TWI593007B - Semiconductor device and method for fabricating the same - Google Patents

Semiconductor device and method for fabricating the same Download PDF

Info

Publication number
TWI593007B
TWI593007B TW103129592A TW103129592A TWI593007B TW I593007 B TWI593007 B TW I593007B TW 103129592 A TW103129592 A TW 103129592A TW 103129592 A TW103129592 A TW 103129592A TW I593007 B TWI593007 B TW I593007B
Authority
TW
Taiwan
Prior art keywords
region
layer
substrate
material layer
top surface
Prior art date
Application number
TW103129592A
Other languages
Chinese (zh)
Other versions
TW201608633A (en
Inventor
楊金成
Original Assignee
旺宏電子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旺宏電子股份有限公司 filed Critical 旺宏電子股份有限公司
Priority to TW103129592A priority Critical patent/TWI593007B/en
Priority to KR1020140141025A priority patent/KR102265650B1/en
Priority to JP2015028953A priority patent/JP6092277B2/en
Publication of TW201608633A publication Critical patent/TW201608633A/en
Application granted granted Critical
Publication of TWI593007B publication Critical patent/TWI593007B/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66825Unipolar field-effect transistors with an insulated gate, i.e. MISFET with a floating gate

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Semiconductor Memories (AREA)
  • Non-Volatile Memory (AREA)

Description

半導體元件及其製造方法 Semiconductor component and method of manufacturing same

本發明是有關於一種電子元件及其製造方法,且特別是有關於一種半導體元件及其製造方法。 The present invention relates to an electronic component and a method of fabricating the same, and more particularly to a semiconductor component and a method of fabricating the same.

隨著科技日新月異,為了達到降低成本、簡化製程步驟以及節省晶片面積的需求,將記憶胞陣列區與周邊電路區的元件整合在同一晶片上已然逐漸成為一種趨勢。然而,在記憶胞陣列區與周邊電路區之間的邊界(Boundary)區域中存在相當大的階梯高度(Step Height),其增加後續製程的複雜度。 With the rapid development of technology, in order to reduce the cost, simplify the process steps and save the wafer area, it has become a trend to integrate the elements of the memory cell array and the peripheral circuit area on the same wafer. However, there is a considerable step height in the Boundary region between the memory cell array region and the peripheral circuit region, which increases the complexity of subsequent processes.

圖1是習知的一種半導體元件的剖面示意圖。請參照圖1,舉例來說,習知的半導體元件為了降低堆疊層12在基底10表面的高度,採用先移除記憶胞陣列區110的一部分基底10以埋入堆疊層12的方式。然而,此方式導致記憶胞陣列區110與周邊電路區120之間的邊界區域130存在相當大的階梯高度。為了要解決階梯高度的問題,需要在記憶胞陣列區110與周邊電路區120之間預留相當大的距離(約莫3μm),以做為邊界區域130,並經 過一連串的微影、蝕刻、薄膜沉積及化學機械研磨(CMP)等平坦化等繁複製程,於邊界區域130中將形成大且深的溝渠18,並在處理過程中填入氮化矽層14與氧化矽層16。然而,由於氮化矽層14與氧化矽層16的蝕刻速率不同,因此,在以溼式蝕刻製程移除多餘的氮化矽層14與氧化矽層16後,在氮化矽層14的兩側容易產生凹陷20且氧化矽層16的頂面也略高於記憶胞陣列區110與周邊電路區120的頂面。由於此邊界平坦化處理製程步驟繁複導致成本高昂,傳統處理方式殘留的高度差,亦增加後續製程的困難度,並降低產品的可靠度。 1 is a schematic cross-sectional view of a conventional semiconductor device. Referring to FIG. 1, for example, in order to reduce the height of the stacked layer 12 on the surface of the substrate 10, a conventional semiconductor device employs a method of removing a portion of the substrate 10 of the memory cell array region 110 to embed the stacked layer 12. However, this approach results in a substantial step height for the boundary region 130 between the memory cell array region 110 and the peripheral circuit region 120. In order to solve the problem of the step height, it is necessary to reserve a considerable distance (about 3 μm) between the memory cell array region 110 and the peripheral circuit region 120 as the boundary region 130, and After a series of lithography such as lithography, etching, thin film deposition, and chemical mechanical polishing (CMP), a large and deep trench 18 is formed in the boundary region 130, and the tantalum nitride layer 14 is filled during the process. With the yttrium oxide layer 16. However, since the etching rate of the tantalum nitride layer 14 and the tantalum oxide layer 16 is different, after removing the excess tantalum nitride layer 14 and the tantalum oxide layer 16 by the wet etching process, the two layers of the tantalum nitride layer 14 are removed. The recess 20 is easily formed on the side and the top surface of the tantalum oxide layer 16 is also slightly higher than the top surface of the memory cell array region 110 and the peripheral circuit region 120. Due to the complicated cost of the boundary flattening process, the height difference of the conventional processing method increases the difficulty of subsequent processes and reduces the reliability of the product.

