TWI594886B - Low resistance transparent conductive film and its preparation method - Google Patents

Low resistance transparent conductive film and its preparation method Download PDF

Info

Publication number
TWI594886B
TWI594886B TW104138243A TW104138243A TWI594886B TW I594886 B TWI594886 B TW I594886B TW 104138243 A TW104138243 A TW 104138243A TW 104138243 A TW104138243 A TW 104138243A TW I594886 B TWI594886 B TW I594886B
Authority
TW
Taiwan
Prior art keywords
layer
film
transparent
metal
transparent conductive
Prior art date
Application number
TW104138243A
Other languages
Chinese (zh)
Other versions
TW201711843A (en
Inventor
Yang Wang
Qing-Geng Lin
Original Assignee
Huizhou E-Fly Optoelectronic Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huizhou E-Fly Optoelectronic Materials Co Ltd filed Critical Huizhou E-Fly Optoelectronic Materials Co Ltd
Publication of TW201711843A publication Critical patent/TW201711843A/en
Application granted granted Critical
Publication of TWI594886B publication Critical patent/TWI594886B/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/14Non-insulated conductors or conductive bodies characterised by their form comprising conductive layers or films on insulating-supports
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Laminated Bodies (AREA)
  • Non-Insulated Conductors (AREA)
  • Manufacturing Of Electric Cables (AREA)

Description

低電阻透明導電薄膜及其製備方法 Low-resistance transparent conductive film and preparation method thereof

本發明涉及光電子元器件領域,尤其涉及一種低電阻透明導電薄膜及其製備方法。 The invention relates to the field of optoelectronic components, in particular to a low-resistance transparent conductive film and a preparation method thereof.

透明導電薄膜(TCFs)兼具可透過可見光及導電性能良好的特性,廣泛應用於各類平面顯示器、LED燈具、觸摸屏、光伏電池、智能窗戶、EMI屏蔽膜等領域。 Transparent conductive films (TCFs) have the characteristics of good visible light and good electrical conductivity. They are widely used in various types of flat panel displays, LED lamps, touch screens, photovoltaic cells, smart windows, EMI shielding films and other fields.

應用最為廣泛的透明導電薄膜主要是以氧化銦錫(ITO)作為導電材料在陶瓷、玻璃等硬質襯底材料上製備而成,在光電子器件中應用長達六十多年。但該類透明導電薄膜存在材料成本高、易碎易斷、柔軟性能差、不易變形等缺陷,不適合作為製備柔性透明導電薄膜材料,極大限制了透明導電薄膜的應用。 The most widely used transparent conductive film is mainly made of indium tin oxide (ITO) as a conductive material on hard substrate materials such as ceramics and glass. It has been used in optoelectronic devices for more than sixty years. However, such transparent conductive films have defects such as high material cost, fragility and brittleness, poor flexibility, and difficulty in deformation, and are not suitable as materials for preparing flexible transparent conductive films, which greatly limits the application of transparent conductive films.

隨著顯示器、觸摸屏、光伏電池等的需求及要求越來越高,傳統ITO薄膜已不能適應柔性彎曲應用,及更高的導電性、透光性等需求。 With the increasing demand and requirements of displays, touch screens, photovoltaic cells, etc., conventional ITO films have been unable to adapt to flexible bending applications, and higher electrical conductivity, light transmission and the like.

在對透明導電薄膜及柔性導電薄膜的研究中,奈米銀線薄膜由於其高透明度、較低表面電阻、表面平整光滑、柔性好等優點,受到廣泛關注及研究。但由於奈米銀線薄膜要通過將眾多奈米銀線進行交叉疊放達到導電功效,存在附著力不好、方阻較高、透過率受奈米銀線濃度影響大、霧度值高、易氧化、導電液價格昂 貴、前處理工序多等不足,奈米銀線薄膜的商業化應用受到極大限制。 In the research of transparent conductive film and flexible conductive film, nano silver wire film has been widely concerned and studied due to its high transparency, low surface resistance, smooth surface and good flexibility. However, since the nano silver film is to be electrically connected by stacking a plurality of nano silver wires, the adhesion is not good, the square resistance is high, the transmittance is greatly affected by the concentration of the nano silver wire, and the haze value is high. Easy to oxidize, the price of conductive liquid is high The expensive and pre-treatment processes are insufficient, and the commercial application of nano-silver film is greatly limited.

為了解決上述問題,本發明的目的之一是提供一種低電阻透明導電薄膜。該低電阻透明導電薄膜為透明底膜/金屬網孔薄膜層/透明導電膜層的三疊層薄膜結構,光學透過率高、面電阻低、霧度值低、顏色呈中性,且易於製備於硬質襯底或柔性襯底表面。 In order to solve the above problems, it is an object of the present invention to provide a low-resistance transparent conductive film. The low-resistance transparent conductive film is a three-layer film structure of a transparent base film/metal mesh film layer/transparent conductive film layer, which has high optical transmittance, low surface resistance, low haze value, neutral color, and is easy to prepare. On a hard substrate or a flexible substrate surface.

本發明的目的之二是提供上述低電阻透明導電薄膜的製備方法。 Another object of the present invention is to provide a method for producing the above low-resistance transparent conductive film.

本發明之低電阻透明導電薄膜,包括:具有若干無序孔洞結構的金屬網孔薄膜層,所述無序孔洞結構在金屬網孔薄膜層中的形狀、大小及分佈都呈隨機狀態,且任一單個無序孔洞結構的窄邊寬度小於1000奈米、長度小於5000奈米;層疊於所述金屬薄膜層下表面的透明底膜;層疊於所述金屬薄膜層上表面的透明導電膜層。 The low-resistance transparent conductive film of the present invention comprises: a metal mesh film layer having a plurality of disordered pore structures, wherein the shape, size and distribution of the disordered pore structure in the metal mesh film layer are random, and A single disordered pore structure having a narrow side width of less than 1000 nm and a length of less than 5000 nm; a transparent base film laminated on the lower surface of the metal thin film layer; and a transparent conductive film layer laminated on the upper surface of the metal thin film layer.

較佳地,所述透明底膜為氧化鋅基透明膜層;所述金屬網孔薄膜層為銀網孔層。 Preferably, the transparent base film is a zinc oxide-based transparent film layer; and the metal mesh film layer is a silver mesh layer.

具體而言,所述氧化鋅基透明膜層為氧化鋅透明膜層(ZnO)、摻鋁氧化鋅透明膜層(AZO)、摻錫氧化鋅透明膜層(ZTO)、摻鎵氧化鋅透明膜層(GZO)、摻銦氧化鋅透明膜層(IZO)或摻銦鎵氧化鋅透明膜層(IGZO)中的一種。 Specifically, the zinc oxide-based transparent film layer is a zinc oxide transparent film layer (ZnO), an aluminum-doped zinc oxide transparent film layer (AZO), a tin-doped zinc oxide transparent film layer (ZTO), and a gallium-doped zinc oxide transparent film. One of a layer (GZO), an indium-doped zinc oxide transparent film layer (IZO) or an indium-doped gallium zinc oxide transparent film layer (IGZO).

