TWI618120B - Epitaxial process - Google Patents
Epitaxial process Download PDFInfo
- Publication number
- TWI618120B TWI618120B TW102118633A TW102118633A TWI618120B TW I618120 B TWI618120 B TW I618120B TW 102118633 A TW102118633 A TW 102118633A TW 102118633 A TW102118633 A TW 102118633A TW I618120 B TWI618120 B TW I618120B
- Authority
- TW
- Taiwan
- Prior art keywords
- layer
- epitaxial
- buffer layer
- gas
- etching
- Prior art date
Links
Landscapes
- Insulated Gate Type Field-Effect Transistor (AREA)
- Recrystallisation Techniques (AREA)
Abstract
一種磊晶製程,包含有下述步驟。首先,形成一凹槽於一基底中。接著,形成一晶種層覆蓋凹槽的一表面。接續,形成一緩衝層於晶種層上。續之,進行一蝕刻製程於緩衝層以塑形緩衝層。繼之,形成一磊晶層於緩衝層上。 An epitaxial process comprising the following steps. First, a recess is formed in a substrate. Next, a seed layer is formed to cover a surface of the recess. Successively, a buffer layer is formed on the seed layer. Further, an etching process is performed on the buffer layer to shape the buffer layer. Then, an epitaxial layer is formed on the buffer layer.
Description
本發明係關於一種磊晶製程,且特別係關於一種將磊晶層下方的緩衝層塑形的磊晶製程。 The present invention relates to an epitaxial process, and more particularly to an epitaxial process for shaping a buffer layer beneath an epitaxial layer.
隨著半導體製程進入到深次微米時代,例如65奈米(nm)以下之製程,對於MOS電晶體元件的驅動電流(drive current)的提昇已顯得日益重要。為了改善元件的效能,目前業界已發展出所謂的「應變矽(strained-silicon)技術」,其原理主要是使閘極通道部分的矽晶格產生應變,使電荷在通過此應變之閘極通道時的移動力增加,進而達到使MOS電晶體運作更快的目的。在目前已知的技術中,已有使用應變矽(strained silicon)作為基底的MOS電晶體,其利用矽鍺(SiGe)或矽碳(SiC)的晶格常數與單晶矽(single crystal Si)不同的特性,使矽鍺磊晶層或矽碳磊晶層產生結構上應變而形成應變矽。由於矽鍺磊晶層或矽碳磊晶層的晶格常數(lattice constant)比矽大或小,這使得矽的帶結構(band structure)發生改變,而造成載子移動性增加,因此可增加MOS電晶體的速度。 As semiconductor processes enter the deep submicron era, such as processes below 65 nanometers (nm), the drive current of MOS transistor components has become increasingly important. In order to improve the performance of components, the so-called "strained-silicon technology" has been developed in the industry. The principle is mainly to strain the germanium lattice of the gate channel portion, so that the charge passes through the strain gate channel. The movement force at the time increases, thereby achieving the purpose of making the MOS transistor operate faster. Among the currently known techniques, MOS transistors using strained silicon as a substrate have been used which utilize the lattice constant of bismuth (SiGe) or bismuth carbon (SiC) and single crystal Si (single crystal Si). Different characteristics cause the epitaxial layer or the tantalum carbon epitaxial layer to be structurally strained to form strain enthalpy. Since the lattice constant of the germanium epitaxial layer or the germanium carbon epitaxial layer is larger or smaller than that of the germanium, this causes a change in the band structure of the germanium, which causes an increase in carrier mobility, and thus can be increased. The speed of the MOS transistor.
更進一步而言,磊晶層的效能又與其尺寸、結構中的成分及其分佈以及所在之位置,甚至是與閘極的相對位置等有關。如何改善磊晶層的效能,使能提升所形成之半導體結構之性能或者能達成所需之電性要求,已為本領域一重要議題。 Furthermore, the performance of the epitaxial layer is related to its size, the composition of the structure and its distribution, and its location, even to the relative position of the gate. How to improve the performance of the epitaxial layer, to improve the performance of the formed semiconductor structure or to achieve the required electrical requirements, has been an important issue in the field.
本發明提出一種磊晶製程,其將欲形成磊晶層之凹槽中的緩衝層塑形,以控制形成於緩衝層上的磊晶層的體積及其剖面輪廓。 The present invention provides an epitaxial process that shapes a buffer layer in a recess in which an epitaxial layer is to be formed to control the volume of the epitaxial layer formed on the buffer layer and its cross-sectional profile.
本發明提供一種磊晶製程,包含有下述步驟。首先,形成一凹槽於一基底中。接著,形成一晶種層覆蓋凹槽的一表面。接續,形成一緩衝層於晶種層上。續之,進行一蝕刻製程於緩衝層以塑形緩衝層,俾使緩衝層位於中央處與邊緣處的厚度實質上相等。繼之,形成一磊晶層於緩衝層上。 The present invention provides an epitaxial process comprising the following steps. First, a recess is formed in a substrate. Next, a seed layer is formed to cover a surface of the recess. Successively, a buffer layer is formed on the seed layer. Further, an etching process is performed on the buffer layer to shape the buffer layer so that the buffer layer is substantially at the center and the thickness at the edge is substantially equal. Then, an epitaxial layer is formed on the buffer layer.
