TWI625599B - Substrate with multilayer reflective film, mask base, transfer mask, and method of manufacturing semiconductor device - Google Patents

Substrate with multilayer reflective film, mask base, transfer mask, and method of manufacturing semiconductor device Download PDF

Info

Publication number
TWI625599B
TWI625599B TW103133651A TW103133651A TWI625599B TW I625599 B TWI625599 B TW I625599B TW 103133651 A TW103133651 A TW 103133651A TW 103133651 A TW103133651 A TW 103133651A TW I625599 B TWI625599 B TW I625599B
Authority
TW
Taiwan
Prior art keywords
substrate
film
less
multilayer reflective
reflective film
Prior art date
Application number
TW103133651A
Other languages
English (en)
Other versions
TW201512784A (zh
Inventor
Kazuhiro Hamamoto
Toshihiko Orihara
Original Assignee
Hoya Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoya Corp filed Critical Hoya Corp
Publication of TW201512784A publication Critical patent/TW201512784A/zh
Application granted granted Critical
Publication of TWI625599B publication Critical patent/TWI625599B/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/08Mirrors
    • G02B5/0816Multilayer mirrors, i.e. having two or more reflecting layers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/08Mirrors
    • G02B5/0891Ultraviolet [UV] mirrors
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/26Reflecting filters
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/28Interference filters
    • G02B5/285Interference filters comprising deposited thin solid films
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/22Masks or mask blanks for imaging by radiation of 100nm or shorter wavelength, e.g. X-ray masks, extreme ultraviolet [EUV] masks; Preparation thereof
    • G03F1/24Reflection masks; Preparation thereof
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/52Reflectors
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/68Preparation processes not covered by groups G03F1/20 - G03F1/50
    • G03F1/82Auxiliary processes, e.g. cleaning or inspecting
    • G03F1/84Inspecting
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K1/00Arrangements for handling particles or ionising radiation, e.g. focusing or moderating
    • G21K1/06Arrangements for handling particles or ionising radiation, e.g. focusing or moderating using diffraction, refraction or reflection, e.g. monochromators
    • G21K1/062Devices having a multilayer structure
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/14Protective coatings, e.g. hard coatings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/003Light absorbing elements
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K2201/00Arrangements for handling radiation or particles
    • G21K2201/06Arrangements for handling radiation or particles using diffractive, refractive or reflecting elements
    • G21K2201/067Construction details

Abstract

本發明提供一種附多層反射膜之基板、反射型光罩基底及半導體裝置之製造方法,該附多層反射膜之基板於使用高靈敏度之缺陷檢查裝置之缺陷檢查中,可抑制因基板或膜之表面粗糙度所致之疑似缺陷檢出,且可容易地發現異物及傷痕等致命缺陷。
本發明係一種附多層反射膜之基板,其特徵在於:其係於用於微影之光罩基底用基板之主表面上具有交替地積層高折射率層與低折射率層而成之多層反射膜者,上述附多層反射膜之基板之表面以原子力顯微鏡測定3μm×3μm之區域所得的空間頻率為1μm-1以上且10μm-1以下之功率頻譜密度(PSD)之積分值I為180×10-3nm3以下,且空間頻率為1μm-1以上且10μm-1以下之功率頻譜密度(PSD)之最大值為50nm4以下。