為防止純銀的氧化、腐蝕或顆粒化,所述銀網孔層可為摻雜有0.5%-5%重量比其它金屬組分的銀合金,所述其它金屬組分為鉑、鈦、金、銅、鉻或鎳中的一種; 或者,可以採取增加阻擋層的方式以防止純銀的氧化、腐蝕或顆粒化,具體而言,在所述銀網孔層的上表面沉積第一阻擋層;所述第一阻擋層為鎳金屬層、鉻金屬層、鈦金屬層、金金屬層、銅金屬層、鎳鉻合金層、鎳金屬氧化物層、鉻金屬氧化物層、鈦金屬氧化物層或銅金屬氧化物層中的一種;所述第一阻擋層的厚度為1-10奈米;為了更有效地防止純銀的氧化、腐蝕或顆粒化,所述銀網孔層的上表面沉積第一阻擋層後,在所述銀網孔層的下表面沉積第二阻擋層;所述第二阻擋層為鎳金屬層、鉻金屬層、鈦金屬層、金金屬層、銅金屬層、鎳鉻合金層、鎳金屬氧化物層、鉻金屬氧化物層、鈦金屬氧化物層或銅金屬氧化物層中的一種;所述第二阻擋層的厚度為1-10奈米。 In order to prevent oxidation, corrosion or granulation of pure silver, the silver mesh layer may be a silver alloy doped with 0.5% to 5% by weight of other metal components, such as platinum, titanium, gold, One of copper, chromium or nickel; Alternatively, a barrier layer may be added to prevent oxidation, corrosion or granulation of pure silver, in particular, a first barrier layer is deposited on the upper surface of the silver mesh layer; the first barrier layer is a nickel metal layer a chromium metal layer, a titanium metal layer, a gold metal layer, a copper metal layer, a nickel-chromium alloy layer, a nickel metal oxide layer, a chromium metal oxide layer, a titanium metal oxide layer or a copper metal oxide layer; The thickness of the first barrier layer is 1-10 nm; in order to more effectively prevent oxidation, corrosion or granulation of pure silver, after depositing the first barrier layer on the upper surface of the silver mesh layer, in the silver mesh Depositing a second barrier layer on a lower surface of the layer; the second barrier layer is a nickel metal layer, a chromium metal layer, a titanium metal layer, a gold metal layer, a copper metal layer, a nickel-chromium alloy layer, a nickel metal oxide layer, a chromium metal One of an oxide layer, a titanium metal oxide layer or a copper metal oxide layer; the second barrier layer has a thickness of 1 to 10 nm.

較佳地,所述透明導電膜層為氧化銦錫膜層(ITO)、摻鋁氧化鋅膜層(AZO)、摻銻氧化錫膜層(ATO)、摻鋅氧化銦膜層(IZO)、摻錫氧化鋅膜層(ZTO)、氧化鉬膜層(MoO3)或氮化鈦層(TiN)。 Preferably, the transparent conductive film layer is an indium tin oxide film layer (ITO), an aluminum-doped zinc oxide film layer (AZO), an antimony-doped tin oxide film layer (ATO), a zinc-doped indium oxide film layer (IZO), A tin-doped zinc oxide film layer (ZTO), a molybdenum oxide film layer (MoO3) or a titanium nitride layer (TiN).

較佳地,所述透明底膜的厚度為10-70奈米;所述金屬網孔薄膜層的厚度為5-20奈米;所述透明導電膜層的厚度為10-70奈米。 Preferably, the transparent base film has a thickness of 10 to 70 nm; the metal mesh film layer has a thickness of 5 to 20 nm; and the transparent conductive film layer has a thickness of 10 to 70 nm.

所述透明導電膜層覆蓋於所述金屬網孔薄膜層上表面,並且填充所述金屬網孔薄膜層的無序孔洞結構的空腔,使所述透明導電膜層與所述透明底膜連通,可提高低電阻透明導電薄膜的透光率,並使低電阻透明導電薄膜顏色呈中性。 The transparent conductive film layer covers the upper surface of the metal mesh film layer, and fills a cavity of the disordered hole structure of the metal mesh film layer, so that the transparent conductive film layer is connected to the transparent bottom film The light transmittance of the low-resistance transparent conductive film can be improved, and the color of the low-resistance transparent conductive film is neutral.

上述低電阻透明導電薄膜的製備方法,包括如下步 驟:S1、常溫或低溫條件下,採用磁控濺射工藝在襯底的表面沉積一層透明底膜;S2、在透明底膜表面鍍覆一層無序排列的微球層掩膜;S3、應用常溫磁控濺射工藝在鍍覆有微球層掩膜的透明底膜表面沉積一層金屬薄膜;S4、去除微球層掩膜,得到具有無序孔洞結構的金屬網孔薄膜層;S5、常溫或低溫條件下,採用磁控濺射工藝在具有無序孔洞結構的金屬網孔薄膜層的表面沉積一層透明導電膜層,即完成所述低電阻透明導電薄膜的製備。 The preparation method of the above low-resistance transparent conductive film comprises the following steps Step: S1, under normal temperature or low temperature conditions, a transparent base film is deposited on the surface of the substrate by magnetron sputtering; S2, a layer of disordered microsphere mask is plated on the surface of the transparent base film; S3, application The room temperature magnetron sputtering process deposits a metal film on the surface of the transparent base film coated with the microsphere mask; S4, removes the microsphere mask to obtain a metal mesh film layer with disordered pore structure; S5, room temperature Or under low temperature conditions, a transparent conductive film layer is deposited on the surface of the metal mesh film layer having the disordered pore structure by a magnetron sputtering process, that is, the preparation of the low-resistance transparent conductive film is completed.

較佳地,步驟S1中所述襯底可根據應用需要,在沉積透明底膜前預先鍍覆一層或多層透明光學薄膜,具體可為二氧化矽薄膜、五氧化二鈮薄膜、二氧化鈦薄膜或氮化矽薄膜。 Preferably, the substrate in the step S1 may be pre-plated with one or more transparent optical films before depositing the transparent base film according to the application, and specifically may be a ruthenium dioxide film, a ruthenium pentoxide film, a titanium dioxide film or a nitrogen. Peptide film.

較佳地,步驟S1中所述透明底膜為氧化鋅基透明膜層,具體材料可為氧化鋅、摻鋁氧化鋅、摻錫氧化鋅、摻鎵氧化鋅、摻銦氧化鋅或摻銦鎵氧化鋅中的一種。 Preferably, the transparent base film in the step S1 is a zinc oxide-based transparent film layer, and the specific material may be zinc oxide, aluminum-doped zinc oxide, tin-doped zinc oxide, gallium-doped zinc oxide, indium-doped zinc oxide or indium-doped gallium. One of zinc oxide.

較佳地,步驟S1中沉積的透明底膜的厚度為10-70奈米,可見光折射率大於1.5。 Preferably, the transparent base film deposited in step S1 has a thickness of 10 to 70 nm and a visible light refractive index of more than 1.5.

較佳地,所述透明底膜為氧化鋅基透明膜層;所述氧化鋅基透明膜層為氧化鋅透明膜層、摻鋁氧化鋅透明膜層、摻錫氧化鋅透明膜層、摻鎵氧化鋅透明膜層、摻銦氧化鋅透明膜層或摻銦鎵氧化鋅透明膜層中的一種。 Preferably, the transparent base film is a zinc oxide-based transparent film layer; the zinc oxide-based transparent film layer is a zinc oxide transparent film layer, an aluminum-doped zinc oxide transparent film layer, a tin-doped zinc oxide transparent film layer, and a gallium-doped layer. One of a transparent zinc oxide layer, an indium-doped zinc oxide transparent film layer or an indium gallium zinc oxide transparent film layer.

具體而言,步驟S2中可採用中國發明專利ZL 201110141276.8中所公開的方法在透明底膜表面鍍覆微球層掩膜。 Specifically, the Chinese invention patent ZL can be adopted in step S2. The method disclosed in 201110141276.8 coats the surface of the transparent base film with a microsphere mask.

