TWI543370B - Mos transistor process - Google Patents

Mos transistor process Download PDF

Info

Publication number
TWI543370B
TWI543370B TW101120922A TW101120922A TWI543370B TW I543370 B TWI543370 B TW I543370B TW 101120922 A TW101120922 A TW 101120922A TW 101120922 A TW101120922 A TW 101120922A TW I543370 B TWI543370 B TW I543370B
Authority
TW
Taiwan
Prior art keywords
substrate
forming
mos transistor
source
cleaning
Prior art date
Application number
TW101120922A
Other languages
Chinese (zh)
Other versions
TW201351644A (en
Inventor
廖晉毅
簡金城
Original Assignee
聯華電子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 聯華電子股份有限公司 filed Critical 聯華電子股份有限公司
Priority to TW101120922A priority Critical patent/TWI543370B/en
Publication of TW201351644A publication Critical patent/TW201351644A/en
Application granted granted Critical
Publication of TWI543370B publication Critical patent/TWI543370B/en

Links

Description

MOS電晶體製程 MOS transistor process

本發明係關於一種MOS電晶體製程,且特別係關於一種在形成源/汲極之後以及形成磊晶結構之前,形成凹槽或者/且進行清洗製程的MOS電晶體製程。 The present invention relates to a MOS transistor process, and more particularly to a MOS transistor process for forming a trench or/and performing a cleaning process after forming a source/drain and before forming an epitaxial structure.

隨著半導體製程進入到深次微米時代,例如65奈米(nm)以下之製程,對於MOS電晶體元件的驅動電流(drive current)的提昇已顯得日益重要。為了改善元件的效能,目前業界已發展出所謂的「應變矽(strained-silicon)技術」,其原理主要是使閘極通道部分的矽晶格產生應變,使電荷在通過此應變之閘極通道時的移動力增加,進而達到使MOS電晶體運作更快的目的。 As semiconductor processes enter the deep submicron era, such as processes below 65 nanometers (nm), the drive current of MOS transistor components has become increasingly important. In order to improve the performance of components, the so-called "strained-silicon technology" has been developed in the industry. The principle is mainly to strain the germanium lattice of the gate channel portion, so that the charge passes through the strain gate channel. The movement force at the time increases, thereby achieving the purpose of making the MOS transistor operate faster.

在目前已知的技術中,已有使用應變矽(strained silicon)作為基底的MOS電晶體,其利用矽鍺(SiGe)或矽碳(SiC)等的磊晶結構的晶格常數與單晶矽(single crystal Si)不同的特性,使磊晶結構產生結構上應變而形成應變矽。由於矽鍺或矽碳(SiC)的晶格常數(lattice constant)比矽小或比矽大,這使得矽的帶結構(band structure)發生改變,而造成載子移動性增加,因此可增加MOS電晶體的速度。 Among the currently known techniques, MOS transistors using strained silicon as a substrate have been used, which utilizes the lattice constant of the epitaxial structure of germanium (SiGe) or germanium carbon (SiC) and single crystal germanium. (single crystal Si) different characteristics, the epitaxial structure is structurally strained to form strain enthalpy. Since the lattice constant of lanthanum or lanthanum carbon (SiC) is smaller than 矽 or larger than 矽, this causes the band structure of 矽 to change, resulting in increased carrier mobility, thus increasing MOS. The speed of the transistor.

然而,一般磊晶結構會因高溫或離子佈植等影響,導致此磊晶結 構中的組成成分,例如鍺或碳等向外擴散,進而降低磊晶結構之組成成分之濃度,而劣化磊晶結構的效能。再者,在形成磊晶結構時之基底的表面品質亦會影響後續形成於其上之磊晶結構之形狀或剖面結構等,此些因素都會影響後續所形成之半導體元件的品質。 However, the general epitaxial structure may be affected by high temperature or ion implantation, resulting in the epitaxial junction. The constituents in the structure, such as helium or carbon, diffuse outward, thereby reducing the concentration of the constituents of the epitaxial structure and degrading the performance of the epitaxial structure. Furthermore, the surface quality of the substrate in forming the epitaxial structure also affects the shape or cross-sectional structure of the epitaxial structure formed thereon, and these factors may affect the quality of the subsequently formed semiconductor device.

本發明提出一種MOS電晶體製程,其在形成源/汲極之後才形成磊晶結構,且在源/汲極之後以及形成磊晶結構之前,再形成凹槽或者進行清洗製程,俾使後續形成之磊晶結構具有更佳之品質。 The invention provides a MOS transistor process, which forms an epitaxial structure after forming a source/drain, and forms a groove or a cleaning process after the source/drain and before forming the epitaxial structure, so as to form a subsequent process. The epitaxial structure has better quality.

本發明提供一種MOS電晶體製程包含有下述步驟。首先,形成一閘極結構於一基底上。接著,形成一源/汲極於閘極結構側邊的基底中。接續,在形成源/汲極之後,形成至少一凹槽於閘極結構側邊的基底中。然後,形成一磊晶結構於凹槽中。 The present invention provides a MOS transistor process comprising the following steps. First, a gate structure is formed on a substrate. Next, a source/drain is formed in the substrate on the side of the gate structure. Continuing, after forming the source/drain, at least one recess is formed in the substrate on the side of the gate structure. Then, an epitaxial structure is formed in the recess.

本發明提供一種MOS電晶體製程包含有下述步驟。首先,形成一閘極結構於一基底上。接著,形成一源/汲極於閘極結構側邊的基底中。接續,在形成源/汲極之後,進行一清洗製程,清洗閘極結構側邊的基底的表面。然後,形成一磊晶結構於閘極結構側邊的基底中。 The present invention provides a MOS transistor process comprising the following steps. First, a gate structure is formed on a substrate. Next, a source/drain is formed in the substrate on the side of the gate structure. Next, after the source/drain is formed, a cleaning process is performed to clean the surface of the substrate on the side of the gate structure. Then, an epitaxial structure is formed in the substrate on the side of the gate structure.

基於上述,本發明提出一種MOS電晶體製程,其先形成源/汲極,然後再形成凹槽或/且進行清洗製程,最後才形成磊晶結構。如此一來,本發明可避免形成源/汲極之源/汲極離子佈植製程以及源/ 汲極退火製程所造成之磊晶結構中之成分向外擴散,其會降低磊晶結構施加於閘極通道之應力,並會導致閘極通道中之漏電流。再者,在形成源/汲極之後,形成凹槽或者進行清洗製程,可移除在形成源/汲極等製程中受損之基底或者於基底上之雜質,進而改善形成於其上之磊晶結構之品質。 Based on the above, the present invention proposes a MOS transistor process in which a source/drain is formed first, then a recess or/and a cleaning process is performed, and finally an epitaxial structure is formed. In this way, the present invention can avoid the formation of source/drain source/drain ion implantation process and source/ The composition of the epitaxial structure caused by the gate annealing process is outwardly diffused, which reduces the stress applied to the gate channel by the epitaxial structure and causes leakage current in the gate channel. Furthermore, after forming the source/drain, forming a recess or performing a cleaning process, the substrate damaged on the source/drain formation process or the impurities on the substrate can be removed, thereby improving the protrusion formed thereon. The quality of the crystal structure.