Description

附多層反射膜之基板、光罩基底、轉印用光罩及半導體裝置之製造方法
本發明係關於一種附多層反射膜之基板、光罩基底、轉印用光罩及半導體裝置之製造方法,該附多層反射膜之基板於使用高靈敏度之缺陷檢查裝置之缺陷檢查中,可抑制因基板或膜之表面粗糙度所致之疑似缺陷,且可容易地發現異物及傷痕等致命缺陷。
近年來,於半導體產業中,伴隨半導體器件之高積體化,需要超過先前之使用紫外光之光微影法之轉印極限的微細圖案。為了能形成此種微細圖案,使用極紫外線(Extreme Ultra Violet,以下稱為「EUV」)光之曝光技術即EUV微影被寄予厚望。此處,所謂EUV光係指軟X射線區域或真空紫外線區域之波段之光,具體而言係指波長為0.2~100nm左右之光。提出將反射型光罩作為該EUV微影中使用之轉印用光罩。此種反射型光罩係於基板上形成有反射曝光光之多層反射膜、且於該多層反射膜上以圖案狀形成有吸收曝光光之吸收體膜者。
該反射型光罩係藉由自包含基板、形成於該基板上之多層反射膜、及形成於該多層反射膜上之吸收體膜之反射型光罩基底利用光微影法等形成吸收體膜圖案而製造。
如以上般,對微影步驟中之微細化之要求提高,因此該微影步驟中之問題越來越顯著。其中之一係關於微影步驟中使用之光罩基底 用基板及附多層反射膜之基板等之缺陷資訊之問題。
自伴隨近年來之圖案之微細化而產生之缺陷品質之提高、及對轉印用光罩要求之光學特性之觀點考慮,光罩基底用基板需要平滑性更高之基板。
又,自伴隨近年來之圖案之微細化而產生之缺陷品質之提高、及對轉印用光罩要求之光學特性之觀點考慮,附多層反射膜之基板亦需要具有更高之平滑性。多層反射膜係藉由於光罩基底用基板之表面上交替地積層高折射率層及低折射率層而形成。該等各層一般係藉由使用包含其等層之形成材料之濺鍍靶之濺鍍而形成。
作為濺鍍之方法,無需利用放電來產生電漿,故而自雜質不易混入至多層反射膜中之方面、及離子源獨立而容易進行條件設定等方面考慮,較佳為實施離子束濺鍍法。於使用離子束濺鍍法之情形時,自所形成之各層之平滑性及面均勻性之觀點考慮,使濺鍍粒子以相對於光罩基底用基板主表面之法線(與上述主表面正交之直線)較大之角度,即以相對於基板主表面傾斜或接近於平行之角度到達基板主表面,而成膜高折射率層及低折射率層。
作為以此種方法製造附多層反射膜之基板之技術,於專利文獻1中記載有如下技術,即於在基板上成膜EUV微影用反射型光罩基底之多層反射膜時,一面使基板以其中心軸為中心旋轉,一面將基板之法線與入射至基板之濺鍍粒子所成之角度α之絕對值保持為35度≦α≦80度而實施離子束濺鍍。
[先前技術文獻] [專利文獻]
[專利文獻1]日本專利特表2009-510711號公報
伴隨使用EUV(Extreme Ultra-Violet)之微影中之圖案之急速的微細化,作為反射型光罩之EUV光罩之缺陷尺寸(Defect Size)亦逐年變得微細。為了發現此種微細缺陷,於缺陷檢查中使用之檢查光源波長越來越接近於曝光光之光源波長。
例如,作為EUV光罩及其底版即EUV光罩基底、附多層反射膜之基板及基板之缺陷檢查裝置,普及或提出檢查光源波長設為266nm(例如,Lasertec公司製造之EUV曝光用之光罩基板/基底缺陷檢查裝置「MAGICS M7360」)、193nm(KLA-Tencor公司製造之EUV光罩/基底缺陷檢查裝置「Teron600 series」,例如「Teron610」)、或13.5nm之高靈敏度缺陷檢查裝置。
又,進行如下嘗試,即,將先前之用於EUV光罩之附多層反射膜之基板之多層反射膜例如以專利文獻1中記載之方法成膜,藉此使存在於基板上之凹缺陷減少。然而,即便可稍微減少基板之因凹缺陷所致之缺陷,亦會因上述高靈敏度缺陷檢查裝置之檢出靈敏度高而產生如下之問題,即若進行多層反射膜之缺陷檢查,則會較多地檢出出缺陷檢出個數(缺陷檢出個數=致命缺陷+疑似缺陷)。
此處所謂之疑似缺陷係指多層反射膜上之對圖案轉印無影響之容許之凹凸,且係於以高靈敏度缺陷檢查裝置進行檢查之情形時被誤判定為缺陷者。於缺陷檢查中,若檢出出多個此種疑似缺陷,則對圖案轉印有影響之致命缺陷會被埋沒於多個疑似缺陷中,從而無法發現致命缺陷。例如,於當前正在普及之檢查光源波長為266nm、193nm或13.5nm之缺陷檢查裝置中,於例如152mm×152mm之尺寸之基板及附多層反射膜之基板之測定中,缺陷檢查區域(例如132mm×132mm)之缺陷檢出個數超過50,000個,從而妨礙檢查有無致命缺陷。缺陷檢查中之致命缺陷之忽略會於其後之半導體裝置之量產過程中引起不良,從而導致不必要之勞力與經濟損失。
本發明係鑒於上述問題點而完成者,其目的在於提供一種附多層反射膜之基板、反射型光罩基底及半導體裝置之製造方法,該附多層反射膜之基板於使用高靈敏度之缺陷檢查裝置之缺陷檢查中,可抑制因基板或膜之表面粗糙度所致之疑似缺陷檢出,且可容易地發現異物及傷痕等致命缺陷。
又,本發明之目的在於提供一種附多層反射膜之基板、使用該附多層反射膜之基板所獲得之反射型光罩基底、及使用有該反射型光罩基底之半導體裝置,該附多層反射膜之基板係即便於使用各種波長之光之高靈敏度缺陷檢查裝置,亦可使包含疑似缺陷之缺陷檢出個數較少,尤其可達成對附多層反射膜之基板所要求之平滑性,同時因包含疑似缺陷之缺陷檢出個數較少而可確實地檢出出致命缺陷。
為解決上述問題點,本發明者等人進行積極研究之結果發現,特定之空間頻率(或空間波長)成分之粗糙度對高靈敏度缺陷檢查裝置之檢查光源波長造成影響。因此,藉由特定出形成於基板主表面之膜(例如吸收體膜)之表面上之粗糙度(凹凸)成分中高靈敏度缺陷檢查裝置誤判定為疑似缺陷之粗糙度成分之空間頻率,且管理該空間頻率之振幅強度,而可實現缺陷檢查中之疑似缺陷檢出之抑制、及致命缺陷之顯著化。
又,於附多層反射膜之基板上,先前對於多層反射膜,自反射率特性之觀點考慮嘗試降低其表面粗糙度,但對於與高靈敏度缺陷檢查裝置之疑似缺陷檢出之關聯則全然不知。
因此,為解決上述課題,本發明具有以下之構成。
本發明係以下述之構成1~5為特徵之附多層反射膜之基板、以下述之構成6~8為特徵之反射型光罩基底、以下述之構成9為特徵之反射型光罩、及以下述之構成10為特徵之半導體裝置之製造方法。
(構成1)
本發明之構成1係一種附多層反射膜之基板,其特徵在於:其係於用於微影之光罩基底用基板之主表面上具有交替地積層高折射率層與低折射率層而成之多層反射膜者,上述附多層反射膜之基板之表面以原子力顯微鏡測定3μm×3μm之區域所得的空間頻率為1μm-1以上10μm-1以下之功率頻譜密度(PSD,Power Spectrum Density)之積分值I為180×10-3nm3以下,且空間頻率為1μm-1以上10μm-1以下之功率頻譜密度(PSD)之最大值為50nm4以下。
根據構成1,於反射型光罩基底之表面設以原子力顯微鏡測定3μm×3μm之區域所得的空間頻率為1μm-1以上10μm-1以下之功率頻譜密度(PSD)之積分值I為180×10-3nm3以下,且使空間頻率為1μm-1以上10μm-1以下之功率頻譜密度(PSD)之最大值為50nm4以下,藉此可抑制使用缺陷檢查光源之檢查波長為150nm~365nm之高靈敏度缺陷檢查裝置之缺陷檢查中之疑似缺陷的檢出,進而可實現致命缺陷之顯著化。進而,可抑制使用缺陷檢查光源之檢查波長為150nm~365nm之高靈敏度缺陷檢查裝置於複數級之檢查靈敏度條件下之疑似缺陷之檢出,從而可實現致命缺陷之顯著化。
(構成2)
本發明之構成2如構成1中記載之附多層反射膜之基板,其特徵在於:上述附多層反射膜之基板之表面以原子力顯微鏡測定3μm×3μm之區域所得的空間頻率為1μm-1以上5μm-1以下之功率頻譜密度(PSD)之積分值I為115×10-3nm3以下。
根據構成2,可進一步抑制使用缺陷檢查光源之檢查波長為150nm~365nm之高靈敏度缺陷檢查裝置之缺陷檢查中之疑似缺陷的檢出,進而可確實地實現致命缺陷之顯著化。
(構成3)
本發明之構成3如構成1或2之附多層反射膜之基板,其特徵在於:上述空間頻率為1μm-1以上10μm-1以下之功率頻譜密度具有大致單調減少之特性。
所謂大致單調減少,例如圖7所示係指於藉由特定之近似曲線而逼近空間頻率與功率頻譜密度之關係時,近似曲線上之功率頻譜密度自空間頻率為1μm-1之低空間頻率向10μm-1之高空間頻率而逐漸減少。於圖7所示之例中,作為近似曲線而使用冪逼近。
根據構成3,特定之空間頻率之範圍之功率頻譜密度具有大致單調減少之特性,藉此可進一步抑制使用高靈敏度缺陷檢查裝置之缺陷檢查中之疑似缺陷之檢出,進而可更確實地實現致命缺陷之顯著化。
(構成4)
本發明之構成4係一種附多層反射膜之基板,其特徵在於:其係於用於微影之光罩基底用基板之主表面上具有交替地積層高折射率層與低折射率層而成之多層反射膜者,上述附多層反射膜之基板之表面以原子力顯微鏡測定1μm×1μm之區域所得的空間頻率為10μm-1以上100μm-1以下之功率頻譜密度(PSD)之積分值I為150×10-3nm3以下,且空間頻率為10μm-1以上100μm-1以下之功率頻譜密度(PSD)之最大值為9nm4以下。
根據構成4,於反射型光罩基底之表面設以原子力顯微鏡測定1μm×1μm之區域所得的空間頻率為10μm-1以上100μm-1以下之功率頻譜密度(PSD)之積分值I為150×10-3nm3以下,且設空間頻率為10μm-1以上100μm-1以下之功率頻譜密度(PSD)之最大值為9nm4以下,藉此可抑制使用缺陷檢查光源之檢查波長為0.2nm~100nm之高靈敏度缺陷檢查裝置之缺陷檢查中之疑似缺陷的檢出,進而可實現致命缺陷之顯著化。進而,可抑制使用缺陷檢查光源之檢查波長為0.2nm~100nm之高靈敏度缺陷檢查裝置於複數級之檢查靈敏度條件下之疑似缺 陷之檢出,從而可實現致命缺陷之顯著化。
(構成5)
本發明之構成5如構成4中記載之附多層反射膜之基板,其特徵在於:上述空間頻率為10μm-1以上且100μm-1以下之功率頻譜密度具有大致單調減少之特性。
再者,此處所謂之大致單調減少係與上述相同之含義,係指例如如圖8所示般於藉由特定之近似曲線而逼近空間頻率與功率頻譜密度之關係時,近似曲線上功率頻譜密度自空間頻率為10μm-1之低空間頻率向100μm-1之高空間頻率而逐漸減少。於圖8所示之例中,作為近似曲線而使用冪逼近。
根據構成5,可進一步抑制使用高靈敏度缺陷檢查裝置之缺陷檢查中之疑似缺陷之檢出,可更確實地實現致命缺陷之顯著化。
(構成6)
本發明之構成6如構成1至5中任一項記載之附多層反射膜之基板,其特徵在於:於上述多層反射膜上具有保護膜。
根據構成6,附多層反射膜之基板於多層反射膜上包含保護膜,藉此可抑制於製造轉印用光罩(EUV光罩)時對多層反射膜表面之傷害,故而對EUV光之反射率特性變得更佳。又,對於附多層反射膜之基板,可抑制使用高靈敏度缺陷檢查裝置之保護膜表面之缺陷檢查中之疑似缺陷的檢出,進而可實現致命缺陷之顯著化。
(構成7)
本發明之構成7係一種反射型光罩基底,其特徵在於:其係於如構成1至6中任一項記載之附多層反射膜之基板之上述多層反射膜上或上述保護膜上具有成為轉印圖案之吸收體膜。
於上述附多層反射膜之基板之上述多層反射膜上或上述保護膜上包含成為轉印圖案之吸收體膜,藉此可獲得如下之反射型光罩基 底,即,可抑制使用高靈敏度缺陷檢查裝置之缺陷檢查中之疑似缺陷之檢出,進而可實現致命缺陷之顯著化。
(構成8)
本發明之構成8係一種反射型光罩基底,其特徵在於:其係於用於微影之光罩基底用基板之主表面上具有交替地積層高折射率層與低折射率層而成之多層反射膜及吸收體膜者,上述吸收體膜之表面以原子力顯微鏡測定3μm×3μm之區域所得的空間頻率為1μm-1以上10μm-1以下之功率頻譜密度(PSD)之積分值I為800×10-3nm3以下,且空間頻率為1μm-1以上10μm-1以下之功率頻譜密度(PSD)之最大值為50nm4以下。
根據構成8之反射型光罩基底,可獲得如下之反射型光罩基底,即,可抑制使用高靈敏度缺陷檢查裝置之缺陷檢查中之疑似缺陷之檢出,進而可實現致命缺陷之顯著化。
(構成9)
本發明之構成9係一種反射型光罩,其係使如構成7或8中記載之反射型光罩基底之上述吸收體膜圖案化,而於上述多層反射膜上或上述保護膜上具有吸收體圖案。
根據構成9之反射型光罩,可抑制使用高靈敏度缺陷檢查裝置之缺陷檢查中之疑似缺陷之檢出,進而可實現致命缺陷之顯著化。
(構成10)
本發明之構成10係一種半導體裝置之製造方法,其包括如下步驟:使用如構成9中記載之反射型光罩,進行使用有曝光裝置之微影製程而於被轉印體上形成轉印圖案。
根據構成10之半導體裝置之製造方法,於使用高靈敏度之缺陷檢查裝置之缺陷檢查中,可使用將異物及傷痕等致命缺陷排除後之反射型光罩,故而可製造轉印至形成於半導體基板等被轉印體上之抗蝕 劑膜之電路圖案等轉印圖案無缺陷而具有微細且高精度之轉印圖案之半導體裝置。
根據上述之本發明之附多層反射膜之基板、反射型光罩基底及反射型光罩,於使用高靈敏度之缺陷檢查裝置之缺陷檢查中,可抑制檢出因基板或膜之表面粗糙度所致之疑似缺陷,且可容易地發現異物及傷痕等致命缺陷。尤其於用於EUV微影之附多層反射膜之基板、反射型光罩基底及反射型光罩中,可一面抑制疑似缺陷,一面使形成於基板主表面上之多層反射膜獲得較高之反射率。
又,根據上述之半導體裝置之製造方法,於使用高靈敏度之缺陷檢查裝置之缺陷檢查中,可使用將異物及傷痕等致命缺陷排除後之反射型光罩,故而可製造形成於半導體基板等被轉印體上之電路圖案等轉印圖案無缺陷而具有微細且高精度之轉印圖案之半導體裝置。
1‧‧‧端面
1a‧‧‧側面部
1b‧‧‧倒角斜面部
1c‧‧‧側面部
1d‧‧‧平面狀之端面部分
1e‧‧‧倒角斜面部
1f‧‧‧曲面狀之端面部分
2‧‧‧主表面
10‧‧‧光罩基底用基板
10a‧‧‧角部
20‧‧‧附多層反射膜之基板
21‧‧‧多層反射膜
22‧‧‧保護膜
23‧‧‧背面導電膜
24‧‧‧吸收體膜
27‧‧‧吸收體圖案
30‧‧‧反射型光罩基底
40‧‧‧反射型光罩
100‧‧‧CARE加工裝置
124‧‧‧處理槽
126‧‧‧觸媒壓盤
128‧‧‧玻璃基板(被加工物)
130‧‧‧基板保持器
132‧‧‧旋轉軸
140‧‧‧基材
142‧‧‧鉑
170‧‧‧加熱器
172‧‧‧熱交換器
174‧‧‧處理液供給噴嘴
176‧‧‧流體流路
圖1(a)係表示本發明之一實施形態之光罩基底用基板之立體圖。圖1(b)係表示本實施形態之光罩基底用基板之剖面模式圖。
圖2係表示本發明之一實施形態之附多層反射膜之基板之構成之一例之剖面模式圖。
圖3係表示本發明之一實施形態之反射型光罩基底之構成之一例之剖面模式圖。
