路系統被配置成用以控制該複數個超音波換能器,以便至少部分藉由使用該第一極性值操作在該第一操作模式中並且至少部分藉由使用該第二極性值操作在該第二操作模式中。
於某些此等實施例中,該手持式超音波探棒進一步包括一類比至數位轉換器(ADC),該第一組參數數值指定一第一ADC時脈率值以及該第二組參數數值指定不同於該第一ADC時脈率值的一第二ADC時脈率值,並且該控制電路系統被配置成用以控制該複數個超音波換能器,以便至少部分藉由在該第一ADC時脈率值處操作該ADC而操作在該第一操作模式中並且至少部分藉由在該第二ADC時脈率值處操作該ADC而操作在該第二操作模式中。
於某些此等實施例中,該第一組參數數值指定一第一抽取率值以及該第二組參數數值指定不同於該第一抽取率值的一第二抽取率值,並且該控制電路系統被配置成用以控制該複數個超音波換能器,以便至少 部分藉由使用該第一抽取率值操作在該第一操作模式中並且至少部分藉由使用該第二抽取率值操作在該第二操作模式中。
於某些此等實施例中,該第一組參數數值指定一第一接收持續長度值以及該第二組參數數值指定不同於該第一接收持續長度數值的一第二接收持續長度數值,並且該控制電路系統被配置成用以控制該複數個超音波換能器,以便至少部分藉由使用該第一接收持續長度數值操作在該第一操作模式中並且至少部分藉由使用該第二接收持續長度數值操作在該第二操作模式中。
於某些實施例中,該多模式超音波探棒係一手持式超音波探棒。
於某些實施例中,該計算裝置係一移動式計算裝置。
根據本申請案的某些觀點提供一種用於控制一多模式超音波探棒的操作的方法,該多模式超音波探棒被配置成用以操作在和個別複數個配置描述檔相關聯的複數個操作模式中,該方法包括:於一計算裝置處接收表示使用者所選擇之操作模式的輸入;以及利用和該選定操作模式相關聯的一配置描述檔所指定的參數數值讓該多模式超音波探棒操作於該選定操作模式中。
根據本申請案的某些觀點提供一種系統,其包括:一超音波裝置,包括複數個超音波換能器以及控制電路系統;以及一計算裝置,具有至少一電腦硬體處理器以及至少一記憶體,該計算裝置被通訊耦合至一顯示器並且被通訊耦合至該超音波裝置,該至少一電腦硬體處理器被配置成用以:透過該顯示器呈現一圖形使用者介面(GUI),顯示代表用於該超音 波裝置的個別複數個操作模式的複數個GUI元件,該複數個操作模式包括第一操作模式與第二操作模式;響應於透過該GUI所接收之表示該第一操作模式或該第二操作模式的選擇結果的輸入,提供該選定操作模式的一指示符給該超音波裝置,其中,該控制電路系統被配置成用以:響應於接收該第一操作模式的指示符,取得一第一配置描述檔,其指定和該第一操作模式相關聯的第一組參數數值;以及利用該第一配置描述檔控制該超音波裝置,用以操作在該第一操作模式中,以及響應於接收該第二操作模式的指示符,取得一第二配置描述檔,其指定和該第二操作模式相關聯的第二組參數數值,該第二組參數數值不同於該第一組參數數值;以及利用該第二配置描述檔控制該超音波裝置,用以操作在該第二操作模式中。
於某些實施例中,該第一組參數數值指定一第一幅角光圈值以及該第二組參數數值指定不同於該第一幅角光圈值的第二幅角光圈值,並且該控制電路系統被配置成用以控制該複數個超音波換能器,以便至少部分藉由使用該第一幅角光圈值操作在該第一操作模式中並且至少部分藉由使用該第二幅角光圈值操作在該第二操作模式中。
於某些實施例中,該第一組參數數值指定一第一仰角光圈值以及該第二組參數數值指定不同於該第一仰角光圈值的第二仰角光圈值,並且該控制電路系統被配置成用以控制該複數個超音波換能器,以便至少部分藉由使用該第一仰角光圈值操作在該第一操作模式中並且至少部分藉由使用該第二仰角光圈值操作在該第二操作模式中。
於某些實施例中,該第一組參數數值指定一第一幅角聚焦值以及該第二組參數數值指定不同於該第一幅角聚焦值的第二幅角聚焦值, 並且該控制電路系統被配置成用以控制該複數個超音波換能器,以便至少部分藉由使用該第一幅角聚焦值操作在該第一操作模式中並且至少部分藉由使用該第二幅角聚焦值操作在該第二操作模式中。
於某些實施例中,該第一組參數數值指定一第一仰角聚焦值以及該第二組參數數值指定不同於該第一仰角聚焦值的第二仰角聚焦值,並且該控制電路系統被配置成用以控制該複數個超音波換能器,以便至少部分藉由使用該第一仰角聚焦值操作在該第一操作模式中並且至少部分藉由使用該第二仰角聚焦值操作在該第二操作模式中。
於某些實施例中,該第一組參數數值指定用於該複數個超音波換能器中至少一者的一第一偏壓電壓值以及該第二組參數數值指定用於該複數個超音波換能器中至少一者的一第二偏壓電壓值,該第二偏壓電壓值不同於該第一偏壓電壓值,並且該控制電路系統被配置成用以控制該複數個超音波換能器,以便至少部分藉由使用該第一偏壓電壓值操作在該第一操作模式中並且至少部分藉由使用該第二偏壓電壓值操作在該第二操作模式中。
於某些實施例中,該第一組參數數值指定一第一傳送尖峰至尖峰電壓值以及該第二組參數數值指定不同於該第一傳送尖峰至尖峰電壓值的一第二傳送尖峰至尖峰電壓值,並且該控制電路系統被配置成用以控制該複數個超音波換能器,以便至少部分藉由使用該第一傳送尖峰至尖峰電壓值操作在該第一操作模式中並且至少部分藉由使用該第二傳送尖峰至尖峰電壓值操作在該第二操作模式中。
於某些實施例中,該第一組參數數值指定一第一傳送中心頻 率值以及該第二組參數數值指定不同於該第一傳送中心頻率值的一第二傳送中心頻率值,並且該控制電路系統被配置成用以控制該複數個超音波換能器,以便至少部分藉由使用該第一傳送中心頻率值操作在該第一操作模式中並且至少部分藉由使用該第二傳送中心頻率值操作在該第二操作模式中。
於某些此等實施例中,該第一中心頻率值與第二中心頻率值之間的差值為至少1MHz。
於某些此等實施例中,該差值為至少2MHz。
於某些此等實施例中,該差值介於5MHz和10MHz之間。
於某些此等實施例中,該第一中心頻率值係在1至5MHz內並且該第二中心頻率值係在5至9MHz內。
於某些此等實施例中,該第一中心頻率值係在2至4MHz內並且該第二中心頻率值係在6至8MHz內。
於某些此等實施例中,該第一中心頻率值係在6至8MHz內並且該第二中心頻率值係在12至15MHz內。