步驟S2中所述微球層掩膜為一層無序排列的單分散的微球。 The microsphere layer mask in step S2 is a disorderly array of monodisperse microspheres.

微球較佳為低等電點的微球,具體可為聚苯乙烯微球、聚甲基丙烯酸甲酯微球或二氧化矽微球。所述微球的直徑範圍為100-1000奈米;所述微球在所述透明底膜表面的表面積覆蓋率為10%-40%。 The microspheres are preferably microspheres having a low isoelectric point, and specifically may be polystyrene microspheres, polymethyl methacrylate microspheres or cerium oxide microspheres. The microspheres have a diameter ranging from 100 to 1000 nm; the surface area coverage of the microspheres on the surface of the transparent base film is 10% to 40%.

較佳地,所述微球在透明底膜的排列方式為不規則小團簇的無序間隔分佈,每個團簇包含1-20個微球,每個團簇的形狀、大小不一致,每個團簇的寬度不超過1000奈米,每個團簇的長度不超過5000奈米。 Preferably, the arrangement of the microspheres in the transparent base film is irregularly distributed in irregular intervals, each cluster contains 1-20 microspheres, and each cluster has an inconsistent shape and size. The width of the clusters does not exceed 1000 nm, and the length of each cluster does not exceed 5000 nm.

較佳地,步驟S3中所述金屬薄膜的厚度為5-20奈米。所述金屬薄膜的厚度根據實際需要的面電阻要求來確定,厚度越大,面電阻越小。 Preferably, the thickness of the metal film in step S3 is 5-20 nm. The thickness of the metal film is determined according to the actual required surface resistance requirement, and the larger the thickness, the smaller the sheet resistance.

較佳地,步驟S3中所述金屬薄膜的材料為銀。 Preferably, the material of the metal thin film in step S3 is silver.

更佳地,步驟S3中所述金屬薄膜的材料為摻雜有0.5%-5%重量比其它金屬組分的銀合金,所述其它金屬組分為鉑、鈦、金、銅、鉻或鎳等中的一種。 More preferably, the material of the metal thin film in step S3 is a silver alloy doped with 0.5% to 5% by weight of other metal components, such as platinum, titanium, gold, copper, chromium or nickel. One of the others.

具體而言,步驟S4中可採用異丙醇擦拭、純水超聲波清洗或沸騰乙醇清洗的方式去除微球層掩膜。 Specifically, in step S4, the microsphere mask can be removed by means of isopropyl alcohol wiping, pure water ultrasonic cleaning or boiling ethanol cleaning.

較佳地,步驟S5中所述透明導電膜層的厚度為10-70奈米,可見光折射率大於1.5。 Preferably, the transparent conductive film layer has a thickness of 10 to 70 nm and a visible light refractive index of more than 1.5 in the step S5.

較佳地,步驟S5中所述透明導電膜層為氧化銦錫膜層、摻鋁氧化鋅膜層、摻銻氧化錫膜層、摻鋅氧化銦膜層、摻錫氧 化鋅膜層、氧化鉬膜層或氮化鈦膜層。 Preferably, in the step S5, the transparent conductive film layer is an indium tin oxide film layer, an aluminum-doped zinc oxide film layer, an antimony-doped tin oxide film layer, a zinc-doped indium oxide film layer, and tin-doped oxygen. A zinc film layer, a molybdenum oxide film layer or a titanium nitride film layer.

本發明相對於現有技術具有的優點及效果: The advantages and effects of the present invention over the prior art:

(1)本發明所述低電阻透明導電薄膜為透明底膜/金屬網孔薄膜層/透明導電膜層的三疊層薄膜結構,因其金屬網孔薄膜層具有獨特的無序孔洞結構,使該低電阻透明導電薄膜具有比現有技術中的透明導電膜更好的導電性,面電阻可達到20歐姆/平方以下。 (1) The low-resistance transparent conductive film of the present invention is a three-layer film structure of a transparent base film/metal mesh film layer/transparent conductive film layer, because the metal mesh film layer has a unique disordered pore structure, The low-resistance transparent conductive film has better conductivity than the transparent conductive film of the prior art, and the sheet resistance can reach 20 ohms/square or less.

(2)本發明所述低電阻透明導電薄膜的金屬網孔薄膜層具有的無序孔洞結構為奈米級孔洞尺度,比無孔洞的連續金屬薄膜和具有微米級孔洞尺度(孔洞寬度大於1000奈米)的金屬網格更能夠增強表面電漿子(surface plasmon)效應,即可以在入射光的作用下激發出強度更大的表面電漿子,且金屬網孔薄膜層兩側表面電漿子間的耦合度更強,從而可以藉由再在金屬網孔薄膜層兩側同時疊加高折射率透明介質層的方法使得表面電漿子的光學增透效果進一步強化,最終取得更高的可見光透過率。 (2) The metal mesh film layer of the low-resistance transparent conductive film of the present invention has a disordered pore structure which is a nano-scale pore size, a continuous metal film having no pores and a micron-scale pore size (a pore width greater than 1000 nm) The metal mesh of M) can enhance the surface plasmon effect, that is, it can excite stronger surface plasmons under the action of incident light, and the surface plasmons on both sides of the metal mesh film layer The degree of coupling between the two is stronger, so that the optical anti-reflection effect of the surface plasmon can be further strengthened by superposing the high-refractive-index transparent dielectric layer on both sides of the metal mesh film layer, thereby achieving higher visible light transmission. rate.

(3)本發明所述低電阻透明導電薄膜的金屬網孔薄膜層具有的無序孔洞結構的排列分佈和形狀大小的無序性恰好避免了彩色干涉條紋的出現,使所述低電阻透明導電薄膜外觀顏色呈中性。 (3) The arrangement of the disordered pore structure and the disorder of the shape and size of the metal mesh film layer of the low-resistance transparent conductive film of the present invention avoid the appearance of color interference fringes, so that the low-resistance transparent conductive The film looks neutral in color.

1‧‧‧低電阻透明導電薄膜 1‧‧‧Low-resistance transparent conductive film

100‧‧‧襯底 100‧‧‧substrate

200‧‧‧透明底膜 200‧‧‧Transparent base film

300‧‧‧金屬網孔薄膜層 300‧‧‧Metal mesh film layer

400‧‧‧透明導電膜層 400‧‧‧Transparent conductive film layer

圖1為本發明實施例1所述低電阻透明導電薄膜的結構示意圖。 1 is a schematic structural view of a low-resistance transparent conductive film according to Embodiment 1 of the present invention.

圖2為本發明實施例1所述低電阻透明導電薄膜的金屬網孔薄膜層的掃描電子顯微鏡成像圖。 2 is a scanning electron microscope image view of a metal mesh film layer of the low-resistance transparent conductive film according to Embodiment 1 of the present invention.

圖3為本發明實施例1所述低電阻透明導電薄膜的金屬網孔薄 膜層的原子力顯微鏡成像圖。 3 is a thin metal mesh of the low-resistance transparent conductive film according to Embodiment 1 of the present invention; Atomic force microscopy imaging of the film layer.

圖4為本發明不同面電阻的低電阻透明導電薄膜的可見光透過率曲線圖。 4 is a graph showing the visible light transmittance of a low-resistance transparent conductive film of different surface resistances of the present invention.

圖5為本實施例1中低電阻透明導電薄膜的表面粗糙度檢測圖。 Fig. 5 is a view showing the surface roughness of the low-resistance transparent conductive film of the first embodiment.