圖4係表示本發明之一實施形態之反射型光罩之一例之剖面模式圖。
圖5係表示對本發明之實施例1及比較例1之附多層反射膜之基板之表面進行功率頻譜解析後之結果之曲線圖,且表示以原子力顯微鏡測定1μm×1μm之區域所得之空間頻率之功率頻譜密度(PSD)。
圖6係對本發明之實施例1及比較例1之附多層反射膜之基板之表 面進行功率頻譜解析後之結果之曲線圖,且表示以原子力顯微鏡測定3μm×3μm之區域所得之空間頻率之功率頻譜密度(PSD)。
圖7係表示將圖6所示之資料中之空間頻率為1μm-1以上且10μm-1以下之資料進行冪逼近之情況。
圖8係表示將圖5所示之資料中之空間頻率為10μm-1以上且100μm-1以下之資料進行冪逼近之情況。
圖9係實施例中使用之CARE(Catalyst Referred Etching,觸媒基準蝕刻)加工裝置之模式圖。
本發明係一種附多層反射膜之基板,其係於用於微影之光罩基底用基板之主表面上包含交替地積層高折射率層與低折射率層而成之多層反射膜。又,本發明係一種反射型光罩基底,其係於用於微影之光罩基底用基板之主表面上包含交替地積層高折射率層與低折射率層而成之多層反射膜及吸收體膜。本發明之附多層反射膜之基板、及反射型光罩基底可用以製造用於EUV微影之反射型光罩。
圖2係表示本發明之附多層反射膜之基板20之一例之模式圖。本發明之附多層反射膜之基板20係於光罩基底用基板10之主表面上包含多層反射膜21。本發明之附多層反射膜之基板20可於多層反射膜21上更包含保護膜22。於本發明之附多層反射膜之基板20上進而形成有吸收體膜24,藉此可獲得圖3所示之反射型光罩基底30。將圖3所示之反射型光罩基底30之吸收體膜24圖案化而形成吸收體圖案27,藉此可製造圖4所示之反射型光罩40。
本發明之附多層反射膜之基板20及反射型光罩基底30之特徵在於,以原子力顯微鏡測定其表面之特定大小之區域所得的特定範圍之空間頻率之功率頻譜密度(PSD)之積分值I及最大值為特定之範圍。對於本發明之附多層反射膜之基板20及反射型光罩基底30,於使用高靈 敏度之缺陷檢查裝置進行之缺陷檢查中,可抑制檢出因基板及膜之表面粗糙度所致之疑似缺陷,可容易地發現異物及傷痕等致命缺陷。
[功率頻譜解析]
為達成上述目的,本發明之特徵在於:附多層反射膜之基板20及/或反射型光罩基底30之表面具有某固定之表面粗糙度、及功率頻譜密度(Power Spectrum Density:PSD)。
以下,對表示本發明之附多層反射膜之基板20及反射型光罩基底30之表面之表面形態之參數即表面粗糙度(Rmax,Rms)、及功率頻譜密度(Power Spectrum Density:PSD)進行說明。
首先,代表性之表面粗糙度之指標即Rms(Root means square,均方根)係均方根粗糙度,其係將自平均線至測定曲線之偏差之平方求平均所得之值的平方根。Rms藉由下式(1)表示。
於式(1)中,l為基準長度,Z為自平均線至測定曲線之高度。
同樣地,代表性之表面粗糙度之指標即Rmax係表面粗糙度之最大高度,其係粗糙度曲線之峰之高度之最大值與谷之深度之最大值的絕對值之差。
Rms及Rmax一直以來被用於光罩基底用基板10之表面粗糙度之管理,於可利用數值來掌握表面粗糙度之方面優異。但該等Rms及Rmax之任一者均為高度之資訊,不包含與微細之表面形狀之變化相關之資訊。
相對於此,將所獲得之表面之凹凸轉換至空間頻率區域,藉此,由空間頻率之振幅強度所表示之功率頻譜解析可使微細之表面形狀數值化。若將Z(x,y)設為x座標、y座標之高度之資料,則其傅立 葉變換利用下式(2)賦予。
此處,Nx、Ny係x方向與y方向之資料之數。u=0、1、2......、Nx-1,v=0、1、2、......、Ny-1,此時空間頻率f利用下式(3)賦予。
此處,於式(3)中,dx係x方向之最小解析度,dy係y方向之最小解析度。
此時之功率頻譜密度PSD利用下式(4)賦予。
[數4]P(u,v)=|F(u,v)|2...(4)
該功率頻譜解析於以下方面優異,即,不僅將基板10之主表面2、附多層反射膜之基板20、及反射型光罩基底30等之膜之表面狀態之變化設為單純的高度之變化,而且可作為該空間頻率下之變化而掌握,該功率頻譜解析係解析原子級下之微觀反應等對表面造成之影響之方法。
於藉由功率頻譜解析而評估附多層反射膜之基板20及反射型光罩基底30之表面狀態之情形時,可使用功率頻譜密度(PSD)之積分值I。所謂積分值I係指如圖5中例示之描繪有功率頻譜密度(PSD)相對於空間頻率之值的特定之空間頻率之範圍之面積,如式(5)般定義。
[數6]
空間頻率f係如式(3)般定義,功率頻譜密度係作為由u及γ之值決定之空間頻率之函數而單一地計算。此處為了對離散之空間頻率計算功率頻譜密度,在測定區域及資料件數於x方向及y方向相等時,如式(6)般定義空間頻率fi。此處,X'及N'係測定區域及資料件數。P(fi)係空間頻率fi時之功率頻譜密度。
於本發明中,為了進行功率頻譜解析而以原子力顯微鏡測定特定大小之區域、例如3μm×3μm之區域之情形時,測定之場所可為轉印圖案形成區域之任意部位。關於轉印圖案形成區域,於光罩基底用基板10為6025尺寸(152mm×152mm×6.35mm)之情形時,可設為例如除反射型光罩基底30之表面之周緣區域以外之142mm×142mm之區域、132mm×132mm之區域、或132mm×104mm之區域,又,對於上述任意部位,可設為例如反射型光罩基底30之表面中心之區域。
又,關於上述說明之3μm×3μm之區域、轉印圖案形成區域、任意部位,不僅可應用於附多層反射膜之基板20,亦可應用於光罩基底用基板10、及反射型光罩基底30之吸收體膜24等。
如上所述藉由將主表面之表面粗糙度、及功率頻譜密度設為上述範圍,例如於利用Lasertec公司製造之EUV曝光用之光罩基板/基底缺陷檢查裝置「MAGICS M7360」(檢查光源波長為266nm)、KLA-Tencor公司製造之主光罩、光學光罩/基底及EUV光罩/基底缺陷檢查裝置「Teron600 series」(例如「Teron610」,檢查光源波長為193nm)之缺陷檢查中,可大幅抑制疑似缺陷之檢出。
再者,上述檢查光源波長並不限定於266nm及193nm。作為檢查光源波長,亦可使用532nm、488nm、364nm、及/或257nm。
又,於以使用0.2nm~100nm之波長區域之檢查光(EUV光)之高 靈敏度缺陷檢查裝置、例如使用作為檢查光源波長之13.5nm之EUV光之高靈敏度缺陷檢查裝置進行上述光罩基底用基板10之主表面之缺陷檢查之情形時較理想為,上述主表面以原子力顯微鏡測定1μm×1μm之區域所得的空間頻率為10μm-1以上且100μm-1以下之功率頻譜密度較佳為5nm4以下,空間頻率為10μm-1以上且100μm-1以下之功率頻譜密度更佳為0.5nm4以上且5nm4以下。但,於以使用有EUV光之高靈敏度缺陷檢查裝置進行光罩基底用基板10之主表面之缺陷檢查之情形時,需要特定值以上之反射率,故而限於除玻璃以外之材料之情形。
如上所述藉由使主表面之表面粗糙度、及功率頻譜密度為上述範圍,例如於以使用作為檢查光源波長之13.5nm之EUV光之高靈敏度缺陷檢查裝置之缺陷檢查中,可大幅抑制疑似缺陷之檢出。
[光罩基底用基板10]
其次,以下對本發明之一實施形態中使用之光罩基底用基板10進行說明。
圖1(a)係表示本實施形態之光罩基底用基板10之立體圖。圖1(b)係表示本實施形態之光罩基底用基板10之剖面模式圖。
光罩基底用基板10(或僅稱為基板10)為矩形之板狀體,具有2個對向主表面2與端面1。2個對向主表面2為該板狀體之上表面及下表面,且以相互對向之方式形成。又,2個對向主表面2之至少一者係應形成有轉印圖案之主表面。
端面1為該板狀體之側面,其與對向主表面2之外緣鄰接。端面1包含平面狀之端面部分1d、及曲面狀之端面部分1f。平面狀之端面部分1d係連接對向主表面2之一邊、與對向主表面2之另一邊之面,且包含側面部1a、及倒角斜面部1b。側面部1a係平面狀之端面部分1d中之與對向主表面2大致垂直之部分(T面)。倒角斜面部1b係側面部1a與對 向主表面2之間之被倒角之部分(C面),且形成於側面部1a與對向主表面2之間。
曲面狀之端面部分1f係於俯視基板10時與基板10之角部10a附近鄰接之部分(R部),且包含側面部1c及倒角斜面部1e。此處,所謂俯視基板10係指例如自與對向主表面2垂直之方向觀察基板10。又,所謂基板10之角部10a係指例如對向主表面2之外緣之兩邊之交點附近。所謂兩邊之交點可為兩邊之各者之延長線之交點。於本例中,曲面狀之端面部分1f係藉由將基板10之角部10a變圓而形成為曲面狀。
繼而,為達成上述目的,本實施形態之光罩基底用基板10之形成有轉印圖案之側之主表面使用上述之表面粗糙度(Rms)、功率頻譜密度,以原子力顯微鏡測定1μm×1μm之區域所得的均方根粗糙度(Rms)為0.15nm以下,且空間頻率為1μm-1以上之功率頻譜密度為10nm4以下。
於本發明中,上述1μm×1μm之區域可為轉印圖案形成區域之任意部位。於基板10為6025尺寸(152mm×152mm×6.35mm)之情形時,轉印圖案形成區域可設為例如基板10之主表面之除周緣區域以外的142mm×142mm之區域、132mm×132mm之區域、或132mm×104mm之區域。又,對於上述任意部位,可設為例如基板10之主表面中心之區域。
又,於以使用有150nm~365nm之波長區域之檢查光之高靈敏度缺陷檢查裝置、例如使用有作為檢查光源波長之266nm之UV雷射或193nm之ArF準分子雷射之高靈敏度缺陷檢查裝置進行上述光罩基底用基板10之主表面之缺陷檢查之情形時較理想為,以原子力顯微鏡測定上述主表面之3μm×3μm之區域所得的空間頻率為1μm-1以上10μm-1以下之功率頻譜密度較佳為30nm4以下,空間頻率為1μm-1以上且10μm-1以下之功率頻譜密度更佳為1nm4以上且25nm4以下,空間 頻率為1μm-1以上且10μm-1以下之功率頻譜密度進而佳為1nm4以上且20nm4以下。
進而,較理想為,以原子力顯微鏡測定光罩基底用基板10之主表面之3μm×3μm之區域所得的空間頻率為1μm-1以上且10μm-1以下之功率頻譜密度(PSD)之積分值I為100×10-3nm3以下,更佳為90×10-3nm3以下,進而佳為80×10-3nm3以下,再進而佳為70×10-3nm3以下。
又,較理想為,上述均方根粗糙度(Rms)較佳為0.12nm以下,更佳為0.10nm以下,進而佳為0.08nm以下,進而更佳為0.06nm以下。又,較理想為,表面粗糙度之最大高度(Rmax)較佳為1.2nm以下,更佳為1.0nm以下,進而佳為0.8nm以下,進而更佳為0.6nm以下。自提高形成於光罩基底用基板10上之多層反射膜21、保護膜22、及吸收體膜24之反射率等之光學特性之觀點考慮,較佳為管理均方根粗糙度(Rms)與最大高度(Rmax)之兩者之參數。例如較理想為,光罩基底用基板10之表面之較佳之表面粗糙度中,較佳為均方根粗糙度(Rms)為0.12nm以下,且最大高度(Rmax)為1.2nm以下,更佳為均方根粗糙度(Rms)為0.10nm以下,且最大高度(Rmax)為1.0nm以下,進而佳為均方根粗糙度(Rms)為0.08nm以下,且最大高度(Rmax)為0.8nm以下,再進而佳為均方根粗糙度(Rms)為0.06nm以下,且最大高度(Rmax)為0.6nm以下。
基板10之主表面較佳為藉由觸媒基準蝕刻進行了表面加工之表面。所謂觸媒基準蝕刻(Catalyst Referred Etching:以下亦稱為CARE)係一種表面加工方法,其係將被加工物(光罩基底用基板10)與觸媒配置於處理液中,或將處理液供給至被加工物與觸媒之間,使被加工物與觸媒接觸,此時藉由自吸附於觸媒上之處理液中之分子所生成之活性物質而對被加工物進行加工。再者,於被加工物包含玻璃等固體氧化物之情形時,觸媒基準蝕刻係將處理液設為水,於水存在之情形下 使被加工物與觸媒接觸,使觸媒與被加工物表面進行相對運動等,藉此自被加工物表面去除由水解所產生之分解產物而進行加工。
將代表性之CARE加工裝置示於圖9。該CARE加工裝置100包含:處理槽124;觸媒壓盤126,其旋轉自如地配置於該處理槽124內;及基板保持器130,其使表面(被加工面)朝下而裝卸自如地保持玻璃基板(被加工物)128。基板保持器130,其連結於上下移動自如之旋轉軸132之前端,該旋轉軸132係與觸媒壓盤126之旋轉軸芯平行,且設置於離心之位置上。觸媒壓盤126例如於含有不鏽鋼之剛性材料之基材140之表面,形成有具有特定厚度之例如鉑142作為固體觸媒。再者,固體觸媒亦可為塊狀,但亦可為如下之構成,即,於廉價且形狀穩定性良好之例如氟系橡膠材等具有彈性之母材上形成鉑142。又,於基板保持器130之內部,於旋轉軸132內延伸而埋設有作為溫度控制機構之加熱器170,其用以控制由該保持器130保持之玻璃基板128之溫度。於處理槽124之上方,配置有處理液供給噴嘴174,其將藉由作為溫度控制機構之熱交換器172而控制為特定之溫度之處理液(純水)供給至處理槽124之內部。進而,於觸媒壓盤126之內部,設置有作為溫度控制機構之流體流路176,其控制觸媒壓盤126之溫度。
該CARE加工裝置100之CARE之實施方法例如為如下。自處理液供給噴嘴174向觸媒壓盤126供給處理液。繼而,將由基板保持器130保持之被加工物128以特定之壓力壓抵於觸媒壓盤126之鉑(觸媒)142之表面,一面使處理液介存於被加工物128與觸媒壓盤126之鉑(觸媒)142之接觸部(加工部),一面使觸媒壓盤126及被加工物128旋轉,對被加工物128之表面(下表面)實施平坦地去除加工。再者,亦可不將由基板保持器130保持之被加工物128以特定之壓力壓抵於觸媒壓盤126之鉑(觸媒)142,而是使被加工物128極端地接近鉑(觸媒)142,對被加工物128之表面實施平坦地去除加工(蝕刻)。
基板10之主表面係藉由觸媒基準蝕刻而自與基準面即觸媒表面接觸之凸部被選擇性地表面加工,故而構成主表面之凹凸(表面粗糙度)一面維持非常高之平滑性,一面成為非常整齊之表面形態,而且,成為相對於基準面而構成凹部之比例多於構成凸部之表面形態。因此,於上述主表面上積層有複數個薄膜之情形時,成為主表面之缺陷尺寸變小之傾向,故而自提高缺陷品質之觀點考慮為佳。尤其於上述主表面上形成有下述多層反射膜21之情形時特別發揮效果。又,如上所述藉由以觸媒基準蝕刻對主表面實施之表面處理,可較容易地形成必要之表面粗糙度、功率頻譜密度之表面。