於某些實施例中,該第一組參數數值指定一第一接收中心頻率值以及該第二組參數數值指定不同於該第一接收中心頻率值的一第二接收中心頻率值,並且該控制電路系統被配置成用以控制該複數個超音波換能器,以便至少部分藉由使用該第一接收中心頻率值操作在該第一操作模式中並且至少部分藉由使用該第二接收中心頻率值操作在該第二操作模式中。
於某些此等實施例中,該第一組參數數值進一步指定等於該 第一接收中心頻率值的一第一傳送中心頻率值。
於某些此等實施例中,該第一組參數數值進一步指定不等於該第一接收中心頻率值的一第一傳送中心頻率值。
於某些此等實施例中,該第一接收中心頻率值係該第一傳送中心頻率值的倍數。
於某些此等實施例中,該第一接收中心頻率值係該第一傳送中心頻率值的約略兩倍。
於某些實施例中,該第一組參數數值指定一第一極性值以及該第二組參數數值指定不同於該第一極性值的一第二極性值,並且該控制電路系統被配置成用以控制該複數個超音波換能器,以便至少部分藉由使用該第一極性值操作在該第一操作模式中並且至少部分藉由使用該第二極性值操作在該第二操作模式中。
於某些實施例中,該超音波裝置進一步包括一類比至數位轉換器(ADC),該第一組參數數值指定一第一ADC時脈率值以及該第二組參數數值指定不同於該第一ADC時脈率值的一第二ADC時脈率值,並且該控制電路系統被配置成用以控制該複數個超音波換能器,以便至少部分藉由在該第一ADC時脈率值處操作該ADC而操作在該第一操作模式中並且至少部分藉由在該第二ADC時脈率值處操作該ADC而操作在該第二操作模式中。
於某些實施例中,該第一組參數數值指定一第一抽取率值以及該第二組參數數值指定不同於該第一抽取率值的一第二抽取率值,並且該控制電路系統被配置成用以控制該複數個超音波換能器,以便至少部分 藉由使用該第一抽取率值操作在該第一操作模式中並且至少部分藉由使用該第二抽取率值操作在該第二操作模式中。
於某些實施例中,該第一組參數數值指定一第一接收持續長度值以及該第二組參數數值指定不同於該第一接收持續長度數值的一第二接收持續長度數值,並且該控制電路系統被配置成用以控制該複數個超音波換能器,以便至少部分藉由使用該第一接收持續長度數值操作在該第一操作模式中並且至少部分藉由使用該第二接收持續長度數值操作在該第二操作模式中。
於某些實施例中,該複數個GUI元件包括代表下面至少兩者的GUI元件:用於心臟成像的操作模式、用於腹部成像的操作模式、用於小部位成像的操作模式、用於肺部成像的操作模式、用於眼睛成像的操作模式、用於血管成像的操作模式、用於3D成像的操作模式、用於剪切成像的操作模式、或是用於都卜勒成像的操作模式。
於某些實施例中,該顯示器係一觸控螢幕,並且該計算裝置被配置成用以透過該觸控螢幕接收表示該選擇的輸入。
於某些實施例中,該控制電路系統被配置成藉由從該計算裝置處接收該第一配置描述檔來取得它。
於某些實施例中,該控制電路系統被配置成藉由在該超音波裝置的記憶體中存取該第一配置描述檔來取得它。
於某些實施例中,該控制電路系統被配置成用以在該第一操作模式中操作該超音波裝置並且將經由該超音波裝置在該第一操作模式中的操作所取得的資料提供至該計算裝置。
於某些此等實施例中,該至少一電腦硬體處理器被配置成用以:從該資料產生一超音波影像;以及透過該顯示器顯示該超音波影像。
於某些實施例中,該計算裝置包括該顯示器。
於某些實施例中,該計算裝置係一行動裝置。
於某些實施例中,該計算裝置係一智慧型電話。
於某些實施例中,該計算裝置係一手持式超音波探棒。
於某些實施例中,其中,該超音波裝置係一穿戴式超音波裝置。
於某些實施例中,該複數個超音波換能器包含複數個金屬氧化物半導體(MOS)超音波換能器。
於某些實施例中,該複數個MOS超音波換能器包含一第一MOS超音波換能器,其包含被形成在一MOS晶圓中的一凹腔,有一薄膜疊置在該凹腔上方並且密封該凹腔。
於某些實施例中,該複數個超音波換能器包含複數個微加工超音波換能器。
於某些實施例中,該複數個超音波換能器包含複數個電容式微加工超音波換能器。
於某些實施例中,該複數個超音波換能器包含複數個壓電式超音波換能器。
於某些實施例中,該複數個超音波換能器包括被排列在二維排列中之介於5000個與15000個之間的超音波換能器。
根據本申請案的某些觀點提供一種方法,其包括:透過一圖 形使用者介面接收用於一超音波裝置的操作模式的選擇結果,該超音波裝置被配置成用以操作在包含第一操作模式和第二操作模式的複數個模式中;響應於接收一第一操作模式的選擇結果,取得一第一配置描述檔,其指定和該第一操作模式相關聯的第一組參數數值;以及利用該第一配置描述檔控制該超音波裝置,用以操作在該第一操作模式中,以及響應於接收該第二操作模式的選擇結果,取得一第二配置描述檔,其指定和該第二操作模式相關聯的第二組參數數值,該第二組參數數值不同於該第一組參數數值;以及利用該第二配置描述檔控制該超音波裝置,用以操作在該第二操作模式中。
根據本申請案的某些觀點提供一種手持式多模式超音波探棒,其被配置成用以操作在和個別複數個配置描述檔相關聯的複數個操作模式中,該手持式超音波探棒包括:複數個超音波換能器;以及控制電路系統,其被配置成用以:接收一選定操作模式的指示符;存取和該選定操作模式相關聯的的一配置描述檔;以及利用該已存取配置描述檔中指定的參數數值控制該手持式多模式超音波探棒,用以操作在該選定操作模式中。
根據本申請案的某些觀點提供一種能夠操作在包含第一操作模式和第二操作模式的複數個操作模式中的一種超音波裝置,該超音波裝置包括:複數個超音波換能器;以及控制電路系統,其被配置成用以:接收一選定操作模式的指示符;響應於確定該選定操作模式為該第一操作模式而取得一第一配置描述檔,其指定和該第一操作模式相關聯的第一組參數數值;以及利用該第一配置描述檔控制該超音波裝置,用以操作在該第一操作模式中,以及響應於接收該第二操作模式的指示符,響應於確定 該選定操作模式為該第二操作模式而取得一第二配置描述檔,其指定和該第二操作模式相關聯的第二組參數數值,該第二組參數數值不同於該第一組參數數值;以及利用該第二配置描述檔控制該超音波裝置,用以操作在該第二操作模式中。
於某些實施例中,該超音波裝置包括一種機械控制機制,用於在該複數個操作模式中選擇一操作模式。
