TWI532174B - Semiconductor structure and process thereof - Google Patents

Semiconductor structure and process thereof Download PDF

Info

Publication number
TWI532174B
TWI532174B TW101112243A TW101112243A TWI532174B TW I532174 B TWI532174 B TW I532174B TW 101112243 A TW101112243 A TW 101112243A TW 101112243 A TW101112243 A TW 101112243A TW I532174 B TWI532174 B TW I532174B
Authority
TW
Taiwan
Prior art keywords
layer
carbon
epitaxial layer
epitaxial
substrate
Prior art date
Application number
TW101112243A
Other languages
Chinese (zh)
Other versions
TW201342597A (en
Inventor
廖晉毅
簡金城
Original Assignee
聯華電子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 聯華電子股份有限公司 filed Critical 聯華電子股份有限公司
Priority to TW101112243A priority Critical patent/TWI532174B/en
Publication of TW201342597A publication Critical patent/TW201342597A/en
Application granted granted Critical
Publication of TWI532174B publication Critical patent/TWI532174B/en

Links

Description

半導體結構及其製程Semiconductor structure and its process

本發明係關於一種半導體結構以及製程,且特別係關於一種形成一含碳的矽鍺蓋層於磊晶層上的半導體結構及其製程。The present invention relates to a semiconductor structure and process, and more particularly to a semiconductor structure for forming a carbon-containing cap layer on an epitaxial layer and a process therefor.

隨著半導體製程進入到深次微米時代,例如65奈米(nm)以下之製程,對於MOS電晶體元件的驅動電流(drive current)的提昇已顯得日益重要。為了改善元件的效能,目前業界已發展出所謂的「應變矽(strained-silicon)技術」,其原理主要是使閘極通道部分的矽晶格產生應變,使電荷在通過此應變之閘極通道時的移動力增加,進而達到使MOS電晶體運作更快的目的。As semiconductor processes enter the deep submicron era, such as processes below 65 nanometers (nm), the drive current of MOS transistor components has become increasingly important. In order to improve the performance of components, the so-called "strained-silicon technology" has been developed in the industry. The principle is mainly to strain the germanium lattice of the gate channel portion, so that the charge passes through the strain gate channel. The movement force at the time increases, thereby achieving the purpose of making the MOS transistor operate faster.

在目前已知的應變矽(strained-silicon)技術中,有使用應變矽(strained silicon)作為基底的MOS電晶體,以對於PMOS電晶體為例,其利用矽鍺(SiGe)的晶格常數與單晶矽(single crystal Si)不同的特性,使矽鍺磊晶層產生結構上應變而形成應變矽。由於矽鍺層的晶格常數(lattice constant)比矽大,這使得矽的帶結構(band structure)發生改變,而造成載子移動性增加,因此可增加MOS電晶體的速度。Among the currently known strained-silicon techniques, there are MOS transistors using strained silicon as a substrate, for the case of a PMOS transistor, which utilizes the lattice constant of germanium (SiGe). The different characteristics of single crystal Si cause the epitaxial layer to undergo structural strain and form strain enthalpy. Since the lattice constant of the tantalum layer is larger than that of the tantalum, this causes a change in the band structure of the tantalum, which causes an increase in carrier mobility, thereby increasing the speed of the MOS transistor.

然而,磊晶層的成分較複雜,其成分亦可能在後續製程中擴散至周邊,而污染了周邊的區域。However, the composition of the epitaxial layer is complicated, and its composition may diffuse to the periphery in subsequent processes, contaminating the surrounding area.

本發明提出一種半導體結構及其製程,其藉由形成一含碳的矽鍺蓋層於磊晶層上,避免磊晶層或者蓋層中的鍺成分析出於蓋層表面。The present invention provides a semiconductor structure and a process for forming a carbon-containing cap layer on an epitaxial layer to prevent the formation of the epitaxial layer or the cap layer from being analyzed on the surface of the cap layer.

本發明提供一種半導體結構包含一閘極結構、一磊晶層以及一含碳的矽鍺蓋層。閘極結構位於一基底上。磊晶層位於閘極結構側邊的基底中。含碳的矽鍺蓋層位於磊晶層上。The present invention provides a semiconductor structure comprising a gate structure, an epitaxial layer, and a carbon-containing cap layer. The gate structure is on a substrate. The epitaxial layer is located in the substrate on the side of the gate structure. The carbon-containing ruthenium cap layer is on the epitaxial layer.

本發明提供一種半導體製程,包含下述步驟。首先,形成一閘極結構於一基底上。接著,形成一磊晶層於閘極結構側邊的基底中。而後,進行一原位(in-situ)磊晶製程,形成一含碳的矽鍺蓋層於磊晶層上。The present invention provides a semiconductor process comprising the following steps. First, a gate structure is formed on a substrate. Next, an epitaxial layer is formed in the substrate on the side of the gate structure. Thereafter, an in-situ epitaxial process is performed to form a carbon-containing capping layer on the epitaxial layer.

本發明提供一種半導體製程,包含下述步驟。首先,形成一閘極結構於一基底上。接著,形成一磊晶層於閘極結構側邊的基底中。而後,形成一矽鍺蓋層於磊晶層上。之後,摻雜碳於矽鍺蓋層中,而形成一含碳的矽鍺蓋層於磊晶層上。The present invention provides a semiconductor process comprising the following steps. First, a gate structure is formed on a substrate. Next, an epitaxial layer is formed in the substrate on the side of the gate structure. Then, a cap layer is formed on the epitaxial layer. Thereafter, carbon is doped into the cap layer to form a carbon-containing cap layer on the epitaxial layer.

