TWI534907B - Semiconductor process - Google Patents

Semiconductor process Download PDF

Info

Publication number
TWI534907B
TWI534907B TW101113739A TW101113739A TWI534907B TW I534907 B TWI534907 B TW I534907B TW 101113739 A TW101113739 A TW 101113739A TW 101113739 A TW101113739 A TW 101113739A TW I534907 B TWI534907 B TW I534907B
Authority
TW
Taiwan
Prior art keywords
layer
oxide layer
semiconductor process
double
spacer
Prior art date
Application number
TW101113739A
Other languages
Chinese (zh)
Other versions
TW201344801A (en
Inventor
温在宇
呂佐文
王俞仁
Original Assignee
聯華電子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 聯華電子股份有限公司 filed Critical 聯華電子股份有限公司
Priority to TW101113739A priority Critical patent/TWI534907B/en
Publication of TW201344801A publication Critical patent/TW201344801A/en
Application granted granted Critical
Publication of TWI534907B publication Critical patent/TWI534907B/en

Links

Landscapes

  • Insulated Gate Type Field-Effect Transistor (AREA)

Description

半導體製程Semiconductor process

本發明係關於一種半導體製程,且特別關於一種以無氧電漿製程緻密化雙層間隙壁中之氧化層的半導體製程。This invention relates to a semiconductor process and, more particularly, to a semiconductor process for densifying an oxide layer in a double layer spacer in an oxygen-free plasma process.

隨著半導體製程進入到深次微米時代,例如65奈米(nm)以下之製程,對於MOS電晶體元件的驅動電流(drive current)的提昇已顯得日益重要。為了改善元件的效能,目前業界已發展出所謂的「應變矽(strained-silicon)技術」,其原理主要是使閘極通道部分的矽晶格產生應變,使電荷在通過此應變之閘極通道時的移動力增加,進而達到使MOS電晶體運作更快的目的。在目前已知的應變矽(strained-silicon)技術中,有使用應變矽(strained silicon)作為基底的MOS電晶體,以對於PMOS電晶體為例,其利用矽鍺(SiGe)的晶格常數與單晶矽(single crystal Si)不同的特性,使矽鍺磊晶層產生結構上應變而形成應變矽。由於矽鍺層的晶格常數(lattice constant)比矽大,這使得矽的帶結構(band structure)發生改變,而造成載子移動性增加,因此可增加MOS電晶體的速度。而對於NMOS電晶體,則可以利用矽碳(SiC)等之磊晶層來形成應變矽。As semiconductor processes enter the deep submicron era, such as processes below 65 nanometers (nm), the drive current of MOS transistor components has become increasingly important. In order to improve the performance of components, the so-called "strained-silicon technology" has been developed in the industry. The principle is mainly to strain the germanium lattice of the gate channel portion, so that the charge passes through the strain gate channel. The movement force at the time increases, thereby achieving the purpose of making the MOS transistor operate faster. Among the currently known strained-silicon techniques, there are MOS transistors using strained silicon as a substrate, for the case of a PMOS transistor, which utilizes the lattice constant of germanium (SiGe). The different characteristics of single crystal Si cause the epitaxial layer to undergo structural strain and form strain enthalpy. Since the lattice constant of the tantalum layer is larger than that of the tantalum, this causes a change in the band structure of the tantalum, which causes an increase in carrier mobility, thereby increasing the speed of the MOS transistor. For an NMOS transistor, an epitaxial layer such as tantalum carbon (SiC) can be used to form strain enthalpy.

現今在閘極結構側邊的基底中欲形成該等磊晶層之步驟可包含:採用一單層之間隙壁形成於閘極結構(例如包含閘極介電層、閘極電極及蓋層)側邊,以在間隙壁側邊之基底中自動對準蝕刻出至少一凹槽,而可形成一磊晶層於凹槽中。然後,再移除間隙壁。其後,再於基底及閘極結構上進行後續源極/汲極摻雜等之半導體製程。The step of forming the epitaxial layer in the substrate on the side of the gate structure can include: forming a gate layer structure (for example, including a gate dielectric layer, a gate electrode, and a cap layer) by using a single layer of spacers. At the side, at least one groove is automatically aligned in the substrate on the side of the spacer, and an epitaxial layer is formed in the groove. Then, remove the spacers. Thereafter, a semiconductor process such as subsequent source/drain doping is performed on the substrate and the gate structure.