本發明所提供之MOS電晶體製程,可適用於前閘極(Gate-First)製程、前置高介電常數後閘極(Gate-Last for High-K First)製程、後置高介電常數後閘極(Gate-Last for High-K Last)製程等。再者,本發明係以平面MOS電晶體為例,但本發明亦可應用於非平面MOS電晶體,諸如鰭狀場效電晶體(Fin-shaped field effect transistor,FinFET)以及三閘極場效電晶體(tri-gate MOSFET)等其他多閘極場效電晶體(Multi-gate MOSFET)。以下提出一實施例,其係以一平面MOS電晶體以及採用前置高介電常數後閘極(Gate-Last for High-K First)製程為例,但本發明不以此為限。 The MOS transistor process provided by the invention can be applied to the front gate (Gate-First) process, the front high dielectric constant gate (Gate-Last for High-K First) process, and the post-high dielectric constant. Gate-Last for High-K Last process. Furthermore, the present invention is exemplified by a planar MOS transistor, but the present invention can also be applied to a non-planar MOS transistor, such as a Fin-shaped field effect transistor (FinFET) and a three-gate field effect. Other multi-gate MOSFETs such as tri-gate MOSFETs. An embodiment is described below, which is exemplified by a planar MOS transistor and a Gate-Last for High-K First process, but the invention is not limited thereto.

第1-8圖係繪示本發明一實施例之MOS電晶體製程之剖面示意圖。如第1圖所示,首先,提供一基底110。基底110例如是一矽基底、一含矽基底、一三五族覆矽基底(例如GaN-on-silicon)、一石墨烯覆矽基底(graphene-on-silicon)或一矽覆絕緣(silicon-on-insulator,SOI)基底等半導體基底。接著,可在基底110中形成一絕緣結構10,以電性絕緣各區之電晶體。絕緣結構10例 如為一淺溝隔離(shallow trench isolation,STI)結構,其例如以淺溝隔離製程形成,詳細形成方法為本領域所熟知故不再贅述,但本發明不以此為限。在本實施例中,係在一區域A中形成共源極(common source)或共汲極(common drain)的二電晶體M1及M2,但本發明不以此為限。在其他實施例中,亦可形成單一電晶體或其他數量但不共源極(common source)或不共汲極(common drain)之電晶體於區域A中。 1-8 are schematic cross-sectional views showing a process of a MOS transistor according to an embodiment of the present invention. As shown in Fig. 1, first, a substrate 110 is provided. The substrate 110 is, for example, a substrate, a germanium-containing substrate, a tri-five-layer overlying substrate (eg, GaN-on-silicon), a graphene-on-silicon or a silicon-on-insulator (silicon- On-insulator, SOI) A semiconductor substrate such as a substrate. Next, an insulating structure 10 may be formed in the substrate 110 to electrically insulate the transistors of the respective regions. 10 cases of insulation structure For example, a shallow trench isolation (STI) structure is formed, for example, by a shallow trench isolation process. The detailed formation method is well known in the art and will not be described again, but the invention is not limited thereto. In the present embodiment, the two transistors M1 and M2 of a common source or a common drain are formed in a region A, but the invention is not limited thereto. In other embodiments, a single transistor or other number of transistors, but not a common source or a common drain, may be formed in region A.

接續,形成一緩衝層(未繪示)、一介電層(未繪示)、一阻障層(未繪示)、一電極層(未繪示)以及一蓋層(未繪示)於基底110上,再將五者圖案化以形成包含一緩衝層122、一介電層124、一阻障層126、一電極層128以及一蓋層129的二閘極結構G1及G2。然後,覆蓋一主間隙壁材料(未繪示)再將其回蝕刻,以於各閘極結構G1及G2側邊的基底110上形成一主間隙壁130。此主間隙壁130的寬度w1可決定後續形成於基底110中之源/汲極距閘極通道C1及C2的距離。 Connecting, forming a buffer layer (not shown), a dielectric layer (not shown), a barrier layer (not shown), an electrode layer (not shown), and a cap layer (not shown) On the substrate 110, five are patterned to form two gate structures G1 and G2 including a buffer layer 122, a dielectric layer 124, a barrier layer 126, an electrode layer 128, and a cap layer 129. Then, a main spacer material (not shown) is covered and etched back to form a main spacer 130 on the substrate 110 on the side of each of the gate structures G1 and G2. The width w1 of the main spacer 130 may determine the distance of the source/drain formed in the substrate 110 from the gate channels C1 and C2.