基於上述,本發明提出一種磊晶製程,其依序形成一晶種層,形成一緩衝層,再進行一蝕刻製程用以塑形緩衝層,然後才形成一磊晶層於塑形的緩衝層上。如此一來,所形成之塑形的緩衝層可促使磊晶層易於成長於上,而減少差排等缺陷問題。並且,可藉由控制塑形的緩衝層的平坦度及其剩下的厚度,進一步控制磊晶層的體積及剖面輪廓,以達到所需之電性要求。較佳者,可藉由蝕刻及塑形出更薄之緩衝層,擴大所形成的磊晶層的體積,以提升其施加之應力。因此,本發明之形成並塑形緩衝層的方法,可提升磊晶層的應力效果。 Based on the above, the present invention provides an epitaxial process in which a seed layer is sequentially formed to form a buffer layer, and an etching process is performed to shape the buffer layer, and then an epitaxial layer is formed on the buffer layer. on. In this way, the formed buffer layer can promote the epitaxial layer to easily grow on, and reduce defects such as poor row. Moreover, the volume and cross-sectional profile of the epitaxial layer can be further controlled by controlling the flatness of the shaped buffer layer and its remaining thickness to achieve the desired electrical requirements. Preferably, the volume of the formed epitaxial layer can be enlarged by etching and shaping a thinner buffer layer to increase the stress applied thereto. Therefore, the method of forming and shaping the buffer layer of the present invention can enhance the stress effect of the epitaxial layer.
110‧‧‧基底 110‧‧‧Base
120‧‧‧閘極 120‧‧‧ gate
122‧‧‧介電層 122‧‧‧ dielectric layer
124‧‧‧電極層 124‧‧‧electrode layer
126‧‧‧蓋層 126‧‧‧ cover
130‧‧‧間隙壁 130‧‧‧ spacer
140‧‧‧晶種層 140‧‧‧ seed layer
150、150’‧‧‧緩衝層 150, 150' ‧ ‧ buffer layer
160‧‧‧磊晶層 160‧‧‧ epitaxial layer
162‧‧‧塊狀磊晶層 162‧‧‧Blocked epitaxial layer
164‧‧‧蓋層磊晶層 164‧‧‧Cover layer
C‧‧‧閘極通道 C‧‧‧gate channel
d1‧‧‧預定深度 D1‧‧‧depth
K1、K2、K3、K4、K5‧‧‧步驟 K1, K2, K3, K4, K5‧‧‧ steps
P1、P2‧‧‧蝕刻製程 P1, P2‧‧‧ etching process
R‧‧‧凹槽 R‧‧‧ groove
S1、S2、S3‧‧‧表面 S1, S2, S3‧‧‧ surface
T1、T2、T3‧‧‧頂面 T1, T2, T3‧‧‧ top surface
T4‧‧‧底面 T4‧‧‧ bottom
第1圖係繪示本發明一實施例之磊晶製程之流程圖。 FIG. 1 is a flow chart showing an epitaxial process according to an embodiment of the present invention.
第2-8圖係繪示本發明一實施例之磊晶製程之剖面示意圖。 2-8 are schematic cross-sectional views showing an epitaxial process according to an embodiment of the present invention.
第1圖係繪示本發明一實施例之磊晶製程之流程圖。第2-8圖係繪示本發明一實施例之磊晶製程之剖面示意圖。圖中本實施例以二閘極為例,以清楚揭示本發明所欲揭露之磊晶製程,但閘極之個數非限於此。再者,本發明係以形成於閘極旁的磊晶層為例,但本發明不以此為限。並且,本發明以通入或摻雜鍺元素或者形成矽鍺層及形成矽鍺磊晶層等,以形成PMOS電晶體,但本發明不以此為限。在其他實施例中,亦可通入或摻雜其他的三族元素以形成PMOS電晶體的磊晶層。或者,可通入或摻雜五族元素,例如碳或磷等,以形成NMOS電晶體的磊晶層。 FIG. 1 is a flow chart showing an epitaxial process according to an embodiment of the present invention. 2-8 are schematic cross-sectional views showing an epitaxial process according to an embodiment of the present invention. In the present embodiment, the second embodiment is exemplified to clearly reveal the epitaxial process to be disclosed in the present invention, but the number of gates is not limited thereto. Furthermore, the present invention is exemplified by an epitaxial layer formed beside the gate, but the invention is not limited thereto. Moreover, the present invention forms a PMOS transistor by forming or doping a germanium element or forming a germanium layer and forming a germanium epitaxial layer or the like, but the invention is not limited thereto. In other embodiments, other tri-group elements may also be doped or doped to form an epitaxial layer of a PMOS transistor. Alternatively, a group of five elements such as carbon or phosphorus may be introduced or doped to form an epitaxial layer of the NMOS transistor.
請參考第1圖以及第2-3圖。根據第1圖之步驟K1:形成一凹槽於一基底中。詳細而言,先如第2圖所示,提供一基底110。基底110例如是一矽基底、一含矽基底、一三五族覆矽基底(例如GaN-on-silicon)、一石墨烯覆矽基底(graphene-on-silicon)或一矽覆絕緣(silicon-on-insulator,SOI)基底等半導體基底。 Please refer to Figure 1 and Figure 2-3. According to step K1 of Fig. 1, a groove is formed in a substrate. In detail, as shown in FIG. 2, a substrate 110 is provided. The substrate 110 is, for example, a substrate, a germanium-containing substrate, a tri-five-layer overlying substrate (eg, GaN-on-silicon), a graphene-on-silicon or a silicon-on-insulator (silicon- On-insulator, SOI) A semiconductor substrate such as a substrate.