然而,當為形成磊晶層之間隙壁為單層時,會產生一些缺點。舉例而言,由於過蝕刻的緣故,在移除間隙壁時會傷害到其下方之基底(此時之基底可能形成有輕摻雜源/汲極區)。再者,在形成此單層之間隙壁之前,可能會先另外形成一側壁子於閘極結構的側邊以作為例如形成一輕摻雜源/汲極區之用。如此,在形成磊晶層之後而移除單層間隙壁時,由於單層間隙壁與側壁子之材料相似,故會損傷側壁子,進而影響MOS電晶體元件的電性。However, when the spacers for forming the epitaxial layer are a single layer, some disadvantages are caused. For example, due to over-etching, the underlying substrate may be damaged when the spacer is removed (the substrate may be formed with a lightly doped source/drain region at this time). Furthermore, before forming the spacers of the single layer, a sidewall may be additionally formed on the side of the gate structure to form, for example, a lightly doped source/drain region. Thus, when the single-layer spacer is removed after the epitaxial layer is formed, since the single-layer spacer is similar to the material of the sidewall, the sidewall is damaged, thereby affecting the electrical properties of the MOS transistor.

本發明係提出一種半導體製程,其對於一雙層間隙壁進行一無氧電漿製程,以緻密化雙層間隙壁中之氧化層,俾防止後續蝕刻製程時氧化層被消耗。The present invention provides a semiconductor process for performing an anaerobic plasma process on a double-layer spacer to densify the oxide layer in the double-layer spacer to prevent the oxide layer from being consumed during subsequent etching processes.

本發明提供一種半導體製程,包含有下述步驟。首先,形成一閘極結構於一基底上。接著,形成一氧化層覆蓋閘極結構以及基底。然後,進行一無氧電漿製程,緻密化氧化層。而後,形成一材料層覆蓋氧化層。之後,蝕刻材料層以及氧化層,而形成一雙層間隙壁。The present invention provides a semiconductor process comprising the steps described below. First, a gate structure is formed on a substrate. Next, an oxide layer is formed to cover the gate structure and the substrate. Then, an anaerobic plasma process is performed to densify the oxide layer. Then, a material layer is formed to cover the oxide layer. Thereafter, the material layer and the oxide layer are etched to form a double-layer spacer.

基於上述,本發明提出一種半導體製程,其在形成一含有內層氧化層及外層材料層之雙層間隙壁時,在形成氧化層之後隨即進行一無氧電漿製程,以緻密化氧化層。如此一來,在進行後續蝕刻製程,特別是濕蝕刻製程時,可防止氧化層被消耗。具體而言,此濕蝕刻製程例如為在形成凹槽後以及形成磊晶層之前對於凹槽進行之預清洗製程。Based on the above, the present invention provides a semiconductor process in which, when a double-layer spacer having an inner oxide layer and an outer material layer is formed, an anaerobic plasma process is performed immediately after the formation of the oxide layer to densify the oxide layer. In this way, the oxide layer can be prevented from being consumed during the subsequent etching process, particularly the wet etching process. Specifically, the wet etching process is, for example, a pre-cleaning process for the grooves after forming the grooves and before forming the epitaxial layer.

第1-9圖係繪示本發明一實施例之半導體製程之剖面示意圖。如第1圖所示,首先,形成一基底110。基底110例如是一矽基底、一含矽基底、一三五族覆矽基底(例如GaN-on-silicon)、一石墨烯覆矽基底(graphene-on-silicon)或一矽覆絕緣(silicon-on-insulator,SOI)基底等半導體基底。一絕緣結構20可形成於各電晶體之間,以將各電晶體電性絕緣。絕緣結構20可例如為一淺溝渠隔離結構,但本發明不以此為限。接著形成一閘極結構G於基底110上。閘極結構G可包含一堆疊結構例如一緩衝層122、一介電層124、一閘極層126、一蓋層128。詳細而言,形成閘極結構G之方法,可包含:先全面依序覆蓋一緩衝層(未繪示)、一介電層(未繪示)、一閘極層(未繪示)以及一蓋層(未繪示)於基底110上,再將此些介質層圖案化,而形成一緩衝層122、一介電層124、一閘極層126以及一蓋層128。1-9 are schematic cross-sectional views showing a semiconductor process according to an embodiment of the present invention. As shown in Fig. 1, first, a substrate 110 is formed. The substrate 110 is, for example, a substrate, a germanium-containing substrate, a tri-five-layer overlying substrate (eg, GaN-on-silicon), a graphene-on-silicon or a silicon-on-insulator (silicon- On-insulator, SOI) A semiconductor substrate such as a substrate. An insulating structure 20 may be formed between the transistors to electrically insulate each of the transistors. The insulating structure 20 can be, for example, a shallow trench isolation structure, but the invention is not limited thereto. A gate structure G is then formed on the substrate 110. The gate structure G may include a stacked structure such as a buffer layer 122, a dielectric layer 124, a gate layer 126, and a cap layer 128. In detail, the method for forming the gate structure G may include: firstly sequentially covering a buffer layer (not shown), a dielectric layer (not shown), a gate layer (not shown), and a A cap layer (not shown) is on the substrate 110, and the dielectric layers are patterned to form a buffer layer 122, a dielectric layer 124, a gate layer 126, and a cap layer 128.