基於上述,本發明提出一種半導體結構及其製程,藉由形成一含碳的矽鍺蓋層於磊晶層上,避免磊晶層或者蓋層中的鍺成分析出於蓋層表面,進而抑制蓋層表面的黑點(black spot)形成。Based on the above, the present invention provides a semiconductor structure and a process thereof for forming a carbon-containing cap layer on an epitaxial layer, thereby preventing the formation of the epitaxial layer or the cap layer from being analyzed on the surface of the cap layer, thereby suppressing A black spot on the surface of the cap layer is formed.

第1-4圖繪示本發明第一實施例之半導體製程之剖面示意圖。如第1圖所示,首先,提供一基底110。基底110例如是一矽基底、一含矽基底、一三五族覆矽基底(例如GaN-on-silicon)、一石墨烯覆矽基底(graphene-on-silicon)或一矽覆絕緣(silicon-on-insulator,SOI)基底等半導體基底。一絕緣結構10可形成於各電晶體之間,以將各電晶體電性絕緣。絕緣結構10可例如為一淺溝渠隔離結構,但本發明不以此為限。形成一閘極結構G於基底110上。閘極結構G可包含一堆疊結構例如一緩衝層122、一介電層124、一閘極層126、一蓋層128,以及一間隙壁129位於緩衝層122、介電層124、閘極層126以及蓋層128側邊的基底110上。詳細而言,形成閘極結構G之方法,可包含:先全面依序覆蓋一緩衝層(未繪示)、一介電層(未繪示)、一閘極層(未繪示)以及一蓋層(未繪示)於基底110上,再將此些介質層圖案化,而形成一緩衝層122、一介電層124、一閘極層126以及一蓋層128。接著,順應地覆蓋一間隙壁(未繪示)於蓋層128以及基底110上,再利用蝕刻形成間隙壁129。1 to 1-4 are schematic cross-sectional views showing a semiconductor process according to a first embodiment of the present invention. As shown in Fig. 1, first, a substrate 110 is provided. The substrate 110 is, for example, a substrate, a germanium-containing substrate, a tri-five-layer overlying substrate (eg, GaN-on-silicon), a graphene-on-silicon or a silicon-on-insulator (silicon- On-insulator, SOI) A semiconductor substrate such as a substrate. An insulating structure 10 can be formed between the transistors to electrically insulate the transistors. The insulating structure 10 can be, for example, a shallow trench isolation structure, but the invention is not limited thereto. A gate structure G is formed on the substrate 110. The gate structure G can include a stacked structure such as a buffer layer 122, a dielectric layer 124, a gate layer 126, a cap layer 128, and a spacer 129 at the buffer layer 122, the dielectric layer 124, and the gate layer. 126 and the substrate 110 on the side of the cover layer 128. In detail, the method for forming the gate structure G may include: firstly sequentially covering a buffer layer (not shown), a dielectric layer (not shown), a gate layer (not shown), and a A cap layer (not shown) is on the substrate 110, and the dielectric layers are patterned to form a buffer layer 122, a dielectric layer 124, a gate layer 126, and a cap layer 128. Then, a spacer (not shown) is covered on the cap layer 128 and the substrate 110, and the spacer 129 is formed by etching.

緩衝層122可包含一氧化層、介電層124可包含一高介電常數介電層,其例如為一含金屬介電層,可包含有鉿(Hafnium)氧化物、鋯(Zirconium)氧化物,但本發明不以此為限。更進一步而言,高介電常數介電層係可選自氧化鉿(hafnium oxide,HfO2)、矽酸鉿氧化合物(hafnium silicon oxide,HfSiO4)、矽酸鉿氮氧化合物(hafnium silicon oxynitride,HfSiON)、氧化鋁(aluminum oxide,Al2O3)、氧化鑭(lanthanum oxide,La2O3)、氧化鉭(tantalum oxide,Ta2O5)、氧化釔(yttrium oxide,Y2O3)、氧化鋯(zirconium oxide,ZrO2)、鈦酸鍶(strontium titanate oxide,SrTiO3)、矽酸鋯氧化合物(zirconium silicon oxide,ZrSiO4)、鋯酸鉿(hafnium zirconium oxide,HfZrO4)、鍶鉍鉭氧化物(strontium bismuth tantalate,SrBi2Ta2O9,SBT)、鋯鈦酸鉛(lead zirconate titanate,PbZrxTi1-xO3,PZT)與鈦酸鋇鍶(barium strontium titanate,BaxSr1-xTiO3,BST)所組成之群組。閘極層126可包含一多晶矽層,或者一犧牲層,於後續製程中被金屬層置換而形成金屬閘極。蓋層128可例如為一氮化層。間隙壁129例如是以氮化矽或氧化矽等材質所組成之單層或多層複合結構。緩衝層122、介電層124、閘極層126以及蓋層128的材料皆為舉例之實施態樣,但本發明非限於此。The buffer layer 122 may include an oxide layer, and the dielectric layer 124 may include a high-k dielectric layer, such as a metal-containing dielectric layer, which may include hafnium oxide, zirconium oxide. However, the invention is not limited thereto. Furthermore, the high-k dielectric layer may be selected from hafnium oxide (HfO 2 ), hafnium silicon oxide (HfSiO 4 ), hafnium silicon oxynitride. , HfSiON), aluminum oxide (Al 2 O 3 ), lanthanum oxide (La 2 O 3 ), tantalum oxide (Ta 2 O 5 ), yttrium oxide (Y 2 O 3 ) Zirconium oxide (ZrO 2 ), strontium titanate oxide (SrTiO 3 ), zirconium silicon oxide (ZrSiO 4 ), hafnium zirconium oxide (HfZrO 4 ), Strontium bismuth tantalate (SrBi 2 Ta 2 O 9 , SBT), lead zirconate titanate (PbZr x Ti 1-x O 3 , PZT) and barium strontium titanate (barium strontium titanate, A group consisting of Ba x Sr 1-x TiO 3 , BST). The gate layer 126 may comprise a polysilicon layer or a sacrificial layer that is replaced by a metal layer in a subsequent process to form a metal gate. The cap layer 128 can be, for example, a nitride layer. The spacer 129 is, for example, a single layer or a multilayer composite structure composed of a material such as tantalum nitride or tantalum oxide. The materials of the buffer layer 122, the dielectric layer 124, the gate layer 126, and the cap layer 128 are all exemplified, but the invention is not limited thereto.