因此,如何簡化記憶胞陣列區與周邊電路區之間的邊界處理步驟,並達成區域間最小的階梯高度差,減低後續製程的複雜度,增加晶片使用面積,且同時降低成本,將變成相當重要的一門課題。 Therefore, how to simplify the boundary processing steps between the memory cell array region and the peripheral circuit region, and achieve the minimum step height difference between regions, reduce the complexity of subsequent processes, increase the wafer use area, and at the same time reduce the cost, will become quite important a subject.

本發明提供一種半導體元件及其製造方法,其可改善記憶胞陣列區與周邊電路區之間的邊界區域的階梯高度。 The present invention provides a semiconductor device and a method of fabricating the same that can improve a step height of a boundary region between a memory cell array region and a peripheral circuit region.

本發明提供一種半導體元件及其製造方法,其可簡化製程,且同時增加晶片使用面積。 The present invention provides a semiconductor device and a method of fabricating the same that can simplify the process and simultaneously increase the wafer use area.

本發明提供一種半導體元件的製造方法,其方法包括提供基底。基底包括第一區、第二區以及第三區。第一區的基底的頂面低於第二區的基底的頂面。第三區配置於第一區與第二區之 間。第三區的基底具有第一階梯高度。於基底上共形地形成堆疊層。在第三區中的堆疊層具有第二階梯高度。於堆疊層上形成流動材料層。對流動材料層進行第一蝕刻製程,移除部分流動材料層。以位在第一區中的流動材料層為罩幕,對第二區與第三區的堆疊層進行第二蝕刻製程,以暴露第二區的基底的頂面。移除流動材料層。 The present invention provides a method of fabricating a semiconductor device, the method comprising providing a substrate. The substrate includes a first zone, a second zone, and a third zone. The top surface of the substrate of the first zone is lower than the top surface of the substrate of the second zone. The third zone is disposed in the first zone and the second zone between. The base of the third zone has a first step height. A stacked layer is conformally formed on the substrate. The stacked layers in the third zone have a second step height. A layer of flowing material is formed on the stacked layers. A first etching process is performed on the flowing material layer to remove a portion of the flowing material layer. The second etching process is performed on the stacked layers of the second region and the third region by using a layer of flowing material in the first region as a mask to expose the top surface of the substrate of the second region. Remove the layer of flowing material.

在本發明的一實施例中,上述流動材料層的材料包括有機材料、無機材料或是有機無機複合材料。 In an embodiment of the invention, the material of the flowing material layer comprises an organic material, an inorganic material or an organic-inorganic composite material.

在本發明的一實施例中,上述流動材料層的材料包括有機材料。上述有機材料包括光阻(PR)、有機底層材料(ODL)、底抗反射塗佈(BARC)、旋塗式玻璃(SOG)或其組合。 In an embodiment of the invention, the material of the flowing material layer comprises an organic material. The above organic materials include photoresist (PR), organic underlayer (ODL), bottom anti-reflective coating (BARC), spin-on glass (SOG), or a combination thereof.

在本發明的一實施例中,上述堆疊層包括多數個介電層與多數個導體層。上述介電層與導體層相互堆疊。上述第二蝕刻製程對介電層的蝕刻速率等於對導體層的蝕刻速率。 In an embodiment of the invention, the stacked layer includes a plurality of dielectric layers and a plurality of conductor layers. The dielectric layer and the conductor layer are stacked on each other. The etch rate of the dielectric layer to the second etch process is equal to the etch rate of the conductor layer.

在本發明的一實施例中,上述流動材料層進行第一蝕刻製程後,裸露出第二區的堆疊層。 In an embodiment of the invention, after the first etching process is performed on the flowing material layer, the stacked layers of the second region are exposed.

在本發明的一實施例中,上述流動材料層進行第一蝕刻製程後,留在該第一區的該流動材料層的厚度大於留在第二區的流動材料層的厚度,且大於第二階梯高度。 In an embodiment of the invention, after the first etching process is performed on the flowing material layer, the thickness of the flowing material layer remaining in the first region is greater than the thickness of the flowing material layer remaining in the second region, and is greater than the second Step height.

在本發明的一實施例中,上述流動材料層進行第一蝕刻製程後,留在該第一區的該流動材料層的厚度大於留在第二區的流動材料層的厚度,且小於第二階梯高度。 In an embodiment of the invention, after the flowing material layer is subjected to the first etching process, the thickness of the flowing material layer remaining in the first region is greater than the thickness of the flowing material layer remaining in the second region, and is smaller than the second Step height.

本發明提供一種半導體元件包括基底與堆疊層。基底包括第一區、第二區以及第三區。第三區配置於第一區與第二區之間。由於第一區的基底的頂面低於第二區的基底的頂面,因此,第三區的基底具有第一階梯高度。堆疊層配置於第一區與第三區的基底上。在第一區與第三區中的堆疊層的頂面與在第二區中的基底的頂面實質上共平面。 The present invention provides a semiconductor device including a substrate and a stacked layer. The substrate includes a first zone, a second zone, and a third zone. The third zone is disposed between the first zone and the second zone. Since the top surface of the substrate of the first region is lower than the top surface of the substrate of the second region, the substrate of the third region has a first step height. The stacked layers are disposed on the substrates of the first and third regions. The top surface of the stacked layers in the first and third regions is substantially coplanar with the top surface of the substrate in the second region.