於某些實施例中,該超音波裝置包括一顯示器並且該超音波裝置被配置成用以產生一圖形使用者介面(GUI),以便在該複數個模式中選擇一操作模式並且經由該顯示器呈現該已產生的GUI。
於某些實施例中,該第一組參數數值指定一第一幅角光圈值以及該第二組參數數值指定不同於該第一幅角光圈值的第二幅角光圈值,並且該控制電路系統被配置成用以控制該複數個超音波換能器,以便至少部分藉由使用該第一幅角光圈值操作在該第一操作模式中並且至少部分藉由使用該第二幅角光圈值操作在該第二操作模式中。
於某些實施例中,該第一組參數數值指定一第一仰角光圈值以及該第二組參數數值指定不同於該第一仰角光圈值的第二仰角光圈值,並且該控制電路系統被配置成用以控制該複數個超音波換能器,以便至少部分藉由使用該第一仰角光圈值操作在該第一操作模式中並且至少部分藉由使用該第二仰角光圈值操作在該第二操作模式中。
於某些實施例中,該第一組參數數值指定一第一幅角聚焦值以及該第二組參數數值指定不同於該第一幅角聚焦值的第二幅角聚焦值,並且該控制電路系統被配置成用以控制該複數個超音波換能器,以便至少 部分藉由使用該第一幅角聚焦值操作在該第一操作模式中並且至少部分藉由使用該第二幅角聚焦值操作在該第二操作模式中。
於某些實施例中,該第一組參數數值指定一第一仰角聚焦值以及該第二組參數數值指定不同於該第一仰角聚焦值的第二仰角聚焦值,並且該控制電路系統被配置成用以控制該複數個超音波換能器,以便至少部分藉由使用該第一仰角聚焦值操作在該第一操作模式中並且至少部分藉由使用該第二仰角聚焦值操作在該第二操作模式中。
於某些實施例中,該第一組參數數值指定用於該複數個超音波換能器中至少一者的一第一偏壓電壓值以及該第二組參數數值指定用於該複數個超音波換能器中至少一者的一第二偏壓電壓值,該第二偏壓電壓值不同於該第一偏壓電壓值,並且該控制電路系統被配置成用以控制該複數個超音波換能器,以便至少部分藉由使用該第一偏壓電壓值操作在該第一操作模式中並且至少部分藉由使用該第二偏壓電壓值操作在該第二操作模式中。
於某些實施例中,該第一組參數數值指定一第一傳送尖峰至尖峰電壓值以及該第二組參數數值指定不同於該第一傳送尖峰至尖峰電壓值的一第二傳送尖峰至尖峰電壓值,並且該控制電路系統被配置成用以控制該複數個超音波換能器,以便至少部分藉由使用該第一傳送尖峰至尖峰電壓值操作在該第一操作模式中並且至少部分藉由使用該第二傳送尖峰至尖峰電壓值操作在該第二操作模式中。
於某些實施例中,該第一組參數數值指定一第一傳送中心頻率值以及該第二組參數數值指定不同於該第一傳送中心頻率值的一第二傳 送中心頻率值,並且該控制電路系統被配置成用以控制該複數個超音波換能器,以便至少部分藉由使用該第一傳送中心頻率值操作在該第一操作模式中並且至少部分藉由使用該第二傳送中心頻率值操作在該第二操作模式中。
於某些實施例中,該第一組參數數值指定一第一接收中心頻率值以及該第二組參數數值指定不同於該第一接收中心頻率值的一第二接收中心頻率值,並且該控制電路系統被配置成用以控制該複數個超音波換能器,以便至少部分藉由使用該第一接收中心頻率值操作在該第一操作模式中並且至少部分藉由使用該第二接收中心頻率值操作在該第二操作模式中。
於某些實施例中,該第一組參數數值指定一第一極性值以及該第二組參數數值指定不同於該第一極性值的一第二極性值,並且該控制電路系統被配置成用以控制該複數個超音波換能器,以便至少部分藉由使用該第一極性值操作在該第一操作模式中並且至少部分藉由使用該第二極性值操作在該第二操作模式中。
於某些實施例中,該超音波裝置包括一類比至數位轉換器(ADC),該第一組參數數值指定一第一ADC時脈率值以及該第二組參數數值指定不同於該第一ADC時脈率值的一第二ADC時脈率值,並且該控制電路系統被配置成用以控制該複數個超音波換能器,以便至少部分藉由在該第一ADC時脈率值處操作該ADC而操作在該第一操作模式中並且至少部分藉由在該第二ADC時脈率值處操作該ADC而操作在該第二操作模式中。
於某些實施例中,該第一組參數數值指定一第一抽取率值以及該第二組參數數值指定不同於該第一抽取率值的一第二抽取率值,並且該控制電路系統被配置成用以控制該複數個超音波換能器,以便至少部分藉由使用該第一抽取率值操作在該第一操作模式中並且至少部分藉由使用該第二抽取率值操作在該第二操作模式中。
於某些實施例中,該第一組參數數值指定一第一接收持續長度值以及該第二組參數數值指定不同於該第一接收持續長度數值的一第二接收持續長度數值,並且該控制電路系統被配置成用以控制該複數個超音波換能器,以便至少部分藉由使用該第一接收持續長度數值操作在該第一操作模式中並且至少部分藉由使用該第二接收持續長度數值操作在該第二操作模式中。
於某些實施例中,該複數個操作模式包括:用於心臟成像的操作模式、用於腹部成像的操作模式、用於小部位成像的操作模式、用於肺部成像的操作模式、以及用於眼睛成像的操作模式。
於某些實施例中,該超音波裝置係一手持式超音波探棒。
於某些實施例中,其中,該超音波裝置係一穿戴式超音波裝置。
於某些實施例中,該複數個超音波換能器包含複數個金屬氧化物半導體(MOS)超音波換能器。
於某些實施例中,該複數個超音波換能器包含複數個電容式微加工超音波換能器。
根據本申請案的某些觀點提供被通訊耦合至超音波裝置的 一種行動計算裝置,該行動計算裝置包括:至少一電腦硬體處理器;一顯示器;以及至少一非暫時性電腦可讀取的儲存媒體,用以儲存一應用程式,當被該至少一電腦硬體處理器執行時會讓該至少一電腦硬體處理器:產生一圖形使用者介面(GUI),具有代表用於該多模式超音波裝置的個別複數個操作模式的複數個GUI元件;透過該顯示器呈現該GUI;透過該GUI接收表示該複數個操作模式中其中一者的選擇結果的輸入;以及提供該選定操作模式的指示符給該超音波裝置。
於某些實施例中,該複數個GUI元件包括代表下面的GUI元件:用於心臟成像的操作模式、用於腹部成像的操作模式、用於小部位成像的操作模式、用於肺部成像的操作模式、用於眼睛成像的操作模式。
於某些實施例中,該顯示器係一觸控螢幕,並且該行動計算裝置被配置成用以透過該觸控螢幕接收表示該選擇的使用者輸入。
於某些實施例中,該至少一電腦硬體處理器進一步被配置成用以:接收在該選定操作模式中操作期間由該超音波裝置所取得的資料;從該資料產生至少一超音波影像;以及透過該顯示器顯示該至少一已產生的超音波影像。