如第2圖所示,例如以先進行乾蝕刻再進行濕蝕刻製程,形成二凹槽R於閘極結構G側邊的基底110中。在清洗步驟之後,如第3圖所示,進行一選擇性磊晶(SEG)製程,以形成一磊晶層130於閘極結構G側邊的凹槽R中。而在形成凹槽R之前、形成磊晶層130之後,甚至於形成磊晶層130的同時,係可進行一離子佈植製程或一原位摻雜製程,以將所需的摻雜質摻入磊晶層130,形成電晶體元件的源極/汲極。在本實施例中,磊晶層130的頂面S1高於基底110的頂面S2之高度,以增加磊晶層130對於閘極結構G下方之閘極通道C施加壓力之效能,但本發明不以此為限。在一較佳的實施例中,凹槽R具有一鑽石形的剖面結構或其他形狀的剖面結構。換言之,位於閘極結構G下方之凹槽R的側壁具有至少一尖角,俾使形成於其中之磊晶層130亦具有鑽石形的剖面結構,如此可增加磊晶層130對於其之間的閘極通道C所施加的應力。在本實施例中,磊晶層130為一矽鍺磊晶層,其鍺的濃度可大於36%,用以形成一P型電晶體,但在其他實施例中,磊晶層130亦可為一矽碳磊晶層,用以形成一N型電晶體。或者,磊晶層130亦可僅為一矽質磊晶層,或者其可包含多層不同材料之磊晶層,例如磊晶層130由下層一矽鍺磊晶層及上層一矽質磊晶層組成。或者,在進行選擇性磊晶(SEG)製程之前,可選擇性地於各凹槽R內先形成一磊晶層(圖未示),且此磊晶層係為一具低鍺濃度的矽鍺磊晶層,其鍺的濃度可小於25%,或者為一矽質磊晶層,用以避免磊晶層130與基底110的接面晶格常數差異過大而導致的元件啟始電壓突然發生下降等問題,但本發明不以此為限。As shown in FIG. 2, for example, dry etching is performed first and then a wet etching process is performed to form two recesses R in the substrate 110 on the side of the gate structure G. After the cleaning step, as shown in FIG. 3, a selective epitaxial (SEG) process is performed to form an epitaxial layer 130 in the recess R on the side of the gate structure G. Before forming the recess R, after forming the epitaxial layer 130, or even forming the epitaxial layer 130, an ion implantation process or an in-situ doping process may be performed to dope the desired dopant. The epitaxial layer 130 is formed to form the source/drain of the transistor element. In the present embodiment, the top surface S1 of the epitaxial layer 130 is higher than the top surface S2 of the substrate 110 to increase the effect of the epitaxial layer 130 on applying pressure to the gate channel C under the gate structure G, but the present invention Not limited to this. In a preferred embodiment, the recess R has a diamond-shaped cross-sectional structure or a cross-sectional structure of other shapes. In other words, the sidewall of the recess R under the gate structure G has at least one sharp corner, so that the epitaxial layer 130 formed therein also has a diamond-shaped cross-sectional structure, so that the epitaxial layer 130 can be increased therebetween. The stress applied by the gate channel C. In this embodiment, the epitaxial layer 130 is a germanium epitaxial layer, and the germanium concentration may be greater than 36% to form a P-type transistor. However, in other embodiments, the epitaxial layer 130 may also be A carbon epitaxial layer is formed to form an N-type transistor. Alternatively, the epitaxial layer 130 may be only a enamel epitaxial layer, or it may comprise a plurality of epitaxial layers of different materials, for example, the epitaxial layer 130 is composed of a lower layer of epitaxial layer and an upper layer of enamel epitaxial layer. composition. Alternatively, an epitaxial layer (not shown) may be selectively formed in each of the recesses R before the selective epitaxy (SEG) process, and the epitaxial layer is a low germanium concentration. The germanium epitaxial layer may have a germanium concentration of less than 25%, or a tantalum epitaxial layer, in order to avoid sudden occurrence of component starting voltage caused by excessive difference in lattice constant between the epitaxial layer 130 and the substrate 110. Problems such as decline, but the invention is not limited thereto.

如第4圖所示,進行一磊晶製程,以形成一具低鍺濃度的矽質磊晶層140a於磊晶層130上,作為後續金屬矽化物製程的反應場所,用以避免金屬矽化物製程中金屬與鍺形成結塊之問題。本實施例之磊晶層130為一矽鍺磊晶層,而其所含有之鍺質會向上擴散至矽質磊晶層140a的表面S,進而導致矽質磊晶層140a的表面S有黑點(black spot)產生。As shown in FIG. 4, an epitaxial process is performed to form a germanium epitaxial layer 140a having a low germanium concentration on the epitaxial layer 130 as a reaction site for the subsequent metal telluride process to avoid metal telluride. The problem of agglomeration between metal and tantalum in the process. The epitaxial layer 130 of the present embodiment is a tantalum epitaxial layer, and the tantalum contained therein diffuses upward to the surface S of the tantalum epitaxial layer 140a, thereby causing the surface S of the tantalum epitaxial layer 140a to be black. A black spot is generated.