緩衝層122可包含一氧化層、介電層可包含一高介電常數介電層,其例如為一含金屬介電層,可包含有鉿(Hafnium)氧化物、鋯(Zirconium)氧化物,但本發明不以此為限。更進一步而言,高介電常數介電層係可選自氧化鉿(hafnium oxide,HfO2)、矽酸鉿氧化合物(hafnium silicon oxide,HfSiO4)、矽酸鉿氮氧化合物(hafnium silicon oxynitride,HfSiON)、氧化鋁(aluminum oxide,Al2O3)、氧化鑭(lanthanum oxide,La2O3)、氧化鉭(tantalum oxide,Ta2O5)、氧化釔(yttrium oxide,Y2O3)、氧化鋯(zirconium oxide,ZrO2)、鈦酸鍶(strontium titanate oxide,SrTiO3)、矽酸鋯氧化合物(zirconium silicon oxide,ZrSiO4)、鋯酸鉿(hafnium zirconium oxide,HfZrO4)、鍶鉍鉭氧化物(strontium bismuth tantalate,SrBi2Ta2O9,SBT)、鋯鈦酸鉛(lead zirconate titanate,PbZrxTi1-xO3,PZT)與鈦酸鋇鍶(barium strontium titanate,BaxSr1-xTiO3,BST)所組成之群組。閘極層126可包含一多晶矽層,或者一犧牲層,以於後續製程中可被金屬層置換而形成金屬閘極。蓋層128可例如為一氮化層。緩衝層122、介電層124、閘極層126以及蓋層128的材料皆為舉例之實施態樣,但本發明非限於此。The buffer layer 122 may include an oxide layer, and the dielectric layer may include a high-k dielectric layer, such as a metal-containing dielectric layer, and may include a hafnium oxide and a zirconium oxide. However, the invention is not limited thereto. Furthermore, the high-k dielectric layer may be selected from hafnium oxide (HfO 2 ), hafnium silicon oxide (HfSiO 4 ), hafnium silicon oxynitride. , HfSiON), aluminum oxide (Al 2 O 3 ), lanthanum oxide (La 2 O 3 ), tantalum oxide (Ta 2 O 5 ), yttrium oxide (Y 2 O 3 ) Zirconium oxide (ZrO 2 ), strontium titanate oxide (SrTiO 3 ), zirconium silicon oxide (ZrSiO 4 ), hafnium zirconium oxide (HfZrO 4 ), Strontium bismuth tantalate (SrBi 2 Ta 2 O 9 , SBT), lead zirconate titanate (PbZr x Ti 1-x O 3 , PZT) and barium strontium titanate (barium strontium titanate, A group consisting of Ba x Sr 1-x TiO 3 , BST). The gate layer 126 may comprise a polysilicon layer or a sacrificial layer to be replaced by a metal layer in a subsequent process to form a metal gate. The cap layer 128 can be, for example, a nitride layer. The materials of the buffer layer 122, the dielectric layer 124, the gate layer 126, and the cap layer 128 are all exemplified, but the invention is not limited thereto.

如第2圖所示,形成一第一間隙壁129於閘極結構G側邊的基底110上。例如,以氧化、氮化等方式形成,或者是先順應地覆蓋一間隙壁層(未繪示)於蓋層128以及基底110上,再利用蝕刻形成第一間隙壁129。在本實施例中,第一間隙壁129為一氮化層,其係為定義並形成輕摻雜源/汲極區,但在其他實施例中第一間隙壁129可例如是以氮化矽或氧化矽等材質所組成之單層或多層複合結構,本發明不以此為限。因此,在形成第一間隙壁129之後,例如進行一離子佈植製程,以形成一輕摻雜源/汲極區130。As shown in FIG. 2, a first spacer 129 is formed on the substrate 110 on the side of the gate structure G. For example, it is formed by oxidation, nitridation, or the like, or a gap layer (not shown) is firstly covered on the cap layer 128 and the substrate 110, and the first spacer 129 is formed by etching. In the present embodiment, the first spacer 129 is a nitride layer which defines and forms a lightly doped source/drain region, but in other embodiments the first spacer 129 may be, for example, tantalum nitride. The single layer or multi-layer composite structure composed of a material such as cerium oxide is not limited thereto. Therefore, after the first spacers 129 are formed, for example, an ion implantation process is performed to form a lightly doped source/drain region 130.