Claims (16)

  1. 一種超音波裝置,其包含:一超音波換能器陣列,其中,每一個超音波換能器進一步包括一電容式微加工換能器(CMUT);一波形產生器,用以和該陣列中的超音波換能器中的一或更多者通訊,該波形產生器被配置成用以產生要經由該一或更多個超音波換能器被通訊的複數個波形;以及一控制器,其經建構以:響應於接收操作於第一非塌陷模式的操作的一指示符,而控制在所述陣列中的一組超音波換能器操作於所述第一非塌陷模式以產生及/或偵測具有頻率在大約1-5MHz的第一頻率範圍中的超音波訊號;響應於接收操作於第二塌陷模式的操作的一指示符,而控制在所述陣列中的該組超音波換能器操作於所述第二塌陷模式以產生及/或偵測具有頻率在大約3-7MHz的第二頻率範圍中的超音波訊號;以及響應於接收操作於第三塌陷模式的操作的一指示符,而控制在所述陣列中的該組超音波換能器操作於所述第三塌陷模式以產生及/或偵測具有頻率在大約5-12MHz的第三頻率範圍中的超音波訊號。
  2. 根據申請專利範圍第1項的超音波裝置,其中,第一組輸出頻率具有大約3MHz的尖峰功率頻率。
  3. 根據申請專利範圍第1項的通用超音波裝置,其中,第一組組輸出頻率的功率穿透至受測者裡面約10至25cm的深度。
  4. 根據申請專利範圍第1項的超音波裝置,其中,該第二塌陷模式具有至少30伏特的相關塌陷模式電壓。
  5. 根據申請專利範圍第1項的超音波裝置,其中,該超音波裝置定義一體成形晶片組。
  6. 根據申請專利範圍第5項的超音波裝置,其中該一體成形晶片組是固態裝置。
  7. 根據申請專利範圍第1項的超音波裝置,其中所述第一頻率範圍整個被包含在2-4MHz的範圍之中。
  8. 根據申請專利範圍第1項的超音波裝置,其中該控制器進一步經建構以:導致第一電壓被施加到該組超音波換能器,以響應於該指示符而將所述超音波裝置操作於該第一非塌陷模式的操作;以及導致第二電壓被施加到該組超音波換能器,以響應於該指示符而將所述超音波裝置操作於該第二塌陷模式的操作,其中該第二電壓高於該第一電壓。
  9. 根據申請專利範圍第8項的超音波裝置,其中該第二電壓大於用於該組超音波換能器的塌陷電壓,該塌陷電壓包含一電壓,所述電壓造成一超音波換能器的一薄膜與所述超音波換能器的凹腔的底部接觸。
  10. 根據申請專利範圍第9項的超音波裝置,其中該塌陷電壓是至少30伏特。
  11. 一種使用超音波裝置獲得音波影像的方法,該超音波裝置包含一超音波換能器陣列,每一個超音波換能器具有一電容式微加工超音波換能器(CMUT),該方法包含:響應於接收將該超音波裝置操作於第一非塌陷模式的一指示符,藉由將在該超音波換能器陣列中的一超音波換能器群組操作於該第一非塌陷模式以產生及/或偵測具有頻率在大約1-5MHz的第一頻率範圍中的超音波訊號;響應於接收將該超音波裝置操作於第二塌陷模式的一指示符,藉由將在該超音波換能器陣列中的該超音波換能器群組操作於該第二塌陷模式以產生及/或偵測具有頻率在大約3-7MHz的第二頻率範圍中的超音波訊號;以及響應於接收將該超音波裝置操作於第三塌陷模式的一指示符,藉由將在該超音波換能器陣列中的該超音波換能器群組操作於該第三塌陷模式以產生及/或偵測具有頻率在大約5-12MHz的第三頻率範圍中的超音波訊號。
  12. 根據申請專利範圍第11項的方法,其進一步包含選擇該第一、第二和第三模式中的一個作為所希望的體內穿透深度的函數。
  13. 根據申請專利範圍第11項的方法,其中所述第一頻率範圍具有大約3MHz的尖峰功率頻率。
  14. 根據申請專利範圍第11項的方法,其進一步包含:導致第一電壓被施加到該超音波換能器群組,以響應於該指示符而將所述超音波裝置操作於該第一非塌陷模式的操作;以及導致第二電壓被施加到該組超音波換能器群組,以響應於該指示符而將所述超音波裝置操作於該第二塌陷模式的操作,其中該第二電壓高於該第一電壓。
  15. 根據申請專利範圍第14項的方法,其中該第二電壓是大於用於該超音波換能器群組的塌陷電壓,該塌陷電壓包含一電壓,所述電壓造成一超音波換能器的一薄膜與該超音波換能器的凹腔的底部接觸。
  16. 根據申請專利範圍第15項的方法,其中該塌陷電壓是至少30伏特。
TW106120361A 2016-06-20 2017-06-19 通用超音波裝置及相關設備和方法 TWI652046B (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201662352337P 2016-06-20 2016-06-20
US62/352,337 2016-06-20
US15/415,434 US10856840B2 (en) 2016-06-20 2017-01-25 Universal ultrasound device and related apparatus and methods
US15/415,434 2017-01-25