接著,形成複數個閘極120,例如二閘極120於基底110上。閘極120可包含一介電層122、一電極層124以及一蓋層126。介電層122可例如為一氧化層、一緩衝層或/及一高介電常數介電層等,視本發明所搭配之半導體製程而定。例如,本發明可搭配一多晶矽製程、一前閘極(Gate-First)製程、一後閘極(Gate-Last)製程等,其中後閘極又可包含一前置高介電常數介電層之後閘極製程(Gate-Last for High-K First)或一後置高介電常數介電層之後閘極(Gate-Last for High-K Last)製程,視實際需要而定。在本實施例中則以搭配一前置高介電常數介電層之後閘極製程為例,則介電層122可例如包含一緩衝層以及一高介電常數介電層。緩衝層可例如 為一氧化層,用以緩衝高介電常數介電層以及基底110。高介電常數介電層可例如為一含金屬介電層,其可包含有鉿(Hafnium)氧化物、鋯(Zirconium)氧化物,但本發明不以此為限。更進一步而言,高介電常數閘極介電層係可選自氧化鉿(hafnium oxide,HfO2)、矽酸鉿氧化合物(hafnium silicon oxide,HfSiO4)、矽酸鉿氮氧化合物(hafnium silicon oxynitride,HfSiON)、氧化鋁(aluminum oxide,Al2O3)、氧化鑭(lanthanum oxide,La2O3)、氧化鉭(tantalum oxide,Ta2O5)、氧化釔(yttrium oxide,Y2O3)、氧化鋯(zirconium oxide,ZrO2)、鈦酸鍶(strontium titanate oxide,SrTiO3)、矽酸鋯氧化合物(zirconium silicon oxide,ZrSiO4)、鋯酸鉿(hafnium zirconium oxide,HfZrO4)、鍶鉍鉭氧化物(strontium bismuth tantalate,SrBi2Ta2O9,SBT)、鋯鈦酸鉛(lead zirconate titanate,PbZrxTi1-xO3,PZT)與鈦酸鋇鍶(barium strontium titanate,BaxSr1-xTiO3,BST)所組成之群組,但本發明不以此為限。電極層124可例如為一多晶矽層,用以作為一犧牲閘極,而於後續製程中進行金屬閘極置換(replacement metal gate,RMG)製程而置換為一金屬閘極;蓋層126則例如為一氮化層或/且一氧化層等單層或雙層的結構,但本發明不以此為限。 Next, a plurality of gates 120, such as two gates 120, are formed on the substrate 110. The gate 120 can include a dielectric layer 122, an electrode layer 124, and a cap layer 126. The dielectric layer 122 can be, for example, an oxide layer, a buffer layer, or a high-k dielectric layer, etc., depending on the semiconductor process to which the present invention is associated. For example, the present invention can be combined with a polysilicon process, a gate-first process, a gate-Last process, etc., wherein the back gate can further comprise a pre-high dielectric constant dielectric layer. After the Gate-Last for High-K First or a post-high dielectric constant layer (Gate-Last for High-K Last) process, depending on actual needs. In this embodiment, the gate layer process is followed by a gate dielectric process with a pre-high-k dielectric layer. The dielectric layer 122 can include, for example, a buffer layer and a high-k dielectric layer. The buffer layer can be, for example, an oxide layer for buffering the high-k dielectric layer and the substrate 110. The high-k dielectric layer can be, for example, a metal-containing dielectric layer, which may include a hafnium oxide or a zirconium oxide, but the invention is not limited thereto. Furthermore, the high dielectric constant gate dielectric layer may be selected from the group consisting of hafnium oxide (HfO 2 ), hafnium silicon oxide (HfSiO 4 ), and niobium oxynitride (hafnium). Silicon oxynitride, HfSiON), aluminum oxide (Al 2 O 3 ), lanthanum oxide (La 2 O 3 ), tantalum oxide (Ta 2 O 5 ), yttrium oxide (Y 2 ) O 3 ), zirconium oxide (ZrO 2 ), strontium titanate oxide (SrTiO 3 ), zirconium silicon oxide (ZrSiO 4 ), hafnium zirconium oxide (HfZrO 4 ) ), strontium bismuth tantalate (SrBi 2 Ta 2 O 9 , SBT), lead zirconate titanate (PbZrxTi1-xO 3 , PZT) and barium strontium titanate (BaxSr1-) A group consisting of xTiO 3 , BST), but the invention is not limited thereto. The electrode layer 124 can be, for example, a polysilicon layer for use as a sacrificial gate, and is replaced with a metal gate by a replacement metal gate (RMG) process in a subsequent process; the cap layer 126 is, for example, A single layer or a double layer structure such as a nitride layer or/and an oxide layer, but the invention is not limited thereto.
之後,形成二間隙壁130分別於閘極120側邊的基底110上,用以定義欲形成於閘極120側邊的基底110中之磊晶層的位置,其中磊晶層所形成相對於閘極120的位置,會直接影響到磊晶層所施加於各閘極120下方之一閘極通道C之應力。間隙壁130可例如為一氧化層、一氮化層或一氮氧化層等單層或雙層結構。為簡化說明,本實施例之間隙壁130是為氮化物間隙壁,且在形成此間隙壁130之前或之後,可再搭配形成其他之間隙壁以形成其他部分。例 如,可在形成間隙壁130之前,先形成一間隙壁(未繪示),用以定義形成於閘極120側邊的基底110中的一輕摻雜源/汲極(未繪示);或者,在形成間隙壁130之後,先形成一間隙壁(未繪示),用以定義形成於閘極120側邊的基底110中的一源/汲極(未繪示)。間隙壁130或其他間隙壁之形成的前後順序可對調,且各間隙壁可在對應形成磊晶層、輕摻雜源/汲極或源/汲極後部分或完全移除,視所欲形成之結構而定。 Thereafter, two spacers 130 are formed on the substrate 110 on the side of the gate 120 to define the position of the epitaxial layer in the substrate 110 to be formed on the side of the gate 120, wherein the epitaxial layer is formed relative to the gate The position of the pole 120 directly affects the stress applied by the epitaxial layer to one of the gate channels C below each gate 120. The spacer 130 may be, for example, a single layer or a double layer structure such as an oxide layer, a nitride layer or an oxynitride layer. To simplify the description, the spacers 130 of the present embodiment are nitride spacers, and before or after the spacers 130 are formed, other spacers may be formed to form other portions. example For example, a spacer (not shown) may be formed before the spacer 130 is formed to define a lightly doped source/drain (not shown) formed in the substrate 110 on the side of the gate 120; Alternatively, after the spacers 130 are formed, a spacer (not shown) is formed to define a source/drain (not shown) formed in the substrate 110 on the side of the gate 120. The front and back sequence of the formation of the spacers 130 or other spacers may be reversed, and the spacers may be partially or completely removed after corresponding formation of the epitaxial layer, lightly doped source/drain or source/drain, as desired. The structure depends.