在前述實施例中,緩衝層122可為一氧化層,其例如以熱氧化製程或化學氧化製程形成,但本發明不以此為限。緩衝層122位於介電層124與基底110之間,以作為介電層124與基底110緩衝之用。此緩衝層122可為選擇性形成,視介電層124與基底110之材質以及所欲形成之半導體元件之電性品質而定。例如,本實施例為一前置高介電常數後閘極(Gate-Last for High-K First)製程,因此本實 施例之介電層124為一高介電常數介電層,其可選自氧化鉿(hafnium oxide,HfO2)、矽酸鉿氧化合物(hafnium silicon oxide,HfSiO4)、矽酸鉿氮氧化合物(hafnium silicon oxynitride,HfSiON)、氧化鋁(aluminum oxide,Al2O3)、氧化鑭(lanthanum oxide,La2O3)、氧化鉭(tantalum oxide,Ta2O5)、氧化釔(yttrium oxide,Y2O3)、氧化鋯(zirconium oxide,ZrO2)、鈦酸鍶(strontium titanate oxide,SrTiO3)、矽酸鋯氧化合物(zirconium silicon oxide,ZrSiO4)、鋯酸鉿(hafnium zirconium oxide,HfZrO4)、鍶鉍鉭氧化物(strontium bismuth tantalate,SrBi2Ta2O9,SBT)、鋯鈦酸鉛(lead zirconate titanate,PbZrxTi1-xO3,PZT)與鈦酸鋇鍶(barium strontium titanate,BaxSr1-xTiO3,BST)所組成之群組,但本發明不以此為限。因此,本實施例之介電層124與基底110之材質差異可由形成於二者之間的緩衝層122緩衝。但在其他實施例中,如以後置高介電常數後閘極(Gate-Last for High-K Last)製程為例,可直接先形成介電層124於基底110上,介電層124可為一氧化層,其係於後續製程中會被移除,然後再於後續進行金屬閘極取代(metal gate replacement)製程時,移除介電層124後,再形成緩衝層122於基底110上。或者,亦可先形成緩衝層122於基底110上,再形成介電層124於緩衝層122上,而後在進行金屬閘極取代(metal gate replacement)製程時,移除介電層124即可,而不需再移除緩衝層122。另外,如僅欲形成一多晶矽電晶體,介電層124即可為一氧化層,故可不需再另外形成緩衝層122與阻障層126。 In the foregoing embodiment, the buffer layer 122 may be an oxide layer, which is formed, for example, by a thermal oxidation process or a chemical oxidation process, but the invention is not limited thereto. The buffer layer 122 is located between the dielectric layer 124 and the substrate 110 for buffering the dielectric layer 124 and the substrate 110. The buffer layer 122 can be selectively formed depending on the material of the dielectric layer 124 and the substrate 110 and the electrical quality of the semiconductor component to be formed. For example, the present embodiment is a gate-Last for High-K First process, so the dielectric layer 124 of the present embodiment is a high-k dielectric layer, which is optional. Hafnium oxide (HfO 2 ), hafnium silicon oxide (HfSiO 4 ), hafnium silicon oxynitride (HfSiON), aluminum oxide (Al 2 O 3 ) , lanthanum oxide (La 2 O 3 ), tantalum oxide (Ta 2 O 5 ), yttrium oxide (Y 2 O 3 ), zirconium oxide (ZrO 2 ), barium titanate (strontium titanate oxide, SrTiO 3 ), zirconium silicon oxide (ZrSiO 4 ), hafnium zirconium oxide (HfZrO 4 ), strontium bismuth tantalate (SrBi 2 Ta 2 O 9 , SBT), lead zirconate titanate (PbZr x Ti 1-x O 3 , PZT) and barium strontium titanate (Ba x Sr 1-x TiO 3 , BST) Group, but the invention is not limited thereto. Therefore, the material difference between the dielectric layer 124 and the substrate 110 of the present embodiment can be buffered by the buffer layer 122 formed between the two. However, in other embodiments, such as the Gate-Last for High-K Last process, the dielectric layer 124 may be directly formed on the substrate 110, and the dielectric layer 124 may be An oxide layer is removed in a subsequent process, and then, after a subsequent metal gate replacement process, the dielectric layer 124 is removed and a buffer layer 122 is formed on the substrate 110. Alternatively, the buffer layer 122 may be formed on the substrate 110, the dielectric layer 124 may be formed on the buffer layer 122, and then the dielectric layer 124 may be removed during the metal gate replacement process. It is not necessary to remove the buffer layer 122. In addition, if only a polycrystalline germanium transistor is to be formed, the dielectric layer 124 can be an oxide layer, so that the buffer layer 122 and the barrier layer 126 need not be additionally formed.

阻障層126位於介電層124上,用以於移除電極層128時當作蝕 刻停止層來保護介電層124,並可防止後續位於其上之金屬成分向下擴散污染介電層124。阻障層126例如為氮化鉭(tantalum nitride,TaN)、氮化鈦(titanium nitride,TiN)等之單層結構或複合層結構。電極層128可例如由多晶矽所形成之犧牲電極層,其可能於後續製程中由金屬閘極取代,但本發明不以此為限。蓋層129可例如為一氮化層或一氧化層等所組成之單層或雙層之堆疊結構。蓋層129可避免其下方之電極層128等結構在後續蝕刻製程進行時受損,因此蓋層129所組成之材料可視蝕刻製程之蝕刻液等各蝕刻參數而定。主間隙壁130可例如由氮化層、氧化層或二者之組合等所形成之單層或多層結構,但本發明不以此為限。 The barrier layer 126 is located on the dielectric layer 124 for use as an etch when the electrode layer 128 is removed. The stop layer is engraved to protect the dielectric layer 124 and may prevent the subsequent metal components located thereon from diffusing down to contaminate the dielectric layer 124. The barrier layer 126 is, for example, a single layer structure or a composite layer structure of tantalum nitride (TaN), titanium nitride (TiN), or the like. The electrode layer 128 may be, for example, a sacrificial electrode layer formed of polysilicon, which may be replaced by a metal gate in a subsequent process, but the invention is not limited thereto. The cap layer 129 may be, for example, a single layer or a double layer stack structure composed of a nitride layer or an oxide layer. The cap layer 129 can prevent the structure such as the electrode layer 128 underneath from being damaged during the subsequent etching process. Therefore, the material of the cap layer 129 can be determined by various etching parameters such as an etching solution of the etching process. The main spacers 130 may be, for example, a single layer or a multilayer structure formed of a nitride layer, an oxide layer, or a combination of the two, but the invention is not limited thereto.

接著,如第2-3圖所示,形成一源/汲極140於各閘極結構G1及G2側邊的基底110中。詳細而言,如第2圖所示,首先進行一源/汲極離子佈植製程P1,藉由主間隙壁130自動對準地於閘極結構G1及G2側邊的基底110中分別形成一佈植區140’。然後,如第3圖所示,進行一源/汲極退火製程P2以活化佈植區140’,而於各主間隙壁130側邊的基底110中形成源/汲極140。當然,如通常知識者所熟知,在形成主間隙壁130之前,可先選擇性地形成一襯側壁子(未繪示)於各閘極結構G1及G2側邊的基底110上,再自動對準地形成一輕摻雜源/汲極(未繪示)。 Next, as shown in FIGS. 2-3, a source/drain 140 is formed in the substrate 110 on the side of each of the gate structures G1 and G2. In detail, as shown in FIG. 2, a source/drain ion implantation process P1 is first performed, and a main spacer 13 is automatically aligned to form a substrate 110 on the side of the gate structures G1 and G2. Planting area 140'. Then, as shown in Fig. 3, a source/drain annealing process P2 is performed to activate the implant region 140', and a source/drain 140 is formed in the substrate 110 on the side of each of the main spacers 130. Of course, as is well known to those skilled in the art, before forming the main spacers 130, a liner sidewall (not shown) may be selectively formed on the substrate 110 on the side of each of the gate structures G1 and G2, and then automatically A lightly doped source/drainage (not shown) is formed quasi-ground.