Publications (2)

Publication Number Publication Date
TW201801679A TW201801679A (zh) 2018-01-16
TWI652046B true TWI652046B (zh) 2019-03-01

Family

ID=60661491

Family Applications (2)

Application Number Title Priority Date Filing Date
TW106120361A TWI652046B (zh) 2016-06-20 2017-06-19 通用超音波裝置及相關設備和方法
TW108101834A TWI713977B (zh) 2016-06-20 2017-06-19 通用超音波裝置及相關設備和方法

Family Applications After (1)

Application Number Title Priority Date Filing Date
TW108101834A TWI713977B (zh) 2016-06-20 2017-06-19 通用超音波裝置及相關設備和方法

Country Status (9)

Country Link
US (3) US10856840B2 (zh)
EP (2) EP3471622B1 (zh)
JP (2) JP7101126B2 (zh)
KR (1) KR20190020101A (zh)
CN (2) CN114652344A (zh)
AU (2) AU2017281012B2 (zh)
CA (1) CA3026277A1 (zh)
TW (2) TWI652046B (zh)
WO (1) WO2017222964A1 (zh)

Families Citing this family (74)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018031714A1 (en) 2016-08-11 2018-02-15 Foundry Innovation & Research 1, Ltd. Systems and methods for patient fluid management
US10905393B2 (en) 2015-02-12 2021-02-02 Foundry Innovation & Research 1, Ltd. Implantable devices and related methods for heart failure monitoring
WO2017024051A1 (en) 2015-08-03 2017-02-09 Foundry Innovation & Research 1, Ltd. Devices and methods for measurement of vena cava dimensions, pressure, and oxygen saturation
US10959702B2 (en) 2016-06-20 2021-03-30 Butterfly Network, Inc. Automated image acquisition for assisting a user to operate an ultrasound device
US11712221B2 (en) 2016-06-20 2023-08-01 Bfly Operations, Inc. Universal ultrasound device and related apparatus and methods
US10856840B2 (en) 2016-06-20 2020-12-08 Butterfly Network, Inc. Universal ultrasound device and related apparatus and methods
US11206992B2 (en) 2016-08-11 2021-12-28 Foundry Innovation & Research 1, Ltd. Wireless resonant circuit and variable inductance vascular monitoring implants and anchoring structures therefore
US11701018B2 (en) 2016-08-11 2023-07-18 Foundry Innovation & Research 1, Ltd. Wireless resonant circuit and variable inductance vascular monitoring implants and anchoring structures therefore
WO2018089949A1 (en) * 2016-11-11 2018-05-17 Ursus Medical Designs, Llc Diagnostic ultrasound monitoring system and method
EP3725214A1 (en) 2016-11-29 2020-10-21 Foundry Innovation & Research 1, Ltd. Wireless resonant circuit and variable inductance vascular implants for monitoring patient vasculature system
US10835205B2 (en) * 2016-12-06 2020-11-17 Gerardo Rodriquez Stand-alone continuous cardiac doppler pulse monitoring patch with integral visual and auditory alerts, and patch-display system and method
US11944495B2 (en) 2017-05-31 2024-04-02 Foundry Innovation & Research 1, Ltd. Implantable ultrasonic vascular sensor
US11779238B2 (en) 2017-05-31 2023-10-10 Foundry Innovation & Research 1, Ltd. Implantable sensors for vascular monitoring
KR20200019959A (ko) 2017-06-19 2020-02-25 버터플라이 네트워크, 인크. 초음파 애플리케이션들용 메시 기반의 디지털 마이크로 빔 형성
WO2018237267A1 (en) 2017-06-23 2018-12-27 Butterfly Network, Inc. DIFFERENTIAL ULTRASONIC TRANSDUCER ELEMENT FOR ULTRASONIC DEVICES
JP7203824B2 (ja) * 2017-08-15 2023-01-13 コーニンクレッカ フィリップス エヌ ヴェ 周波数調整可能な管腔内超音波装置
EP3675727A4 (en) 2017-08-31 2021-05-19 Butterfly Network, Inc. METHOD AND DEVICE FOR COLLECTING ULTRASONIC DATA
USD846749S1 (en) 2017-10-27 2019-04-23 Butterfly Network, Inc. Ultrasound probe
USD876636S1 (en) 2017-10-27 2020-02-25 Butterfly Networks, Inc. Ultrasound probe housing
EP3709894A4 (en) 2017-11-15 2021-08-04 Butterfly Network, Inc. ULTRASONIC DEVICES AND METHODS FOR MANUFACTURING ULTRASONIC DEVICES
US11048334B2 (en) 2017-12-22 2021-06-29 Butterfly Network, Inc. Methods and apparatuses for identifying gestures based on ultrasound data
USD846269S1 (en) 2018-01-02 2019-04-23 Butterfly Network, Inc. Holster
USD847738S1 (en) 2018-01-02 2019-05-07 Butterfly Network, Inc. Charger
USD846128S1 (en) 2018-01-12 2019-04-16 Butterfly Network, Inc Ultrasound probe housing
CN111683603A (zh) 2018-01-30 2020-09-18 蝴蝶网络有限公司 用于封装片上超声的方法和设备
CN111867478A (zh) 2018-02-16 2020-10-30 皇家飞利浦有限公司 手持式医学超声成像设备中的人体工程学显示和激活
AU2019229174A1 (en) 2018-02-27 2020-09-03 Butterfly Network, Inc. Methods and apparatus for tele-medicine
EP3762155B1 (en) 2018-03-09 2023-12-13 BFLY Operations, Inc. Methods for fabricating ultrasound transducer devices
CA3096219A1 (en) 2018-04-09 2019-10-17 Butterfly Network, Inc. Methods and apparatuses for offloading ultrasound data
US11559279B2 (en) 2018-08-03 2023-01-24 Bfly Operations, Inc. Methods and apparatuses for guiding collection of ultrasound data using motion and/or orientation data
WO2020028738A1 (en) 2018-08-03 2020-02-06 Butterfly Network, Inc. Methods and apparatuses for guiding collection of ultrasound data using motion and/or orientation data
WO2020033376A1 (en) 2018-08-07 2020-02-13 Butterfly Network, Inc. Methods and apparatuses for ultrasound imaging of lungs
US11660066B2 (en) 2018-08-21 2023-05-30 California Institute Of Technology Wireless ultrasound monitoring device
CA3110077A1 (en) 2018-08-29 2020-03-05 Butterfly Network, Inc. Methods and apparatuses for collection of ultrasound data
US11638572B2 (en) 2018-10-25 2023-05-02 BFLY Operations, Inc Methods and apparatus for performing measurements on an ultrasound image
JP7407829B2 (ja) 2018-10-26 2024-01-04 コーニンクレッカ フィリップス エヌ ヴェ 管腔内超音波イメージングの疾患に特有且つ処置タイプに特有の制御
USD899077S1 (en) 2018-10-26 2020-10-20 Butterfly Network, Inc. Holster
USD909048S1 (en) 2018-10-26 2021-02-02 Butterfly Network, Inc. Holster
CA3121805A1 (en) 2018-12-07 2020-06-11 Octant, Inc. Systems for protein-protein interaction screening
WO2020146244A1 (en) 2019-01-07 2020-07-16 Butterfly Network, Inc. Methods and apparatuses for ultrasound data collection
WO2020163595A1 (en) 2019-02-07 2020-08-13 Butterfly Network, Inc Bi-layer metal electrode for micromachined ultrasonic transducer devices
WO2020167938A1 (en) * 2019-02-13 2020-08-20 Butterfly Network, Inc. Methods and apparatuses for collecting ultrasound images depicting needles
WO2020172156A1 (en) 2019-02-18 2020-08-27 Butterfly Network, Inc. Methods and apparatuses enabling a user to manually modify input to a calculation relative to an ultrasound image
US11727558B2 (en) 2019-04-03 2023-08-15 Bfly Operations, Inc. Methods and apparatuses for collection and visualization of ultrasound data
TW202107114A (zh) 2019-04-03 2021-02-16 美商蝴蝶網路公司 用於超音波資料之仰角波束成型的方法和設備
US11631172B2 (en) 2019-04-03 2023-04-18 Bfly Operations, Inc. Methods and apparatuses for guiding collection of ultrasound images
EP3973537A4 (en) 2019-05-22 2023-06-14 BFLY Operations, Inc. METHODS AND APPARATUS FOR ANALYZING IMAGING DATA
WO2020251915A1 (en) 2019-06-10 2020-12-17 Butterfly Network, Inc. Curved micromachined ultrasonic transducer membranes
WO2020252300A1 (en) 2019-06-14 2020-12-17 Butterfly Network, Inc. Methods and apparatuses for collection of ultrasound data along different elevational steering angles
WO2020263970A1 (en) * 2019-06-25 2020-12-30 Butterfly Network, Inc. Methods and apparatuses for processing ultrasound signals
US11529127B2 (en) 2019-06-25 2022-12-20 Bfly Operations, Inc. Methods and apparatuses for processing ultrasound signals
EP4003179A4 (en) 2019-07-25 2023-08-09 BFLY Operations, Inc. METHODS AND DEVICES FOR SWITCHING ON AND OFF AND ADC DRIVERS IN AN ULTRASOUND DEVICE
US11712217B2 (en) 2019-08-08 2023-08-01 Bfly Operations, Inc. Methods and apparatuses for collection of ultrasound images
US11684951B2 (en) 2019-08-08 2023-06-27 Bfly Operations, Inc. Micromachined ultrasonic transducer devices having truncated circle shaped cavities
TWI739156B (zh) * 2019-09-16 2021-09-11 臺北醫學大學 生物體取像及治療系統及方法
KR20220111251A (ko) 2019-09-27 2022-08-09 비에프엘와이 오퍼레이션즈, 인크. 태아 심박동 및 자궁 수축 신호를 모니터링하기 위한 방법 및 장치
WO2021062129A1 (en) 2019-09-27 2021-04-01 Butterfly Network, Inc. Methods and apparatuses for detecting degraded ultrasound imaging frame rates
US11464497B2 (en) * 2019-10-09 2022-10-11 Acoustiic Inc. Modular ultrasonic transducers and frame
WO2021126992A1 (en) 2019-12-17 2021-06-24 Butterfly Network, Inc. Methods and apparatuses for packaging ultrasound-on-chip devices
WO2021211822A1 (en) 2020-04-16 2021-10-21 Bfly Operations, Inc. Methods and circuitry for built-in self-testing of circuitry and/or transducers in ultrasound devices
EP3900846A1 (en) * 2020-04-21 2021-10-27 Koninklijke Philips N.V. Acoustic imaging probe with a transducer element
USD954972S1 (en) 2020-06-30 2022-06-14 Bfly Operations, Inc. Ultrasound probe
USD946764S1 (en) 2020-06-30 2022-03-22 Bfly Operations, Inc. Ultrasound probe
WO2022067447A1 (en) * 2020-10-02 2022-04-07 The University Of British Columbia Contactless cmut operation
US11808897B2 (en) 2020-10-05 2023-11-07 Bfly Operations, Inc. Methods and apparatuses for azimuthal summing of ultrasound data
CN112870566A (zh) * 2021-01-15 2021-06-01 南京微医智能医药科技有限公司 一种用于骨盆、盆底肌群的修复装置及使用方法
WO2023003886A1 (en) * 2021-07-20 2023-01-26 Bfly Operations, Inc. Apparatuses and methods for configuring ultrasound devices
TW202308721A (zh) * 2021-08-17 2023-03-01 財團法人國家衛生研究院 行動載具控制之穿戴式超音波治療裝置
CN114010222A (zh) * 2021-10-11 2022-02-08 之江实验室 一种双频阵列式超声内窥探头及其成像方法
US20230121319A1 (en) * 2021-10-15 2023-04-20 Tzvi Neuman Integrated Bedside Echocardiogram Monitor
WO2023086605A1 (en) 2021-11-12 2023-05-19 Bfly Operations, Inc. Method and system for adjusting scan pattern for ultrasound imaging
WO2023133100A2 (en) 2022-01-04 2023-07-13 Bfly Operations, Inc. Ultrasound devices configured to change from default mode to power save mode and methods associated with the same
TWI822190B (zh) * 2022-07-18 2023-11-11 佳世達科技股份有限公司 超聲波換能模組及超聲波探頭
CN116531685B (zh) * 2023-05-19 2024-03-26 深圳半岛医疗集团股份有限公司 治疗仪手柄及其控制方法、治疗仪和控制装置