再者,於基板10之材料為玻璃材料之情形時,作為觸媒可使用選自包含含有鉑、金、過渡金屬及該等中之至少一者之合金之群中之至少一種之材料。又,作為處理液,可使用選自包含純水、臭氧水及氫水等之功能水、低濃度之鹼性水溶液、及低濃度之酸性水溶液之群中之至少一種之處理液。
自至少取得圖案轉印精度、位置精度之觀點考慮,本實施形態之光罩基底用基板10之形成有轉印圖案之側之主表面較佳為以成為高平坦度之方式實施表面加工。於EUV之反射型光罩基底用基板10之情形時,於基板10之形成有轉印圖案之側之主表面之132mm×132mm之區域、或142mm×142mm之區域上,平坦度較佳為0.1μm以下,特佳為0.05μm以下。進而佳為,於基板10之形成有轉印圖案之側之主表面132mm×132mm之區域上,平坦度為0.03μm以下。又,形成有轉印圖案之側之相反側之主表面係置於曝光裝置時被靜電吸附之面,於142mm×142mm之區域上,平坦度為1μm以下,特佳為0.5μm以下。
又,作為EUV曝光用之反射型光罩基底用基板10之材料,只要係具有低熱膨脹之特性者則可為任意。例如可使用具有低熱膨脹之特性之SiO2-TiO2系玻璃(二元系(SiO2-TiO2)及三元系(SiO2-TiO2-SnO2等)), 例如SiO2-Al2O3-Li2O系之結晶化玻璃等之所謂多成分系玻璃。又,除上述玻璃以外亦可使用矽及金屬等之基板。作為上述金屬基板之例,可列舉因瓦合金(Fe-Ni系合金)等。
如上所述,於EUV曝光用之光罩基底用基板10之情形時,對基板要求低熱膨脹之特性,故而使用多成分系玻璃材料,但與合成石英玻璃相比而存在不易取得較高之平滑性之問題。為解決該問題,於包含多成分系玻璃材料之基板上,形成包含金屬、合金、或包含於該等之任一者中含有氧、氮、碳之至少一者之材料的薄膜。繼而,對此種薄膜表面進行鏡面研磨、表面處理,藉此可較容易地形成上述範圍之表面粗糙度、功率頻譜密度之表面。
作為上述薄膜之材料,較佳為例如Ta(鉭)、含有Ta之合金、或使該等之任一者中含有氧、氮、碳之至少一者之Ta化合物。作為Ta化合物,可使用例如選自TaB、TaN、TaO、TaON、TaCON、TaBN、TaBO、TaBON、TaBCON、TaHf、TaHfO、TaHfN、TaHfON、TaHfCON、TaSi、TaSiO、TaSiN、TaSiON、及TaSiCON等者。更佳為選自該等Ta化合物中之含有氮(N)之TaN、TaON、TaCON、TaBN、TaBON、TaBCON、TaHfN、TaHfON、TaHfCON、TaSiN、TaSiON、及TaSiCON者。再者,較理想為,上述薄膜自薄膜表面之高平滑性之觀點考慮,較佳為微晶結構或非晶結構。薄膜之結晶結構可藉由X射線繞射裝置(XRD,X Ray Diffraction)而測定。
再者,於本發明中,用以取得上述規定之表面粗糙度、功率頻譜密度之加工方法並未特別限定。本發明於管理光罩基底用基板10之表面粗糙度、功率頻譜密度方面具有特徵。例如,可藉由如下述之作為實施例而例示般之加工方法而實現。
[附多層反射膜之基板20]
其次,以下對本發明之一實施形態之附多層反射膜之基板20進 行說明。
圖2係表示本實施形態之附多層反射膜之基板20之模式圖。
本實施形態之附多層反射膜之基板20設為於上述說明之光罩基底用基板10之形成有轉印圖案之側之主表面上包含多層反射膜21之構造。該多層反射膜21係對EUV微影用反射型光罩40賦予反射EUV光之功能者,其採用使折射率不同之元素週期性地積層而成之多層反射膜21之構成。
多層反射膜21只要反射EUV光,則其材質並無特別限定,但其單獨之反射率通常為65%以上,上限通常為73%。此種多層反射膜21一般可設為將包含高折射率之材料之薄膜(高折射率層)、與包含低折射率之材料之薄膜(低折射率層)交替地積層40~60週期左右而成之多層反射膜21。
例如,作為相對於波長13~14nm之EUV光之多層反射膜21,較佳為將Mo膜與Si膜交替地積層40週期左右而成之Mo/Si週期多層膜。此外,作為於EUV光之區域使用之多層反射膜21,可設為Ru/Si週期多層膜、Mo/Be週期多層膜、Mo化合物/Si化合物週期多層膜、Si/Nb週期多層膜、Si/Mo/Ru週期多層膜、Si/Mo/Ru/Mo週期多層膜、及Si/Ru/Mo/Ru週期多層膜等。
多層反射膜21之形成方法於該技術領域為公知,但例如可藉由磁控濺鍍法及離子束濺鍍法等成膜各層而形成。於上述之Mo/Si週期多層膜之情形時,例如藉由離子束濺鍍法,首先使用Si靶,於基板10上成膜厚度為數nm左右之Si膜,其後,使用Mo靶而成膜厚度為數nm左右之Mo膜,以此為一週期而積層40~60週期形成多層反射膜21。
為了保護多層反射膜21免受來自EUV微影用反射型光罩40之製造步驟中之乾式蝕刻或濕式清洗之影響,於上述已形成之多層反射膜21上,亦可形成保護膜22(參照圖3)。如此,於光罩基底用基板10上包 含多層反射膜21與保護膜22之形態亦可設為本發明之附多層反射膜之基板20。
再者,作為上述保護膜22之材料,可使用例如Ru、Ru-(Nb、Zr、Y、B、Ti、La、Mo)、Si-(Ru、Rh、Cr、B)、Si、Zr、Nb、La、B等之材料,但若使用該等中之含有釕(Ru)之材料,則多層反射膜21之反射率特性會變得更佳。具體而言,較佳為Ru、Ru-(Nb、Zr、Y、B、Ti、La、Mo)。此種保護膜22尤其於將吸收體膜24設為Ta系材料,且以Cl系氣體之乾式蝕刻而使該吸收體膜24圖案化之情形時為有效。
於本發明之附多層反射膜之基板20上,以原子力顯微鏡測定上述多層反射膜21或上述保護膜22之表面之3μm×3μm之區域所得的空間頻率為1μm-1以上10μm-1以下之功率頻譜密度(PSD)之積分值I為180×10-3nm3以下,較佳為170×10-3nm3以下,更佳為160×10-3nm3以下,進而佳為150×10-3nm3以下。進而,於上述附多層反射膜之基板20上,以原子力顯微鏡測定上述多層反射膜21或上述保護膜22之表面之3μm×3μm之區域所得的空間頻率為1μm-1以上10μm-1以下之功率頻譜密度(PSD)之最大值為50nm4以下,較佳為45nm4以下,更佳為40nm4以下。藉由形成此種構成,可抑制使用高靈敏度缺陷檢查裝置進行之多層反射膜21或保護膜22之表面之缺陷檢查中之疑似缺陷的檢出,進而可實現致命缺陷之顯著化。又,藉由形成此種構成,於以使用有150nm~365nm之波長區域之檢查光之高靈敏度缺陷檢查裝置、例如使用有上述列舉之作為檢查光源波長之266nm之UV雷射或193nm之ArF準分子雷射的高靈敏度缺陷檢查裝置進行附多層反射膜之基板20之缺陷檢查時,可大幅抑制疑似缺陷之檢出。
於本發明中,為了功率頻譜解析而以原子力顯微鏡測定之特定大小之區域(上述3μm×3μm之區域)可為轉印圖案形成區域之任意部 位。於基板10為6025尺寸(152mm×152mm×6.35mm)之情形時,轉印圖案形成區域例如可設為除基板10之主表面之周緣區域以外之142mm×142mm之區域、132mm×132mm之區域、或132mm×104mm之區域,又,對於上述任意部位,例如可設為基板10之主表面中心之區域。
於本發明之附多層反射膜之基板20上,以原子力顯微鏡測定3μm×3μm之區域所得的空間頻率為1μm-1以上10μm-1以下之功率頻譜密度較佳為具有大致單調減少之特性。
所謂大致單調減少,係指例如圖7所示於藉由特定之近似曲線而逼近空間頻率與功率頻譜密度之關係時,近似曲線上功率頻譜密度自空間頻率為1μm-1之低空間頻率向10μm-1之高空間頻率而逐漸減少。於圖7所示之例中,作為近似曲線而使用冪逼近。一般而言,於冪逼近中,若將x設為空間頻率,且將y設為功率頻譜密度(PSD),則可將資料逼近於y=a‧xb(a及b為常數)
之冪曲線之式。於冪逼近時,於冪曲線之式之x之次方值b為負之情形時,可謂具有大致單調減少之特性。藉由特定之空間頻率之範圍之功率頻譜密度具有大致單調減少之特性,可進一步抑制使用高靈敏度缺陷檢查裝置進行之缺陷檢查中之疑似缺陷之檢出,進而可更確實地實現致命缺陷之顯著化。
較理想為於本發明之附多層反射膜之基板20,進而以原子力顯微鏡測定上述多層反射膜21或上述保護膜22之表面之3μm×3μm之區域所得的空間頻率為1μm-1以上5μm-1以下之功率頻譜密度(PSD)之積分值I較佳為115×10-3nm3以下,更佳為105×10-3nm3以下,進而佳為95×10-3nm3以下。藉由形成此種構成,於以使用有150nm~365nm之波長區域之檢查光之高靈敏度缺陷檢查裝置、例如使用有上述列舉之 作為檢查光源波長之266nm之UV雷射或193nm之ArF準分子雷射的高靈敏度缺陷檢查裝置進行附多層反射膜之基板20之缺陷檢查時,可進一步大幅抑制疑似缺陷之檢出。
又,於上述附多層反射膜之基板20上,以原子力顯微鏡測定上述多層反射膜21或上述保護膜22之表面之1μm×1μm之區域所得的空間頻率為10μm-1以上100μm-1以下之功率頻譜密度(PSD)之積分值I為150×10-3nm3以下,較佳為140×10-3nm3以下,更佳為135×10-3nm3以下,進而佳為130×10-3nm3以下。進而於上述附多層反射膜之基板20上,上述多層反射膜21或上述保護膜22之表面之空間頻率為10μm-1以上且100μm-1以下之功率頻譜密度(PSD)之最大值為9nm4以下,較佳為8nm4以下,更佳為7nm4以下,進而佳為6nm4以下。藉由形成此種構成,於以使用0.2nm~100nm之波長區域之檢查光(EUV光)之高靈敏度缺陷檢查裝置、例如使用作為檢查光源波長之13.5nm之EUV光之高靈敏度缺陷檢查裝置進行附多層反射膜之基板20之缺陷檢查之情形時,可大幅抑制疑似缺陷之檢出。
於本發明之附多層反射膜之基板20上,以原子力顯微鏡測定1μm×1μm之區域所得的空間頻率為10μm-1以上100μm-1以下之功率頻譜密度較佳為具有大致單調減少之特性。大致單調減少之含義除空間頻率之區域為10μm-1以上且100μm-1以下以外,如上所述,如例示圖7所說明般。特定之空間頻率之範圍之功率頻譜密度具有大致單調減少之特性,藉此可進一步抑制使用高靈敏度缺陷檢查裝置之缺陷檢查中之疑似缺陷之檢出,進而可確實地實現致命缺陷之顯著化。
於本發明之附多層反射膜之基板20中,較佳為於多層反射膜21上包含保護膜22。藉由使附多層反射膜之基板20於多層反射膜21上包含保護膜22,可抑制於製造轉印用光罩(EUV光罩)時對多層反射膜21之表面之傷害,故而對EUV光之反射率特性變得更佳。又,於附多層 反射膜之基板20中,可抑制使用高靈敏度缺陷檢查裝置進行之保護膜22表面之缺陷檢查中之疑似缺陷的檢出,進而可實現致命缺陷之顯著化。於附多層反射膜之基板20包含保護膜22之情形時,上述特定之功率頻譜密度(PSD)之積分值I、及特定之功率頻譜密度(PSD)之最大值可根據以原子力顯微鏡測定保護膜22之表面所得之空間頻率而獲得。
又,除可大幅抑制使用上述高靈敏度缺陷檢查裝置進行之缺陷檢查中之疑似缺陷之檢出的效果,作為附多層反射膜之基板20為了使必要之反射特性良好,於上述附多層反射膜之基板20中,以原子力顯微鏡測定上述多層反射膜21或上述保護膜22之表面之1μm×1μm之區域所得之均方根粗糙度(Rms)較佳為0.15nm以下。均方根粗糙度(Rms)更佳為0.13nm以下,均方根粗糙度(Rms)更理想為0.12nm以下。
用以保持上述範圍之基板10之表面形態且使多層反射膜21或保護膜22之表面成為上述範圍之功率頻譜密度之濺鍍法如下。即,上述範圍之功率頻譜密度之表面可藉由如下方法獲得:以相對於基板10之主表面之法線傾斜地沈積高折射率層與低折射率層之方式,藉由濺鍍法成膜多層反射膜21。更具體而言,Mo等用於低折射率層之成膜之濺鍍粒子之入射角度、與Si等用於高折射率層之成膜之濺鍍粒子之入射角度較佳為以超過0度且45度以下而成膜。較理想為,更佳為超過0度且40度以下,進而佳為超過0度且30度以下。進而,較佳為形成於多層反射膜21上之保護膜22亦於多層反射膜21之成膜後,以連續地相對於基板10之主表面之法線而傾斜地沈積保護膜22之方式藉由離子束濺鍍法而形成。
又,於附多層反射膜之基板20上,於基板10之與多層反射膜21接觸之面之相反側之面上,為了靜電吸附亦可形成背面導電膜23(參照圖3)。如此,於光罩基底用基板10上之形成有轉印圖案之側包含多 層反射膜21及保護膜22、且於與多層反射膜21接觸之面之相反側之面包含背面導電膜23之形態亦可設為本發明之附多層反射膜之基板20。再者,背面導電膜23所要求之電性特性(薄片電阻)通常為100Ω/□以下。背面導電膜23之形成方法為公知。背面導電膜23可藉由例如磁控濺鍍法及離子束濺鍍法,使用Cr、Ta等之金屬或合金之靶而形成。
又,作為本實施形態之附多層反射膜之基板20,亦可於基板10與多層反射膜21之間形成基底層。基底層可於提高基板10之主表面之平滑性之目的、減少缺陷之目的、多層反射膜21之反射率增強效果之目的、及修正多層反射膜21之應力之目的下形成。
[反射型光罩基底30]
其次,以下對本發明之一實施形態之反射型光罩基底30進行說明。
圖3係表示本實施形態之反射型光罩基底30之模式圖。
本實施形態之反射型光罩基底30設為於上述說明之附多層反射膜之基板20之保護膜22上形成有成為轉印圖案之吸收體膜24之構成。
上述吸收體膜24具有吸收曝光光即EUV光之功能,於使用反射型光罩基底30而製作之反射型光罩40中,只要上述多層反射膜21及/或保護膜22之反射光、與吸收體圖案27之反射光之間具有所需之反射率差者即可。
例如,將吸收體膜24對EUV光之反射率設定於0.1%以上且40%以下之間。又,除上述反射率差之外,上述多層反射膜21及/或保護膜22之反射光、與吸收體圖案27之反射光之間亦可具有所需之相位差。再者,此種於反射光間具有所需之相位差之情形時,有將反射型光罩基底30之吸收體膜24稱為移相膜之情況。於上述反射光間設有所需之相位差而使所獲得得之反射型光罩40之反射光之對比度提高之情形時,相位差較佳為設定於180度±10度之範圍,且吸收體膜24之絕對反 射率較佳為設定為1.5%以上且30%以下,吸收體膜24相對於多層反射膜21及/或保護膜22之表面之反射率較佳為設定為2%以上且40%以下。
上述吸收體膜24既可為單層亦可為積層構造。於積層構造之情形時,既可為相同材料之積層膜、亦可為不同種材料之積層膜。積層膜可為使材料及/或組成於膜厚方向上階段性及/或連續性地變化者。