接續,移除主間隙壁130,即可如第4圖所示,露出各閘極結構G1及G2的側壁。由於源/汲極140係由主間隙壁130自動對準地形 成,因此源/汲極140與各閘極結構G1及G2之一距離d1即為前幾圖繪示之主間隙壁130之寬度w1,因此距離d1可由調整主間隙壁130的寬度w1控制。在本實施例中係全部移除主間隙壁130,但在其他實施例中,可僅移除部分主間隙壁130,或者不移除主間隙壁130。然後,在後續製程中於剩下的主間隙壁130側邊的基底110上形成磊晶間隙壁。 Subsequently, the main spacers 130 are removed, and as shown in FIG. 4, the sidewalls of the gate structures G1 and G2 are exposed. Since the source/drain 140 is automatically aligned with the topography by the main spacers 130 Therefore, the distance d1 between the source/drain 140 and each of the gate structures G1 and G2 is the width w1 of the main spacer 130 shown in the previous figures. Therefore, the distance d1 can be controlled by adjusting the width w1 of the main spacer 130. In the present embodiment, the main spacers 130 are all removed, but in other embodiments, only a portion of the main spacers 130 may be removed, or the main spacers 130 may not be removed. Then, an epitaxial spacer is formed on the substrate 110 on the side of the remaining main spacer 130 in the subsequent process.

如第5-6圖所示,形成一磊晶間隙壁150於各閘極結構G1及G2側邊的基底110上。詳細言之,如第5圖所示,先覆蓋一磊晶間隙壁材料150’於閘極結構G1及G2以及基底110上。再如第6圖所示,進行一蝕刻製程P3,蝕刻磊晶間隙壁材料150’以形成一磊晶間隙壁150於各閘極結構G1及G2的基底110上。在本實施例中,蝕刻製程P3不僅會蝕刻磊晶間隙壁材料150’形成磊晶間隙壁150,蝕刻製程P3更一併在磊晶間隙壁150側邊的基底110中形成凹槽R。如此,形成凹槽R之目的係可移除在前述製程中,特別是源/汲極離子佈植製程P1中,晶格受損之基底110。例如,進行源/汲極離子佈植製程P1所形成之佈植區140’之深度為50埃(Å,angstrom),則凹槽R較佳可控制為具有約50~65埃(Å,angstrom)之深度,如此可移除受損部分之基底110,俾使後續形成於凹槽R中之磊晶結構可藉由晶格未受損之基底110長晶而具有較佳之剖面結構及形狀。在其他實施例中,形成凹槽R與形成磊晶間隙壁150之蝕刻製程亦可為不同之蝕刻製程且分段形成,所形成之凹槽R之深度可視實際需要,例如後續所形成之磊晶結構之材質或特性,而定。例如,當 磊晶結構為一矽碳磷(SiCP)磊晶結構,則凹槽R之深度較佳為約400~500埃(Å,angstrom)。再者,磊晶間隙壁150之一寬度w2係會決定後續形成於其側邊基底110中之磊晶結構距閘極結構G1及G2之距離。在本實施例中,磊晶間隙壁150之寬度w2小於前幾圖之主間隙壁130之寬度w1。是以,凹槽R係較源/汲極140更接近閘極通道C1及C2,俾使後續形成於凹槽R中之磊晶結構可更接近閘極通道C1及C2。如此,可增加磊晶結構施加於閘極通道C1及C2的應力,但又可避免源/汲極140太接近閘極通道C1及C2,造成電子穿遂效應而產生漏電流。 As shown in FIGS. 5-6, an epitaxial spacer 150 is formed on the substrate 110 on the side of each of the gate structures G1 and G2. In detail, as shown in Fig. 5, an epitaxial spacer material 150' is first covered on the gate structures G1 and G2 and the substrate 110. As further shown in FIG. 6, an etching process P3 is performed to etch the epitaxial spacer material 150' to form an epitaxial spacer 150 on the substrate 110 of each of the gate structures G1 and G2. In the present embodiment, the etching process P3 not only etches the epitaxial spacer material 150' to form the epitaxial spacers 150, but the etching process P3 further forms the recesses R in the substrate 110 on the side of the epitaxial spacers 150. As such, the purpose of forming the recesses R is to remove the lattice-damaged substrate 110 in the foregoing process, particularly in the source/drain ion implantation process P1. For example, if the depth of the implanted region 140' formed by the source/drain ion implantation process P1 is 50 angstroms (Å, angstrom), the groove R is preferably controlled to have about 50 to 65 angstroms (Å, angstrom). The depth of the substrate 110 can be removed such that the epitaxial structure subsequently formed in the recess R can be crystallized by the crystallographically intact substrate 110 to have a better cross-sectional structure and shape. In other embodiments, the etching process for forming the recess R and the epitaxial spacer 150 may be formed by different etching processes and segmented, and the depth of the formed recess R may be determined according to actual needs, for example, the subsequent formed Lei The material or characteristics of the crystal structure, depending on. For example, when The epitaxial structure is a carbon-phosphorus (SiCP) epitaxial structure, and the depth of the groove R is preferably about 400 to 500 angstroms (Å, angstrom). Moreover, the width w2 of one of the epitaxial spacers 150 determines the distance of the epitaxial structure formed in the side substrate 110 from the gate structures G1 and G2. In the present embodiment, the width w2 of the epitaxial spacers 150 is smaller than the width w1 of the main spacers 130 of the previous figures. Therefore, the groove R is closer to the gate channels C1 and C2 than the source/drain 140, so that the epitaxial structure formed later in the groove R can be closer to the gate channels C1 and C2. In this way, the stress applied to the gate channels C1 and C2 by the epitaxial structure can be increased, but the source/drain 140 can be prevented from being too close to the gate channels C1 and C2, causing a leakage current due to the electron tunneling effect.

在其他實施例中,磊晶結構相對於閘極通道C1及C2之距離以及源/汲極140相對於閘極通道C1及C2之距離可視實際需要調整。其調整的方法,可例如先由主間隙壁130之寬度w1決定源/汲極140相對於閘極通道C1及C2之距離。然後,全部或部分移除主間隙壁130,或者不移除主間隙壁130,以在原主間隙壁130的位置上或者/且主間隙壁130側邊的基底110上,形成磊晶間隙壁150。此時,剩下的主間隙壁130加上磊晶間隙壁150的寬度W2則可控制磊晶結構相對於閘極通道C1及C2之距離。 In other embodiments, the distance between the epitaxial structure relative to the gate channels C1 and C2 and the distance between the source/drain 140 and the gate channels C1 and C2 may be adjusted as needed. For the adjustment method, for example, the distance between the source/drain 140 and the gate channels C1 and C2 may be determined by the width w1 of the main spacer 130. Then, the main spacers 130 are removed in whole or in part, or the main spacers 130 are not removed to form the epitaxial spacers 150 at the position of the original main spacers 130 or/and on the substrate 110 on the sides of the main spacers 130. . At this time, the remaining main spacer 130 plus the width W2 of the epitaxial spacer 150 can control the distance of the epitaxial structure from the gate channels C1 and C2.