Family Cites Families (109)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4389601A (en) 1980-09-08 1983-06-21 Sonobond Corporation Power supply having automatic frequency control for ultrasonic bonding
US4814637A (en) 1986-09-26 1989-03-21 Siemens Aktiengesellschaft Pulse shaper
US5744898A (en) 1992-05-14 1998-04-28 Duke University Ultrasound transducer array with transmitter/receiver integrated circuitry
US5315999A (en) 1993-04-21 1994-05-31 Hewlett-Packard Company Ultrasound imaging system having user preset modes
US5640960A (en) 1995-04-18 1997-06-24 Imex Medical Systems, Inc. Hand-held, battery operated, doppler ultrasound medical diagnostic device with cordless probe
US5833614A (en) 1997-07-15 1998-11-10 Acuson Corporation Ultrasonic imaging method and apparatus for generating pulse width modulated waveforms with reduced harmonic response
US5913823A (en) 1997-07-15 1999-06-22 Acuson Corporation Ultrasound imaging method and system for transmit signal generation for an ultrasonic imaging system capable of harmonic imaging
US6605043B1 (en) * 1998-11-19 2003-08-12 Acuson Corp. Diagnostic medical ultrasound systems and transducers utilizing micro-mechanical components
US6135963A (en) 1998-12-07 2000-10-24 General Electric Company Imaging system with transmit apodization using pulse width variation
WO2002058531A2 (en) 2001-01-22 2002-08-01 V-Target Technologies Ltd. Ingestible device
JP4744026B2 (ja) 2001-07-30 2011-08-10 オリンパス株式会社 カプセル内視鏡およびカプセル内視鏡システム
US6795374B2 (en) * 2001-09-07 2004-09-21 Siemens Medical Solutions Usa, Inc. Bias control of electrostatic transducers
US7115093B2 (en) 2001-11-21 2006-10-03 Ge Medical Systems Global Technology Company, Llc Method and system for PDA-based ultrasound system
US6958255B2 (en) 2002-08-08 2005-10-25 The Board Of Trustees Of The Leland Stanford Junior University Micromachined ultrasonic transducers and method of fabrication
US7094204B2 (en) 2002-08-23 2006-08-22 Siemens Medical Solutions Usa, Inc. Coded excitation imaging for use with bipolar, unipolar and other waveforms
US7118531B2 (en) 2002-09-24 2006-10-10 The Johns Hopkins University Ingestible medical payload carrying capsule with wireless communication
US7056290B2 (en) * 2002-09-30 2006-06-06 Koninklijke Philips Electronics, N.V. Continuous depth harmonic imaging using transmitted and nonlinearly generated second harmonics
US6856175B2 (en) 2002-12-12 2005-02-15 General Electric Company Ultrasound transmitter with voltage-controlled rise/fall time variation
WO2004064620A2 (en) 2003-01-14 2004-08-05 University Of Virginia Patent Foundation Ultrasonic transducer drive
US7780597B2 (en) 2003-02-14 2010-08-24 Siemens Medical Solutions Usa, Inc. Method and apparatus for improving the performance of capacitive acoustic transducers using bias polarity control and multiple firings
US7022074B2 (en) 2003-06-12 2006-04-04 Ge Medical Systems Global Technology Company, Llc Method and apparatus for generating a multi-level ultrasound pulse
US7549961B1 (en) 2003-07-31 2009-06-23 Sonosite, Inc. System and method supporting imaging and monitoring applications
US20060257286A1 (en) * 2003-10-17 2006-11-16 Adams Jesse D Self-sensing array of microcantilevers for chemical detection
US7382366B1 (en) 2003-10-21 2008-06-03 Nvidia Corporation Method, apparatus, system, and graphical user interface for selecting overclocking parameters of a graphics system
US20050113689A1 (en) * 2003-11-21 2005-05-26 Arthur Gritzky Method and apparatus for performing multi-mode imaging
EP1761998A4 (en) 2004-02-27 2011-05-11 Georgia Tech Res Inst CMUT DEVICES AND METHODS OF MAKING THE SAME
US7300403B2 (en) * 2004-07-20 2007-11-27 Angelsen Bjoern A J Wide aperture array design with constrained outer probe dimension
US8309428B2 (en) 2004-09-15 2012-11-13 Sonetics Ultrasound, Inc. Capacitive micromachined ultrasonic transducer
US7888709B2 (en) 2004-09-15 2011-02-15 Sonetics Ultrasound, Inc. Capacitive micromachined ultrasonic transducer and manufacturing method
CN100496406C (zh) * 2004-10-15 2009-06-10 株式会社日立医药 超声波诊断装置
US8182428B2 (en) * 2005-07-26 2012-05-22 Surf Technology As Dual frequency band ultrasound transducer arrays
JP4945769B2 (ja) * 2005-07-26 2012-06-06 サーフ テクノロジー アクティーゼルスカブ 二重周波数帯域の超音波送受波器アレイ
US7615834B2 (en) 2006-02-28 2009-11-10 The Board Of Trustees Of The Leland Stanford Junior University Capacitive micromachined ultrasonic transducer(CMUT) with varying thickness membrane
JP4879623B2 (ja) * 2006-03-29 2012-02-22 株式会社日立メディコ 超音波診断装置
US20070232921A1 (en) 2006-04-03 2007-10-04 General Electric Company Transducer assembly having a wide field of view
US20070232907A1 (en) 2006-04-03 2007-10-04 Laurent Pelissier Methods and systems for configuring ultrasound systems for ultrasound examinations
CA2762215C (en) 2006-05-12 2013-11-19 The Governors Of The University Of Alberta Ultrasound stimulation devices and techniques
WO2008030482A2 (en) 2006-09-06 2008-03-13 Innurvation Inc System and method for acoustic information exchange involving an ingestible low power capsule
US8147409B2 (en) 2007-03-29 2012-04-03 Supertex, Inc. Method and apparatus for transducer excitation in medical ultrasound imaging
US7824335B2 (en) 2007-04-26 2010-11-02 General Electric Company Reconfigurable array with multi-level transmitters
US7892176B2 (en) 2007-05-02 2011-02-22 General Electric Company Monitoring or imaging system with interconnect structure for large area sensor array
US8043221B2 (en) 2007-08-17 2011-10-25 General Electric Company Multi-headed imaging probe and imaging system using same
US8277380B2 (en) 2007-09-11 2012-10-02 Siemens Medical Solutions Usa, Inc. Piezoelectric and CMUT layered ultrasound transducer array
US7843022B2 (en) 2007-10-18 2010-11-30 The Board Of Trustees Of The Leland Stanford Junior University High-temperature electrostatic transducers and fabrication method
US9089874B2 (en) * 2007-12-13 2015-07-28 Hitachi Medical Corporation Ultrasonic diagnostic apparatus and ultrasonic probe
EP2294448B1 (en) * 2008-01-09 2016-03-30 Surf Technology AS Nonlinear elastic imaging with two-frequency elastic pulse complexes
WO2009117593A2 (en) 2008-03-19 2009-09-24 University Of Southern California Ultrasonic apparatus and method for real-time simultaneous therapy and diagnosis
WO2009135255A1 (en) 2008-05-07 2009-11-12 Signostics Pty Ltd Docking system for medical diagnostic scanning using a handheld device
WO2009149499A1 (en) * 2008-06-13 2009-12-17 Signostics Limited Improved scan display
ES2736276T3 (es) * 2008-07-14 2019-12-27 Arizona Board Of Regents For And On Behalf Of Arizona State Univ Dispositivos de modulación de la actividad celular utilizando ultrasonido
US8886334B2 (en) 2008-10-07 2014-11-11 Mc10, Inc. Systems, methods, and devices using stretchable or flexible electronics for medical applications