如第3圖所示,形成一氧化層142覆蓋閘極結構G以及基底110,氧化層142例如以沉積製程形成。如第4圖所示,進行一無氧電漿製程P1,用以緻密化此氧化層142。無氧電漿製程P1可包含通入至少一惰性氣體,惰性氣體例如為氦氣、氬氣等;或者,無氧電漿製程P1可包含通入氮氣。再者,無氧電漿製程P1可例如為一去耦合電漿(decouple plasma)製程,但本發明不以此為限。此外,當無氧電漿製程P1所通入之製程時間過短時,氧化層142緻密化的效果不佳,但當無氧電漿製程P1所通入之製程時間過長,氧化層142的表面則會被電漿撞擊而損傷。因此,在一較佳實施例中,無氧電漿製程P1的製程時間為20秒~120秒。As shown in FIG. 3, an oxide layer 142 is formed to cover the gate structure G and the substrate 110, and the oxide layer 142 is formed, for example, by a deposition process. As shown in Fig. 4, an anaerobic plasma process P1 is performed to densify the oxide layer 142. The anaerobic plasma process P1 may include the introduction of at least one inert gas, such as helium, argon, etc.; or, the oxygen-free plasma process P1 may include the introduction of nitrogen. Furthermore, the anaerobic plasma process P1 can be, for example, a decouple plasma process, but the invention is not limited thereto. In addition, when the process time of the oxygen-free plasma process P1 is too short, the effect of densification of the oxide layer 142 is not good, but when the process time of the oxygen-free plasma process P1 is too long, the oxide layer 142 is The surface will be damaged by the impact of the plasma. Therefore, in a preferred embodiment, the process time of the oxygen-free plasma process P1 is from 20 seconds to 120 seconds.

在完成無氧電漿製程P1之後,如第5圖所示,形成一材料層144覆蓋氧化層142。在本實施例中,材料層144為一氮化層,但本發明不以此為限。如第6圖所示,同時蝕刻材料層144以及氧化層142,而形成一雙層間隙壁140。如此一來,所形成之雙層間隙壁140則為一內層氧化層142’/外層材料層144’的雙層間隙壁140,且內層氧化層142’具有一L型的剖面結構。更進一步而言,在本實施例中,由於材料層144為一氮化層,因此所形成之內層氧化層142’/外層材料層144’的雙層間隙壁140係為一內層氧化層142’/外層氮化層的雙層間隙壁140,且蝕刻氮化層的蝕刻製程可為一非等向性之乾蝕刻,但本發明不以此為限。但在其他實施例中,材料層144可為其他材料,而形成一內層氧化層142’,外層為其他材料之雙層間隙壁140,視實際需要及用於蝕刻出雙層間隙壁140或者後續之形成凹槽等之蝕刻製程之蝕刻劑而定。After the oxygen-free plasma process P1 is completed, as shown in FIG. 5, a material layer 144 is formed to cover the oxide layer 142. In the present embodiment, the material layer 144 is a nitride layer, but the invention is not limited thereto. As shown in FIG. 6, the material layer 144 and the oxide layer 142 are simultaneously etched to form a double-layer spacer 140. As a result, the formed double-layer spacer 140 is a double-layer spacer 140 of an inner oxide layer 142'/outer material layer 144', and the inner oxide layer 142' has an L-shaped cross-sectional structure. Furthermore, in the present embodiment, since the material layer 144 is a nitrided layer, the double-layer spacers 140 of the inner oxide layer 142'/outer material layer 144' are formed as an inner oxide layer. The double-layer spacer 140 of the outer layer nitride layer, and the etching process for etching the nitride layer may be an anisotropic dry etching, but the invention is not limited thereto. In other embodiments, the material layer 144 may be other materials to form an inner oxide layer 142 ′, and the outer layer is a double-layer spacer 140 of other materials, as needed, and used to etch the double-layer spacer 140 or Subsequent to the etchant forming the etching process of the recess or the like.