如第7圖所示,進行一清洗製程P4,清洗凹槽R的表面S,以移除其上的蝕刻殘餘物與原生氧化物等,俾使後續形成於凹槽R中之磊晶結構具有更佳之形狀及剖面結構,進而使其所形成之半導體元件具有更佳之電性品質。清洗製程P4可包含一標準清洗(Standard Clean 1,SC1)製程或/且一含稀釋氫氟酸(dilute hydrofluoric acid) 的清洗製程。在一實施例中,可先進行一標準清洗(Standard Clean 1,SC1)製程,先氧化部分之凹槽R的表面S,然後再進行一含稀釋氫氟酸(dilute hydrofluoric acid)的清洗製程,一起以去除表面S之氧化物及其他雜質,並修補凹槽R的表面S,但本發明不以此為限。在本實施例中,係依序進行一第一標準清洗(Standard Clean 1,SC1)製程、一含稀釋氫氟酸(dilute hydrofluoric acid)的清洗製程以及一第二標準清洗(Standard Clean 1,SC1)製程。具體而言,可先以一次清洗多片晶圓的方式,初步先進行一標準清洗(Standard Clean 1,SC1)製程,其製程溫度較佳為70℃且製程時間60秒;接著,以一次清洗單一晶圓的方式,進行一含稀釋氫氟酸(dilute hydrofluoric acid)的清洗,其製程製程時間較佳為15秒,以及再以一次清洗單一晶圓的方式進行第二標準清洗製程,其製程溫度較佳為60℃且製程時間90秒。 As shown in FIG. 7, a cleaning process P4 is performed to clean the surface S of the recess R to remove the etching residue and the native oxide thereon, so that the epitaxial structure formed later in the recess R has The shape and cross-sectional structure are better, and the semiconductor element formed thereby has better electrical quality. The cleaning process P4 may comprise a standard cleaning (SC1) process or / and a distillate hydrofluoric acid Cleaning process. In one embodiment, a standard cleaning (SC1) process may be performed to first oxidize a portion of the surface S of the groove R, and then a cleaning process containing dilute hydrofluoric acid. Together, the oxides and other impurities of the surface S are removed, and the surface S of the groove R is repaired, but the invention is not limited thereto. In this embodiment, a first standard cleaning (Standard Clean 1, SC1) process, a dilute hydrofluoric acid cleaning process, and a second standard cleaning (Standard Clean 1, SC1) are sequentially performed. )Process. Specifically, a standard cleaning (SC1) process may be initially performed by cleaning a plurality of wafers at a time, and the process temperature is preferably 70 ° C and the process time is 60 seconds; then, the cleaning is performed once. A single wafer method for performing a cleaning with dilute hydrofluoric acid, the process time is preferably 15 seconds, and the second standard cleaning process is performed by cleaning a single wafer at a time. The temperature is preferably 60 ° C and the process time is 90 seconds.

如第8圖所示,進行一磊晶製程P5,以形成一磊晶結構160於凹槽R中。磊晶結構160可例如為一矽磷(SiP)磊晶結構、一矽鍺(SiGe)磊晶結構或一矽碳磷(SiCP)磊晶結構,但本發明不以此為限,端視電晶體的種類而定。在本實施例中,磊晶結構160為一NMOS電晶體的矽磷(SiP)磊晶結構。磊晶結構160中之成分,尤其是磷成分,在高溫製程或是離子佈植製程中會向外擴散,其對於離子佈植或高溫具有高度敏感之特性。本發明之磊晶結構160係在源/汲極140之後形成,故不會經歷形成源/汲極140之源/汲極離子佈植製程P1以及源/汲極退火製程P2,因而可避免磊晶結構160中之成分向外擴 散,其會降低磊晶結構160施加於閘極通道C1及C2之應力,並可能導致閘極通道C1及C2中之漏電流。更進一步而言,磊晶結構160會另有摻質於其中,俾使磊晶結構160可導電,其中摻質可例如為硼或磷等,視所欲形成之電性而定。此摻質可在磊晶製程P5時以原位(in-situ)摻雜的方式至磊晶結構160中,或者是源/汲極140中的摻質以擴散等方法進入磊晶結構160中,亦或者是在形成磊晶結構160後再另外以例如離子佈植等方式至磊晶結構160中。 As shown in FIG. 8, an epitaxial process P5 is performed to form an epitaxial structure 160 in the recess R. The epitaxial structure 160 can be, for example, a germanium-phosphorus (SiP) epitaxial structure, a germanium (SiGe) epitaxial structure, or a germanium carbon-phosphorus (SiCP) epitaxial structure, but the invention is not limited thereto. Depending on the type of crystal. In this embodiment, the epitaxial structure 160 is a germanium-phosphorus (SiP) epitaxial structure of an NMOS transistor. The components of the epitaxial structure 160, especially the phosphorous component, diffuse outward during high temperature processing or ion implantation processes, and are highly sensitive to ion implantation or high temperature. The epitaxial structure 160 of the present invention is formed after the source/drain 140, so that the source/drain ion implantation process P1 and the source/drain annealing process P2 for forming the source/drain 140 are not experienced, thereby avoiding the Lei The components in the crystal structure 160 are expanded outward Dispersing, which reduces the stress applied by the epitaxial structure 160 to the gate channels C1 and C2, and may cause leakage currents in the gate channels C1 and C2. Furthermore, the epitaxial structure 160 is additionally doped therein, and the epitaxial structure 160 can be made conductive, wherein the dopant can be, for example, boron or phosphorous, depending on the electrical properties to be formed. The dopant may be in-situ doped into the epitaxial structure 160 during the epitaxial process P5, or the dopant in the source/drain 140 may enter the epitaxial structure 160 by diffusion or the like. Or, after the epitaxial structure 160 is formed, the epitaxial structure 160 is additionally deposited by, for example, ion implantation.