WO2010055820A1 (ja) 2008-11-12 2010-05-20 株式会社 日立メディコ 超音波診断装置と超音波診断装置の受信パラメータ設定方法
CN101744638A (zh) * 2008-11-28 2010-06-23 Ge医疗系统环球技术有限公司 多功能超声成像系统
US20100286527A1 (en) 2009-05-08 2010-11-11 Penrith Corporation Ultrasound system with multi-head wireless probe
US8345508B2 (en) 2009-09-20 2013-01-01 General Electric Company Large area modular sensor array assembly and method for making the same
US20120215109A1 (en) 2009-11-10 2012-08-23 Hitachi Aloka Medical, Ltd. Ultrasonic diagnostic system
JP5473579B2 (ja) * 2009-12-11 2014-04-16 キヤノン株式会社 静電容量型電気機械変換装置の制御装置、及び静電容量型電気機械変換装置の制御方法
JP5541946B2 (ja) 2010-02-26 2014-07-09 オリンパス株式会社 超音波治療装置
US8647279B2 (en) 2010-06-10 2014-02-11 Siemens Medical Solutions Usa, Inc. Volume mechanical transducer for medical diagnostic ultrasound
US8517942B2 (en) 2010-06-25 2013-08-27 John C. Hill Method for non-invasive determination of glycogen stores
CN101919710A (zh) * 2010-09-17 2010-12-22 天津大学 医用超声成像仪
WO2012051305A2 (en) * 2010-10-13 2012-04-19 Mau Imaging, Inc. Multiple aperture probe internal apparatus and cable assemblies
US8485974B2 (en) * 2010-11-15 2013-07-16 National Health Research Institutes Multiple-frequency ultrasonic phased array driving system
EP2455133A1 (en) * 2010-11-18 2012-05-23 Koninklijke Philips Electronics N.V. Catheter comprising capacitive micromachined ultrasonic transducers with an adjustable focus
EP2648624B1 (en) 2010-12-10 2016-01-27 B-K Medical ApS Imaging transducer probe
US8968205B2 (en) * 2011-02-10 2015-03-03 Siemens Medical Solutions Usa, Inc. Sub-aperture control in high intensity focused ultrasound
CN103493510B (zh) 2011-02-15 2016-09-14 富士胶卷迪马蒂克斯股份有限公司 使用微圆顶阵列的压电式换能器
DE102012201715A1 (de) 2011-03-03 2012-09-06 Intelligendt Systems & Services Gmbh Prüfkopf zum Prüfen eines Werkstückes mit einer eine Mehrzahl von Wandlerelementen enthaltenden Ultraschallwandleranordnung und Verfahren zum Herstellen eines solchen Prüfkopfes
US8891334B2 (en) 2011-03-04 2014-11-18 Georgia Tech Research Corporation Compact, energy-efficient ultrasound imaging probes using CMUT arrays with integrated electronics
USD657361S1 (en) 2011-03-25 2012-04-10 Sonosite, Inc. Housing for an electronic device
JP2012228424A (ja) * 2011-04-27 2012-11-22 Fujifilm Corp 超音波診断装置
KR101245145B1 (ko) 2011-07-04 2013-03-19 삼성메디슨 주식회사 휴대형 초음파 진단기기
CA2851590A1 (en) * 2011-10-10 2013-04-18 Tractus Corporation Method, apparatus and system for complete examination of tissue with hand-held imaging devices
AU2012326218B2 (en) 2011-10-17 2017-03-09 Butterfly Network, Inc. Transmissive imaging and related apparatus and methods
US8792295B2 (en) * 2012-01-31 2014-07-29 General Electric Company Method and system for monitoring a transducer array in an ultrasound system
US8767512B2 (en) * 2012-05-01 2014-07-01 Fujifilm Dimatix, Inc. Multi-frequency ultra wide bandwidth transducer
US10517569B2 (en) * 2012-05-09 2019-12-31 The Regents Of The University Of Michigan Linear magnetic drive transducer for ultrasound imaging
US9660170B2 (en) 2012-10-26 2017-05-23 Fujifilm Dimatix, Inc. Micromachined ultrasonic transducer arrays with multiple harmonic modes
US20140187934A1 (en) 2012-12-31 2014-07-03 General Electric Company Systems and methods for configuring a medical device
WO2014123922A1 (en) 2013-02-05 2014-08-14 Butterfly Network, Inc. Cmos ultrasonic transducers and related apparatus and methods
WO2014134316A1 (en) * 2013-02-28 2014-09-04 General Electric Company Handheld medical imaging apparatus with cursor pointer control
US20140276069A1 (en) 2013-03-15 2014-09-18 EagIEyeMed Ultrasound probe
KR20160003650A (ko) * 2013-03-15 2016-01-11 버터플라이 네트워크, 인크. 모놀리식 초음파 이미징 디바이스, 시스템 및 방법
WO2014151525A2 (en) 2013-03-15 2014-09-25 Butterfly Network, Inc. Complementary metal oxide semiconductor (cmos) ultrasonic transducers and methods for forming the same
KR102149322B1 (ko) * 2013-05-20 2020-08-28 삼성메디슨 주식회사 광음향 프로브 어셈블리 및 이를 포함하는 광음향 영상 장치
JP2015037535A (ja) * 2013-07-16 2015-02-26 コニカミノルタ株式会社 超音波信号処理装置、超音波信号処理方法およびコンピュータ読み取り可能な非一時的な記録媒体
TWI682817B (zh) 2013-07-23 2020-01-21 美商蝴蝶網路公司 可互連的超音波換能器探頭以及相關的方法和設備
WO2015028945A2 (en) 2013-08-27 2015-03-05 Koninklijke Philips N.V. Variable frequency control of collapsed mode cmut transducer
CN105492129B (zh) * 2013-08-27 2019-07-02 皇家飞利浦有限公司 双模式cmut换能器
WO2015048341A2 (en) 2013-09-25 2015-04-02 Massachusetts Institute Of Technology Appliction specific integrated circuit with column-row-parallel architecture for ultrasonic imaging
JP6258014B2 (ja) * 2013-11-21 2018-01-10 東芝メディカルシステムズ株式会社 超音波診断システム、超音波診断装置および端末装置
US20150257733A1 (en) 2014-03-11 2015-09-17 Sonivate Medical, Inc. Wearable imaging system
JP6325850B2 (ja) 2014-03-14 2018-05-16 公立大学法人大阪府立大学 脂肪診断装置
KR20150118495A (ko) * 2014-04-14 2015-10-22 삼성전자주식회사 초음파 프로브, 초음파 영상 장치 및 초음파 영상 장치를 제어하는 방법
AU2015247501B2 (en) 2014-04-18 2018-11-29 Butterfly Network, Inc. Ultrasonic imaging compression methods and apparatus
WO2015161157A1 (en) 2014-04-18 2015-10-22 Butterfly Network, Inc. Architecture of single substrate ultrasonic imaging devices, related apparatuses, and methods
AU2015247484B2 (en) 2014-04-18 2020-05-14 Butterfly Network, Inc. Ultrasonic transducers in complementary metal oxide semiconductor (CMOS) wafers and related apparatus and methods
EP3140049B1 (en) 2014-05-06 2018-08-01 Koninklijke Philips N.V. Ultrasonic transducer chip assembly, ultrasound probe, ultrasonic imaging system and ultrasound assembly and probe manufacturing methods
WO2016007673A2 (en) 2014-07-09 2016-01-14 Edan Instruments, Inc. Portable ultrasound user interface and resource management systems and methods
US9067779B1 (en) 2014-07-14 2015-06-30 Butterfly Network, Inc. Microfabricated ultrasonic transducers and related apparatus and methods
US10799723B2 (en) 2014-11-14 2020-10-13 Koninklijke Philips N.V. Ultrasound device for sonothrombolysis therapy
US20160179355A1 (en) 2014-12-23 2016-06-23 General Electric Company System and method for managing image scan parameters in medical imaging
IL236484A (en) * 2014-12-25 2017-11-30 Pulsenmore Ltd Device and system for monitoring internal organs of man or animals
US20160009544A1 (en) 2015-03-02 2016-01-14 Butterfly Network, Inc. Microfabricated ultrasonic transducers and related apparatus and methods
KR102408440B1 (ko) 2015-03-09 2022-06-13 삼성메디슨 주식회사 프리셋 선택 방법 및 이를 위한 초음파 영상 장치
US10695034B2 (en) 2015-05-15 2020-06-30 Butterfly Network, Inc. Autonomous ultrasound probe and related apparatus and methods
US11712221B2 (en) 2016-06-20 2023-08-01 Bfly Operations, Inc. Universal ultrasound device and related apparatus and methods
US10856840B2 (en) 2016-06-20 2020-12-08 Butterfly Network, Inc. Universal ultrasound device and related apparatus and methods
US20180070917A1 (en) 2016-09-13 2018-03-15 Butterfly Network, Inc. Ingestible ultrasound device, system and imaging method