在本發明的一實施例中,在第三區中的堆疊層的頂面實質上等於或低於第二區中的基底的頂面。 In an embodiment of the invention, the top surface of the stacked layer in the third zone is substantially equal to or lower than the top surface of the substrate in the second zone.

在本發明的一實施例中,上述第三區的寬度為40nm至140nm。 In an embodiment of the invention, the third region has a width of 40 nm to 140 nm.

基於上述,本發明實施例利用流動材料層覆蓋第一區中的堆疊層以及部分覆蓋第三區中的堆疊層,使得第一區與第三區中的流動材料層的頂面大約等於第二區中的堆疊層的頂面。接著,以第一區中的流動材料層為罩幕,對第二區與第三區的堆疊層進行蝕刻製程,以暴露第二區的基底的頂面。其使得第一區與第三區的堆疊層的頂面大約等於第二區的基底的頂面。如此一來,便可改善記憶胞陣列區(例如是第一區)與周邊電路區(例如是第二區)之間的邊界區域(例如是第三區)的階梯高度,藉此簡化後續製程的複雜度,進而降低製程成本。 Based on the above, the embodiment of the present invention covers the stacked layer in the first region and partially covers the stacked layer in the third region by using the flowing material layer such that the top surface of the flowing material layer in the first region and the third region is approximately equal to the second layer. The top surface of the stacked layers in the zone. Then, the stacked material layers of the second region and the third region are etched by using the flowing material layer in the first region as a mask to expose the top surface of the substrate of the second region. It causes the top surface of the stacked layers of the first and third regions to be approximately equal to the top surface of the substrate of the second region. In this way, the step height of the boundary region (for example, the third region) between the memory cell array region (for example, the first region) and the peripheral circuit region (for example, the second region) can be improved, thereby simplifying the subsequent process. The complexity, which in turn reduces process costs.

為讓本發明的上述特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。 The above described features and advantages of the invention will be apparent from the following description.

10、100‧‧‧基底 10, 100‧‧‧ base

101a‧‧‧介電層 101a‧‧‧ dielectric layer

101b‧‧‧導體層 101b‧‧‧ conductor layer

12、102、102a、102b‧‧‧堆疊層 12, 102, 102a, 102b‧‧‧ stacked layers

14‧‧‧氮化矽層 14‧‧‧矽 nitride layer

16‧‧‧氧化矽層 16‧‧‧Oxide layer

18‧‧‧溝渠 18‧‧‧ditch

20、105‧‧‧凹陷 20, 105‧‧‧ dent

103a、103b、103c、103d、103e、103f‧‧‧材料層 103a, 103b, 103c, 103d, 103e, 103f‧‧‧ material layers

104、104a、104b、104c、104d‧‧‧流動材料層 104, 104a, 104b, 104c, 104d‧‧‧ flowing material layer

106‧‧‧電荷儲存層 106‧‧‧Charge storage layer

108‧‧‧導體柱 108‧‧‧Conductor column

110‧‧‧第一區、記憶胞陣列區 110‧‧‧First Zone, Memory Cell Array Area

120‧‧‧第二區、周邊電路區 120‧‧‧Second area, peripheral circuit area

130‧‧‧第三區、邊界區域 130‧‧‧ Third District, Border Area

140‧‧‧溝渠、洞 140‧‧‧ditches, holes

200‧‧‧部分 Section 200‧‧‧

H1、H2、H3‧‧‧階梯高度 H1, H2, H3‧‧‧ step height

T、T1~T7、t1、t2‧‧‧厚度 T, T1~T7, t1, t2‧‧‧ thickness

圖1是習知的一種半導體元件的剖面示意圖。 1 is a schematic cross-sectional view of a conventional semiconductor device.

圖2A至圖2G為依照本發明實施例所繪示的半導體元件之製造流程的剖面示意圖。 2A-2G are schematic cross-sectional views showing a manufacturing process of a semiconductor device according to an embodiment of the invention.

圖3是圖2A之部分堆疊層的放大示意圖。 Figure 3 is an enlarged schematic view of a portion of the stacked layers of Figure 2A.

圖4為本發明第一實施例之半導體元件的剖面示意圖。 4 is a cross-sectional view showing a semiconductor device according to a first embodiment of the present invention.

圖5為本發明第二實施例之半導體元件的剖面示意圖。 Figure 5 is a cross-sectional view showing a semiconductor device in accordance with a second embodiment of the present invention.

圖6為本發明第三實施例之半導體元件的剖面示意圖。 Figure 6 is a cross-sectional view showing a semiconductor device in accordance with a third embodiment of the present invention.