承上,本發明係在形成源/汲極140之後,先形成凹槽R於閘極結構G1及G2側邊的基底110中,然後再進行清洗製程P4清洗凹槽R之表面S,最後才形成磊晶結構160。如此一來,磊晶結構160可避免形成源/汲極140之離子佈植製程以及退火製程之高溫。再者,在形成源/汲極140之後才形成凹槽R,可移除在形成源/汲極140等製程中受損部分之基底110,進而改善形成於其上之磊晶結構160之品質。另外,在形成凹槽R後才進行清洗製程P4,則可清洗凹槽R之表面S,亦可改善形成於其上之磊晶結構160之品質。 According to the invention, after the source/drain 140 is formed, the recess R is formed in the substrate 110 on the side of the gate structures G1 and G2, and then the cleaning process P4 is performed to clean the surface S of the recess R, and finally An epitaxial structure 160 is formed. In this way, the epitaxial structure 160 can avoid the formation of the ion implantation process of the source/drain 140 and the high temperature of the annealing process. Moreover, the recess R is formed after the source/drain 140 is formed, and the substrate 110 in the damaged portion in the process of forming the source/drain 140 and the like can be removed, thereby improving the quality of the epitaxial structure 160 formed thereon. . In addition, the cleaning process P4 is performed after the groove R is formed, so that the surface S of the groove R can be cleaned, and the quality of the epitaxial structure 160 formed thereon can be improved.

然而,在形成源/汲極140之後,先形成凹槽R再進行清洗製程P4,最後形成磊晶結構160的步驟僅為本發明之一實施例態樣。由於形成凹槽R以及進行清洗製程P4皆可改善基底110之表面,進而改善磊晶結構160之品質。因此,本發明可在形成源/汲極140之後,僅形成凹槽R或僅進行清洗製程P4,然後形成磊晶結構160。如此亦可達到本發明之目的。當然,採用先進行凹槽R再進行清洗 製程P4的方法,可較僅進行其中之一更能改善磊晶結構160之品質。 However, after the source/drain 140 is formed, the recess R is formed and then the cleaning process P4 is performed. Finally, the step of forming the epitaxial structure 160 is only one embodiment of the present invention. The formation of the recess R and the cleaning process P4 can improve the surface of the substrate 110, thereby improving the quality of the epitaxial structure 160. Therefore, the present invention can form only the groove R or only the cleaning process P4 after forming the source/drain 140, and then form the epitaxial structure 160. This also achieves the object of the invention. Of course, the groove R is used for cleaning first. The method of the process P4 can improve the quality of the epitaxial structure 160 more than only one of them.

綜上所述,本發明提出一種MOS電晶體製程,其先形成源/汲極,然後再形成凹槽或/且進行清洗製程,最後才形成磊晶結構。如此一來,本發明可避免形成源/汲極之源/汲極離子佈植製程以及源/汲極退火製程所造成之磊晶結構中之成分向外擴散,其會降低磊晶結構施加於閘極通道之應力,並會導致閘極通道中之漏電流。再者,在形成源/汲極之後,再形成凹槽,可移除在形成源/汲極等製程中受損部分之基底,進而改善形成於其上之磊晶結構之品質。或者,在形成源/汲極之後,進行清洗製程,亦可清洗位於基底表面之雜質,進而改善形成於其上之磊晶結構之品質。更甚者,較佳之實施態樣係為在形成源/汲極之後,先形成凹槽再進行清洗製程,最後才形成磊晶結構。 In summary, the present invention proposes a MOS transistor process in which a source/drain is formed first, then a recess or/and a cleaning process is performed, and finally an epitaxial structure is formed. In this way, the present invention can avoid the outward diffusion of components in the epitaxial structure caused by the source/drain source/drain ion implantation process and the source/drain annealing process, which reduces the epitaxial structure applied to The stress in the gate channel and the leakage current in the gate channel. Furthermore, after the source/drain is formed, a recess is formed to remove the substrate of the damaged portion in the process of forming the source/drain, thereby improving the quality of the epitaxial structure formed thereon. Alternatively, after the source/drain is formed, a cleaning process may be performed, and impurities on the surface of the substrate may be cleaned to improve the quality of the epitaxial structure formed thereon. What is more, the preferred embodiment is that after the source/drain is formed, the groove is formed and then the cleaning process is performed, and finally the epitaxial structure is formed.

以上所述僅為本發明之較佳實施例,凡依本發明申請專利範圍所做之均等變化與修飾,皆應屬本發明之涵蓋範圍。 The above are only the preferred embodiments of the present invention, and all changes and modifications made to the scope of the present invention should be within the scope of the present invention.

10‧‧‧絕緣結構 10‧‧‧Insulation structure

110‧‧‧基底 110‧‧‧Base

122‧‧‧緩衝層 122‧‧‧buffer layer

124‧‧‧介電層 124‧‧‧ dielectric layer

126‧‧‧阻障層 126‧‧‧Barrier layer

128‧‧‧電極層 128‧‧‧electrode layer

129‧‧‧蓋層 129‧‧‧ cover

130‧‧‧主間隙壁 130‧‧‧Main spacer

140‧‧‧源/汲極 140‧‧‧Source/Bungee

140’‧‧‧佈植區 140’‧‧·planting area

150‧‧‧磊晶間隙壁 150‧‧‧Elobite spacer

150’‧‧‧磊晶間隙壁材料 150'‧‧‧Elevation spacer material

160‧‧‧磊晶結構 160‧‧‧ epitaxial structure

A‧‧‧區域 A‧‧‧ area

C1、C2‧‧‧閘極通道 C1, C2‧‧‧ gate channel

d1‧‧‧距離 D1‧‧‧ distance

G1、G2‧‧‧閘極結構 G1, G2‧‧‧ gate structure

M1、M2‧‧‧電晶體 M1, M2‧‧‧ transistor

P1‧‧‧源/汲極離子佈植製程 P1‧‧‧ source/dipper ion implantation process

P2‧‧‧源/汲極退火製程 P2‧‧‧ source/drain annealing process

P3‧‧‧蝕刻製程 P3‧‧‧ etching process

P4‧‧‧清洗製程 P4‧‧‧cleaning process

P5‧‧‧磊晶製程 P5‧‧‧Exploring process

R‧‧‧凹槽 R‧‧‧ groove

S‧‧‧表面 S‧‧‧ surface

w1、w2‧‧‧寬度 W1, w2‧‧‧ width

第1-8圖係繪示本發明一實施例之MOS電晶體製程之剖面示意圖。 1-8 are schematic cross-sectional views showing a process of a MOS transistor according to an embodiment of the present invention.