上述吸收體膜24之材料並未特別限定。例如較佳為具有吸收EUV光之功能者,使用Ta(鉭)單一成分、或以Ta為主成分之材料。以Ta為主成分之材料通常為Ta之合金。此種吸收體膜24之結晶狀態自平滑性、平坦性之觀點考慮,較佳為具有非晶狀或微晶之構造。作為以Ta為主成分之材料,可使用例如:含有Ta與B之材料;含有Ta與N之材料;含有Ta與B,進而含有O與N之至少一者之材料;含有Ta與Si之材料;含有Ta、Si、及N之材料;有Ta與Ge之材料;及含有Ta、Ge及N之材料等。又,例如,藉由向Ta中添加B、Si、Ge等,可容易地獲得非晶結構,使平滑性提高。進而,若向Ta中添加N、O,則可提高抗氧化性,故而可使經時穩定性提高。為了保持上述範圍之基板10、及附多層反射膜之基板20之表面形態以使吸收體膜24之表面為上述範圍之功率頻譜密度,較佳為使吸收體膜24為微晶結構、或非晶結構。關於結晶結構,可藉由X射線繞射裝置(XRD)而確認。
於本發明之反射型光罩基底30中,關於吸收體膜24之膜厚,為了使多層反射膜21、保護膜22之反射光、與吸收體圖案27之反射光之間具有所需之反射率差而設定為必要之膜厚。為了減小屏蔽效果,吸收體膜24之膜厚較佳為60nm以下。
又,於本發明之反射型光罩基底30中,上述吸收體膜24可具有移相功能,即,使上述多層反射膜21及/或保護膜22之反射光、與吸收體圖案27之反射光之間具有所需之相位差。於該情形時,可獲得使 EUV光之轉印解像性提高之用於反射型光罩40之底版即反射型光罩基底30。又,可令用以發揮移相效果所必需之吸收體膜24之膜厚較先前薄膜化,該移相效果係取得所需之轉印解像性所必需者,故而可獲得使屏蔽效果減小之反射型光罩基底。
具有移相功能之吸收體膜24之材料並未特別限定。例如,可設為上述列舉之Ta單一成分,或以Ta為主成分之材料,亦可為除此以外之材料。作為除Ta以外之材料,可列舉Ti、Cr、Nb、Mo、Ru、Rh、及W。又,可設為包含Ta、Ti、Cr、Nb、Mo、Ru、Rh、及W中之2種以上之元素之合金、及/或該等元素之積層膜。又,該等材料中亦可含有選自氮、氧、及碳中之一種以上之元素。其中藉由設為含有氮之材料,可減小吸收體膜之表面之均方根粗糙度(Rms)、及於3μm×3μm之區域中檢出之空間頻率為1~10μm-1之粗糙度成分所有之振幅強度即功率頻譜密度,可獲得可抑制使用高靈敏度缺陷檢查裝置進行之缺陷檢查中之疑似缺陷之檢出的反射型光罩基底30,故而較佳。再者,於將吸收體膜24設為積層膜之情形時,可設為相同材料之層之積層膜、或不同種材料之層之積層膜。於將吸收體膜24設為不同種材料之層之積層膜之情形時,亦可使構成該複數層之材料為具有相互不同之蝕刻特性之材料而形成具有蝕刻光罩功能之吸收體膜24。
再者,上述吸收體膜24之表面以原子力顯微鏡測定3μm×3μm之區域所得的空間頻率為1μm-1以上且10μm-1以下之功率頻譜密度較佳為50nm4以下,更佳為,以原子力顯微鏡測定3μm×3μm之區域所得的空間頻率為1μm-1以上且10μm-1以下之功率頻譜密度較理想為40nm4以下。藉由形成此種構成,於以使用有150nm~365nm之波長區域之檢查光之高靈敏度缺陷檢查裝置、例如使用有上述列舉之作為檢查光源波長之266nm之UV雷射或193nm之ArF準分子雷射的高靈敏度缺陷檢查裝置進行反射型光罩基底30之缺陷檢查時,可大幅抑制疑似 缺陷之檢出。
進而,上述吸收體膜24之表面除利用原子力顯微鏡測定3μm×3μm之區域所得之空間頻率為1μm-1以上且10μm-1以下之功率頻譜密為50nm4以下之外,較理想為空間頻率為1μm-1以上且10μm-1以下之功率頻譜密度(PSD)之積分值I為800×10-3nm3以下。藉由形成此種構成,可抑制以使用150nm~365nm之波長區域之檢查光之高靈敏度缺陷檢查裝置、例如使用上述列舉之作為檢查光源波長之266nm之UV雷射或193nm之ArF準分子雷射的高靈敏度缺陷檢查裝置於複數級之檢查靈敏度條件下之疑似缺陷之檢出,從而可實現致命缺陷之顯著化。上述積分值I較理想為650×10-3nm3以下。進而佳為,上述積分值I較理想為500×10-3nm3以下。較佳為,上述積分值I較理想為450×10-3nm3以下。吸收體膜24之表面之上述積分值I可根據吸收體膜之材料、組成、膜厚、及成膜條件等而調整。
再者,本發明之反射型光罩基底30並不限定於圖3所示之構成。例如,可於上述吸收體膜24上形成成為用以使吸收體膜24圖案化之光罩之抗蝕劑膜,附抗蝕劑膜之反射型光罩基底30亦可設為本發明之反射型光罩基底30。再者,形成於吸收體膜24上之抗蝕劑膜既可為正型亦可為負型。又,既可用於電子束繪圖亦可用於雷射繪圖。進而,於吸收體膜24與上述抗蝕劑膜之間,亦可形成所謂的硬質光罩(蝕刻光罩)膜,該態樣亦可設為本發明之反射型光罩基底30。
關於硬質光罩膜25,亦可於吸收體膜24上形成轉印圖案之後剝離硬質光罩膜,關於未形成硬質光罩膜之反射型光罩基底30,亦可將吸收體膜24設為複數層之積層構造,使構成該複數層之材料為具有相互不同之蝕刻特性之材料,形成作為具有蝕刻光罩功能之吸收體膜24之反射型光罩基底30。
[反射型光罩40]
其次,以下對本發明之一實施形態之反射型光罩40進行說明。
圖4係表示本實施形態之反射型光罩40之模式圖。
本實施形態之反射型光罩40為使上述反射型光罩基底30之吸收體膜24圖案化,且於上述保護膜22上形成有吸收體圖案27之構成。本實施形態之反射型光罩40若以EUV光等之曝光光進行曝光,則於光罩表面存在有吸收體膜24之部分曝光光被吸收,除此以外之去除吸收體膜24後之部分曝光光由露出之保護膜22及多層反射膜21而反射,藉此可作為微影用之反射型光罩40而使用。
[半導體裝置之製造方法]
藉由使用有以上說明之反射型光罩40與曝光裝置之微影製程,將基於上述反射型光罩40之吸收體圖案27之電路圖案等轉印圖案轉印至形成於半導體基板等被轉印體上之抗蝕劑膜上,且經過其他各種步驟,可製造於半導體基板上形成有各種圖案等之半導體裝置。
再者,可於上述之光罩基底用基板10、附多層反射膜之基板20、及反射型光罩基底30上形成基準標記,且可對該基準標記、及由上述高靈敏度缺陷檢查裝置所檢出出之致命缺陷之位置進行座標管理。根據所獲得之致命缺陷之位置資訊(缺陷資料)而製作反射型光罩40時,能以上述之缺陷資料與被轉印圖案(電路圖案)資料為基礎,以於致命缺陷存在之部位形成吸收體圖案27之方式修正繪圖資料,減少缺陷。
[實施例]
以下,將製造本發明之EUV曝光用之附多層反射膜之基板20、反射型光罩基底30及反射型光罩40之例作為實施例進行說明。
首先,於EUV曝光用之光罩基底用基板10之表面,如下所述成膜多層反射膜21,製造實施例1~2及比較例1之附多層反射膜之基板20。
<實施例1及比較例1之光罩基底用基板10之製作>
用於實施例1及比較例1之光罩基底用基板10係以如下方式製造。
準備大小為152mm×152mm、厚度為6.35mm之SiO2-TiO2系之玻璃基板作為光罩基底用基板10,使用雙面研磨裝置,藉由氧化鈰研磨粒及膠體氧化矽研磨粒對該玻璃基板之正背面階段性地進行研磨之後,以低濃度之氟矽酸進行表面處理。以原子力顯微鏡測定藉此獲得之玻璃基板表面之表面粗糙度,均方根粗糙度(Rms)為0.5nm。
以使用有波長調變雷射之波長偏移干涉儀測定該玻璃基板之正背面之148mm×148mm之區域之表面形狀(表面形態、平坦度)、TTV(板厚不均)。其結果為,玻璃基板之正背面之平坦度為290nm(凸形狀)。將玻璃基板表面之表面形狀(平坦度)之測定結果作為每一測定點之相對於基準面之高度之資訊而保存於電腦中,並且與玻璃基板所必需之表面平坦度之基準值50nm(凸形狀)、背面平坦度之基準值50nm加以比較,利用電腦計算其差分(必需去除量)。
其次,針對玻璃基板面內之每一加工點形狀區域,設定與必需去除量對應之局部表面加工之加工條件。事先使用虛設基板,以與實際之加工相同之方式使基板於固定時間不移動而對虛設基板之點進行加工,利用與測定上述正背面之表面形狀之裝置相同之測定機測定其形狀,計算每單位時間之點之加工體積。繼而,根據由點之資訊與玻璃基板之表面形狀之資訊所得之必需去除量,決定對玻璃基板進行光柵掃描時之掃描速率。
根據所設定之加工條件,使用黏彈性磁流體之基板最後加工裝置,藉由黏彈性磁流體研磨(Magneto Rheological Finishing:MRF)加工法,以使玻璃基板之正背面平坦度成為上述基準值以下之方式進行局部表面加工處理而調整表面形狀。再者,此時使用之黏彈性磁流體 含有鐵成分,研磨漿料使用含有作為研磨劑之氧化鈰約2wt%之鹼性水溶液。其後,將玻璃基板浸漬於裝入有濃度約10%之鹽酸水溶液(溫度約25℃)之清洗槽中約10分鐘之後,進行純水之沖洗、異丙醇(IPA,isopropyl alcohol)乾燥。
測定所獲得之玻璃基板表面之表面形狀(表面形態、平坦度),正背面之平坦度為約40~50nm。又,對轉印圖案形成區域(132mm×132mm)之任意部位之1μm×1μm之區域,使用原子力顯微鏡測定玻璃基板表面之表面粗糙度,均方根粗糙度(Rms)成為0.37nm,且成為較以MRF進行局部表面加工前之表面粗糙度更粗之狀態。
因此,於維持或改善玻璃基板表面之表面形狀之研磨條件下使用雙面研磨裝置對玻璃基板之正背面進行雙面研磨。該最後加工研磨係於以下之研磨條件下進行。
加工液:鹼性水溶液(NaOH)+研磨劑(濃度:約2wt%)
研磨劑:膠體氧化矽,平均粒徑:約70nm
研磨壓盤轉速:約1~50rpm
加工壓力:約0.1~10kPa
研磨時間:約1~10分鐘
其後,以鹼性水溶液(NaOH)清洗玻璃基板,獲得EUV曝光用之光罩基底用基板10。
測定所獲得之光罩基底用基板10之正背面之平坦度、表面粗糙度後,正背面平坦度維持或改善雙面研磨裝置之加工前之狀態而為良好,為約40nm。又,對所獲得之光罩基底用基板10,以原子力顯微鏡測定轉印圖案形成區域(132mm×132mm)之任意部位之1μm×1μm之區域,其表面粗糙度之均方根粗糙度(Rms)為0.145nm,最大高度(Rmax)為1.4nm。又,空間頻率為1μm-1以上且10μm-1以下之功率頻譜密度(PSD)之最大值為5.94nm4,空間頻率為1μm-1以上且10μm-1以 下之功率頻譜密度(PSD)之積分值I為42.84×10-3nm3。又,空間頻率為10μm-1以上且100μm-1以下之功率頻譜密度(PSD)之最大值為3.49nm4,空間頻率為10μm-1以上且100μm-1以下之功率頻譜密度(PSD)之積分值I為106.96×10-3nm3
進而,對所獲得之光罩基底用基板10,以原子力顯微鏡測定轉印圖案形成區域(132mm×132mm)之任意部位之3μm×3μm之區域後,空間頻率為1μm-1以上且10μm-1以下之功率頻譜密度(PSD)之最大值為20.41nm4,空間頻率為1μm-1以上且10μm-1以下之功率頻譜密度(PSD)之積分值I為93.72×10-3nm3
再者,本發明之光罩基底用基板10之局部加工方法並不限定於上述黏彈性磁流體研磨加工法。亦可為使用氣體簇型離子束(Gas Cluster Ion Beams:GCIB)或局部電漿之加工方法。
如以上般製造用於實施例1及比較例1之光罩基底用基板10。
<實施例2之光罩基底用基板10之製作>
用於實施例2之光罩基底用基板10係以如下方式製造。
對藉由上述之實施例1之製造方法所獲得之光罩基底用基板10,進而以降低高空間頻率區域(1μm-1以上)之PSD為目的,對玻璃基板之正背面藉由觸媒基準蝕刻(CARE)而進行表面加工。將所使用之CARE加工裝置之模式圖示於圖9。再者,加工條件設為如下。
加工液:純水
觸媒:Pt
基板轉速:10.3轉/分鐘
觸媒壓盤轉速:10轉/分鐘
加工時間:50分鐘
加工壓:250hPa
其後,對玻璃基板之端面進行擦除清洗之後,將該基板浸漬於 裝入有王水(溫度約65℃)之清洗槽中約10分鐘,其後,進行純水之沖洗、乾燥。再者,王水之清洗進行複數次,直至觸媒即Pt之殘留物於玻璃基板之正背面消失。
對所獲得之光罩基底用基板10,以原子力顯微鏡測定轉印圖案形成區域(132mm×132mm)之任意部位之1μm×1μm之區域後,其表面粗糙度之均方根粗糙度(Rms)為0.081nm,最大高度為(Rmax)0.8nm。又,空間頻率為1μm-1以上且10μm-1以下之功率頻譜密度(PSD)之最大值為4.93nm4,空間頻率為1μm-1以上且10μm-1以下之功率頻譜密度(PSD)之積分值I為29.26×10-3nm3。又,空間頻率為10μm-1以上且100μm-1以下之功率頻譜密度(PSD)之最大值為1.91nm4,空間頻率為10μm-1以上且100μm-1以下之功率頻譜密度(PSD)之積分值I為68.99×10-3nm3
進而,對所獲得之光罩基底用基板10,以原子力顯微鏡測定轉印圖案形成區域(132mm×132mm)之任意部位之3μm×3μm之區域後,空間頻率為1μm-1以上且10μm-1以下之功率頻譜密度(PSD)之最大值為23.03nm4,空間頻率為1μm-1以上且10μm-1以下之功率頻譜密度(PSD)之積分值I為61.81×10-3nm3
如該結果般,可藉由CARE之表面加工而降低高空間頻率區域之粗糙度。又,空間頻率為10μm-1以上且100μm-1以下之均方根粗糙度Rms良好,為0.08nm。
如以上般,製造用於實施例2及3之光罩基底用基板10。
<實施例1~2之多層反射膜21之製作>
實施例1~2之多層反射膜21之成膜係以如下方式進行。即,使用Mo靶及Si靶,藉由離子束濺鍍交替積層Mo層(低折射率層,厚度為2.8nm)及Si層(高折射率層,厚度為4.2nm)(積層數40對),於上述之玻璃基板上形成多層反射膜21。於以離子束濺鍍法成膜多層反射膜21 時,離子束濺鍍中之Mo及Si濺鍍粒子相對於玻璃基板之主表面之法線之入射角度設為30度,離子源之氣體流量設為8sccm。
於多層反射膜21之成膜後,進而於多層反射膜21上連續地藉由離子束濺鍍而成膜Ru保護膜22(膜厚2.5nm),形成附多層反射膜之基板20。於以離子束濺鍍法而成膜Ru保護膜22時,Ru濺鍍粒子相對於基板主表面之法線之入射角度設為40度,離子源之氣體流量設為8sccm。
<比較例1之多層反射膜21之製作>
比較例1之多層反射膜21之成膜係以如下方式進行。即,使用Mo靶及Si靶,藉由離子束濺鍍而交替積層Mo層(厚度2.8nm)及Si層(厚度4.2nm)(積層數為40對),於上述玻璃基板上形成多層反射膜21。離子束濺鍍中之Mo、Si濺鍍粒子相對於玻璃基板法線之入射角度分別為,Mo為50度,Si為40度,離子源之氣體流量設為8sccm。進而於多層反射膜21上成膜Ru保護膜22(膜厚2.5nm)而形成附多層反射膜之基板20。