因此,以下在提出第二實施例以改善第一實施例之半導體製程所形成之磊晶結構的問題。第5-10圖繪示本發明第二實施例之半導體製程之剖面示意圖。Therefore, the second embodiment is proposed below to improve the problem of the epitaxial structure formed by the semiconductor process of the first embodiment. 5-10 are schematic cross-sectional views showing a semiconductor process of a second embodiment of the present invention.

如下,在形成磊晶層130(如第3圖)之後,形成一含碳的矽鍺蓋層140b於磊晶層130上。形成之方法可為方法一如第5圖所示,或者為方法二如第6-7圖所示。As follows, after the epitaxial layer 130 is formed (as in FIG. 3), a carbon-containing cap layer 140b is formed on the epitaxial layer 130. The method of formation may be as shown in FIG. 5 or as shown in FIG. 6-7.

方法一:method one:

如第5圖所示,進行一原位(in-situ)磊晶製程P1,直接形成一含碳的矽鍺蓋層140b於磊晶層130上。詳細而言,原位(in-situ)磊晶製程P1係在以磊晶製程形成矽鍺蓋層時,同時摻雜碳於蓋層中。原位(in-situ)磊晶製程P1所通入的製程氣體可包含甲基矽烷(monomethyl silane,MMS)或多甲基矽烷等,其化學式可包含(CH3)xSi4-x;X>1,以在磊晶形成矽鍺蓋層時同時摻雜碳於其中而形成含碳的矽鍺蓋層140b,但本發明不以此為限。As shown in FIG. 5, an in-situ epitaxial process P1 is performed to directly form a carbon-containing capping layer 140b on the epitaxial layer 130. In detail, the in-situ epitaxial process P1 is simultaneously doped with carbon in the cap layer when the capping layer is formed by an epitaxial process. The process gas introduced by the in-situ epitaxial process P1 may include monomethyl silane (MMS) or polymethyl decane, and the chemical formula may include (CH3)xSi 4 -x; X>1 The carbon-containing capping layer 140b is formed by simultaneously doping carbon therein during epitaxial formation of the capping layer, but the invention is not limited thereto.

方法二:Method Two:

如第6圖所示,先形成一矽鍺蓋層140b’於磊晶層130上。接著,如第7圖所示,進行一摻雜製程P2,摻雜碳於矽鍺蓋層140b’中,而形成一含碳的矽鍺蓋層140b於磊晶層130上。摻雜碳的製程氣體包含甲基矽烷(monomethyl silane,MMS)或多甲基矽烷等,其化學式可包含(CH3)xSi4-x;X>1,此外,摻雜碳亦可利用一離子佈植製程來實施,但本發明不以此為限。As shown in FIG. 6, a cap layer 140b' is first formed on the epitaxial layer 130. Next, as shown in FIG. 7, a doping process P2 is performed to dope carbon into the capping layer 140b' to form a carbon-containing capping layer 140b on the epitaxial layer 130. The carbon-doped process gas comprises monomethyl silane (MMS) or polymethyl decane, and the chemical formula thereof may include (CH3)xSi 4 -x; X>1. In addition, the doped carbon may also utilize an ion cloth. The planting process is carried out, but the invention is not limited thereto.