再者,本實施例係為沉積並覆蓋兩層介質層(氧化層142及材料層144)之後,再一併蝕刻二介質層,是以可形成具有L型的剖面結構的一內層氧化層142’。但在其他實施例中,可分別覆蓋並蝕刻氧化層142及材料層144。換言之,先覆蓋氧化層142並將其蝕刻後,再形成材料層144並將其蝕刻,如此可控制所形成之雙層間隙壁140的內層氧化層142’及外層材料層144’之剖面結構。又或者,可在覆蓋氧化層142及材料層144之後,再分別依據所需之雙層間隙壁140之剖面結構而分別蝕刻材料層144及氧化層142。Furthermore, in this embodiment, after depositing and covering two dielectric layers (the oxide layer 142 and the material layer 144), the two dielectric layers are etched together to form an inner oxide layer having an L-shaped cross-sectional structure. 142'. However, in other embodiments, the oxide layer 142 and the material layer 144 may be covered and etched, respectively. In other words, after the oxide layer 142 is first covered and etched, the material layer 144 is formed and etched, so that the cross-sectional structure of the inner oxide layer 142' and the outer material layer 144' of the formed double-layer spacer 140 can be controlled. . Alternatively, after the oxide layer 142 and the material layer 144 are covered, the material layer 144 and the oxide layer 142 are respectively etched according to the desired cross-sectional structure of the double-layer spacers 140.

如第7圖所示,進行一蝕刻製程P2,以於雙層間隙壁140外側的基底110中形成二凹槽R。蝕刻製程P2可包含一乾蝕刻製程和/或一濕蝕刻製程等。例如,可先以乾蝕刻製程蝕刻出凹槽R之一預定深度,再以濕蝕刻製程橫向拓寬凹槽R,使之形成一鑽石形剖面結構,或者具有其他形狀之剖面結構。As shown in FIG. 7, an etching process P2 is performed to form two grooves R in the substrate 110 outside the double-layer spacers 140. The etching process P2 may include a dry etching process and/or a wet etching process or the like. For example, a predetermined depth of the recess R may be first etched by a dry etching process, and the recess R may be laterally widened by a wet etching process to form a diamond-shaped cross-sectional structure or a cross-sectional structure having other shapes.

接著,進行一清洗製程P3,清洗凹槽R的表面S1,以移除位於凹槽R表面S1之原生氧化物等雜質。清洗製程P3可為一含稀釋氫氟酸的清洗製程,但本發明不以此為限。在此強調,由於原生氧化物及內層氧化層142’皆為氧化物之材質,是以在進行清洗製程P3時,若沒有先進行本發明之無氧電漿製程P1來加以緻密處理,則部分內層氧化層142’會與原生氧化物一起被移除掉,而損害內層氧化層142’。且若當部分內層氧化層142’被移除後,則會大幅降低或消除了前述具有內層氧化層142’之優點。例如,防止移除外層材料層144’時損害到第一間隙壁129,或損害位於內層氧化層142’下方之輕摻雜源/汲極區130。然而,採用本發明之進行無氧電漿製程P1緻密化過的氧化層142,則可強化氧化層142之結構,而可防止內層氧化層142’在進行清洗製程P3時,一併與原生氧化物一起被移除掉。Next, a cleaning process P3 is performed to clean the surface S1 of the recess R to remove impurities such as native oxide on the surface S1 of the recess R. The cleaning process P3 can be a cleaning process containing diluted hydrofluoric acid, but the invention is not limited thereto. It is emphasized that since both the native oxide and the inner oxide layer 142' are made of an oxide material, if the cleaning process P3 is performed, if the oxygen-free plasma process P1 of the present invention is not performed first, the dense treatment is performed. A portion of the inner oxide layer 142' is removed along with the native oxide to damage the inner oxide layer 142'. And if a portion of the inner oxide layer 142' is removed, the aforementioned advantages of having the inner oxide layer 142' are greatly reduced or eliminated. For example, the first spacer 129 is prevented from being damaged when the outer layer of material 144' is removed, or the lightly doped source/drain region 130 located below the inner oxide layer 142' is damaged. However, by using the oxygen-free plasma process P1 densified oxide layer 142 of the present invention, the structure of the oxide layer 142 can be strengthened, and the inner oxide layer 142' can be prevented from being combined with the original process during the cleaning process P3. The oxides are removed together.

在完成清洗製程P3之後,如第8圖所示,進行一磊晶製程P4,形成一磊晶結構150於凹槽R中。磊晶結構150可例如為一矽鍺磊晶層等用以形成一P型電晶體,或者可例如為一矽碳磊晶層等用以形成一N型電晶體。After the cleaning process P3 is completed, as shown in FIG. 8, an epitaxial process P4 is performed to form an epitaxial structure 150 in the recess R. The epitaxial structure 150 can be, for example, a germanium epitaxial layer or the like for forming a P-type transistor, or can be, for example, a germanium carbon epitaxial layer or the like for forming an N-type transistor.