圖7為本發明第四實施例之半導體元件的剖面示意圖。 Figure 7 is a cross-sectional view showing a semiconductor device in accordance with a fourth embodiment of the present invention.

圖8為本發明之另一實施例中,流動材料層進行第一次蝕刻製程的半導體元件的剖面示意圖。 Figure 8 is a cross-sectional view showing a semiconductor device in which a flow material layer is subjected to a first etching process in another embodiment of the present invention.

圖9為本發明之又一實施例中,流動材料層進行第一次蝕刻製程的半導體元件的剖面示意圖。 Figure 9 is a cross-sectional view showing a semiconductor device in which a flow material layer is subjected to a first etching process in still another embodiment of the present invention.

圖2A至圖2G為依照本發明實施例所繪示的半導體元件之製造流程的剖面示意圖。 2A-2G are schematic cross-sectional views showing a manufacturing process of a semiconductor device according to an embodiment of the invention.

請參照圖2A,首先,提供基底100。基底100包括第一區110、第二區120以及第三區130。上述第三區130位於第一區110與第二區120之間。第一區110的基底100的頂面低於第二區120的基底100的頂面,第三區130的基底100具有第一階梯高度 H1。在一實施例中,第一階梯高度H1的高度為40nm至140nm。在一實施例中,第一區110為記憶胞陣列區;而第二區120為周邊電路區;第三區130則是記憶胞陣列區與周邊電路區之間的邊界區域。在一實施例中,第三區130的寬度為40nm至140nm,其寬度遠小於習知技術中所預留3μm的距離。 Referring to FIG. 2A, first, a substrate 100 is provided. The substrate 100 includes a first region 110, a second region 120, and a third region 130. The third zone 130 is located between the first zone 110 and the second zone 120. The top surface of the substrate 100 of the first region 110 is lower than the top surface of the substrate 100 of the second region 120, and the substrate 100 of the third region 130 has a first step height H1. In an embodiment, the height of the first step height H1 is 40 nm to 140 nm. In one embodiment, the first region 110 is a memory cell array region; the second region 120 is a peripheral circuit region; and the third region 130 is a boundary region between the memory cell array region and the peripheral circuit region. In one embodiment, the third region 130 has a width of 40 nm to 140 nm and a width that is much smaller than a distance of 3 μm reserved in the prior art.

在一實施例中,上述基底100可以是利用微影與蝕刻製程,對基底材料進行第一圖案化製程,以移除對應第一區110與第三區130的部分基底材料。在另一實施例中,上述基底100可以是在對應第二區120的基底材料上形成含矽材料層(未繪示),使得第二區120的含矽材料層的頂面高於第一區110的基底材料的頂面。基底材料例如為半導體基底、半導體化合物基底或是絕緣層上有半導體基底(Semiconductor Over Insulator,SOI)。半導體例如是IVA族的原子,例如矽或鍺。半導體化合物例如是IVA族的原子所形成之半導體化合物,例如是碳化矽或是矽化鍺,或是IIIA族原子與VA族原子所形成之半導體化合物,例如是砷化鎵。 In an embodiment, the substrate 100 may be subjected to a first patterning process on the substrate material by using a lithography and etching process to remove portions of the substrate material corresponding to the first region 110 and the third region 130. In another embodiment, the substrate 100 may be formed with a layer of germanium-containing material (not shown) on the substrate material corresponding to the second region 120 such that the top surface of the germanium-containing material layer of the second region 120 is higher than the first layer. The top surface of the base material of zone 110. The substrate material is, for example, a semiconductor substrate, a semiconductor compound substrate, or a semiconductor substrate (Semiconductor Over Insulator (SOI)). The semiconductor is, for example, an atom of the IVA group, such as ruthenium or osmium. The semiconductor compound is, for example, a semiconductor compound formed of atoms of Group IVA, such as tantalum carbide or germanium telluride, or a semiconductor compound formed of a group IIIA atom and a group VA atom, such as gallium arsenide.