不論方法一或方法二,皆可形成一含碳的矽鍺蓋層140b於磊晶層130上。在本實施例中,含碳的矽鍺蓋層140b高於基底110的頂面S2。由於含碳的矽鍺蓋層140b含有碳質,因此可防止位於磊晶層130中的鍺質或者位於含碳的矽鍺蓋層140b中的鍺質,在後續製程例如形成鎳/矽金屬矽化物時向上擴散至含碳的矽鍺蓋層140b的表面,而形成鍺質的黑點(black spot),劣化所形成之電晶體的電性品質。然而,當含碳的矽鍺蓋層140b的碳含量過高,亦會使碳的矽鍺蓋層140b對閘極通道C施加拉伸應力,此應力會與原來形成磊晶層130俾對於閘極通道C施加壓縮應力相抵銷,降低磊晶層130施加於閘極通道C的效果。因此,在一較佳的實施例中,含碳的矽鍺蓋層140b之化學式為SiGexCz,SiGexCz的Z值為0.1%~1%,X值大於或等於0%。再者,含碳的矽鍺蓋層140b中的碳含量的分佈可呈一由上而下的梯度分佈。如此,可藉由微調含碳的矽鍺蓋層140b中的碳含量的分佈,一方面有效阻擋位於磊晶層130的鍺質或者位於含碳的矽鍺蓋層140b中的鍺質向表面擴散;一方面又可降低含碳的矽鍺蓋層140b因含有碳而對於閘極通道C所產生的拉伸應力。例如,在一實施例中,含碳的矽鍺蓋層140b中的碳含量的分佈可呈一由上而下遞減的垂直梯度分佈。此外,含碳的矽鍺蓋層140b中的碳含量的分佈亦可能呈一由遠而近向閘極結構G遞減的水平梯度分佈等,本發明不以此為限。再者,為防止含碳的矽鍺蓋層140b中的鍺質擴散至表面,其鍺含量的分佈可呈一由下而上遞減的梯度分佈。或者,由於磊晶層130之鍺質向上擴散的緣故,其鍺質擴散至含碳的矽鍺蓋層140b中,亦可能呈一由下而上遞減的梯度分佈。Regardless of the first method or the second method, a carbon-containing capping layer 140b may be formed on the epitaxial layer 130. In the present embodiment, the carbon-containing cover layer 140b is higher than the top surface S2 of the substrate 110. Since the carbon-containing capping layer 140b contains carbonaceous material, the tantalum located in the epitaxial layer 130 or the tantalum in the carbon-containing capping layer 140b can be prevented from being formed, for example, by forming a nickel/ruthenium metal in a subsequent process. The material diffuses upward to the surface of the carbon-containing cap layer 140b to form a black spot of the enamel, deteriorating the electrical quality of the formed transistor. However, when the carbon content of the carbon-containing cover layer 140b is too high, the carbon cap layer 140b also exerts a tensile stress on the gate channel C, and this stress will form an epitaxial layer 130 with respect to the gate. The application of the compressive stress to the pole channel C cancels the effect of reducing the application of the epitaxial layer 130 to the gate channel C. Therefore, in a preferred embodiment, the carbon-containing cap layer 140b has a chemical formula of SiGe x C z , and the Z value of SiGe x C z is 0.1% to 1%, and the X value is greater than or equal to 0%. Furthermore, the carbon content distribution in the carbon-containing cover layer 140b may be in a top-down gradient distribution. Thus, by finely adjusting the distribution of the carbon content in the carbon-containing capping layer 140b, on the one hand, the tantalum located in the epitaxial layer 130 or the tantalum in the carbon-containing capping layer 140b can be effectively blocked from diffusing toward the surface. On the one hand, it can reduce the tensile stress generated by the carbon-containing cap layer 140b for the gate channel C due to the inclusion of carbon. For example, in one embodiment, the distribution of carbon content in the carbon-containing cover layer 140b may be a vertical gradient profile that decreases from top to bottom. In addition, the distribution of the carbon content in the carbon-containing capping layer 140b may also be a horizontal gradient distribution decreasing from the far-direction gate structure G, etc., and the invention is not limited thereto. Furthermore, in order to prevent the enamel in the carbon-containing capping layer 140b from diffusing to the surface, the distribution of the cerium content may be a gradient from bottom to top. Alternatively, due to the upward diffusion of the enamel layer of the epitaxial layer 130, the enamel diffuses into the carbon-containing capping layer 140b, and may also have a downwardly decreasing gradient distribution.

如第8圖所示,形成含碳的矽鍺蓋層140b之後,選擇性地進行一摻雜製程P3以摻雜硼於含碳的矽鍺蓋層140b中,以形成一含硼及碳的矽鍺蓋層140c。在形成鎳/矽金屬矽化物覆蓋含硼及碳的矽鍺蓋層140c時,會完全或部分消耗掉含硼及碳的矽鍺蓋層140c。當仍有含硼及碳的矽鍺蓋層140c殘留時,含有硼的含硼及碳的矽鍺蓋層140c可降低接觸面的阻值。在本實施例中,進行摻雜製程P3時,硼同時摻雜於含碳的矽鍺蓋層140b以及磊晶層130中。本實施例中之磊晶層130為矽鍺磊晶層,所摻雜之硼位於磊晶層130的內部。更進一步而言,可選擇性利用一光阻當遮罩(圖未示),使所摻雜之硼僅位於磊晶層130的內部,形成一內層磊晶層區132,以及形成未摻雜有硼的一外層磊晶層區134,其中外層磊晶層區134包覆內層磊晶層區132的側壁S3以及底面S4。在其他實施例中,硼可僅摻雜於含碳的矽鍺蓋層140b中。As shown in FIG. 8, after the carbon-containing capping layer 140b is formed, a doping process P3 is selectively performed to dope boron into the carbon-containing capping layer 140b to form a boron-containing and carbon-containing layer. Cover layer 140c. When the nickel/bismuth metal telluride is coated with the cap layer 140c containing boron and carbon, the cap layer 140c containing boron and carbon is completely or partially consumed. When the cap layer 140c containing boron and carbon remains, the boron-containing and carbon-containing cap layer 140c containing boron can lower the resistance of the contact surface. In the present embodiment, when the doping process P3 is performed, boron is simultaneously doped in the carbon-containing capping layer 140b and the epitaxial layer 130. The epitaxial layer 130 in this embodiment is a germanium epitaxial layer, and the doped boron is located inside the epitaxial layer 130. Further, a photoresist can be selectively used as a mask (not shown) such that the doped boron is only located inside the epitaxial layer 130, forming an inner epitaxial layer region 132, and forming an undoped layer. An outer epitaxial layer region 134 doped with boron, wherein the outer epitaxial layer region 134 covers the sidewall S3 and the bottom surface S4 of the inner epitaxial layer region 132. In other embodiments, boron may be doped only in the carbon-containing capping layer 140b.

此外,在以方法二形成含碳的矽鍺蓋層140b於磊晶層130上時,可在形成矽鍺蓋層140b’於磊晶層130上(如第6圖)之後,先進行摻雜製程P3以摻雜硼於矽鍺蓋層140b’中,以形成一含硼的矽鍺蓋層(未繪示)。接著,再進行摻雜製程P2,摻雜碳於含硼的矽鍺蓋層(未繪示)中,而形成一含硼及碳的矽鍺蓋層140c於磊晶層130上。當然,在摻雜硼於矽鍺蓋層140b’時,可同時將硼摻雜入磊晶層130中。In addition, when the carbon-containing capping layer 140b is formed on the epitaxial layer 130 by the second method, the doping layer 140b' may be doped on the epitaxial layer 130 (as shown in FIG. 6). Process P3 is doped with boron in cap layer 140b' to form a boron-containing cap layer (not shown). Then, the doping process P2 is performed, and carbon is doped into the boron-containing capping layer (not shown) to form a cap layer 140c containing boron and carbon on the epitaxial layer 130. Of course, when boron is doped to the capping layer 140b', boron can be simultaneously doped into the epitaxial layer 130.