下面將結合附圖詳細描述一個或多個實施例。詳細說明是結合這些實施例提供的,但並不局限於任意特定示例。本發明的範圍僅由申請專利範圍限定,包括各種替代、調整及等效體。在以下說明中列舉的各種具體細節用於提供全面瞭解。提供這些細節是出於示例目的,並且所述技術能夠在沒有這些具體細節中的某些或全部時按照申請專利範圍之內容實施。為了簡明起見,有關於實施例的技術領域內已知的技術材料不再詳細描述,以避免不必要地模糊所述說明。 One or more embodiments will be described in detail below with reference to the drawings. The detailed description is provided in connection with the embodiments, but is not limited to any specific examples. The scope of the invention is to be limited only by the scope of the invention, including various alternatives, modifications and equivalents. The specific details set forth in the following description are intended to provide a comprehensive understanding. These details are provided for illustrative purposes, and the techniques can be implemented in accordance with the scope of the patent application without some or all of these specific details. For the sake of brevity, technical material that is known in the technical field of the embodiments is not described in detail to avoid unnecessarily obscuring the description.

[實施例1] [Example 1]

如圖1所示,一種低電阻透明導電薄膜1,沉積在襯底100表面。所述低電阻透明導電薄膜1包括:一層沉積在襯底100表面上的透明底膜200;一層沉積在透明底膜200上表面的具有若干無序孔洞結構的金屬網孔薄膜層300;結合圖2和圖3,圖2為金屬網孔薄膜層300的掃描電子顯微鏡成像圖,圖3為金屬網孔薄膜層300的原子力顯微鏡成像圖,從圖2和圖3可以看出,所述無序孔洞結構在金屬網孔薄膜層300中的形狀、大小及分佈都呈隨機狀態;以及一層沉積在金屬網孔薄膜層300上表面的透明導電膜層 400。 As shown in FIG. 1, a low-resistance transparent conductive film 1 is deposited on the surface of a substrate 100. The low-resistance transparent conductive film 1 comprises: a transparent base film 200 deposited on the surface of the substrate 100; a metal mesh film layer 300 having a plurality of disordered pore structures deposited on the upper surface of the transparent base film 200; 2 and FIG. 3, FIG. 2 is a scanning electron microscope image of the metal mesh film layer 300, and FIG. 3 is an atomic force microscope image of the metal mesh film layer 300. As can be seen from FIG. 2 and FIG. 3, the disorder The shape, size and distribution of the pore structure in the metal mesh film layer 300 are random; and a transparent conductive film layer deposited on the upper surface of the metal mesh film layer 300 400.

在本實施例中,所述襯底100為透明玻璃襯底,厚度為0.7毫米。 In the present embodiment, the substrate 100 is a transparent glass substrate having a thickness of 0.7 mm.

所述透明底膜200較佳為氧化鋅基透明膜層,厚度為10-70奈米。在本實施例中所述透明底膜200為摻鋁氧化鋅透明膜層,厚度為32奈米。 The transparent base film 200 is preferably a zinc oxide-based transparent film layer having a thickness of 10 to 70 nm. In the embodiment, the transparent base film 200 is an aluminum-doped zinc oxide transparent film layer having a thickness of 32 nm.

本實施例中,所述金屬網孔薄膜層300為銀網孔層,厚度為10奈米。 In this embodiment, the metal mesh film layer 300 is a silver mesh layer having a thickness of 10 nm.

由於氧化鋅基材料的晶格常數(0.3-0.5奈米)接近於多晶銀的晶格常數(0.4奈米),因此在氧化鋅基膜層上沉積的銀網孔層相比沉積在其他透明薄膜上具有更佳的晶格匹配度和更小應力,從而可獲得更好的膜層平整度、連續性和可折疊性,並有利於優化銀網孔層的厚度、透過率、面電阻和穩定性。 Since the lattice constant of the zinc oxide-based material (0.3-0.5 nm) is close to the lattice constant of polycrystalline silver (0.4 nm), the silver mesh layer deposited on the zinc oxide-based film layer is deposited in other Better crystal lattice matching and less stress on the transparent film, which can achieve better film flatness, continuity and foldability, and help to optimize the thickness, transmittance and surface resistance of the silver mesh layer. And stability.

本實施例中,所述銀網孔層具有的無序孔洞結構的形狀、大小及分佈都呈隨機狀態,且任一單個無序孔洞結構的窄邊寬度小於1000奈米、長度小於5000奈米。 In this embodiment, the shape, size, and distribution of the disordered pore structure of the silver mesh layer are random, and the width of the narrow side of any single disordered pore structure is less than 1000 nm and the length is less than 5000 nm. .

所述透明導電膜層400可為氧化銦錫膜層、摻鋁氧化鋅膜層、摻銻氧化錫膜層、摻鋅氧化銦膜層、摻錫氧化鋅膜層、氧化鉬膜層或氮化鈦膜層;本實施例中,所述透明導電膜層400為氧化銦錫膜層,且厚度為40奈米。 The transparent conductive film layer 400 may be an indium tin oxide film layer, an aluminum-doped zinc oxide film layer, an antimony-doped tin oxide film layer, a zinc-doped indium oxide film layer, a tin-doped zinc oxide film layer, a molybdenum oxide film layer or nitrided. In the present embodiment, the transparent conductive film layer 400 is an indium tin oxide film layer and has a thickness of 40 nm.

由於金屬網孔薄膜層300具有無序孔洞結構,沉積在金屬網孔薄膜層300上的透明導電膜層400會填充所有無序孔洞,使透明導電膜層400與所述透明底膜200連通,可提高低電阻透明導電薄膜1的透光率。 Since the metal mesh film layer 300 has a disordered hole structure, the transparent conductive film layer 400 deposited on the metal mesh film layer 300 fills all the disordered holes, and the transparent conductive film layer 400 is connected to the transparent base film 200. The light transmittance of the low-resistance transparent conductive film 1 can be improved.

本實施例低電阻透明導電薄膜的製備方法如下: The preparation method of the low-resistance transparent conductive film of this embodiment is as follows:

S1、常溫或低溫條件下,採用磁控濺射工藝在玻璃襯底的表面沉積一層摻鋁氧化鋅透明底膜;所述常溫或低溫條件,為20-200℃溫度條件;磁控濺射工藝沉積薄膜的方法為現有常規工藝,本實施例中,主要藉由調節沉積溫度、沉積氣壓、濺射功率、工作氣體中的氧氣含量等磁控濺射工藝參數,優化透明底膜在波長範圍450-700奈米的可見光的透過率,且可見光折射率大於1.5。 S1, under normal temperature or low temperature conditions, a transparent aluminum-doped zinc oxide transparent base film is deposited on the surface of the glass substrate by magnetron sputtering; the normal temperature or low temperature condition is 20-200 ° C temperature condition; magnetron sputtering process The method for depositing a thin film is a conventional conventional process. In this embodiment, the transparent underlayer film is optimized in the wavelength range by mainly adjusting magnetization sputtering process parameters such as deposition temperature, deposition gas pressure, sputtering power, and oxygen content in a working gas. - 700 nm of visible light transmittance, and visible light refractive index greater than 1.5.