與實施例1~2同樣地,於成膜多層反射膜21之後,進而於多層反射膜21上連續地藉由離子束濺鍍而成膜Ru保護膜22(膜厚2.5nm),形成附多層反射膜之基板20。於以離子束濺鍍法而成膜Ru保護膜22時,Ru濺鍍粒子相對於基板主表面之法線之入射角度設為40度,離子源之氣體流量設為8sccm。
<原子力顯微鏡之測定>
對作為實施例1~2及比較例1所獲得之附多層反射膜之基板20之表面(Ru保護膜22之表面),以原子力顯微鏡測定轉印圖案形成區域(132mm×132mm)之任意部位(具體而言,轉印圖案形成區域之中心)之1μm×1μm之區域、及3μm×3μm之區域。於表1及表2中,顯示有藉由原子力顯微鏡之測定所得之表面粗糙度(均方根粗糙度Rms)、及 藉由表面粗糙度之功率頻譜解析而求出之特定之空間頻率之範圍之功率頻譜密度(PSD)的最大值及最小值。進而於表1中,顯示有將1μm×1μm之區域設為測定區域時之空間頻率為10μm-1以上且100μm-1以下之功率頻譜密度(PSD)的積分值I。又,進而於表2中,顯示有將3μm×3μm之區域設為測定區域時之空間頻率為1μm-1以上且10μm-1以下、及空間頻率為1μm-1以上且5μm-1以下之功率頻譜密度(PSD)的積分值I。
為了參考,於圖5及圖6中顯示有實施例1及比較例1之功率頻譜解析之結果。圖5及圖6表示以原子力顯微鏡分別測定1μm×1μm及3μm×3μm之區域所得之空間頻率之功率頻譜密度(PSD)。又,圖8中顯示有將圖5所示之資料中之空間頻率為10μm-1以上且100μm-1以下之資料進行冪逼近之情況。又,圖7中顯示有將圖6所示之資料中之空間 頻率為1μm-1以上且10μm-1以下之資料進行冪逼近之情況。冪逼近曲線之一般式成為y=a‧xb(a及b為常數),於兩對數曲線圖中成為直線。於兩對數曲線圖中,x之指數b成為與冪逼近曲線相當之直線之斜率。
如表1所示般,以原子力顯微鏡測定實施例1~2之附多層反射膜之基板20之表面之1μm×1μm之區域所得的空間頻率為10μm-1以上100μm-1以下之功率頻譜密度(PSD)之積分值I為150×10-3nm3以下,空間頻率為10μm-1以上100μm-1以下之功率頻譜密度(PSD)之最大值為9nm4以下。另一方面,以原子力顯微鏡測定比較例1之附多層反射膜之基板20之表面之1μm×1μm之區域所得的空間頻率為10μm-1以上且100μm-1以下之功率頻譜密度(PSD)之積分值I為183.09×10-3nm3,空間頻率為10μm-1以上且100μm-1以下之功率頻譜密度(PSD)之最大值為9.2nm4
如圖8所示,以原子力顯微鏡測定實施例1之1μm×1μm之區域所得之上述空間頻率為10μm-1以上且100μm-1以下的功率頻譜密度之冪逼近曲線(直線)之斜率即b為負值。因此,顯然以原子力顯微鏡測定實施例1之1μm×1μm之區域所得的空間頻率為10μm-1以上且100μm-1以下之功率頻譜密度(PSD)具有大致單調減少之特性。
如表2所示般,以原子力顯微鏡測定實施例1~2之附多層反射膜之基板20之表面之3μm×3μm之區域所得的空間頻率為1μm-1以上且10μm-1以下之功率頻譜密度(PSD)之積分值I為180×10-3nm3以下,空間頻率為1μm-1以上且10μm-1以下之功率頻譜密度(PSD)之最大值為50nm4以下。另一方面,以原子力顯微鏡測定比較例1之附多層反射膜之基板20之表面之3μm×3μm之區域所得的空間頻率為1μm-1以上且10μm-1以下之功率頻譜密度(PSD)之積分值I為193.82×10-3nm3,空間頻率為1μm-1以上且10μm-1以下之功率頻譜密度(PSD)之最大值為 55.66nm4
如圖7所示,以原子力顯微鏡測定實施例1之3μm×3μm之區域所得的上述空間頻率為1μm-1以上且10μm-1以下之功率頻譜密度之冪逼近曲線(直線)之斜率即b為負值。因此,顯然以原子力顯微鏡測定實施例1之3μm×3μm之區域所得的空間頻率為10μm-1以上且100μm-1以下之功率頻譜密度(PSD)具有大致單調減少之特性。
使用檢查光源波長193nm之高靈敏度缺陷檢查裝置(KLA-Tencor公司製造「Teron610」),於可檢出以球等效直徑SEVD(Sphere Equivalent Volume Diameter)計為21.5nm之缺陷之檢查靈敏度條件下,對實施例1~2及比較例1之附多層反射膜之基板20之表面(Ru保護膜22之表面)之132mm×132mm之區域進行缺陷檢查。再者,於將缺陷之面積設為(S),且將缺陷之高度設為(h)時,球等效直徑SEVD可藉由SEVD=2(3S/4πh)1/3之式計算。缺陷之面積(S)、缺陷之高度(h)可藉由原子力顯微鏡(AFM)而測定。
表1及表2中,顯示有藉由球等效直徑SEVD之測定而得出之實施例1~2及比較例1之附多層反射膜之基板20之表面之包含疑似缺陷之缺陷檢出個數。於實施例1~2中,缺陷檢出個數最大為共計1,240個(實施例1),與先前之缺陷檢出個數超過50,000個相比,疑似缺陷得以大幅抑制。若為共計2,000個左右之缺陷檢出個數,則可容易地檢查有無異物及傷痕等致命缺陷。相對於此,於比較例1中,缺陷檢出個數為58,323個,無法檢查有無異物及傷痕等之致命缺陷。
進而,對實施例1~2及比較例1之附多層反射膜之基板20之表面,調查於在不同之檢查靈敏度條件下進行缺陷檢查時之包含疑似缺陷之缺陷檢出個數。將其結果示於表3中。
再者,於表3中之檢查靈敏度條件中,以球等效直徑SEVD計,將可檢查21.5nm尺寸之缺陷之靈敏度條件表示為「>21nm」,可檢查23nm尺寸之缺陷之靈敏度條件表示為「>23mn」,可檢查25nm尺寸之缺陷之靈敏度條件表示為「>25nm」,可檢查34nm尺寸之缺陷之靈敏度條件表示為「>34nm」。
如表3所示,於實施例1~2中,於可檢查23nm尺寸、25nm尺寸、及34nm尺寸之缺陷之靈敏度條件下,缺陷檢出個數亦成為100個以下,於任一靈敏度條件下,均可容易地檢查有無異物及傷痕等之致命缺陷。相對於此,於比較例1中,於可檢查21.5nm尺寸之缺陷之靈敏度條件下,缺陷檢出個數超過50,000個,又,於可檢查23nm尺寸之缺陷之靈敏度條件下,缺陷檢出個數超過15,000個,於複數個檢查靈敏度下,不易檢查有無異物及傷痕等之致命缺陷。
又,使用檢查光源波長266nm之高靈敏度缺陷檢查裝置(Lasertec公司製造「MAGICS M7360」)、及檢查光源波長13.5nm之高靈敏度缺陷檢查裝置,對本實施例1及2之多層反射膜21之表面之132mm×132mm之區域進行缺陷檢查後之結果為,缺陷檢出個數少,可進行致命缺陷之檢查。再者,檢查光源波長266nm之高靈敏度缺陷檢查裝置(Lasertec公司製造「MAGICS M7360」)於最高之檢查靈敏度條件下進行缺陷檢查,檢查光源波長13.5nm之高靈敏度缺陷檢查裝置於可檢出球等效直徑20nm之缺陷之檢查靈敏度條件下進行缺陷檢查。
再者,對實施例1~2及比較例1之附多層反射膜之基板20之保護膜22及多層反射膜21,於轉印圖案形成區域(132mm×132mm)之外側4部位,藉由聚焦離子束而形成用以對上述缺陷之位置進行座標管理之基準標記。
<實施例1~2及比較例1之EUV曝光用反射型光罩基底30之製作>
於上述之實施例1~2及比較例1之附多層反射膜之基板20之未形成多層反射膜21之背面,藉由DC(Direct Current,直流)磁控濺鍍法而形成背面導電膜23。該背面導電膜23使Cr靶與附多層反射膜之基板20之背面對向,於Ar氣及N2氣(Ar:N2=90%:10%)環境中進行反應性濺鍍。藉由拉塞福逆散射譜法而測定背面導電膜23之元素組成後可知,Cr為90原子%,N為10原子%。又,背面導電膜23之膜厚為20nm。
進而,於上述之實施例1~2及比較例1之附多層反射膜之基板20之保護膜22之表面,藉由DC磁控濺鍍法而成膜包含TaBN膜之吸收體膜24,製作反射型光罩基底30。該吸收體膜24中,使附多層反射膜之基板20之保護膜22與TaB靶(Ta:B=80:20,原子比)對向,於Xe+N2氣體(Xe:N2=90%:10%)環境中進行反應性濺鍍。藉由拉塞福逆散射譜法測定吸收體膜24之元素組成後得知,Ta為80原子%,B為10原子%,N為10原子%。又,吸收體膜24之膜厚為65nm。再者,藉由X射線繞射裝置(XRD,x-ray diffraction)測定吸收體膜24之結晶結構後得知,其為非晶結構。
藉由(Lasertec公司製造MAGICS M1350)對以上述製造方法獲得之反射型光罩基底30之表面進行缺陷檢查後,檢出出之缺陷個數成為3個,獲得良好之反射型光罩基底。
<實施例3~4、比較例2之反射型光罩基底30之製作>
實施例3~4之反射型光罩基底30係於上述實施例2之附多層反射 膜之基板20之表面(Ru保護膜22之表面)成膜表4所示之吸收體膜24而製作。具體而言,藉由DC濺鍍而積層氮化鉭膜(TaN膜)與碳氮氧化鉻膜(CrCON膜),藉此形成吸收體膜24。TaN膜係以如下方式成膜。即,使用鉭靶,以於Ar氣體與N2氣體之混合氣體環境下之反應性濺鍍法,形成表4中記載之膜厚之TaN膜(Ta:85原子%,N:15原子%)。CrCON膜係以如下方式形成。即,使用鉻靶,以於Ar氣體、CO2氣體及N2氣體之混合氣體環境下之反應性濺鍍法,形成表4中記載之膜厚之CrCON膜(Cr:45原子%,C:10原子%,O:35原子%,N:10原子%)。進而,藉由與實施例2同樣地於光罩基底用基板10之背面成膜背面導電膜23,獲得實施例3及4之反射型光罩基底30。
另一方面,比較例2之反射型光罩基底30係於上述實施例2之附多層反射膜之基板20之表面(Ru保護膜22之表面)成膜表4所示之吸收體膜24而製作。具體而言,藉由DC濺鍍,使用鉭靶,以於Ar氣體與N2氣體之混合氣體環境下之反應性濺鍍法,形成表4中記載之膜厚之TaN膜(Ta:92原子%,N:8原子%)。
對實施例3~4、及比較例2之反射型光罩基底30之表面(吸收體膜24之表面),以原子力顯微鏡測定轉印圖案形成區域(132mm×132mm)之任意部位(具體而言,轉印圖案形成區域之中心)之3μm×3μm之區域。於表4中,顯示有藉由原子力顯微鏡之測定而獲得之表面粗糙度(均方根粗糙度Rms)、及藉由表面粗糙度之功率頻譜解析而求出之空間頻率為1μm-1以上10μm-1以下之功率頻譜密度(PSD)之最大值、及空間頻率為1μm-1以上10μm-1以下之功率頻譜密度(PSD)之積分值I。
如表4所示般,以原子力顯微鏡測定實施例3~4之反射型光罩基底30之表面之3μm×3μm之區域所得的空間頻率為1μm-1以上10μm-1以下之功率頻譜密度(PSD)之積分值I為800×10-3nm3以下(詳細而言為500×10-3nm3以下),空間頻率為1μm-1以上且10μm-1以下之功率頻譜密度(PSD)之最大值為50nm4以下。另一方面,以原子力顯微鏡測定比較例2之反射型光罩基底30之表面之3μm×3μm之區域所得的空間頻率為1μm-1以上且10μm-1以下之功率頻譜密度(PSD)之積分值I超過800×10-3nm3,為939.5×10-3nm3,空間頻率為1μm-1以上且10μm-1以下之功率頻譜密度(PSD)之最大值超過50nm4,為52.1nm4
其次,調查於不同之檢查靈敏度條件下對實施例3~4及比較例2之反射型光罩基底30之表面進行缺陷檢查時之包含疑似缺陷的缺陷檢出個數。將其結果示於表5。
再者,於表5中之檢查靈敏度條件中,以球等效直徑SEVD計,將可檢查21.5nm尺寸之缺陷之靈敏度條件表示為「>21nm」,可檢查23nm尺寸之缺陷之靈敏度條件表示為「>23mn」,可檢查25nm尺寸之缺陷之靈敏度條件表示為「>25nm」,可檢查34nm尺寸之缺陷 之靈敏度條件表示為「>34nm」。
如表5所示,於實施例3~4中,於可檢查23nm尺寸、25nm尺寸、及34nm尺寸之缺陷之靈敏度條件下,缺陷檢出個數亦成為15000個以下,於任一靈敏度條件下,均可容易地檢查有無異物及傷痕等致命缺陷。相對於此,於比較例2中,於可檢查21.5nm尺寸之缺陷之靈敏度條件下,缺陷檢出個數超過50,000個,又,於可檢查23nm尺寸之缺陷之靈敏度條件下,缺陷檢出個數亦超過20,000個,從而不易檢查有無異物及傷痕等之致命缺陷。
<反射型光罩40之製作>
於實施例1~4及比較例1~2之反射型光罩基底30之吸收體膜24之表面,藉由旋轉塗佈法塗佈抗蝕劑,經過加熱及冷卻步驟而成膜出膜厚150nm之抗蝕劑膜。其次,經所需之圖案之繪圖及顯影步驟而形成抗蝕劑圖案。將該抗蝕劑圖案作為光罩,藉由特定之乾式蝕刻進行吸收體膜24之圖案化,於保護膜22上形成吸收體圖案27。再者,於吸收體膜24係TaBN膜及TaN膜之情形時,可藉由Cl2及He之混合氣體而進行乾式蝕刻。又,於吸收體膜24係CrCON膜之情形時,可藉由氯(Cl2)及氧(O2)之混合氣體(氯(Cl2)及氧(O2)之混合比(流量比)為8:2)而進行乾式蝕刻。
其後,去除抗蝕劑膜,進行與上述相同之藥液清洗,製作實施例1~4及比較例1~2之反射型光罩40。再者,於上述之繪圖步驟中,根據基於上述基準標記而製作之缺陷資料,以缺陷資料與被轉印圖案(電路圖案)資料為基礎,以於致命缺陷存在之部位配置吸收體圖案27之方式修正繪圖資料,製作反射型光罩40。使用高靈敏度缺陷檢查裝置(KLA-Tencor公司製造「Teron610」)對所獲得之實施例1~4及比較例1~2之反射型光罩40進行缺陷檢查。
於高靈敏度缺陷檢查裝置之測定中,於實施例1~4之反射型光 罩40之情形時,並未確認到缺陷。另一方面,於比較例1~2之反射型光罩40之情形時,藉由高靈敏度缺陷檢查裝置之測定而檢出出多個缺陷。
<半導體裝置之製造方法>
其次,使用上述實施例1~4之反射型光罩40,使用曝光裝置,於半導體基板即被轉印體上之抗蝕劑膜上進行圖案轉印,其後,使配線層圖案化,製作半導體裝置,以此可製作無圖案缺陷之半導體裝置。
再者,於上述之附多層反射膜之基板20、反射型光罩基底30之製作中,於光罩基底用基板10之形成有轉印圖案之側之主表面成膜多層反射膜21及保護膜22之後,於與上述主表面相反側之背面形成背面導電膜23,但並不限於此。亦可於光罩基底用基板10之與形成有轉印圖案之側之主表面相反之主表面形成背面導電膜23之後,於形成有轉印圖案之側之主表面成膜多層反射膜21而製作附多層反射膜之基板20及反射型光罩基底30。該情形時,可於該多層反射膜21之表面進而成膜保護膜22而製作附多層反射膜之基板20。進而,可於該附多層反射膜之基板20之多層反射膜21或保護膜22上成膜吸收體膜24而製作反射型光罩基底30。