10‧‧‧絕緣結構 10‧‧‧Insulation structure

110‧‧‧基底 110‧‧‧Base

122‧‧‧緩衝層 122‧‧‧buffer layer

124‧‧‧介電層 124‧‧‧ dielectric layer

126‧‧‧阻障層 126‧‧‧Barrier layer

128‧‧‧電極層 128‧‧‧electrode layer

129‧‧‧蓋層 129‧‧‧ cover

140‧‧‧源/汲極 140‧‧‧Source/Bungee

150‧‧‧磊晶間隙壁 150‧‧‧Elobite spacer

160‧‧‧磊晶結構 160‧‧‧ epitaxial structure

C1、C2‧‧‧閘極通道 C1, C2‧‧‧ gate channel

G1、G2‧‧‧閘極結構 G1, G2‧‧‧ gate structure

P5‧‧‧磊晶製程 P5‧‧‧Exploring process

R‧‧‧凹槽 R‧‧‧ groove

S‧‧‧表面 S‧‧‧ surface

Claims (20)

一種MOS電晶體製程,包含有:形成一閘極結構於一基底上;形成一源/汲極於該閘極結構側邊的該基底中;在形成該源/汲極之後,形成至少一凹槽於該閘極結構側邊的該基底中;以及形成一磊晶結構於該凹槽中。 An MOS transistor process includes: forming a gate structure on a substrate; forming a source/drain in the substrate on a side of the gate structure; forming at least one recess after forming the source/drain Slotted in the substrate on the side of the gate structure; and forming an epitaxial structure in the recess. 如申請專利範圍第1項所述之MOS電晶體製程,其中形成該源/汲極的步驟,包含:進行一源/汲極離子佈植製程於該閘極結構側邊的該基底中以形成一佈植區;以及進行一源/汲極退火製程,以活化該佈植區形成該源/汲極。 The MOS transistor process of claim 1, wherein the step of forming the source/drain includes: performing a source/drain ion implantation process in the substrate on a side of the gate structure to form a planting zone; and performing a source/drain annealing process to activate the implant zone to form the source/drain. 如申請專利範圍第1項所述之MOS電晶體製程,其中在形成該凹槽之後以及形成該磊晶結構之前,更包含:進行一清洗製程,清洗該凹槽的表面。 The MOS transistor process of claim 1, wherein after forming the recess and before forming the epitaxial structure, further comprising: performing a cleaning process to clean the surface of the recess. 如申請專利範圍第3項所述之MOS電晶體製程,其中該清洗製程包含一標準清洗(Standard Clean 1,SC1)製程或/且一含稀釋氫氟酸(dilute hydrofluoric acid)的清洗製程。 The MOS transistor process of claim 3, wherein the cleaning process comprises a standard cleaning (SC1) process or/and a cleaning process containing dilute hydrofluoric acid. 如申請專利範圍第4項所述之MOS電晶體製程,其中該清洗製 程包含依序進行一第一標準清洗(Standard Clean 1,SC1)製程、一含稀釋氫氟酸(dilute hydrofluoric acid)的清洗製程以及一第二標準清洗(Standard Clean 1,SC1)製程。 For example, the MOS transistor process described in claim 4, wherein the cleaning system The process includes a first standard cleaning (Standard Clean 1, SC1) process, a dilute hydrofluoric acid cleaning process, and a second standard cleaning (SC1) process. 如申請專利範圍第5項所述之MOS電晶體製程,其中該第一標準清洗製程的製程溫度為70℃且製程時間60秒,該含稀釋氫氟酸的清洗製程的製程時間為15秒,以及該第二標準清洗製程的製程溫度60℃且製程時間90秒。 The MOS transistor process of claim 5, wherein the process temperature of the first standard cleaning process is 70 ° C and the process time is 60 seconds, and the process time of the cleaning process containing the diluted hydrofluoric acid is 15 seconds. And the process temperature of the second standard cleaning process is 60 ° C and the process time is 90 seconds. 如申請專利範圍第5項所述之MOS電晶體製程,其中該第一標準清洗製程是為一次清洗多片晶圓製程,該含稀釋氫氟酸的清洗製程以及該第二標準清洗製程是為一次清洗單一晶圓製程。 The MOS transistor process as described in claim 5, wherein the first standard cleaning process is to clean a plurality of wafer processes at a time, the cleaning process containing the diluted hydrofluoric acid and the second standard cleaning process is Clean a single wafer process at a time. 如申請專利範圍第1項所述之MOS電晶體製程,其中在形成該閘極結構之後,更包含形成一主間隙壁於該閘極結構側邊的該基底上,而該源/汲極則形成於該主間隙壁側邊的該基底中。 The MOS transistor process of claim 1, wherein after forming the gate structure, further comprising forming a main spacer on the substrate on a side of the gate structure, and the source/drain Formed in the substrate on the side of the main spacer wall. 如申請專利範圍第8項所述之MOS電晶體製程,形成該凹槽的步驟,包含:移除該主間隙壁;覆蓋一磊晶間隙壁材料於該閘極結構以及該基底上;以及進行一蝕刻製程,以形成一磊晶間隙壁於該閘極結構側邊的該基底上以及形成該凹槽於該磊晶間隙壁側邊的該基底中。 The MOS transistor process of claim 8, wherein the step of forming the recess comprises: removing the main spacer; covering an epitaxial spacer material on the gate structure and the substrate; An etching process is performed to form an epitaxial spacer on the substrate on the side of the gate structure and in the substrate forming the recess on the side of the epitaxial spacer. 如申請專利範圍第1項所述之MOS電晶體製程,其中該磊晶結構包含一矽磷(SiP)磊晶結構、一矽鍺(SiGe)磊晶結構或一矽碳磷(SiCP)磊晶結構。 The MOS transistor process of claim 1, wherein the epitaxial structure comprises a germanium-phosphorus (SiP) epitaxial structure, a germanium (SiGe) epitaxial structure or a germanium carbon-phosphorus (SiCP) epitaxial crystal. structure. 一種MOS電晶體製程,包含有:形成一閘極結構於一基底上;形成一源/汲極於該閘極結構側邊的該基底中;在形成該源/汲極之後,進行一清洗製程,清洗該閘極結構側邊的該基底的表面;以及形成一磊晶結構於該閘極結構側邊的該基底的一凹槽中。 A MOS transistor process includes: forming a gate structure on a substrate; forming a source/drain in the substrate on a side of the gate structure; and performing a cleaning process after forming the source/drain Cleaning the surface of the substrate on the side of the gate structure; and forming an epitaxial structure in a recess of the substrate on the side of the gate structure. 如申請專利範圍第11項所述之MOS電晶體製程,其中形成該源/汲極的步驟,包含:進行一源/汲極離子佈植製程於該閘極結構側邊的該基底中,以形成一佈植區;以及進行一源/汲極退火製程,以活化該佈植區形成該源/汲極。 The MOS transistor process of claim 11, wherein the step of forming the source/drain includes: performing a source/drain ion implantation process on the substrate on a side of the gate structure to Forming an implant region; and performing a source/drain annealing process to activate the implant region to form the source/drain. 如申請專利範圍第11項所述之MOS電晶體製程,其中該清洗製程包含一標準清洗(Standard Clean 1,SC1)製程或/且一含稀釋氫氟酸(dilute hydrofluoric acid)的清洗製程。 The MOS transistor process of claim 11, wherein the cleaning process comprises a standard cleaning (SC1) process or/and a cleaning process containing dilute hydrofluoric acid. 如申請專利範圍第13項所述之MOS電晶體製程,其中該清洗 製程包含依序進行一第一標準清洗(Standard Clean 1,SC1)製程、一含稀釋氫氟酸(dilute hydrofluoric acid)的清洗製程以及一第二標準清洗(Standard Clean 1,SC1)製程。 The MOS transistor process as described in claim 13 wherein the cleaning The process includes a first standard cleaning (Standard Clean 1, SC1) process, a dilute hydrofluoric acid cleaning process, and a second standard cleaning (SC1) process. 如申請專利範圍第14項所述之MOS電晶體製程,其中該第一標準清洗製程的製程溫度為70℃且製程時間60秒,該含稀釋氫氟酸(dilute hydrofluoric acid)的清洗製程的製程時間15秒,以及該第二標準清洗(Standard Clean 1,SC1)製程的製程溫度60℃且製程時間90秒。 For example, in the MOS transistor process described in claim 14, wherein the process temperature of the first standard cleaning process is 70 ° C and the process time is 60 seconds, the process of the cleaning process containing dilute hydrofluoric acid The time is 15 seconds, and the process temperature of the second standard cleaning (Standard Clean 1, SC1) process is 60 ° C and the process time is 90 seconds. 如申請專利範圍第14項所述之MOS電晶體製程,其中該第一標準清洗製程是為一次清洗多片晶圓製程,該含稀釋氫氟酸的清洗製程以及該第二標準清洗製程是為一次清洗單一晶圓製程。 The MOS transistor process of claim 14, wherein the first standard cleaning process is to clean a plurality of wafer processes at a time, the cleaning process containing dilute hydrofluoric acid and the second standard cleaning process is Clean a single wafer process at a time. 如申請專利範圍第11項所述之MOS電晶體製程,其中在形成該源/汲極之後以及進行該清洗製程之前,更包含:形成該凹槽於該閘極結構側邊的該基底中。 The MOS transistor process of claim 11, wherein after forming the source/drain and before performing the cleaning process, further comprising: forming the recess in the substrate on a side of the gate structure. 如申請專利範圍第11項所述之MOS電晶體製程,其中在形成該閘極結構之後,更包含形成一主間隙壁於該閘極結構側邊的該基底上,而該源/汲極則形成於該主間隙壁側邊的該基底中。 The MOS transistor process of claim 11, wherein after forming the gate structure, further comprising forming a main spacer on the substrate on a side of the gate structure, and the source/drain Formed in the substrate on the side of the main spacer wall. 如申請專利範圍第18項所述之MOS電晶體製程,在形成該源/ 汲極之後以及進行該清洗製程之前,更包含:移除該主間隙壁;覆蓋一磊晶間隙壁材料於該閘極結構以及該基底上;以及進行一蝕刻製程,以形成一磊晶間隙壁於該閘極結構側邊的該基底上以及形成該凹槽於該磊晶間隙壁側邊的該基底中。 The MOS transistor process as described in claim 18, in forming the source / After the bungee and before the cleaning process, the method further includes: removing the main spacer; covering an epitaxial spacer material on the gate structure and the substrate; and performing an etching process to form an epitaxial spacer On the substrate on the side of the gate structure and in the substrate forming the groove on the side of the epitaxial spacer wall. 如申請專利範圍第11項所述之MOS電晶體製程,其中該磊晶結構包含一矽磷(SiP)磊晶結構、一矽鍺(SiGe)磊晶結構或一矽碳磷(SiCP)磊晶結構。 The MOS transistor process of claim 11, wherein the epitaxial structure comprises a germanium-phosphorus (SiP) epitaxial structure, a germanium (SiGe) epitaxial structure or a germanium carbon-phosphorus (SiCP) epitaxial crystal. structure.
TW101120922A 2012-06-11 2012-06-11 Mos transistor process TWI543370B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW101120922A TWI543370B (en) 2012-06-11 2012-06-11 Mos transistor process