S2、在透明底膜表面鍍覆一層無序排列的微球層掩膜;利用氧化鋅基材料等電點比較高的特點,採用中國發明專利ZL 201110141276.8中所公開的浸鍍方法,在摻鋁氧化鋅透明底膜表面覆蓋一層無序排列的單分散微球,微球選用低等電點材料,本實施例中選用聚苯乙烯微球。聚苯乙烯微球的直徑範圍為100-1000奈米,聚苯乙烯微球在摻鋁氧化鋅透明底膜的排列方式為不規則小團簇的無序間隔分佈,每個團簇包含1-20個微球,每個團簇的形狀、大小不一致,每個團簇的寬度不超過1000奈米,每個團簇的長度不超過5000奈米。 S2, plating a layer of disordered microsphere mask on the surface of the transparent base film; using the relatively high electric point of the zinc oxide-based material, adopting the immersion plating method disclosed in the Chinese invention patent ZL 201110141276.8, in the aluminum doping The surface of the zinc oxide transparent base film is covered with a disorderly array of monodisperse microspheres, and the microspheres are made of a low isoelectric point material. In this embodiment, polystyrene microspheres are used. The diameter of the polystyrene microspheres ranges from 100 to 1000 nanometers, and the arrangement of the polystyrene microspheres in the aluminum-doped zinc oxide transparent base film is irregularly distributed in irregular small clusters, and each cluster contains 1- 20 microspheres, each cluster has the same shape and size, the width of each cluster is less than 1000 nm, and the length of each cluster is no more than 5000 nm.

S3、應用常溫磁控濺射工藝在鍍覆有微球層掩膜的透明底膜表面沉積一層銀層;所述銀層的厚度為5-20奈米,厚度根據實際需要的面電阻要求來確定,厚度越大,面電阻越小。 S3, applying a normal temperature magnetron sputtering process to deposit a silver layer on the surface of the transparent base film coated with the microsphere mask; the thickness of the silver layer is 5-20 nm, and the thickness is according to the actual surface resistance requirement It is determined that the larger the thickness, the smaller the sheet resistance.

S4、採用異丙醇擦拭、純水超聲波清洗或沸騰乙醇清洗的方式去除微球層掩膜,從而在摻鋁氧化鋅透明底膜表面形成一 層具有無序孔洞結構的銀網孔層。 S4, removing the microsphere mask by wiping with isopropyl alcohol, ultrasonic cleaning with pure water or boiling ethanol, thereby forming a surface on the surface of the aluminum-doped zinc oxide transparent base film The layer has a silver mesh layer with a disordered pore structure.

S5、常溫或低溫條件下,採用磁控濺射工藝在具有無序孔洞結構的銀網孔層的上表面沉積一層透明氧化銦錫膜層,厚度為40奈米,可見光折射率大於1.5;反覆調整參數優化磁控濺射工藝以實現透明氧化銦錫膜層可見光透過率最大化,同時保證電阻率不高於1×10-3Ω.cm。經過上述步驟即完成所述低電阻透明導電薄膜的製備。 S5, under normal temperature or low temperature conditions, a transparent indium tin oxide film layer is deposited on the upper surface of the silver mesh layer having disordered pore structure by a magnetron sputtering process, the thickness is 40 nm, and the visible light refractive index is greater than 1.5; The parameters are optimized to optimize the magnetron sputtering process to maximize the visible light transmittance of the transparent indium tin oxide film layer while ensuring that the resistivity is not higher than 1×10-3 Ω. Cm. The preparation of the low-resistance transparent conductive film is completed through the above steps.

按照實施例1的方法,調節銀網孔層的厚度,使最終得到的銀網孔層的面電阻為15歐姆/平方,製得低電阻透明導電薄膜,記為F1。經檢測,低電阻透明導電薄膜F1在550奈米波長處的可見光透過率可達90.7%,在470-700奈米波長範圍內的可見光平均透過率可達88.3%。 According to the method of Example 1, the thickness of the silver mesh layer was adjusted so that the surface resistance of the finally obtained silver mesh layer was 15 ohm/square, and a low-resistance transparent conductive film was obtained, which was designated as F1. It has been found that the low-resistance transparent conductive film F1 has a visible light transmittance of 90.7% at a wavelength of 550 nm, and an average visible light transmittance of 88.3% in a wavelength range of 470-700 nm.

按照實施例1的方法,調節銀網孔層的厚度,使最終得到的銀網孔層的面電阻為10歐姆/平方,製得低電阻透明導電薄膜,記為F2。低電阻透明導電薄膜F1和F2的可見光透過率曲線圖如圖4所示,其中a曲線為面電阻為15歐姆/平方的低電阻透明導電薄膜F1的可見光透過率曲線,b曲線為面電阻為10歐姆/平方的低電阻透明導電薄膜F2的可見光透過率曲線。因為隨著面電阻增大,銀網孔層的厚度也相應減小,結合圖4可知,面電阻越大,可見光透過率越高;而面電阻為15歐姆的低電阻透明導電薄膜F1可見光透過率可到90.7%。 According to the method of Example 1, the thickness of the silver mesh layer was adjusted so that the surface resistance of the finally obtained silver mesh layer was 10 ohm/square, and a low-resistance transparent conductive film was obtained, which was designated as F2. The visible light transmittance curves of the low-resistance transparent conductive films F1 and F2 are as shown in FIG. 4, wherein the a curve is a visible light transmittance curve of the low-resistance transparent conductive film F1 having a sheet resistance of 15 ohm/square, and the b curve is a sheet resistance. Visible light transmittance curve of a 10 ohm/square low resistance transparent conductive film F2. Because the thickness of the silver mesh layer is also reduced as the surface resistance is increased, as shown in FIG. 4, the larger the sheet resistance, the higher the visible light transmittance; and the low-resistance transparent conductive film F1 having a surface resistance of 15 ohms. The rate can reach 90.7%.

本發明的低電阻透明導電薄膜的平整度很好,因而霧度值很小。 The low-resistance transparent conductive film of the present invention has a good flatness and thus has a small haze value.

如圖5所示,本實施例中低電阻透明導電薄膜在0.7 毫米厚非拋光玻璃襯底上的表面粗糙度為RPV=18nm、Rq=4.5nm、Ra=3.7nm,在550奈米波長處的霧度值小於2%。 As shown in FIG. 5, the low-resistance transparent conductive film in this embodiment is at 0.7. The surface roughness on a millimeter thick non-polished glass substrate was RPV = 18 nm, Rq = 4.5 nm, Ra = 3.7 nm, and the haze value at a wavelength of 550 nm was less than 2%.

[實施例2] [Embodiment 2]

一種低電阻透明導電薄膜,沉積在柔性襯底表面。本實施例所述低電阻透明導電薄膜結構與實施例1中的低電阻透明導電薄膜結構相似,包括:一層沉積在柔性襯底表面上的氧化鋅基透明膜層;一層沉積在透明底膜上表面的具有若干無序孔洞結構的金屬網孔薄膜層;所述無序孔洞結構在金屬網孔薄膜層中的形狀、大小及分佈都呈隨機狀態;以及一層沉積在金屬網孔薄膜層上表面的透明導電膜層。 A low resistance transparent conductive film deposited on a surface of a flexible substrate. The structure of the low-resistance transparent conductive film of the embodiment is similar to that of the low-resistance transparent conductive film of the first embodiment, comprising: a layer of a transparent film of zinc oxide deposited on the surface of the flexible substrate; and a layer deposited on the transparent base film. a metal mesh film layer having a plurality of disordered pore structures on the surface; the shape, size and distribution of the disordered pore structure in the metal mesh film layer are random; and a layer deposited on the upper surface of the metal mesh film layer Transparent conductive film layer.