另外,摻雜硼於蓋層或磊晶層中的時間點,可在蓋層形成之前先摻雜硼於磊晶層中,或待蓋層形成之後再摻雜硼於蓋層中。如第9圖所示,在(如第3圖所示)形成磊晶層130之後,可先進行一摻雜製程P4,以摻雜硼於磊晶層130中。如圖所示,可選擇性利用一光阻當遮罩(圖未示),使所摻雜之硼僅位於磊晶層130的內部,形成一內層磊晶層區132,而其外部則形成未摻雜有硼的一外層磊晶層區134,其中外層磊晶層區134包覆內層磊晶層區132的側壁S3以及底面S4。接著,如第10圖所示,以前述之方法一或方法二,形成含碳的矽鍺蓋層140b於磊晶層130上。此時之含碳的矽鍺蓋層140b未含有硼質,因此可再另外摻雜硼於含碳的矽鍺蓋層140b中。或者,由於磊晶層130已含有硼,故可再後續製程中當進行熱製程時,將磊晶層130中的硼擴散至含碳的矽鍺蓋層140b。或者,在形成含碳的矽鍺蓋層140b於磊晶層130上時,同時摻雜硼於含碳的矽鍺蓋層140b中,以直接形成一含硼及碳的矽鍺蓋層140c。In addition, at the time point of doping boron in the cap layer or the epitaxial layer, boron may be doped into the epitaxial layer before the cap layer is formed, or boron may be doped into the cap layer after the cap layer is formed. As shown in FIG. 9, after the epitaxial layer 130 is formed (as shown in FIG. 3), a doping process P4 may be performed to dope boron into the epitaxial layer 130. As shown, a photoresist can be selectively used as a mask (not shown) such that the doped boron is only located inside the epitaxial layer 130 to form an inner epitaxial layer region 132, while the outer portion is formed. An outer epitaxial layer region 134 that is not doped with boron is formed, wherein the outer epitaxial layer region 134 covers the sidewall S3 and the bottom surface S4 of the inner epitaxial layer region 132. Next, as shown in FIG. 10, a carbon-containing capping layer 140b is formed on the epitaxial layer 130 by the first method or the second method. At this time, the carbon-containing cap layer 140b does not contain boron, and thus boron may be additionally doped in the carbon-containing cap layer 140b. Alternatively, since the epitaxial layer 130 already contains boron, the boron in the epitaxial layer 130 can be diffused to the carbon-containing capping layer 140b when the thermal process is performed in a subsequent process. Alternatively, when the carbon-containing cap layer 140b is formed on the epitaxial layer 130, boron is simultaneously doped into the carbon-containing cap layer 140b to directly form a cap layer 140c containing boron and carbon.

另外,本發明不論採用方法一或是方法二形成含碳(及硼)的矽鍺蓋層140b,140c於磊晶層130上,皆可再另外形成一含矽的蓋層(未繪示)位於含碳(及硼)的矽鍺蓋層140b,140c上,以進一步供進行鎳/矽金屬矽化物製程時之消耗,俾維持下方之結構完整。In addition, in the present invention, whether the method 1 or the method 2 is used to form the carbon (or boron) capping layer 140b, 140c on the epitaxial layer 130, a capping layer (not shown) may be additionally formed. It is located on the carbon-containing (and boron) capping layer 140b, 140c for further consumption during the nickel/niobium metal telluride process, and maintains the structural integrity below.

綜上所述,本發明提出一種半導體結構及其製程,藉由形成一含碳的矽鍺蓋層於磊晶層上,避免磊晶層或者蓋層中的鍺成分析出於蓋層表面,而抑制蓋層表面的黑點(black spot)形成。具體而言,形成含碳的矽鍺蓋層於磊晶層上的方法可包含:(1)進行一原位(in-situ)磊晶製程直接形成一含碳的矽鍺蓋層於磊晶層上;或者,(2)先形成一矽鍺蓋層於磊晶層上,再進行一摻雜製程,摻雜碳於矽鍺蓋層中,而形成一含碳的矽鍺蓋層於磊晶層上。In summary, the present invention provides a semiconductor structure and a process thereof for forming a carbon-containing capping layer on an epitaxial layer to prevent the formation of the epitaxial layer or the cap layer from being formed on the surface of the cap layer. The formation of a black spot on the surface of the cap layer is suppressed. Specifically, the method of forming a carbon-containing capping layer on the epitaxial layer may include: (1) performing an in-situ epitaxial process to directly form a carbon-containing capping layer on the epitaxial layer; On the layer; or, (2) first forming a cap layer on the epitaxial layer, and then performing a doping process, doping carbon into the capping layer, and forming a carbon-containing capping layer on the layer On the crystal layer.

以上所述僅為本發明之較佳實施例,凡依本發明申請專利範圍所做之均等變化與修飾,皆應屬本發明之涵蓋範圍。The above are only the preferred embodiments of the present invention, and all changes and modifications made to the scope of the present invention should be within the scope of the present invention.