其後,例如進行一蝕刻製程P1,以於各閘極120之至少一側形成一凹槽R,較佳是於各閘極120相對兩側的基底110中分別形成一凹槽R。為方便說明起見,如第2圖所示,於二間隙壁130之間的基底110中形成一凹槽R。蝕刻製程P1可例如為一乾蝕刻製程或/且一濕蝕刻製程。例如,蝕刻製程P1可包含先進行一乾蝕刻製程以形成凹槽R之一預定深度d1,再進行一濕蝕刻製程以調整凹槽R之形狀及尺寸。在本實施例中,凹槽R具有一鑽石形的剖面結構,但本發明不以此為限。在其他實施例中,凹槽R亦可具有其他形狀的剖面結構,例如一U形的剖面結構、一六角形的剖面結構或一八角形的剖面結構等。本發明所提出之磊晶製程,可適用於具有各種形狀的剖面結構的凹槽R(或者可適用於後續形成於凹槽R中之具有各種形狀的剖面結構的磊晶層)。 Thereafter, an etching process P1 is performed to form a recess R on at least one side of each of the gates 120. Preferably, a recess R is formed in each of the opposite sides of the gate 120. For convenience of explanation, as shown in FIG. 2, a groove R is formed in the base 110 between the two gap walls 130. The etching process P1 can be, for example, a dry etching process or/and a wet etching process. For example, the etching process P1 may include performing a dry etching process to form a predetermined depth d1 of the recess R, and performing a wet etching process to adjust the shape and size of the recess R. In the present embodiment, the groove R has a diamond-shaped cross-sectional structure, but the invention is not limited thereto. In other embodiments, the groove R may have a cross-sectional structure of other shapes, such as a U-shaped cross-sectional structure, a hexagonal cross-sectional structure, or an octagonal cross-sectional structure. The epitaxial process proposed by the present invention can be applied to the groove R having a cross-sectional structure of various shapes (or an epitaxial layer which can be applied to a cross-sectional structure having various shapes which are subsequently formed in the groove R).
根據第1圖之步驟K2:形成一晶種層覆蓋凹槽的一表面。可如第4圖所示,形成一晶種層140覆蓋凹槽R的一表面S1。晶種層可例如以通入含矽氣體的一化學氣相沈積(chemical vapor deposition,CVD)製程形成,但本發明不以此為限。在本實施例中,形成晶種層的方法可僅通入二氯甲矽烷(dichlorosilane,DCS)氣體, 以形成一純矽層於凹槽R的表面S1上,但本發明不以此為限。再者,形成晶種層的方法可再另外通入其他氣體,以形成一含矽層於凹槽R的表面S1,視實際製程需要或所需之結構而定。例如,可搭配通入氯化氫(hydrogen chloride,HCl)氣體,以選擇性形成一矽層,其中各特定位置所形成之比例皆可藉由調整二氯甲矽烷氣體以及氯化氫氣體而得。換言之,同時通入二氯甲矽烷氣體以及氯化氫氣體,可在形成晶種層140的同時,以蝕刻的方法移除部分區域,巨觀下便能較精確控制所形成之晶種層140之輪廓。 According to step K2 of Fig. 1, a seed layer is formed to cover a surface of the groove. As shown in FIG. 4, a seed layer 140 is formed to cover a surface S1 of the recess R. The seed layer may be formed, for example, by a chemical vapor deposition (CVD) process including a helium-containing gas, but the invention is not limited thereto. In this embodiment, the method of forming the seed layer may pass only dichlorosilane (DCS) gas. To form a pure tantalum layer on the surface S1 of the groove R, but the invention is not limited thereto. Furthermore, the method of forming the seed layer may be additionally introduced with other gases to form a surface S1 containing the tantalum layer on the groove R, depending on the actual process needs or the desired structure. For example, hydrogen chloride (HCl) gas may be used in combination to selectively form a layer of ruthenium, wherein the ratio formed at each specific position can be obtained by adjusting dichloromethane gas and hydrogen chloride gas. In other words, by simultaneously introducing the methylene chloride gas and the hydrogen chloride gas, a portion of the region can be removed by etching while the seed layer 140 is formed, and the contour of the formed seed layer 140 can be more precisely controlled under the macroscopic view. .