之後,於基底100上共形地形成堆疊層102,其使得第一區110中的堆疊層102的頂面與第二區120的基底100的頂面實質上共平面。換言之,堆疊層102的厚度大約等於第一階梯高度H1。由於堆疊層102共形地覆蓋在基底100上,因此,第一區110中的堆疊層102的頂面低於在第二區120中的堆疊層102的頂面,且第三區130中的堆疊層102具有第二階梯高度H2。在一實施例 中,堆疊層102可例如是單層或多層的複合層。當堆疊層102例如是多層的複合層時,部分堆疊層200的放大示意圖如圖3所示。堆疊層102包括多數個介電層101a與多數個導體層101b。上述介電層101a與導體層101b相互堆疊。在一實施例中,導體層101b的數目可包括8層、16層、32層或更多層。同樣地,介電層101a配置於相鄰兩個導體層101b之間,因此,介電層101a亦包括8層、16層、32層或更多層。在一實施例中,介電層101a的材料可包括氧化矽、氮化矽或其組合,其形成方法可利用化學氣相沈積法來形成。導體層101b的材料可包括是摻雜多晶矽、非摻雜多晶矽或其組合,其形成方法可利用化學氣相沈積法來形成。在一實施例中,第二階梯高度H2的高度為40nm至140nm。 Thereafter, a stacked layer 102 is conformally formed on the substrate 100 such that the top surface of the stacked layer 102 in the first region 110 is substantially coplanar with the top surface of the substrate 100 of the second region 120. In other words, the thickness of the stacked layer 102 is approximately equal to the first step height H1. Since the stacked layer 102 conformally covers the substrate 100, the top surface of the stacked layer 102 in the first region 110 is lower than the top surface of the stacked layer 102 in the second region 120, and in the third region 130 The stacked layer 102 has a second step height H2. In an embodiment The stacked layer 102 may be, for example, a single layer or a multilayer composite layer. When the stacked layer 102 is, for example, a multi-layered composite layer, an enlarged schematic view of the partially stacked layer 200 is shown in FIG. The stacked layer 102 includes a plurality of dielectric layers 101a and a plurality of conductor layers 101b. The dielectric layer 101a and the conductor layer 101b are stacked on each other. In an embodiment, the number of conductor layers 101b may include 8 layers, 16 layers, 32 layers, or more. Similarly, the dielectric layer 101a is disposed between the adjacent two conductor layers 101b. Therefore, the dielectric layer 101a also includes 8 layers, 16 layers, 32 layers or more. In an embodiment, the material of the dielectric layer 101a may include ruthenium oxide, tantalum nitride, or a combination thereof, and the formation method thereof may be formed by chemical vapor deposition. The material of the conductor layer 101b may include doped polysilicon, undoped polysilicon, or a combination thereof, and the formation method thereof may be formed by chemical vapor deposition. In an embodiment, the height of the second step height H2 is 40 nm to 140 nm.

請參照圖2B,於第一區110、第二區120以及第三區130的堆疊層102上形成流動材料層104。在一實施例中,流動材料層104的材料包括有機材料、無機材料或是有機無機複合材料。而當流動材料層104的材料例如是有機材料時,上述有機材料包括光阻(Photoresist,PR)、有機底層材料(Organic unDer Layer,ODL)、底抗反射塗佈(Bottom Anti-Reflection Coating,BARC)、旋塗式玻璃(Spin-On Glass,SOG)或其組合。流動材料層104的形成方法例如是旋轉塗佈法、高密度電漿法(HDPCVD)或增強高深寬比溝填製程(Enhanced High Aspect Ratio Process,eHARP)。流動材料層104可以是單層結構、雙層結構或多層結構。 Referring to FIG. 2B, a flow material layer 104 is formed on the stacked layer 102 of the first region 110, the second region 120, and the third region 130. In an embodiment, the material of the flowing material layer 104 includes an organic material, an inorganic material, or an organic-inorganic composite material. When the material of the flowing material layer 104 is, for example, an organic material, the organic material includes Photoresist (PR), Organic UnDer Layer (ODL), and Bottom Anti-Reflection Coating (BARC). ), Spin-On Glass (SOG) or a combination thereof. The method of forming the flowing material layer 104 is, for example, a spin coating method, a high density plasma method (HDPCVD), or an enhanced high aspect ratio process (eHARP). The flow material layer 104 can be a single layer structure, a two layer structure, or a multilayer structure.

如圖4所示,在本發明第一實施例中,流動材料層104 例如是單層結構。流動材料層104的材料可包括:光阻(PR)、有機底層材料(ODL)、底抗反射塗佈(BARC)或旋塗式玻璃(SOG)。只要流動材料層104能覆蓋堆疊層102的頂面,且流動材料層104的厚度T1大於第二階梯高度H2即可,本發明實施例之流動材料層104的材料並不限於此。 As shown in FIG. 4, in the first embodiment of the present invention, the flowing material layer 104 For example, it is a single layer structure. The material of the flowing material layer 104 may include: photoresist (PR), organic underlayer (ODL), bottom anti-reflective coating (BARC) or spin-on glass (SOG). The material of the flowing material layer 104 of the embodiment of the present invention is not limited thereto as long as the flowing material layer 104 can cover the top surface of the stacked layer 102 and the thickness T1 of the flowing material layer 104 is greater than the second step height H2.

請參照圖5至7,流動材料層104可例如是雙層結構。請參照圖5,在本發明第二實施例中,流動材料層104的頂面為平坦的表面,且流動材料層104依序包括材料層103a與材料層103b。材料層103a與材料層103b可例如是相同材料。材料層103b具有平坦的表面。舉例來說,材料層103a與材料層103b皆例如是有機底層材料(ODL)。然而,材料層103a與材料層103b之總和的厚度T2大於第二階梯高度H2即可,本發明實施例之材料層103a與材料層103b的材料並不限於此。 Referring to Figures 5 through 7, the flowing material layer 104 can be, for example, a two-layer structure. Referring to FIG. 5, in the second embodiment of the present invention, the top surface of the flowing material layer 104 is a flat surface, and the flowing material layer 104 sequentially includes a material layer 103a and a material layer 103b. The material layer 103a and the material layer 103b may be, for example, the same material. The material layer 103b has a flat surface. For example, both the material layer 103a and the material layer 103b are, for example, organic underlayer materials (ODL). However, the thickness T2 of the sum of the material layer 103a and the material layer 103b may be larger than the second step height H2, and the material of the material layer 103a and the material layer 103b of the embodiment of the present invention is not limited thereto.