Also Published As

Publication number Publication date
EP3471622A4 (en) 2020-01-22
EP3471622A1 (en) 2019-04-24
CA3026277A1 (en) 2017-12-28
TWI713977B (zh) 2020-12-21
JP7101126B2 (ja) 2022-07-14
TW201801679A (zh) 2018-01-16
EP4218594A2 (en) 2023-08-02
EP3471622C0 (en) 2023-10-25
AU2022218473A1 (en) 2022-09-08
US11446001B2 (en) 2022-09-20
AU2017281012B2 (en) 2022-07-07
US20230089630A1 (en) 2023-03-23
EP4218594A3 (en) 2023-08-16
EP3471622B1 (en) 2023-10-25
CN114652344A (zh) 2022-06-24
US20170360397A1 (en) 2017-12-21
CN109310395B (zh) 2022-03-04
CN109310395A (zh) 2019-02-05
US20170360413A1 (en) 2017-12-21
TW201919543A (zh) 2019-06-01
KR20190020101A (ko) 2019-02-27
JP2022141730A (ja) 2022-09-29
JP2019523685A (ja) 2019-08-29
AU2017281012A1 (en) 2018-12-06
WO2017222964A1 (en) 2017-12-28
US10856840B2 (en) 2020-12-08

Similar Documents

Publication Publication Date Title
TWI652046B (zh) 通用超音波裝置及相關設備和方法
US11857368B2 (en) Universal ultrasound device and related apparatus and methods
EP3223711B1 (en) A multi-sensor ultrasound probe
JP7190590B2 (ja) プログラム可能な生体構造及びフロー撮像を有する超音波撮像デバイス
JP5367431B2 (ja) 超音波プローブ及び超音波プローブシステム
Latham et al. A 30-MHz, 3-D imaging, forward-looking miniature endoscope based on a 128-element relaxor array
JP5519949B2 (ja) 超音波プローブ及び超音波プローブシステム
JP2010166978A (ja) 超音波診断装置
JP2013165865A (ja) 超音波診断像撮影装置