10...絕緣結構10. . . Insulation structure

110...基底110. . . Base

122...緩衝層122. . . The buffer layer

124...介電層124. . . Dielectric layer

126...閘極層126. . . Gate layer

128...蓋層128. . . Cover

129...間隙壁129. . . Clearance wall

130...磊晶層130. . . Epitaxial layer

132...內層磊晶層區132. . . Inner layer epitaxial layer

134...外層磊晶層區134. . . Outer layer of epitaxial layer

140a...矽質磊晶層140a. . . Tantalum epitaxial layer

140b’...矽鍺蓋層140b’. . . Cover layer

140b...含碳的矽鍺蓋層140b. . . Carbon-containing cover

140c...含硼及碳的矽鍺蓋層140c. . . Boron and carbon-containing capping layer

C...閘極通道C. . . Gate channel

G...閘極結構G. . . Gate structure

R...凹槽R. . . Groove

P1...原位(in-situ)磊晶製程P1. . . In-situ epitaxial process

P2、P3、P4...摻雜製程P2, P3, P4. . . Doping process

S...表面S. . . surface

S1、S2...頂面S1, S2. . . Top surface

S3...側壁S3. . . Side wall

S4...底面S4. . . Bottom

第1-4圖繪示本發明第一實施例之半導體製程之剖面示意圖。1 to 1-4 are schematic cross-sectional views showing a semiconductor process according to a first embodiment of the present invention.

第5-10圖繪示本發明第二實施例之半導體製程之剖面示意圖。5-10 are schematic cross-sectional views showing a semiconductor process of a second embodiment of the present invention.

10...絕緣結構10. . . Insulation structure

110...基底110. . . Base

122...緩衝層122. . . The buffer layer

124...介電層124. . . Dielectric layer

126...閘極層126. . . Gate layer

128...蓋層128. . . Cover

129...間隙壁129. . . Clearance wall

130...磊晶層130. . . Epitaxial layer

132...內層磊晶層區132. . . Inner layer epitaxial layer

134...外層磊晶層區134. . . Outer layer of epitaxial layer

140c...含硼及碳的矽鍺蓋層140c. . . Boron and carbon-containing capping layer

C...閘極通道C. . . Gate channel

G...閘極結構G. . . Gate structure

P3...摻雜製程P3. . . Doping process

S2...頂面S2. . . Top surface

S3...側壁S3. . . Side wall

S4...底面S4. . . Bottom

Claims (20)

一種半導體結構,包含有:一閘極結構位於一基底上;一磊晶層位於該閘極結構側邊的該基底中;以及一含碳的矽鍺蓋層位於該磊晶層上,其中該含碳的矽鍺蓋層高於該基底的一頂面。 A semiconductor structure comprising: a gate structure on a substrate; an epitaxial layer in the substrate on a side of the gate structure; and a carbon-containing cap layer on the epitaxial layer, wherein the The carbon-containing cover layer is higher than a top surface of the substrate. 如申請專利範圍第1項所述之半導體結構,其中該含碳的矽鍺蓋層包含一含硼及碳的矽鍺蓋層。 The semiconductor structure of claim 1, wherein the carbon-containing cover layer comprises a cap layer comprising boron and carbon. 如申請專利範圍第1項所述之半導體結構,其中該含碳的矽鍺蓋層之化學式為SiGexCz,而該SiGexCz的Z值為0.1%~1%。 The semiconductor structure of claim 1, wherein the carbon-containing capping layer has a chemical formula of SiGe x C z and the SiGe x C z has a Z value of 0.1% to 1%. 如申請專利範圍第1項所述之半導體結構,其中該含碳的矽鍺蓋層中的碳含量的分佈呈一由上而下的梯度分佈。 The semiconductor structure of claim 1, wherein the carbon content in the carbon-containing cover layer has a top-down gradient distribution. 如申請專利範圍第4項所述之半導體結構,其中該一由上而下的梯度分佈包含一由上而下遞減的梯度分佈。 The semiconductor structure of claim 4, wherein the top-down gradient distribution comprises a gradient distribution that decreases from top to bottom. 如申請專利範圍第1項所述之半導體結構,其中該含碳的矽鍺蓋層中的鍺含量的分佈呈一由下而上遞減的梯度分佈。 The semiconductor structure according to claim 1, wherein the distribution of the cerium content in the carbon-containing enamel layer is a gradient from bottom to top. 如申請專利範圍第1項所述之半導體結構,其中該含碳的矽鍺蓋層高於該基底的頂面。 The semiconductor structure of claim 1, wherein the carbon-containing cover layer is higher than the top surface of the substrate. 如申請專利範圍第1項所述之半導體結構,更包含一含矽的蓋層位於該含碳的矽鍺蓋層上。 The semiconductor structure of claim 1, further comprising a germanium-containing cap layer on the carbon-containing cap layer. 如申請專利範圍第1項所述之半導體結構,其中該磊晶層包含一矽鍺磊晶層。 The semiconductor structure of claim 1, wherein the epitaxial layer comprises a tantalum epitaxial layer. 如申請專利範圍第1項所述之半導體結構,其中該磊晶層包含一矽鍺磊晶層包覆一含硼的矽鍺磊晶層的側壁以及底面。 The semiconductor structure of claim 1, wherein the epitaxial layer comprises a tantalum epitaxial layer covering a sidewall and a bottom surface of the boron-containing germanium epitaxial layer. 如申請專利範圍第1項所述之半導體結構,其中該含碳的矽鍺蓋層的表面高於該基底的表面。 The semiconductor structure of claim 1, wherein the surface of the carbon-containing cover layer is higher than the surface of the substrate. 一種半導體製程,包含:形成一閘極結構於一基底上;形成一磊晶層於該閘極結構側邊的該基底中;以及進行一原位(in-situ)磊晶製程,形成一含碳的矽鍺蓋層於該磊晶層上,其中該含碳的矽鍺蓋層高於該基底的一頂面。 A semiconductor process comprising: forming a gate structure on a substrate; forming an epitaxial layer in the substrate on a side of the gate structure; and performing an in-situ epitaxial process to form a A carbon cap layer is on the epitaxial layer, wherein the carbon-containing cap layer is higher than a top surface of the substrate. 如申請專利範圍第12項所述之半導體製程,其中形成該含碳的矽鍺蓋層包含形成一含硼及碳的矽鍺蓋層。 The semiconductor process of claim 12, wherein forming the carbon-containing cap layer comprises forming a cap layer comprising boron and carbon. 如申請專利範圍第12項所述之半導體製程,其中在進行該原位(in-situ)磊晶製程之後,更包含摻雜硼於該含碳的矽鍺蓋層中,以形成一含鍺及碳的矽鍺蓋層。 The semiconductor process of claim 12, wherein after performing the in-situ epitaxial process, further comprising doping boron into the carbon-containing capping layer to form a germanium-containing layer And a carbon cap layer. 如申請專利範圍第12項所述之半導體製程,其中該含碳的矽鍺蓋層之化學式為SiGexCz,而該SiGexCz的Z值為0.1%~1%。 The semiconductor process of claim 12, wherein the carbon-containing capping layer has a chemical formula of SiGe x C z and the SiGe x C z has a Z value of 0.1% to 1%. 如申請專利範圍第12項所述之半導體製程,其中在形成該磊晶層之後,更包含摻雜硼於該磊晶層的內部。 The semiconductor process of claim 12, wherein after forming the epitaxial layer, doping further comprises doping boron inside the epitaxial layer. 一種半導體製程,包含:形成一閘極結構於一基底上;形成一磊晶層於該閘極結構側邊的該基底中;形成一矽鍺蓋層於該磊晶層上;以及摻雜碳於該矽鍺蓋層中,而形成一含碳的矽鍺蓋層於該磊晶層上,其中該含碳的矽鍺蓋層高於該基底的一頂面。 A semiconductor process comprising: forming a gate structure on a substrate; forming an epitaxial layer in the substrate on a side of the gate structure; forming a capping layer on the epitaxial layer; and doping carbon In the capping layer, a carbon-containing capping layer is formed on the epitaxial layer, wherein the carbon-containing capping layer is higher than a top surface of the substrate. 如申請專利範圍第17項所述之半導體製程,在形成該矽鍺蓋層之後,更包含摻雜硼於該蓋層中。 The semiconductor process of claim 17, further comprising doping boron in the cap layer after forming the cap layer. 如申請專利範圍第17項所述之半導體製程,其中該含碳的矽鍺蓋層之化學式為SiGexCz,而該SiGexCz的Z值為0.1%~1%。 The semiconductor process of claim 17, wherein the carbon-containing capping layer has a chemical formula of SiGe x C z and the SiGe x C z has a Z value of 0.1% to 1%. 如申請專利範圍第17項所述之半導體製程,其中在形成該磊晶層之後,更包含摻雜硼於該磊晶層的內部。 The semiconductor process of claim 17, wherein after forming the epitaxial layer, doping further comprises doping boron inside the epitaxial layer.
TW101112243A 2012-04-06 2012-04-06 Semiconductor structure and process thereof TWI532174B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW101112243A TWI532174B (en) 2012-04-06 2012-04-06 Semiconductor structure and process thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW101112243A TWI532174B (en) 2012-04-06 2012-04-06 Semiconductor structure and process thereof