根據第1圖之步驟K3:在形成完晶種層140之後,接著形成一緩衝層於晶種層上。如第5圖所示,形成一緩衝層150於晶種層140上。緩衝層150可例如為一低濃度的矽鍺層,用以緩衝凹槽R的表面或純矽的晶種層140與後續形成於緩衝層150上的較高濃度的磊晶層,如此即可減少磊晶層之差排等結構缺陷。是以,晶種層140以及緩衝層150包含不同材質,或不同濃度的相同材質。較佳而言,緩衝層150的鍺含量低於50%。又更佳者,緩衝層150的鍺含量呈一梯度分佈,其濃度可由外(實質接觸晶種層140處)而內遞增。晶種層150可例如以通入含矽氣體的一化學氣相沈積(chemical vapor deposition,CVD)製程形成,但本發明不以此為限。例如,晶種層150可例如以通入氯化氫(hydrogen chloride,HCl)、二氯甲矽烷(dichlorosilane,DCS)、及鍺(germane,GeH4)氣體形成,其中鍺氣體可例如為氫化鍺(germane,GeH4)氣體,但本發明不以此為限。舉例而言,可在10托爾(torr)下,通入50每分鐘標準毫升(Standard Cubic Centimeter per Minute,sccm)的二氯甲矽烷以及250 sccm的鍺氣體,或者鍺氣體流量可介於70~380 sccm。另外,可再搭配通入氯化氫(hydrogen chloride,HCl)氣體,於沉積狀態下佐 同時以蝕刻的方法移除部分區域,巨觀下更能在特定位置形成緩衝層150。 According to step K3 of Fig. 1, after the seed layer 140 is formed, a buffer layer is subsequently formed on the seed layer. As shown in FIG. 5, a buffer layer 150 is formed on the seed layer 140. The buffer layer 150 can be, for example, a low concentration germanium layer for buffering the surface of the recess R or the pure germanium seed layer 140 and the higher concentration epitaxial layer subsequently formed on the buffer layer 150. Reduce structural defects such as the difference between the epitaxial layers. Therefore, the seed layer 140 and the buffer layer 150 comprise different materials or different materials of different concentrations. Preferably, the buffer layer 150 has a germanium content of less than 50%. Still more preferably, the buffer layer 150 has a germanium content in a gradient distribution, the concentration of which can be increased internally by the outer (substantially contacting the seed layer 140). The seed layer 150 can be formed, for example, by a chemical vapor deposition (CVD) process including a helium-containing gas, but the invention is not limited thereto. For example, the seed layer 150 may be formed, for example, by passing hydrogen chloride (HCl), dichlorosilane (DCS), and germanium (GeH 4 ) gas, wherein the helium gas may be, for example, hydrogenated germanium (germane , GeH 4 ) gas, but the invention is not limited thereto. For example, a standard Cubic Centimeter per Minute (sccm) methylene chloride and a 250 sccm helium gas can be introduced at 10 torr, or the helium gas flow rate can be 70. ~380 sccm. In addition, a hydrogen chloride (HCl) gas may be further used in the deposition state to simultaneously remove a portion of the region by etching, and the buffer layer 150 may be formed at a specific position under a giant view.
再者,緩衝層150可選擇性摻雜硼離子。緩衝層150之一用途係可防止後續形成於其上之含硼的磊晶層中的硼成分向外擴散至基底110,因此可藉由調整緩衝層150的硼含量,甚至不摻雜硼以達到此目的。在此強調,此時所形成之緩衝層150具有不平坦且粗糙的一表面S2,如將磊晶層直接形成於緩衝層150上,則會造成磊晶層之結構缺陷以及所形成之體積及剖面輪廓難以控制的問題,因而影響裝置效能。 Furthermore, the buffer layer 150 can be selectively doped with boron ions. One use of the buffer layer 150 prevents the boron component in the boron-containing epitaxial layer subsequently formed thereon from diffusing outward to the substrate 110, so that the boron content of the buffer layer 150 can be adjusted, even without boron. To achieve this. It is emphasized here that the buffer layer 150 formed at this time has an uneven and rough surface S2. If the epitaxial layer is directly formed on the buffer layer 150, the structural defects of the epitaxial layer and the formed volume and Problems with uncontrollable profile profiles affect device performance.
因此,根據第1圖之步驟K4:進行一蝕刻製程於緩衝層以塑形緩衝層的粗糙表面。如第6圖所示,進行一蝕刻製程P2,以將緩衝層150塑形而形成塑形後的一緩衝層150’,其具有一表面S3,且位於凹槽底部的中央處與位於凹槽邊緣處的厚度實質上相同。如此一來,則可解決前述之問題,意即減少後續形成於緩衝層150’上的磊晶層的缺陷,以及控制磊晶層的體積及剖面輪廓,甚至此塑形的步驟,去除掉部分緩衝層150(粗糙表面S2)而形成平坦的表面S3,故可擴大所形成的磊晶層的體積,而提升其施加於閘極通道C的應力效能。 Therefore, according to step K4 of FIG. 1, an etching process is performed on the buffer layer to shape the rough surface of the buffer layer. As shown in FIG. 6, an etching process P2 is performed to shape the buffer layer 150 to form a buffered layer 150' having a surface S3 at the center of the bottom of the groove and in the groove. The thickness at the edges is substantially the same. In this way, the foregoing problem can be solved, that is, the defect of the epitaxial layer formed on the buffer layer 150' is reduced, and the volume and cross-sectional profile of the epitaxial layer are controlled, and even the step of shaping is removed. The buffer layer 150 (rough surface S2) forms a flat surface S3, so that the volume of the formed epitaxial layer can be enlarged, and the stress performance applied to the gate channel C can be improved.