另一方面,請參照圖6,在本發明第三實施例中,流動材料層104的頂面為平坦的表面,且流動材料層104依序包括材料層103c與材料層103d。材料層103c與材料層103d例如是不同材料。舉例來說,材料層103c可例如是有機底層材料(ODL),而材料層103d可例如是光阻(PR)。材料層103d具有平坦的表面。然而,材料層103c與材料層103d之總和的厚度T3大於第二階梯高度H2即可,本發明實施例之材料層103c與103d的材料並不限於此。 On the other hand, referring to FIG. 6, in the third embodiment of the present invention, the top surface of the flowing material layer 104 is a flat surface, and the flowing material layer 104 sequentially includes a material layer 103c and a material layer 103d. The material layer 103c and the material layer 103d are, for example, different materials. For example, material layer 103c can be, for example, an organic underlayer material (ODL), while material layer 103d can be, for example, a photoresist (PR). The material layer 103d has a flat surface. However, the thickness T3 of the sum of the material layer 103c and the material layer 103d may be larger than the second step height H2, and the materials of the material layers 103c and 103d of the embodiment of the present invention are not limited thereto.

此外,如圖7所示,在本發明第四實施例中,流動材料 層104可例如是雙層或多層結構,但流動材料層104的頂面不平坦,但其階梯高度H3小於階梯高度H2。舉例來說,於堆疊層102上部分共形地形成單層或多層的材料層103e。接著,在單層或多層的材料層103e上形成材料層103f。材料層103f的表面不平坦,具有階梯高度H3。材料層103e可例如是氮化矽(SiN)、氧化矽、氮氧化矽、碳層或碳化矽,其形成方法可利用化學氣相沈積法來形成。材料層103f可例如是有機底層材料(ODL),其形成方法可利用旋轉塗佈法來形成。只要材料層103e與材料層103f能覆蓋堆疊層102的頂面,且材料層103e與材料層103f之總和的厚度T4大於第二階梯高度H2即可,本發明實施例之材料層103e與材料層103f的材料並不限於此。 Further, as shown in FIG. 7, in the fourth embodiment of the present invention, the flowing material Layer 104 may be, for example, a two-layer or multi-layer structure, but the top surface of flowing material layer 104 is not flat, but its step height H3 is less than step height H2. For example, a single or multiple layer of material layer 103e is conformally formed on the stacked layer 102. Next, a material layer 103f is formed on the single or multiple layer of material layer 103e. The surface of the material layer 103f is not flat and has a step height H3. The material layer 103e may be, for example, tantalum nitride (SiN), ruthenium oxide, ruthenium oxynitride, a carbon layer or tantalum carbide, and the formation method thereof may be formed by chemical vapor deposition. The material layer 103f may be, for example, an organic underlayer material (ODL), and the formation method thereof may be formed by a spin coating method. The material layer 103e and the material layer of the embodiment of the present invention may be used as long as the material layer 103e and the material layer 103f can cover the top surface of the stacked layer 102, and the thickness T4 of the sum of the material layer 103e and the material layer 103f is greater than the second step height H2. The material of 103f is not limited to this.

請參照圖2C、圖8與圖9,以堆疊層102的頂面當作蝕刻停止層,對進行第一蝕刻製程,以移除部分的流動材料層104,留下流動材料層104a、104b或104c。第一蝕刻製程可例如是回蝕刻(Etch Back)製程。在一實施例中,請參照圖2C,在進行第一蝕刻製程之後,留下來的流動材料層104a覆蓋第一區110與部分覆蓋第三區130中的堆疊層102,且暴露第二區120與第三區130的堆疊層102的頂面。此外,第一區110上的流動材料層104a的厚度T5實質上等於第二階梯高度H2。亦即,流動材料層104a的頂面實質上等於第二區120與第三區130的堆疊層102的頂面。 2C, 8 and 9, with the top surface of the stacked layer 102 as an etch stop layer, a first etching process is performed to remove a portion of the flowing material layer 104, leaving the flowing material layers 104a, 104b or 104c. The first etch process can be, for example, an Etch Back process. In an embodiment, referring to FIG. 2C, after the first etching process is performed, the remaining flowing material layer 104a covers the first region 110 and partially covers the stacked layer 102 in the third region 130, and exposes the second region 120. The top surface of the stacked layer 102 with the third region 130. Further, the thickness T5 of the flowing material layer 104a on the first region 110 is substantially equal to the second step height H2. That is, the top surface of the flowing material layer 104a is substantially equal to the top surface of the stacked layer 102 of the second region 120 and the third region 130.