如第9圖所示,進行一蝕刻製程P5,例如包含熱磷酸的濕蝕刻製程,用以移除外層材料層144’。如此,暴露出位於外層材料層144’下方之內層氧化層142’。在後續製程中,可選擇性地移除內層氧化層142’,然後再形成一主間隙壁(未繪示),用以定義並形成源/汲極區。之後,形成源/汲極區(未繪示)於主間隙壁(未繪示)側邊的基底110中。而後,可再繼續進行其他後續之半導體製程,例如形成一金屬矽化物於源/汲極區(未繪示);全面覆蓋一接觸洞蝕刻停止層(Contact Etch Stop Layer,CESL)(未繪示);形成一層間介電層(未繪示)於接觸洞蝕刻停止層(未繪示)上;平坦化層間介電層(未繪示)與接觸洞蝕刻停止層(未繪示);進行一金屬閘極置換製程;形成接觸洞(未繪示)於層間介電層(未繪示)上;形成金屬柱(未繪示)於接觸洞(未繪示)中等。As shown in Fig. 9, an etching process P5, such as a wet etching process including hot phosphoric acid, is performed to remove the outer layer material layer 144'. Thus, the inner oxide layer 142' underlying the outer material layer 144' is exposed. In a subsequent process, the inner oxide layer 142' is selectively removed, and then a main spacer (not shown) is formed to define and form the source/drain regions. Thereafter, a source/drain region (not shown) is formed in the substrate 110 on the side of the main spacer (not shown). Then, other subsequent semiconductor processes can be continued, such as forming a metal germanide in the source/drain region (not shown); and fully covering a contact Etch Stop Layer (CESL) (not shown) Forming an interlayer dielectric layer (not shown) on the contact hole etch stop layer (not shown); planarizing the interlayer dielectric layer (not shown) and the contact hole etch stop layer (not shown); A metal gate replacement process is formed; a contact hole (not shown) is formed on the interlayer dielectric layer (not shown); and a metal pillar (not shown) is formed in the contact hole (not shown).

承上,雖然本發明之材料層144可由氮化層以外之材料所組成,但在一較佳實施例中材料層144與氧化層142的材料須具有不同之蝕刻選擇比,亦即對於一蝕刻製程而言,兩者具有不同的蝕刻速率。因為,一般而言,材料層144及第一間隙壁129係由同一或類似材料所組成,儘管用以形成二介質層之前驅物可能有所不同,但由於二介質層之材料特性相近,如二介質層之材料之間無其他材料隔絕,會導致移除材料層144時一併蝕刻到第一間隙壁129,而損害第一間隙壁129的結構。因此,材料層144與氧化層142的材料須選用具有不同之蝕刻選擇比的材料,俾使氧化層142可作為移除材料層144時的蝕刻停止層。並且,由於材料層144與氧化層142具有不同之蝕刻選擇比,氧化層142在完全移除材料層144之後仍可保留,而其L形的剖面結構,恰可保護位於其下方之輕摻雜源/汲極區130。In the preferred embodiment, the material layer 144 and the material of the oxide layer 142 must have different etching selectivity ratios, that is, for an etching. In terms of process, both have different etch rates. Because, in general, the material layer 144 and the first spacer 129 are composed of the same or similar materials, although the precursors used to form the two dielectric layers may be different, because the material properties of the two dielectric layers are similar, such as The absence of other material isolation between the materials of the two dielectric layers may result in the etching of the material layer 144 to the first spacer 129, while damaging the structure of the first spacer 129. Therefore, the material of the material layer 144 and the oxide layer 142 must be selected from materials having different etching selectivity ratios, so that the oxide layer 142 can serve as an etch stop layer when the material layer 144 is removed. Moreover, since the material layer 144 and the oxide layer 142 have different etching selectivity ratios, the oxide layer 142 can remain after the material layer 144 is completely removed, and the L-shaped cross-sectional structure can protect the light doping underneath it. Source/drain region 130.

綜上所述,本發明提出一種半導體製程,其形成一含有內層氧化層及外層材料層之雙層間隙壁,並在形成氧化層之後隨即進行一無氧電漿製程,以緻密化氧化層。如此一來,在進行後續蝕刻製程,特別是濕蝕刻製程時,可防止氧化層被消耗。具體而言,此濕蝕刻製程可例如為在形成凹槽後以及形成磊晶層之前對於凹槽表面所進行之預清洗製程,其為清除位於凹槽表面之原生氧化物等。因此,由於本發明採用進行無氧電漿製程緻密化氧化層,而可強化氧化層之結構,進而防止氧化層在蝕刻製程被消耗。是以,本發明之氧化層可充分發揮保護第一間隙壁及其下方之輕摻雜源/汲極區或者基底之功能。In summary, the present invention provides a semiconductor process for forming a double-layer spacer having an inner oxide layer and an outer material layer, and then performing an anaerobic plasma process after forming the oxide layer to densify the oxide layer. . In this way, the oxide layer can be prevented from being consumed during the subsequent etching process, particularly the wet etching process. Specifically, the wet etching process may be, for example, a pre-cleaning process performed on the surface of the groove after forming the groove and before forming the epitaxial layer, which is to remove the native oxide or the like located on the surface of the groove. Therefore, since the present invention employs an oxygen-free plasma process to densify the oxide layer, the structure of the oxide layer can be strengthened, thereby preventing the oxide layer from being consumed in the etching process. Therefore, the oxide layer of the present invention can fully function to protect the first spacer and the lightly doped source/drain region or substrate below it.