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW101120922A TWI543370B (en) 2012-06-11 2012-06-11 Mos transistor process

Publications (2)

Publication Number Publication Date
TW201351644A TW201351644A (en) 2013-12-16
TWI543370B true TWI543370B (en) 2016-07-21

Family

ID=50158140

Family Applications (1)

Application Number Title Priority Date Filing Date
TW101120922A TWI543370B (en) 2012-06-11 2012-06-11 Mos transistor process

Country Status (1)

Country Link
TW (1) TWI543370B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11728212B2 (en) * 2020-09-29 2023-08-15 Taiwan Semicondcutor Manufacturing Company, Ltd. Integrated circuit structure and manufacturing method thereof

Also Published As

Publication number Publication date
TW201351644A (en) 2013-12-16

Similar Documents

Publication Publication Date Title
US9659780B2 (en) Multiple gate field-effect transistors having oxygen-scavenged gate stack
US10014227B2 (en) Semiconductor device having strained fin structure and method of making the same
US8575708B2 (en) Structure of field effect transistor with fin structure
US9318609B2 (en) Semiconductor device with epitaxial structure
US9397184B2 (en) Semiconductor device having metal gate and manufacturing method thereof
US8853013B2 (en) Method for fabricating field effect transistor with fin structure
US20130043506A1 (en) Fin-FET and Method of Forming the Same
US8426277B2 (en) Semiconductor process
US9093477B1 (en) Implantation processing step for a recess in finFET
US8722501B2 (en) Method for manufacturing multi-gate transistor device
US20160020323A1 (en) Semiconductor device and method of fabricating the same
US20130273706A1 (en) Method for forming semiconductor device
TWI521574B (en) Semiconductor process
US8884346B2 (en) Semiconductor structure
US20160190011A1 (en) Epitaxial structure and process thereof for forming fin-shaped field effect transistor
US8962433B2 (en) MOS transistor process
TWI543370B (en) Mos transistor process
TWI570783B (en) Semiconductor process
TWI518790B (en) Semiconductor device and method of making the same
TW201448120A (en) Semiconductor device and fabrication method thereof
TWI528460B (en) Method for fabricating field effect transistor with fin structure
TWI508139B (en) Method of forming semiconductor device
TWI512838B (en) Semiconductor process
TWI508293B (en) Semiconductor device having metal gate and manufacturing method thereof