在又一實施例中,請參照圖8,在進行第一蝕刻製程之後,留下來的流動材料層104b覆蓋第一區110、第二區120與第 三區130中的堆疊層102。第一區110上的流動材料層104b的厚度T6大於第二區120上的流動材料層104b的厚度t1,但厚度T6實質上大於第二階梯高度H2。 In still another embodiment, referring to FIG. 8, after the first etching process is performed, the remaining flowing material layer 104b covers the first region 110, the second region 120, and the first Stacked layers 102 in three zones 130. The thickness T6 of the flowing material layer 104b on the first zone 110 is greater than the thickness t1 of the flowing material layer 104b on the second zone 120, but the thickness T6 is substantially greater than the second step height H2.

在另一實施例中,請參照圖9,在進行第一蝕刻製程之後,留下來的流動材料層104c覆蓋第一區110、第二區120與第三區130中的堆疊層102。第一區110上的流動材料層104c的厚度T7大於第二區120上的流動材料層104c的厚度t2,但厚度T7小於第二階梯高度H2。 In another embodiment, referring to FIG. 9, after the first etching process is performed, the remaining flowing material layer 104c covers the stacked layer 102 in the first region 110, the second region 120, and the third region 130. The thickness T7 of the flowing material layer 104c on the first region 110 is greater than the thickness t2 of the flowing material layer 104c on the second region 120, but the thickness T7 is smaller than the second step height H2.

請參照圖2D,進行第二蝕刻製程,以暴露第二區120的基底100的頂面。在一實施例中,第二蝕刻製程可例如是非等向性蝕刻製程。藉由蝕刻劑的選擇,使用對於流動材料層104a/104b/104c具有低蝕刻率或極低蝕刻率,但對於堆疊層102a具有高蝕刻率的蝕刻劑,可直接以流動材料層104a/104b/104c為罩幕,自對準(Self Align)未覆蓋流動材料層104a或流動材料層104b/104c較薄的第二區120與部分移除第三區130的堆疊層102,而無需藉由微影製程來定義蝕刻的區域。因此,可以避免進行微影製程所產生的對準失誤問題。 Referring to FIG. 2D, a second etching process is performed to expose the top surface of the substrate 100 of the second region 120. In an embodiment, the second etch process can be, for example, an anisotropic etch process. By the choice of etchant, an etchant having a low etch rate or a very low etch rate for the flowing material layer 104a/104b/104c, but having a high etch rate for the stacked layer 102a, may be directly used as the flowing material layer 104a/104b/ 104c is a mask, self-aligning (Self Align) does not cover the second region 120 of the flowing material layer 104a or the flowing material layer 104b/104c and the stacked layer 102 of the third region 130 is partially removed, without The shadow process defines the area of the etch. Therefore, the problem of misalignment caused by the lithography process can be avoided.

在進行第二蝕刻製程之後,暴露出第三區130的堆疊層102a的頂面,且第三區130的堆疊層102a的頂面大約等於第二區120的基底100的頂面。在一實施例中,在進行第二蝕刻製程之後,仍有部分流動材料層104d留在第一區110的基底100上。在另一實施例中,在進行第二蝕刻製程之後,在第一區110的基底 100上的流動材料層104a被完全移除。 After the second etching process is performed, the top surface of the stacked layer 102a of the third region 130 is exposed, and the top surface of the stacked layer 102a of the third region 130 is approximately equal to the top surface of the substrate 100 of the second region 120. In one embodiment, a portion of the flowing material layer 104d remains on the substrate 100 of the first region 110 after the second etching process. In another embodiment, after performing the second etching process, the substrate in the first region 110 The flow material layer 104a on 100 is completely removed.

另外,請回頭參考圖2C與圖3,在一實施例中,第二蝕刻製程對介電層101a的蝕刻速率大約等於對導體層101b的蝕刻速率。如此一來,在進行第二蝕刻製程之後,第三區130的堆疊層102a的頂面大部分可以是實質上平滑的表面,而非凹凸不平的表面。然而,在進行第二蝕刻製程時,亦有可能在第三區130的堆疊層102a造成部分凹陷,但是可以被接受的。 In addition, referring back to FIG. 2C and FIG. 3, in one embodiment, the etching rate of the second etching process to the dielectric layer 101a is approximately equal to the etching rate of the conductor layer 101b. As such, after the second etching process is performed, the top surface of the stacked layer 102a of the third region 130 may be a substantially smooth surface rather than an uneven surface. However, it is also possible to cause partial depression in the stacked layer 102a of the third region 130 during the second etching process, but it is acceptable.