蝕刻製程P2可例如通入至少一蝕刻氣體,以蝕刻特定區域或特定結晶面的緩衝層150。在一實施例中,蝕刻氣體可例如為氯化氫氣體,其可蝕刻特定結晶面的緩衝層150,以移除多於不平坦的區域,而形成緩衝層150’,但本發明不以此為限。再者,蝕刻製程P2可例如再包含通入至少一沈積氣體,以在蝕刻的過程中,彌 補過度蝕刻的部分,而控制特定位置的蝕刻率。沈積氣體可例如包含甲烷(silane,SiH4)、二氯甲矽烷(dichlorosilane,DCS)或/且鍺(germane,GeH4)氣體。在此強調,由於蝕刻製程P2的蝕刻率必定大於沈積率,如此在巨觀下可維持其蝕刻或者塑形緩衝層150的特性。再者,蝕刻製程P2的蝕刻氣體的總流量會大於沈積氣體的總流量,以維持其蝕刻或者塑形的特性。舉例而言,當蝕刻製程P2同時通入氯化氫氣體作為蝕刻氣體,而二氯甲矽烷氣體及鍺氣體作為沈積氣體時,則氯化氫氣體較佳為200 sccm,而二氯甲矽烷氣體搭配為50 sccm及鍺氣體搭配為120 sccm,如此蝕刻氣體的總流量(即氯化氫氣體的流量)則會大於沈積氣體的總流量(即二氯甲矽烷氣體加上鍺氣體的流量),如此則可使特定區域具有適當的蝕刻率,但本發明不以此為限。另外,蝕刻製程P2較佳為在低壓下進行,以對於各晶格面具有不同的蝕刻率,且能精準控制緩衝層150的塑形步驟,並能控制緩衝層150’的厚度。例如,以0.1托爾(torr)至200托爾(torr)的低壓進行。較佳者可為1托爾至100托爾的低壓,更佳者可為5托爾至50托爾的低壓。 The etching process P2 may, for example, pass at least one etching gas to etch a specific region or a buffer layer 150 of a specific crystal face. In an embodiment, the etching gas may be, for example, hydrogen chloride gas, which may etch a buffer layer 150 of a specific crystal face to remove more uneven regions to form the buffer layer 150 ′, but the invention is not limited thereto. . Furthermore, the etching process P2 may, for example, further include the introduction of at least one deposition gas to compensate for the over-etched portion during the etching process, and to control the etching rate at a specific location. The deposition gas may, for example, comprise methane (silane, SiH 4 ), dichlorosilane (DCS) or/and germane (GeH 4 ) gas. It is emphasized here that since the etching rate of the etching process P2 must be greater than the deposition rate, the characteristics of the etching or shaping buffer layer 150 can be maintained at a macroscopic view. Furthermore, the total flow rate of the etching gas of the etching process P2 may be greater than the total flow rate of the deposition gas to maintain its etching or shaping characteristics. For example, when the etching process P2 simultaneously introduces hydrogen chloride gas as an etching gas, and the methylene chloride gas and the helium gas act as a deposition gas, the hydrogen chloride gas is preferably 200 sccm, and the methylene chloride gas is 50 sccm. The gas mixture is 120 sccm, so the total flow rate of the etching gas (ie, the flow rate of hydrogen chloride gas) is greater than the total flow rate of the deposition gas (ie, the flow rate of the methylene chloride gas plus the helium gas), so that a specific region can be obtained. There is a suitable etching rate, but the invention is not limited thereto. In addition, the etching process P2 is preferably performed at a low voltage to have different etching rates for each of the lattice faces, and the shaping step of the buffer layer 150 can be precisely controlled, and the thickness of the buffer layer 150' can be controlled. For example, it is carried out at a low pressure of from 0.1 torr to 200 torr. Preferably, it may be a low pressure of 1 to 100 torr, and more preferably a low pressure of 5 to 50 torr.
再者,蝕刻製程P2較佳為原位(in-situ)進行,俾使緩衝層150’等,不會因破真空而氧化或污染。換言之,進行蝕刻製程P2可例如與形成晶種層140、形成緩衝層150’以及形成後續磊晶層皆於同一製程腔體。更佳者,亦可在同一製程中,僅以通入不同氣體或者相同氣體之不同比例來進行蝕刻製程P2、形成晶種層140、形成緩衝層150’以及形成後續磊晶層,視實際需要而定,如此可確保品質又能簡化製程並降低成本。 Further, the etching process P2 is preferably performed in-situ, so that the buffer layer 150' or the like is not oxidized or contaminated by vacuum. In other words, the etching process P2 can be performed in the same process chamber, for example, with the formation of the seed layer 140, the formation of the buffer layer 150', and the formation of the subsequent epitaxial layer. More preferably, in the same process, only the different processes of different gases or the same gas may be used to perform the etching process P2, the seed layer 140 is formed, the buffer layer 150' is formed, and the subsequent epitaxial layer is formed, as needed. This ensures quality and simplifies the process and reduces costs.
續之,根據第1圖之步驟K5:形成一磊晶層於緩衝層上。 如第7-8圖所示,形成一磊晶層160於緩衝層150’上。在一實施例中,磊晶層160包含一矽鍺磊晶層,但本發明不以此為限。在本實施例中,磊晶層160由下而上包含一塊狀磊晶層162以及一蓋層磊晶層164。 Then, according to step K5 of FIG. 1, an epitaxial layer is formed on the buffer layer. As shown in Figures 7-8, an epitaxial layer 160 is formed over the buffer layer 150'. In an embodiment, the epitaxial layer 160 includes a germanium epitaxial layer, but the invention is not limited thereto. In the present embodiment, the epitaxial layer 160 includes a strip-shaped epitaxial layer 162 and a capping epitaxial layer 164 from bottom to top.
詳細而言,可由第7圖所示,先形成塊狀磊晶層於緩衝層上。此時,塊狀磊晶層162需填滿第3圖之凹槽R。較佳者,塊狀磊晶層162的一頂面T1至少與基底110的一頂面T2位於同一水面上,如此即可充分發揮塊狀磊晶層162的應力效應,又不會應形成有凹陷於塊狀磊晶層162上,導致後續結構覆蓋困難。塊狀磊晶層162可例如為一矽鍺磊晶層,且其鍺含量高於15%,以具有夠高之濃度形成應力施加於閘極通道C,因為塊狀磊晶層162為主要之施加應力之磊晶層。塊狀磊晶層162可例如以一氣相沈積製程形成,但本發明不以此為限。舉例而言,可在10托爾(torr)下,通入50 sccm的二氯甲矽烷以及600 sccm的氫化鍺氣體,或者氫化鍺氣體的流量可介於380~800 sccm。再者,塊狀磊晶層162可摻雜硼等離子以增加其導電性。例如通入220 sccm的乙硼烷(Diborane,B2H6),或者介於70~280 sccm的乙硼烷,但本發明不以此為限。 In detail, as shown in FIG. 7, a bulk epitaxial layer is formed on the buffer layer. At this time, the bulk epitaxial layer 162 needs to fill the groove R of FIG. Preferably, a top surface T1 of the bulk epitaxial layer 162 is located on the same water surface as at least one top surface T2 of the substrate 110, so that the stress effect of the bulk epitaxial layer 162 can be fully exerted without forming It is recessed on the bulk epitaxial layer 162, resulting in difficulty in subsequent structural coverage. The bulk epitaxial layer 162 may be, for example, a germanium epitaxial layer and has a germanium content of more than 15%, and a stress is applied to the gate channel C at a concentration high enough because the bulk epitaxial layer 162 is the main layer. A stressed epitaxial layer. The bulk epitaxial layer 162 can be formed, for example, by a vapor deposition process, but the invention is not limited thereto. For example, 50 sccm of methylene chloride and 600 sccm of hydrazine hydride gas may be introduced at 10 torr, or the flow rate of the hydrazine hydride gas may be between 380 and 800 sccm. Furthermore, the bulk epitaxial layer 162 may be doped with boron plasma to increase its conductivity. For example, 220 sccm of diborane (Diborane, B 2 H 6 ) or diborane of 70 to 280 sccm is introduced, but the invention is not limited thereto.