以上所述僅為本發明之較佳實施例,凡依本發明申請專利範圍所做之均等變化與修飾,皆應屬本發明之涵蓋範圍。The above are only the preferred embodiments of the present invention, and all changes and modifications made to the scope of the present invention should be within the scope of the present invention.

20...絕緣結構20. . . Insulation structure

110...基底110. . . Base

120...第一間隙壁120. . . First spacer

122...緩衝層122. . . The buffer layer

124...介電層124. . . Dielectric layer

126...閘極層126. . . Gate layer

128...蓋層128. . . Cover

129...間隙壁129. . . Clearance wall

130...輕摻雜源/汲極區130. . . Lightly doped source/drain region

140...雙層間隙壁140. . . Double barrier

142...氧化層142. . . Oxide layer

142’...內層氧化層142’. . . Inner oxide layer

144...材料層144. . . Material layer

144’...外層氮化層144’. . . Outer nitride layer

150...磊晶結構150. . . Epitaxial structure

G...閘極結構G. . . Gate structure

P1...無氧電漿製程P1. . . Anaerobic plasma process

P2、P5...蝕刻製程P2, P5. . . Etching process

P3...清洗製程P3. . . Cleaning process

P4...磊晶製程P4. . . Epitaxial process

R...凹槽R. . . Groove

S1...表面S1. . . surface

第1-9圖係繪示本發明一實施例之半導體製程之剖面示意圖。1-9 are schematic cross-sectional views showing a semiconductor process according to an embodiment of the present invention.

20...絕緣結構20. . . Insulation structure

110...基底110. . . Base

122...緩衝層122. . . The buffer layer

124...介電層124. . . Dielectric layer

126...閘極層126. . . Gate layer

128...蓋層128. . . Cover

129...第一間隙壁129. . . First spacer

130...輕摻雜源/汲極區130. . . Lightly doped source/drain region

142...氧化層142. . . Oxide layer

G...閘極結構G. . . Gate structure

P1...無氧電漿製程P1. . . Anaerobic plasma process

Claims (16)