Publications (2)

Publication Number Publication Date
TW201342597A TW201342597A (en) 2013-10-16
TWI532174B true TWI532174B (en) 2016-05-01

Family

ID=49771547

Family Applications (1)

Application Number Title Priority Date Filing Date
TW101112243A TWI532174B (en) 2012-04-06 2012-04-06 Semiconductor structure and process thereof

Country Status (1)

Country Link
TW (1) TWI532174B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102386525B1 (en) * 2015-06-19 2022-04-14 인텔 코포레이션 Carbon-based interface to epitaxially grown source/drain transistor regions

Also Published As

Publication number Publication date
TW201342597A (en) 2013-10-16

Similar Documents

Publication Publication Date Title
US8575708B2 (en) Structure of field effect transistor with fin structure
US9318609B2 (en) Semiconductor device with epitaxial structure
US8765591B2 (en) Semiconductor device having metal gate and manufacturing method thereof
US9093477B1 (en) Implantation processing step for a recess in finFET
US8772120B2 (en) Semiconductor process
US10141193B2 (en) Fabricating method of a semiconductor device with a high-K dielectric layer having a U-shape profile
TWI556438B (en) Multi-gate field-effect transistor and process thereof
US8884346B2 (en) Semiconductor structure
TWI521574B (en) Semiconductor process
CN102956453A (en) Semiconductor device and manufacture method thereof
US20160049496A1 (en) Mos transistor and semiconductor process for forming epitaxial structure
TW201624712A (en) Epitaxial structure and process thereof for forming fin-shaped field effect transistor
TWI532174B (en) Semiconductor structure and process thereof
TWI618120B (en) Epitaxial process
US8486794B1 (en) Method for manufacturing semiconductor structure
CN103378130A (en) Semiconductor structure and manufacturing process thereof
US8647941B2 (en) Method of forming semiconductor device
TWI543370B (en) Mos transistor process
TW201448120A (en) Semiconductor device and fabrication method thereof
TWI508139B (en) Method of forming semiconductor device
TWI485782B (en) Semiconductor device having metal gate and manufacturing method thereof
TWI534907B (en) Semiconductor process
TWI518788B (en) Semiconductor process having dielectric layer including metal oxide and mos transistor process
TWI508293B (en) Semiconductor device having metal gate and manufacturing method thereof
TWI493603B (en) Method of manufacturing semiconductor device having metal gate