然後,如第8圖所示,形成蓋層磊晶層164於塊狀磊晶層162上。蓋層磊晶層164的一頂面T3則高於基底110的頂面T2。本實施例中,蓋層磊晶層164可例如為一矽層,以防止其下方之塊狀磊晶層162中的鍺等元素向外擴散。蓋層磊晶層164又可例如為一矽鍺層,其鍺由下而上遞減。較佳者,蓋層磊晶層164之最大鍺含量(即位於一底面T4的鍺含量)低於塊狀磊晶層162之鍺含量,且蓋層磊晶層164之頂面T3的鍺含量實質上為零。再者,蓋層磊 晶層164亦可選擇性摻雜硼等離子以增加其導電性。 Then, as shown in FIG. 8, a capping epitaxial layer 164 is formed on the bulk epitaxial layer 162. A top surface T3 of the capping epitaxial layer 164 is higher than the top surface T2 of the substrate 110. In this embodiment, the capping epitaxial layer 164 may be, for example, a germanium layer to prevent outward diffusion of germanium or the like in the bulk epitaxial layer 162 underneath. The capping epitaxial layer 164, in turn, can be, for example, a layer of germanium, with the germanium decreasing from bottom to top. Preferably, the maximum germanium content of the capping epitaxial layer 164 (ie, the germanium content on a bottom surface T4) is lower than the germanium content of the bulk epitaxial layer 162, and the germanium content of the top surface T3 of the capping epitaxial layer 164. It is essentially zero. Furthermore, the cover layer The layer 164 can also be selectively doped with boron plasma to increase its conductivity.
以後,可繼續進行其他後續之半導體製程,例如佈植源/汲極(未繪示)的摻質或自對準金屬矽化物(salicide)製程等,在此不多加贅述。此外,摻雜源/汲極(未繪示)的時間點亦可以實施於形成凹槽R的蝕刻製程P1之前或是於形成塊狀磊晶層162時同步摻雜之。 In the future, other subsequent semiconductor processes, such as implant source/drainage (not shown) doping or self-aligned metal salicide processes, may be continued, and are not described here. In addition, the time point of the dopant source/drain (not shown) may also be implemented before the etching process P1 for forming the recess R or when the bulk epitaxial layer 162 is formed.
綜上所述,本發明提出一種磊晶製程,其依序形成一晶種層,形成一緩衝層,再進行一蝕刻製程用以塑形緩衝層,然後才形成一磊晶層於塑形的緩衝層上。如此一來,所形成之塑形的緩衝層可促使磊晶層易於成長於其上,而減少差排(dislocation)等缺陷問題。並且,可藉由控制塑形的緩衝層的平坦度及其剩下的厚度,進一步控制磊晶層的體積及剖面輪廓,以達到所需之電性要求。較佳者,可藉由塑形出更薄之緩衝層,擴大所形成的磊晶層的體積。因此,本發明之形成並塑形緩衝層的方法,可提升磊晶層施加於閘極通道的應力效果。 In summary, the present invention provides an epitaxial process in which a seed layer is sequentially formed to form a buffer layer, and an etching process is performed to shape the buffer layer, and then an epitaxial layer is formed to shape the layer. On the buffer layer. In this way, the formed buffer layer can promote the epitaxial layer to easily grow thereon, and reduce defects such as dislocation. Moreover, the volume and cross-sectional profile of the epitaxial layer can be further controlled by controlling the flatness of the shaped buffer layer and its remaining thickness to achieve the desired electrical requirements. Preferably, the volume of the formed epitaxial layer can be enlarged by shaping a thinner buffer layer. Therefore, the method of forming and shaping the buffer layer of the present invention can enhance the stress effect of the epitaxial layer applied to the gate channel.
更進一步而言,本發明之蝕刻製程,可蝕刻特定區域或特定結晶面的緩衝層,而蝕刻出所需之塑形的緩衝層。蝕刻製程可包含至少一蝕刻氣體,以及選擇性再包含一沈積氣體。然而,蝕刻製程的蝕刻率必大於沈積率,以達成其蝕刻之功能。直觀上,可將蝕刻製程的蝕刻氣體的總流量設定為大於沈積氣體的總流量,以確保其蝕刻或者塑形的特性。如此一來,藉由同時通入蝕刻氣體以及沈積氣體,並調整二者之成分以及比例,可達到更大彈性的控制特定之區域的蝕刻率的目的;換言之,俾使不同區域具有不同之蝕刻率, 而達到塑形的效果。 Furthermore, the etching process of the present invention can etch a specific region or a buffer layer of a specific crystal face while etching a desired shaped buffer layer. The etching process can include at least one etching gas and optionally a deposition gas. However, the etching rate of the etching process must be greater than the deposition rate to achieve its etching function. Intuitively, the total flow rate of the etching gas of the etching process can be set to be larger than the total flow rate of the deposition gas to ensure its etching or shaping characteristics. In this way, by simultaneously introducing the etching gas and the deposition gas, and adjusting the composition and ratio of the two, a more flexible control of the etching rate of the specific region can be achieved; in other words, different regions have different etchings. rate, And to achieve the effect of shaping.