一種半導體製程,包含有:形成一閘極結構於一基底上;形成一氧化層覆蓋該閘極結構以及該基底;進行一無氧電漿製程,緻密化該氧化層;形成一材料層覆蓋該氧化層;以及同時蝕刻該材料層以及該氧化層,而形成一雙層間隙壁。 A semiconductor process comprising: forming a gate structure on a substrate; forming an oxide layer over the gate structure and the substrate; performing an anaerobic plasma process to densify the oxide layer; forming a material layer covering the An oxide layer; and simultaneously etching the material layer and the oxide layer to form a double-layer spacer. 如申請專利範圍第1項所述之半導體製程,其中該無氧電漿製程包含通入至少一惰性氣體。 The semiconductor process of claim 1, wherein the anaerobic plasma process comprises introducing at least one inert gas. 如申請專利範圍第2項所述之半導體製程,其中該惰性氣體包含氦氣。 The semiconductor process of claim 2, wherein the inert gas comprises helium. 如申請專利範圍第2項所述之半導體製程,其中該惰性氣體包含氬氣。 The semiconductor process of claim 2, wherein the inert gas comprises argon. 如申請專利範圍第1項所述之半導體製程,其中該無氧電漿製程包含通入氮氣。 The semiconductor process of claim 1, wherein the anaerobic plasma process comprises introducing nitrogen. 如申請專利範圍第1項所述之半導體製程,其中該材料層包含一氮化層。 The semiconductor process of claim 1, wherein the material layer comprises a nitride layer. 如申請專利範圍第6項所述之半導體製程,其中該雙層間隙壁包含一內層氧化層/外層氮化層的雙層間隙壁。 The semiconductor process of claim 6, wherein the double-layer spacer comprises a double-layer spacer of an inner oxide layer/outer nitride layer. 如申請專利範圍第7項所述之半導體製程,其中該雙層間隙壁的該內層氧化層具有一L型的剖面結構。 The semiconductor process of claim 7, wherein the inner oxide layer of the double-layer spacer has an L-shaped cross-sectional structure. 如申請專利範圍第1項所述之半導體製程,其中該無氧電漿製程的製程時間為20秒~120秒。 The semiconductor process of claim 1, wherein the process of the anaerobic plasma process is from 20 seconds to 120 seconds. 如申請專利範圍第1項所述之半導體製程,其中該無氧電漿製程包含一去耦合電漿(decouple plasma)製程。 The semiconductor process of claim 1, wherein the anaerobic plasma process comprises a decouple plasma process. 如申請專利範圍第1項所述之半導體製程,其中在形成該雙層間隙壁之後,更包含:進行一蝕刻製程,以於該雙層間隙壁外側的該基底中形成至少一凹槽。 The semiconductor process of claim 1, wherein after forming the double-layer spacer, the method further comprises: performing an etching process to form at least one groove in the substrate outside the double-layer spacer. 如申請專利範圍第11項所述之半導體製程,其中該蝕刻製程包含一乾蝕刻製程或一濕蝕刻製程。 The semiconductor process of claim 11, wherein the etching process comprises a dry etching process or a wet etching process. 如申請專利範圍第11項所述之半導體製程,其中在進行該蝕刻製程之後,更包含:進行一清洗製程,清洗該凹槽的表面;以及 進行一磊晶製程,形成一磊晶結構於該凹槽中。 The semiconductor process of claim 11, wherein after performing the etching process, further comprising: performing a cleaning process to clean the surface of the groove; An epitaxial process is performed to form an epitaxial structure in the recess. 如申請專利範圍第13項所述之半導體製程,其中該清洗製程包含一含稀釋氫氟酸的清洗製程。 The semiconductor process of claim 13, wherein the cleaning process comprises a cleaning process comprising dilute hydrofluoric acid. 如申請專利範圍第1項所述之半導體製程,其中在形成該雙層間隙壁之後,更包含:進行一蝕刻製程,移除蝕刻後剩下的該材料層。 The semiconductor process of claim 1, wherein after forming the double-layer spacer, the method further comprises: performing an etching process to remove the material layer remaining after the etching. 如申請專利範圍第15項所述之半導體製程,其中該蝕刻製程包含一含熱磷酸的濕蝕刻製程。 The semiconductor process of claim 15, wherein the etching process comprises a wet etching process comprising hot phosphoric acid.
TW101113739A 2012-04-18 2012-04-18 Semiconductor process TWI534907B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW101113739A TWI534907B (en) 2012-04-18 2012-04-18 Semiconductor process

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW101113739A TWI534907B (en) 2012-04-18 2012-04-18 Semiconductor process

Publications (2)

Publication Number Publication Date
TW201344801A TW201344801A (en) 2013-11-01
TWI534907B true TWI534907B (en) 2016-05-21

Family

ID=49990304

Family Applications (1)

Application Number Title Priority Date Filing Date
TW101113739A TWI534907B (en) 2012-04-18 2012-04-18 Semiconductor process

Country Status (1)

Country Link
TW (1) TWI534907B (en)

Also Published As

Publication number Publication date
TW201344801A (en) 2013-11-01

Similar Documents

Publication Publication Date Title
US10529856B2 (en) Method of forming semiconductor device
TWI464809B (en) Semiconductor devices and fabrication methods thereof
US20120264284A1 (en) Manufacturing method for metal gate structure
US9023708B2 (en) Method of forming semiconductor device
US8574978B1 (en) Method for forming semiconductor device
US8697508B2 (en) Semiconductor process
US8723274B2 (en) Semiconductor device and method for fabricating the same
CN102956466B (en) Fin transistor and its manufacture method
US20130137256A1 (en) Semiconductor process
CN102956453A (en) Semiconductor device and manufacture method thereof
US9685541B2 (en) Method for forming semiconductor structure
TW201349304A (en) Semiconductor process
US9627534B1 (en) Semiconductor MOS device having a dense oxide film on a spacer
US8735269B1 (en) Method for forming semiconductor structure having TiN layer
US8962433B2 (en) MOS transistor process
US20180190499A1 (en) Method for fabricating metal gate structure
TWI534907B (en) Semiconductor process
TWI566299B (en) Method for forming semiconductor device
TWI517379B (en) Metal gate structure and manufacturing method thereof
TWI543370B (en) Mos transistor process
TWI509667B (en) Structure of metal gate and fabrication method thereof
CN103107089A (en) Manufacturing method of non-planar transistor
US9349599B1 (en) Method for fabricating semiconductor device
TWI508139B (en) Method of forming semiconductor device
TWI517387B (en) Semiconductor device and method for fabricating the same