Claims (11)

  1. 一種附多層反射膜之基板,其特徵在於:其係於用於微影之光罩基底用基板之主表面上具有交替地積層高折射率層與低折射率層而成之多層反射膜者,上述附多層反射膜之基板之表面以原子力顯微鏡測定3μm×3μm之區域所得的空間頻率為1μm-1以上且10μm-1以下之功率頻譜密度(PSD)之積分值I為180×10-3nm3以下,且空間頻率為1μm-1以上且10μm-1以下之功率頻譜密度(PSD)之最大值為50nm4以下。
  2. 如請求項1之附多層反射膜之基板,其中上述附多層反射膜之基板之表面以原子力顯微鏡測定3μm×3μm之區域所得的空間頻率為1μm-1以上且5μm-1以下之功率頻譜密度(PSD)之積分值I為115×10-3nm3以下。
  3. 如請求項1之附多層反射膜之基板,其中上述空間頻率為1μm-1以上且10μm-1以下之功率頻譜密度具有大致單調減少之特性。
  4. 一種附多層反射膜之基板,其特徵在於:其係於用於微影之光罩基底用基板之主表面上具有交替地積層高折射率層與低折射率層而成之多層反射膜者,上述附多層反射膜之基板之表面以原子力顯微鏡測定1μm×1μm之區域所得的空間頻率為10μm-1以上且100μm-1以下之功率頻譜密度(PSD)之積分值I為150×10-3nm3以下,且空間頻率為10μm-1以上且100μm-1以下之功率頻譜密度(PSD)之最大值為9nm4以下。
  5. 如請求項4之附多層反射膜之基板,其中上述空間頻率為10μm-1以上且100μm-1以下之功率頻譜密度具有大致單調減少之特性。
  6. 如請求項1至5中任一項之附多層反射膜之基板,其中於上述多層反射膜上具有保護膜。
  7. 如請求項1至5中任一項之附多層反射膜之基板,其中上述光罩基底用基板與多層反射膜之間具有基底層。
  8. 一種反射型光罩基底,其係於如請求項1至7中任一項之附多層反射膜之基板之上述多層反射膜上或上述保護膜上,具有成為轉印圖案之吸收體膜。
  9. 一種反射型光罩基底,其特徵在於:其係於用於微影之光罩基底用基板之主表面上具有交替地積層高折射率層與低折射率層而成之多層反射膜及吸收體膜者,上述吸收體膜之表面以原子力顯微鏡測定3μm×3μm之區域所得的空間頻率為1μm-1以上且10μm-1以下之功率頻譜密度(PSD)之積分值I為800×10-3nm3以下,且空間頻率為1μm-1以上且10μm-1以下之功率頻譜密度(PSD)之最大值為50nm4以下。
  10. 一種反射型光罩,其係使如請求項8或9之反射型光罩基底之上述吸收體膜圖案化,而於上述多層反射膜上或上述保護膜上具有吸收體圖案。
  11. 一種半導體裝置之製造方法,其包括如下步驟:使用如請求項10之反射型光罩,進行使用曝光裝置之微影製程而於被轉印體上形成轉印圖案。
TW103133651A 2013-09-27 2014-09-26 Substrate with multilayer reflective film, mask base, transfer mask, and method of manufacturing semiconductor device TWI625599B (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013202493 2013-09-27