較佳者,蝕刻製程可包含氯化氫氣體作為蝕刻氣體,而可選擇性再包含甲烷、二氯甲矽烷或/且鍺氣體作為沈積氣體。再者,形成晶種層、形成緩衝層、進行一蝕刻製程以及形成磊晶層的步驟較佳於同一製程腔體中進行,或者蝕刻製程可為原位進行,以防止製程中因破真空而污染各材料層。更佳者,此些步驟可在同一製程腔體中以通入不同氣體或相同氣體之不同比例形成,因此可簡化製程並減少污染,進而提升良率及品質。 Preferably, the etching process may comprise hydrogen chloride gas as an etching gas, and optionally further comprises methane, methylene chloride or/and a helium gas as a deposition gas. Furthermore, the steps of forming a seed layer, forming a buffer layer, performing an etching process, and forming an epitaxial layer are preferably performed in the same process chamber, or the etching process may be performed in situ to prevent a vacuum in the process. Contamination of various material layers. More preferably, these steps can be formed in different ratios of different gases or the same gas in the same process chamber, thereby simplifying the process and reducing pollution, thereby improving yield and quality.
此外,本發明的磊晶製程亦適用於鰭式場效電晶體(Fin Field-effect transistor,FinFET)等之非平面型的場效電晶體中,意即將閘極跨設於鰭狀結構,並利用閘極與間隙壁當作遮罩來蝕刻鰭狀結構形成凹槽之後,接著如前文所述,依序形成一晶種層,形成一緩衝層,再進行一蝕刻製程用以塑形緩衝層,最後才形成一磊晶層於塑形的緩衝層上。 In addition, the epitaxial process of the present invention is also applicable to a non-planar field effect transistor such as a Fin Field-effect Transistor (FinFET), which means that the gate is spanned over the fin structure and utilized. After the gate and the spacer are used as a mask to etch the fin structure to form the recess, then, as described above, a seed layer is sequentially formed to form a buffer layer, and an etching process is performed to shape the buffer layer. Finally, an epitaxial layer is formed on the shaped buffer layer.
Claims (17)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW102118633A TWI618120B (en) | 2013-05-27 | 2013-05-27 | Epitaxial process |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW102118633A TWI618120B (en) | 2013-05-27 | 2013-05-27 | Epitaxial process |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201445618A TW201445618A (en) | 2014-12-01 |
TWI618120B true TWI618120B (en) | 2018-03-11 |
Family
ID=52707161
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW102118633A TWI618120B (en) | 2013-05-27 | 2013-05-27 | Epitaxial process |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI618120B (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9991343B2 (en) | 2015-02-26 | 2018-06-05 | Taiwan Semiconductor Manufacturing Company Ltd. | LDD-free semiconductor structure and manufacturing method of the same |
US9728598B2 (en) | 2015-04-07 | 2017-08-08 | Taiwan Semiconductor Manufacturing Co., Ltd. | Semiconductor device having barrier layer to prevent impurity diffusion |
US9812570B2 (en) | 2015-06-30 | 2017-11-07 | Taiwan Semiconductor Manufacturing Co., Ltd. | Semiconductor device and manufacturing method thereof |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW200805460A (en) * | 2006-06-07 | 2008-01-16 | Asm Inc | Selective epitaxial formation of semiconductor films |
US20090302348A1 (en) * | 2008-06-10 | 2009-12-10 | International Business Machines Corporation | Stress enhanced transistor devices and methods of making |
-
2013
- 2013-05-27 TW TW102118633A patent/TWI618120B/en active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW200805460A (en) * | 2006-06-07 | 2008-01-16 | Asm Inc | Selective epitaxial formation of semiconductor films |
US20090302348A1 (en) * | 2008-06-10 | 2009-12-10 | International Business Machines Corporation | Stress enhanced transistor devices and methods of making |
Also Published As
Publication number | Publication date |
---|---|
TW201445618A (en) | 2014-12-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8853060B1 (en) | Epitaxial process | |
US11024718B2 (en) | Semiconductor device and method of forming the same | |
US9034706B2 (en) | FinFETs with regrown source/drain and methods for forming the same | |
US8247285B2 (en) | N-FET with a highly doped source/drain and strain booster | |
TWI545761B (en) | Semiconductor devices and methods for manufacturing the same and pmos transistors | |
TWI431724B (en) | Semiconductor structure and method of manufacturing thereof | |
TWI658491B (en) | Semiconductor device and manufacturing method thereof | |
US20140367768A1 (en) | Semiconductor device and fabrication method thereof | |
US20130252392A1 (en) | Performing Enhanced Cleaning in the Formation of MOS Devices | |
US9263579B2 (en) | Semiconductor process for modifying shape of recess | |
US9748386B2 (en) | Epitaxial structure of semiconductor device and manufacturing method thereof | |
JP5456150B2 (en) | Semiconductor device and manufacturing method thereof | |
US8951871B2 (en) | Semiconductor device and manufacturing method thereof | |
TWI618120B (en) | Epitaxial process | |
JP2009105163A (en) | Semiconductor device | |
US8884346B2 (en) | Semiconductor structure | |
US9653550B2 (en) | MOSFET structure and manufacturing method thereof | |
JP3834564B2 (en) | Semiconductor device and manufacturing method thereof | |
TWI532174B (en) | Semiconductor structure and process thereof | |
TWI543370B (en) | Mos transistor process | |
CN109524306B (en) | Method for forming transistor | |
JP2009176876A (en) | Semiconductor device | |
TWI575578B (en) | Semiconductor process |