本實施例中,所述柔性襯底為PET柔性襯底;所述氧化鋅基透明膜層為氧化鋅透明膜層,厚度為70奈米;所述金屬網孔薄膜層為銀合金網孔層,厚度為20奈米;所述銀合金網孔層的材料為銀鉑合金,其中鉑在銀鉑合金中的重量比為0.5%;所述透明導電膜層為摻鋅氧化銦膜層,厚度為10奈米。 In this embodiment, the flexible substrate is a PET flexible substrate; the zinc oxide-based transparent film layer is a transparent zinc oxide film layer having a thickness of 70 nm; and the metal mesh film layer is a silver alloy mesh layer. The thickness of the silver alloy mesh layer is silver platinum alloy, wherein the weight ratio of platinum in the silver platinum alloy is 0.5%; the transparent conductive film layer is a zinc-doped indium oxide film layer, and the thickness It is 10 nm.

本實施例的低電阻透明導電薄膜的製備方法與實施例1的一致,區別在於各膜層的材料不同;並且根據成膜厚度和結構的不同,調整磁控濺射工藝和浸鍍方法的工藝參數。 The method for preparing the low-resistance transparent conductive film of the present embodiment is the same as that of the first embodiment, except that the materials of the film layers are different; and the processes of the magnetron sputtering process and the immersion plating method are adjusted according to the film thickness and structure. parameter.

[實施例3] [Example 3]

一種低電阻透明導電薄膜,沉積在硬性襯底表面。本 實施例所述低電阻透明導電薄膜包括:一層沉積在硬性襯底表面上的氧化鋅基透明膜層;沉積在氧化鋅基透明膜層的第一阻擋層;一層沉積在第一阻擋層上表面的具有若干無序孔洞結構的金屬網孔薄膜層;所述無序孔洞結構在金屬網孔薄膜層中的形狀、大小及分佈都呈隨機狀態;沉積在金屬網孔薄膜層上的第二阻擋層;以及一層沉積在第二阻擋層上表面的透明導電膜層。 A low resistance transparent conductive film deposited on a hard substrate surface. this The low-resistance transparent conductive film of the embodiment comprises: a zinc oxide-based transparent film layer deposited on the surface of the rigid substrate; a first barrier layer deposited on the zinc oxide-based transparent film layer; and a layer deposited on the upper surface of the first barrier layer a metal mesh film layer having a plurality of disordered pore structures; the shape, size and distribution of the disordered pore structure in the metal mesh film layer are random; the second barrier deposited on the metal mesh film layer a layer; and a layer of a transparent conductive film deposited on the upper surface of the second barrier layer.

本實施例中,所述硬性襯底為玻璃襯底;所述氧化鋅基透明膜層為摻銦鎵氧化鋅透明膜層,厚度為10奈米;所述第一阻擋層為鎳金屬層,厚度為1奈米;所述金屬網孔薄膜層為銀網孔層,厚度為5奈米;所述第二阻擋層為銅金屬層,厚度為10奈米;所述透明導電膜層為摻銻氧化錫膜層,厚度為10奈米。 In this embodiment, the hard substrate is a glass substrate; the zinc oxide-based transparent film layer is an indium gallium zinc oxide transparent film layer having a thickness of 10 nm; and the first barrier layer is a nickel metal layer. The thickness of the metal mesh film layer is a silver mesh layer having a thickness of 5 nm; the second barrier layer is a copper metal layer having a thickness of 10 nm; and the transparent conductive film layer is doped A tantalum tin oxide film layer having a thickness of 10 nm.

本實施例的低電阻透明導電薄膜的製備方法,包括如下步驟:S1、20℃條件下,採用磁控濺射工藝在玻璃襯底的表面沉積一層摻銦鎵氧化鋅透明膜層,厚度為10奈米;S2、在摻銦鎵氧化鋅透明膜層沉積一層鎳金屬層,厚度為5奈米;S3、在鎳金屬層表面鍍覆一層無序排列的聚甲基丙烯酸甲酯微球層掩膜,聚甲基丙烯酸甲酯微球的直徑範圍為100-1000奈米,表面積覆蓋率為40%; S4、應用常溫磁控濺射工藝在鍍覆有微球層掩膜的鎳金屬層表面沉積一層銀層;S5、採用沸騰乙醇清洗的方式去除微球層掩膜,從而在鎳金屬層表面形成一層具有無序孔洞結構的銀網孔層;S6、在銀網孔層表面沉積一層銅金屬層,厚度為10奈米;S7、100℃下,採用磁控濺射工藝在銅金屬層上表面沉積一層摻銻氧化錫膜層,厚度為10奈米,可見光折射率大於1.5;反覆調整參數優化磁控濺射工藝以實現透明氧化銦錫膜層可見光透過率最大化,同時保證電阻率不高於1×10-3Ω.cm。經過上述步驟即完成所述低電阻透明導電薄膜的製備。 The method for preparing the low-resistance transparent conductive film of the embodiment comprises the following steps: depositing a transparent indium gallium zinc oxide transparent film layer on the surface of the glass substrate by a magnetron sputtering process at a temperature of S1 and 20 ° C, the thickness is 10 Nano; S2, depositing a layer of nickel metal in a transparent film layer of indium gallium-doped zinc oxide with a thickness of 5 nm; S3, plating a layer of disordered polymethyl methacrylate microspheres on the surface of the nickel metal layer Membrane, polymethyl methacrylate microspheres having a diameter ranging from 100 to 1000 nm and a surface area coverage of 40%; S4, applying a normal temperature magnetron sputtering process on the surface of a nickel metal layer coated with a microsphere mask Depositing a layer of silver; S5, removing the microsphere mask by boiling ethanol cleaning, thereby forming a silver mesh layer having a disordered pore structure on the surface of the nickel metal layer; S6, depositing a layer of copper on the surface of the silver mesh layer The metal layer has a thickness of 10 nm; at S7 and 100 ° C, a layer of antimony-doped tin oxide film is deposited on the surface of the copper metal layer by magnetron sputtering, the thickness is 10 nm, and the visible light refractive index is greater than 1.5; Parameter optimization magnetron sputtering In order to achieve a transparent layer of indium tin oxide maximize visible light transmittance while maintaining a resistivity not higher than 1 × 10 -3 Ω. Cm. The preparation of the low-resistance transparent conductive film is completed through the above steps.

儘管已經詳細描述了上述示例以便於清楚理解,但是本發明並不局限於所述細節。存在很多實施本發明的替代方式。公開的示例是說明性的而不是限制性的。 Although the above examples have been described in detail to facilitate a clear understanding, the invention is not limited to the details. There are many alternative ways of implementing the invention. The disclosed examples are illustrative and not restrictive.