Publications (2)

Publication Number Publication Date
TW201512784A TW201512784A (zh) 2015-04-01
TWI625599B true TWI625599B (zh) 2018-06-01

Family

ID=52743437

Family Applications (2)

Application Number Title Priority Date Filing Date
TW103133651A TWI625599B (zh) 2013-09-27 2014-09-26 Substrate with multilayer reflective film, mask base, transfer mask, and method of manufacturing semiconductor device
TW107111425A TWI652549B (zh) 2013-09-27 2014-09-26 Substrate with multilayer reflective film, mask base, transfer mask, and method of manufacturing semiconductor device

Family Applications After (1)

Application Number Title Priority Date Filing Date
TW107111425A TWI652549B (zh) 2013-09-27 2014-09-26 Substrate with multilayer reflective film, mask base, transfer mask, and method of manufacturing semiconductor device

Country Status (5)

Country Link
US (2) US9798050B2 (zh)
JP (2) JP6348116B2 (zh)
KR (2) KR102294187B1 (zh)
TW (2) TWI625599B (zh)
WO (1) WO2015046303A1 (zh)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017026928A (ja) * 2015-07-27 2017-02-02 エヌ・ティ・ティ・アドバンステクノロジ株式会社 Euv光用多層膜反射鏡
JP6515737B2 (ja) * 2015-08-24 2019-05-22 Agc株式会社 Euvlマスクブランク用ガラス基板、およびその製造方法
US10079153B2 (en) * 2016-02-25 2018-09-18 Toshiba Memory Corporation Semiconductor storage device
US9870612B2 (en) * 2016-06-06 2018-01-16 Taiwan Semiconductor Manufacturing Co., Ltd. Method for repairing a mask
JP6717211B2 (ja) * 2017-01-16 2020-07-01 Agc株式会社 マスクブランク用基板、マスクブランク、およびフォトマスク
KR102653352B1 (ko) * 2017-06-21 2024-04-02 호야 가부시키가이샤 다층 반사막 부착 기판, 반사형 마스크 블랭크 및 반사형 마스크, 그리고 반도체 장치의 제조 방법
JP7162867B2 (ja) * 2017-07-11 2022-10-31 東海光学株式会社 Ndフィルタ及びその製造方法
KR20190019329A (ko) * 2017-08-17 2019-02-27 에스케이하이닉스 주식회사 다층 전사패턴을 갖는 포토마스크
CN107703881B (zh) * 2017-09-11 2023-08-04 中国工程物理研究院机械制造工艺研究所 一种自动标定磁流变抛光缎带厚度的装置
US11385383B2 (en) * 2018-11-13 2022-07-12 Raytheon Company Coating stress mitigation through front surface coating manipulation on ultra-high reflectors or other optical devices
EP4052071A1 (en) * 2019-10-29 2022-09-07 Zygo Corporation Method of mitigating defects on an optical surface and mirror formed by same
JP7268644B2 (ja) * 2020-06-09 2023-05-08 信越化学工業株式会社 マスクブランクス用ガラス基板
US20220308438A1 (en) 2021-03-24 2022-09-29 Hoya Corporation Method for manufacturing multilayered-reflective-film-provided substrate, reflective mask blank and method for manufacturing the same, and method for manufacturing reflective mask
KR102660636B1 (ko) 2021-12-31 2024-04-25 에스케이엔펄스 주식회사 블랭크 마스크 및 이를 이용한 포토마스크
WO2023171583A1 (ja) * 2022-03-08 2023-09-14 Agc株式会社 反射型マスクブランク並びに反射型マスク及びその製造方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070077499A1 (en) * 2005-10-03 2007-04-05 Asahi Glass Company, Limited Method for depositing multi-layer film of mask blank for EUV lithography and method for producing mask blank for EUV lithography
JP2010251490A (ja) * 2009-04-15 2010-11-04 Hoya Corp 反射型マスクブランク及び反射型マスクの製造方法
TW201331699A (zh) * 2011-11-25 2013-08-01 Asahi Glass Co Ltd Euv微影術用反射型光罩基底及其製造方法

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08124830A (ja) * 1994-10-25 1996-05-17 Nikon Corp 投影露光装置
JP3642250B2 (ja) * 2000-02-25 2005-04-27 三菱住友シリコン株式会社 半導体基板の研磨条件の判定方法
JP2001319871A (ja) 2000-02-29 2001-11-16 Nikon Corp 露光方法、濃度フィルタの製造方法、及び露光装置
US20050118533A1 (en) 2002-03-01 2005-06-02 Mirkarimi Paul B. Planarization of substrate pits and scratches
US20040159538A1 (en) * 2003-02-13 2004-08-19 Hans Becker Photo mask blank, photo mask, method and apparatus for manufacturing of a photo mask blank
JP4786899B2 (ja) 2004-12-20 2011-10-05 Hoya株式会社 マスクブランクス用ガラス基板の製造方法,マスクブランクスの製造方法、反射型マスクブランクスの製造方法、露光用マスクの製造方法、反射型マスクの製造方法、及び半導体装置の製造方法
KR101321861B1 (ko) * 2005-11-15 2013-10-25 지고 코포레이션 광학적으로 분석되지 않은 표면 형상의 특징을 측정하는방법 및 간섭계
JP4668881B2 (ja) 2006-10-10 2011-04-13 信越石英株式会社 石英ガラス基板の表面処理方法及び水素ラジカルエッチング装置
US20080132150A1 (en) * 2006-11-30 2008-06-05 Gregory John Arserio Polishing method for extreme ultraviolet optical elements and elements produced using the method
JP5169163B2 (ja) * 2006-12-01 2013-03-27 旭硝子株式会社 予備研磨されたガラス基板表面を仕上げ加工する方法
JP2008166612A (ja) 2006-12-28 2008-07-17 Nikon Corp レーザ装置、露光装置、並びに制御方法、露光方法及びデバイス製造方法
JP5222660B2 (ja) * 2008-08-07 2013-06-26 Hoya株式会社 マスクブランク用基板の製造方法、マスクブランクの製造方法、フォトマスクの製造方法及び半導体デバイスの製造方法
CN102124542B (zh) * 2008-09-05 2013-04-17 旭硝子株式会社 Euv光刻用反射型掩模底板及其制造方法
JP5335351B2 (ja) * 2008-10-01 2013-11-06 Hoya株式会社 マスクブランク用基板セット、マスクブランクセット、フォトマスクセット、及び半導体デバイスの製造方法
EP2511945A4 (en) * 2009-12-09 2014-09-03 Asahi Glass Co Ltd MULTILAYER MIRROR FOR EXTREME ULTRAVIOLET LITHOGRAPHY AND PRODUCTION METHOD THEREOF
JPWO2013084978A1 (ja) * 2011-12-09 2015-04-27 信越石英株式会社 チタニア−シリカガラス製euvリソグラフィ用フォトマスク基板

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070077499A1 (en) * 2005-10-03 2007-04-05 Asahi Glass Company, Limited Method for depositing multi-layer film of mask blank for EUV lithography and method for producing mask blank for EUV lithography
JP2010251490A (ja) * 2009-04-15 2010-11-04 Hoya Corp 反射型マスクブランク及び反射型マスクの製造方法
TW201331699A (zh) * 2011-11-25 2013-08-01 Asahi Glass Co Ltd Euv微影術用反射型光罩基底及其製造方法

Also Published As

Publication number Publication date
TWI652549B (zh) 2019-03-01
US20180067238A1 (en) 2018-03-08
KR20210059007A (ko) 2021-05-24
JP6348116B2 (ja) 2018-06-27
KR20160061917A (ko) 2016-06-01
KR102294187B1 (ko) 2021-08-26
TW201826030A (zh) 2018-07-16
US20160377769A1 (en) 2016-12-29
TW201512784A (zh) 2015-04-01
WO2015046303A1 (ja) 2015-04-02
JPWO2015046303A1 (ja) 2017-03-09
JP2018169617A (ja) 2018-11-01
JP6515235B2 (ja) 2019-05-15
US9798050B2 (en) 2017-10-24
US10175394B2 (en) 2019-01-08
KR102253519B1 (ko) 2021-05-18

Similar Documents

Publication Publication Date Title
TWI625599B (zh) Substrate with multilayer reflective film, mask base, transfer mask, and method of manufacturing semiconductor device
JP6630005B2 (ja) 導電膜付き基板、多層反射膜付き基板、反射型マスクブランク及び反射型マスク、並びに半導体装置の製造方法
JP6195880B2 (ja) マスクブランク用基板の製造方法、多層反射膜付き基板の製造方法、反射型マスクブランクの製造方法、反射型マスクの製造方法、透過型マスクブランクの製造方法、透過型マスクの製造方法、及び半導体装置の製造方法
JP6397068B2 (ja) 多層反射膜付き基板の製造方法、反射型マスクブランクの製造方法、反射型マスクの製造方法、透過型マスクブランクの製造方法、透過型マスクの製造方法及び半導体装置の製造方法
TWI522729B (zh) Method for manufacturing a reflective mask substrate, a reflective mask substrate, a reflection type mask, and a semiconductor device
TWI526774B (zh) Reflective mask substrate and manufacturing method thereof, manufacturing method of reflection type mask and semiconductor device
WO2014050831A1 (ja) 多層反射膜付き基板の製造方法