1‧‧‧低電阻透明導電薄膜 1‧‧‧Low-resistance transparent conductive film

100‧‧‧襯底 100‧‧‧substrate

200‧‧‧透明底膜 200‧‧‧Transparent base film

300‧‧‧金屬網孔薄膜層 300‧‧‧Metal mesh film layer

400‧‧‧透明導電膜層 400‧‧‧Transparent conductive film layer

Claims (12)

一種低電阻透明導電薄膜,包括:具有若干無序孔洞結構的金屬網孔薄膜層,所述無序孔洞結構在金屬網孔薄膜層中的形狀、大小及分佈都呈隨機狀態,且任一單個無序孔洞結構的窄邊寬度小於1000奈米、長度小於5000奈米;層疊於所述金屬薄膜層下表面的透明底膜;層疊於所述金屬薄膜層上表面的透明導電膜層;其中,所述金屬網孔薄膜層為銀網孔層;所述銀網孔層的上表面沉積第一阻擋層;所述第一阻擋層為鎳金屬層、鉻金屬層、鈦金屬層、金金屬層、銅金屬層、鎳鉻合金層、鎳金屬氧化物層、鉻金屬氧化物層、鈦金屬氧化物層或銅金屬氧化物層中的一種;所述第一阻擋層的厚度為1-10奈米。 A low-resistance transparent conductive film comprising: a metal mesh film layer having a plurality of disordered pore structures, wherein the shape, size and distribution of the disordered pore structure in the metal mesh film layer are random, and any single a transparent bottom film having a narrow side width of less than 1000 nm and a length of less than 5000 nm; a transparent base film laminated on a lower surface of the metal thin film layer; and a transparent conductive film layer laminated on an upper surface of the metal thin film layer; The metal mesh film layer is a silver mesh layer; a first barrier layer is deposited on an upper surface of the silver mesh layer; the first barrier layer is a nickel metal layer, a chromium metal layer, a titanium metal layer, and a gold metal layer. a copper metal layer, a nickel-chromium alloy layer, a nickel metal oxide layer, a chromium metal oxide layer, a titanium metal oxide layer or a copper metal oxide layer; the first barrier layer has a thickness of 1-10 Meter. 如請求項1之低電阻透明導電薄膜,其中,所述透明底膜為氧化鋅基透明膜層。 The low-resistance transparent conductive film of claim 1, wherein the transparent base film is a zinc oxide-based transparent film layer. 如請求項2之低電阻透明導電薄膜,其中,所述氧化鋅基透明膜層為氧化鋅透明膜層、摻鋁氧化鋅透明膜層、摻錫氧化鋅透明膜層、摻鎵氧化鋅透明膜層、摻銦氧化鋅透明膜層或摻銦鎵氧化鋅透明膜層中的一種。 The low-resistance transparent conductive film of claim 2, wherein the zinc oxide-based transparent film layer is a zinc oxide transparent film layer, an aluminum-doped zinc oxide transparent film layer, a tin-doped zinc oxide transparent film layer, and a gallium-doped zinc oxide transparent film. One of a layer, an indium-doped zinc oxide transparent film layer or an indium gallium zinc oxide transparent film layer. 如請求項1之低電阻透明導電薄膜,其中,所述銀網孔層為摻雜有0.5%-5%重量比其它金屬組分的銀合金,所述其它金屬組分為鉑、鈦、金、銅、鉻或鎳中的一種。 The low-resistance transparent conductive film of claim 1, wherein the silver mesh layer is a silver alloy doped with 0.5% to 5% by weight of other metal components, the other metal components being platinum, titanium, gold , one of copper, chromium or nickel. 如請求項1之低電阻透明導電薄膜,其中,在所述銀網孔層的下表面沉積第二阻擋層;所述第二阻擋層為鎳金屬層、鉻金屬層、鈦金屬層、金金屬層、銅金屬層、鎳鉻合金層、鎳金屬氧化物層、 鉻金屬氧化物層、鈦金屬氧化物層或銅金屬氧化物層中的一種;所述第二阻擋層的厚度為1-10奈米。 The low-resistance transparent conductive film of claim 1, wherein a second barrier layer is deposited on a lower surface of the silver mesh layer; the second barrier layer is a nickel metal layer, a chromium metal layer, a titanium metal layer, and a gold metal Layer, copper metal layer, nickel-chromium alloy layer, nickel metal oxide layer, One of a chromium metal oxide layer, a titanium metal oxide layer or a copper metal oxide layer; the second barrier layer has a thickness of 1-10 nm. 如請求項1至5中任一項之低電阻透明導電薄膜,其中,透明導電膜層為氧化銦錫膜層、摻鋁氧化鋅膜層、摻銻氧化錫膜層、摻鋅氧化銦膜層、摻錫氧化鋅膜層、氧化鉬膜層或氮化鈦層。 The low-resistance transparent conductive film according to any one of claims 1 to 5, wherein the transparent conductive film layer is an indium tin oxide film layer, an aluminum-doped zinc oxide film layer, an antimony-doped tin oxide film layer, and a zinc-doped indium oxide film layer. a tin-doped zinc oxide film layer, a molybdenum oxide film layer or a titanium nitride layer. 如請求項1至5中任一項之低電阻透明導電薄膜,其中,所述透明底膜的厚度為10-70奈米;所述金屬網孔薄膜層的厚度為5-20奈米;所述透明導電膜層的厚度為10-70奈米。 The low-resistance transparent conductive film according to any one of claims 1 to 5, wherein the transparent base film has a thickness of 10 to 70 nm; and the metal mesh film layer has a thickness of 5 to 20 nm; The transparent conductive film layer has a thickness of 10 to 70 nm. 一種請求項1至7中任一項之低電阻透明導電薄膜的製備方法,包括如下步驟:S1、常溫或低溫條件下,採用磁控濺射工藝在襯底的表面沉積一層透明底膜;S2、在透明底膜表面鍍覆一層無序排列的微球層掩膜;S3、應用常溫磁控濺射工藝在鍍覆有微球層掩膜的透明底膜表面沉積一層金屬薄膜;S4、去除微球層掩膜,得到具有無序孔洞結構的金屬網孔薄膜層;S5、常溫或低溫條件下,採用磁控濺射工藝在具有無序孔洞結構的金屬網孔薄膜層的表面沉積一層透明導電膜層,即完成所述低電阻透明導電薄膜的製備;其中,步驟S1中所述襯底在沉積透明底膜前預先鍍覆一層或多層透明光學薄膜;所述透明光學薄膜為二氧化矽薄膜、五氧化二鈮薄膜、二氧化鈦薄膜或氮化矽薄膜。 A method for preparing a low-resistance transparent conductive film according to any one of claims 1 to 7, comprising the steps of: depositing a transparent base film on the surface of the substrate by a magnetron sputtering process under S1, normal temperature or low temperature; Coating a layer of disordered microsphere mask on the surface of the transparent base film; S3, depositing a metal film on the surface of the transparent base film coated with the microsphere mask by using a normal temperature magnetron sputtering process; S4, removing The microsphere layer mask is used to obtain a metal mesh film layer having a disordered pore structure; S5, under normal temperature or low temperature conditions, a transparent deposition process is performed on the surface of the metal mesh film layer having a disordered pore structure by a magnetron sputtering process. The conductive film layer completes the preparation of the low-resistance transparent conductive film; wherein, in the step S1, the substrate is pre-plated with one or more transparent optical films before depositing the transparent base film; the transparent optical film is cerium oxide A film, a tantalum pentoxide film, a titanium dioxide film or a tantalum nitride film. 如請求項8之低電阻透明導電薄膜的製備方法,其中,步驟S1中沉積的透明底膜的厚度為10-70奈米,可見光折射率大於1.5。 The method for preparing a low-resistance transparent conductive film according to claim 8, wherein the transparent base film deposited in the step S1 has a thickness of 10 to 70 nm and a visible light refractive index of more than 1.5. 如請求項8之低電阻透明導電薄膜的製備方法,其中,步驟S2中所述微球層掩膜為一層無序排列的單分散的微球。 The method for preparing a low-resistance transparent conductive film according to claim 8, wherein the microsphere layer mask in step S2 is a disorderly array of monodisperse microspheres. 如請求項10之低電阻透明導電薄膜的製備方法,其中,所述微球的直徑範圍為100-1000奈米;所述微球在所述透明底膜表面的表面積覆蓋率為10%-40%。 The method for preparing a low-resistance transparent conductive film according to claim 10, wherein the microspheres have a diameter ranging from 100 to 1000 nm; and the surface area coverage of the microspheres on the surface of the transparent base film is 10%-40 %. 如請求項10之低電阻透明導電薄膜的製備方法,其中,所述微球在透明底膜的排列方式為不規則小團簇的無序間隔分佈,每個團簇包含1-20個微球,每個團簇的形狀、大小不一致,每個團簇的寬度不超過1000奈米,每個團簇的長度不超過5000奈米。 The method for preparing a low-resistance transparent conductive film according to claim 10, wherein the arrangement of the microspheres in the transparent base film is irregularly distributed in irregular small clusters, and each cluster comprises 1-20 microspheres. The shape and size of each cluster are inconsistent. The width of each cluster does not exceed 1000 nm, and the length of each cluster does not exceed 5000 nm.
TW104138243A 2015-09-29 2015-11-19 Low resistance transparent conductive film and its preparation method TWI594886B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510639806.XA CN105225728B (en) 2015-09-29 2015-09-29 A kind of low resistance transparent conductive film and preparation method thereof

Publications (2)

Publication Number Publication Date
TW201711843A TW201711843A (en) 2017-04-01
TWI594886B true TWI594886B (en) 2017-08-11

Family

ID=54994626

Family Applications (1)

Application Number Title Priority Date Filing Date
TW104138243A TWI594886B (en) 2015-09-29 2015-11-19 Low resistance transparent conductive film and its preparation method

Country Status (4)

Country Link
CN (1) CN105225728B (en)
SA (1) SA517382074B1 (en)
TW (1) TWI594886B (en)
WO (1) WO2017054265A1 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101778723B1 (en) * 2016-11-17 2017-09-25 한국에너지기술연구원 Manufacturing method for cigs base photovoltaic cell and cigs base photovoltaic cell
CN108206070B (en) * 2017-06-23 2019-10-29 中国科学院福建物质结构研究所 A kind of transparent conductive film and the method that the film is prepared using crystal boundary print process
CN107275007B (en) * 2017-06-29 2019-11-29 华南理工大学 A kind of compound transparent electricity conductive film and preparation method thereof
CN107910383B (en) * 2017-10-09 2021-01-12 华南师范大学 Preparation method of metal mesh conductive film
CN108336175A (en) * 2018-01-04 2018-07-27 江苏理工学院 A kind of non-crystal silicon solar cell and preparation method thereof of silver nanoparticle net enhancing
CN109585582A (en) * 2018-12-06 2019-04-05 北京大学东莞光电研究院 A kind of electrically conducting transparent panel for solar power generation
CN111574066A (en) * 2020-06-23 2020-08-25 中建材蚌埠玻璃工业设计研究院有限公司 Rapidly-heated anti-virus glass and preparation method thereof
DE102020006108A1 (en) * 2020-10-06 2022-04-07 Giesecke+Devrient Currency Technology Gmbh Transparent conductive film and use of the same
CN112713394A (en) * 2020-12-20 2021-04-27 英特睿达(山东)电子科技有限公司 Hybrid transparent antenna
CN114455857B (en) * 2022-02-23 2023-05-23 江苏铁锚玻璃股份有限公司 Transparent conductive glass and surface resistance reduction method thereof
CN114477786B (en) * 2022-02-23 2023-05-23 江苏铁锚玻璃股份有限公司 Transparent conductive glass and surface resistance increasing method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW560240B (en) * 1998-08-10 2003-11-01 Sumitomo Bakelite Co Transparent electromagnetic wave shield
CN101577148A (en) * 2009-06-23 2009-11-11 中国乐凯胶片集团公司 Transparent conducting film and preparation method thereof

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3813034B2 (en) * 1999-05-18 2006-08-23 三井化学株式会社 Optical filter
US7085444B2 (en) * 2003-02-25 2006-08-01 Eastman Kodak Company Porous optical switch films
EP2462791B1 (en) * 2009-08-03 2019-11-06 3M Innovative Properties Company Process for forming optically clear conductive metal or metal alloy thin films and films made therefrom
CN102087884A (en) * 2009-12-08 2011-06-08 中国科学院福建物质结构研究所 Flexible transparent conductive film based on organic polymers and silver nanowires and preparation method thereof
CN102082186B (en) * 2010-10-29 2013-05-08 华南师范大学 Electrode and manufacturing method thereof
CN102569432B (en) * 2010-12-17 2014-12-10 国家纳米科学中心 Transparent electrode material and preparation method thereof
WO2012108068A1 (en) * 2011-02-07 2012-08-16 ソニー株式会社 Transparent conductive element, input device, electronic device, and master board for producing transparent conductive element
CN103258956B (en) * 2013-03-21 2015-10-28 北京工业大学 A kind of preparation method of two-dimensional island infrared spectrum plasmon metal structure

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW560240B (en) * 1998-08-10 2003-11-01 Sumitomo Bakelite Co Transparent electromagnetic wave shield
CN101577148A (en) * 2009-06-23 2009-11-11 中国乐凯胶片集团公司 Transparent conducting film and preparation method thereof

Also Published As

Publication number Publication date
CN105225728B (en) 2017-01-04
CN105225728A (en) 2016-01-06
TW201711843A (en) 2017-04-01
WO2017054265A1 (en) 2017-04-06
SA517382074B1 (en) 2021-11-07

Similar Documents

Publication Publication Date Title
TWI594886B (en) Low resistance transparent conductive film and its preparation method
Wang et al. Transparent conductive and near-infrared reflective Cu-based Al-doped ZnO multilayer films grown by magnetron sputtering at room temperature
Miao et al. Infrared reflective properties of AZO/Ag/AZO trilayers prepared by RF magnetron sputtering
CN105144045B (en) Conductive structure and its manufacture method
TW201426767A (en) Conductive structure body and method for manufacturing the same
Kim et al. Realization of highly transparent and low resistance TiO2/Ag/TiO2 conducting electrode for optoelectronic devices
CN103092416B (en) Shadow-removing high transmittance glass for one glass solution (OGS) and manufacturing method thereof
TWI443846B (en) Structure of transparent conductors
Li et al. Titanium dioxide-coated fluorine-doped tin oxide thin films for improving overall photoelectric property
CN205722840U (en) A kind of flexible copper grid base transparent conducting film
Kermani et al. Design and construction of an improved nanometric ZnS/Ag/ZnS/Ag/ZnS transparent conductive electrode and investigating the effect of annealing on its characteristics
TWI528095B (en) Electrochromic device and method of manufacturing the same
US11391872B2 (en) Infrared reflective and electrical conductive composite film and manufacturing method thereof
Al-Kuhaili Transparent-conductive and infrared-shielding WO3/Ag/WO3 multilayer heterostructures
EP2973728B1 (en) Transparent electrode and substrate for optoelectronic or plasmonic applications comprising silver
TWI487625B (en) Metal oxide multilayered structure for infrared blocking
CN105845203B (en) A kind of flexible copper grid base transparent conducting film
CN105845752A (en) Transparent conductive film applied to flexible photoelectric device and preparation method thereof
Hsu et al. High-power impulse magnetron sputter deposition for enhanced optical transmittance and electrical conductivity of flexible coating
JP2012089712A (en) Thin film solar cell and method for manufacturing the same
CN208225540U (en) Multi-layer composite conductive film, the product with Multi-layer composite conductive film
WO2014196460A1 (en) Transparent conductor and method for producing same
Kim et al. Electrical and optical characteristics of transparent conducting Si-doped ZnO/hole-patterned Ag/Si-doped ZnO multilayer films
KR101689852B1 (en) Multi-layered transparent electrode comprising grid pattern structure
TW201710564A (en) Blackening plating solution and conductive substrate