此外,第二蝕刻製程的蝕刻條件(Etch Recipe)可依據流動材料層104的厚度T與第二階梯高度H2來調整。舉例來說,在堆疊層102上形成流動材料層104a之後,如圖2C所示,當第一區110上的流動材料層104a的厚度T5等於第二階梯高度H2時,或是如圖8,當第一區110上的流動材料層104b的厚度T6大於第二階梯高度H2時,則第二蝕刻製程對流動材料層104a或104b的蝕刻速率可低於或等於對堆疊層102的蝕刻速率。然而,如圖9所示,當第一區110上的流動材料層104c的厚度T7小於第二階梯高度H2時,第二蝕刻製程對流動材料層104c與堆疊層102的最小需求蝕刻速率比為(T7-t2):H2。換言之,在進行第二蝕刻製程時,所選擇的蝕刻劑對流動材料層104c的蝕刻速率必須遠低於對堆疊層102的蝕刻速率。如此一來,在進行第二蝕刻製程的時候,第一區110上的流動材料層104c的厚度便足夠保護其下方的堆疊層102不受損害。 In addition, the etching condition (Etch Recipe) of the second etching process may be adjusted according to the thickness T of the flowing material layer 104 and the second step height H2. For example, after forming the flowing material layer 104a on the stacked layer 102, as shown in FIG. 2C, when the thickness T5 of the flowing material layer 104a on the first region 110 is equal to the second step height H2, or as shown in FIG. When the thickness T6 of the flowing material layer 104b on the first region 110 is greater than the second step height H2, the etching rate of the second etching process to the flowing material layer 104a or 104b may be lower than or equal to the etching rate of the stacked layer 102. However, as shown in FIG. 9, when the thickness T7 of the flowing material layer 104c on the first region 110 is smaller than the second step height H2, the minimum etching rate ratio of the second etching process to the flowing material layer 104c and the stacked layer 102 is (T7-t2): H2. In other words, the etch rate of the selected etchant to the flowing material layer 104c must be much lower than the etch rate to the stacked layer 102 during the second etch process. As such, the thickness of the flowing material layer 104c on the first region 110 is sufficient to protect the stacked layer 102 underneath from damage during the second etching process.

請參照圖2D與2E,利用乾式剝除(Dry Strip)製程或 濕式剝除(Wet Strip)製程移除流動材料層104d,以暴露第一區110中的堆疊層102a的頂面。在移除流動材料層104d之後,第一區110與第三區130的堆疊層102a的頂面實質上等於第二區120的基底100的頂面。在原本具有第二階梯高度H2的第三區130中,其堆疊層102a的頂面大部分亦為平滑的表面,不會產生習知技術中頂面凹凸不平的現象。如此一來,本發明實施例之半導體元件的製造方法便可簡化後續製程的複雜度,進而提升產品的可靠度。 Please refer to Figures 2D and 2E, using the Dry Strip process or The Wet Strip process removes the flow material layer 104d to expose the top surface of the stacked layer 102a in the first region 110. After removing the flowing material layer 104d, the top surface of the stacked layer 102a of the first region 110 and the third region 130 is substantially equal to the top surface of the substrate 100 of the second region 120. In the third region 130 having the second step height H2, the top surface of the stacked layer 102a is also a smooth surface, which does not cause the unevenness of the top surface in the prior art. In this way, the manufacturing method of the semiconductor device of the embodiment of the invention can simplify the complexity of the subsequent process, thereby improving the reliability of the product.

請參照圖2F,在移除第一區110的流動材料層104d之後,對第一區110的堆疊層102a進行第二圖案化製程,移除部分第一區110的堆疊層102a,以於第一區110的堆疊層102b中形成多數個溝渠或洞140。由於第二圖案化製程可能部分移除第三區130的堆疊層102b,因此,第三區130中的堆疊層102b的頂面實質上等於或低於第二區120中的基底100的頂面。然而,對於最終元件的產品可靠度而言,第三區130的堆疊層102b的部分凹陷105是可以被接受的。在一實施例中,凹陷105的深度小於10nm。在另一實施例中,凹陷105的深度在1nm至10nm之間。 Referring to FIG. 2F, after removing the flowing material layer 104d of the first region 110, a second patterning process is performed on the stacked layer 102a of the first region 110, and the stacked layer 102a of the portion of the first region 110 is removed. A plurality of trenches or holes 140 are formed in the stacked layer 102b of a zone 110. Since the second patterning process may partially remove the stacked layer 102b of the third region 130, the top surface of the stacked layer 102b in the third region 130 is substantially equal to or lower than the top surface of the substrate 100 in the second region 120. . However, for product reliability of the final component, a portion of the recess 105 of the stacked layer 102b of the third region 130 is acceptable. In an embodiment, the depth of the recess 105 is less than 10 nm. In another embodiment, the depth of the recess 105 is between 1 nm and 10 nm.

請參照圖2G,於每一溝渠或洞140中依序形成電荷儲存層106與所對應的導體柱108。電荷儲存層106配置於導體柱108與堆疊層102b之間。具體來說,先於每一溝渠140中共形地形成電荷儲存層106。接著,於堆疊層102b上形成導體材料層(未繪示),其中導體材料層填入溝渠140中。然後,進行平坦化製程,移除部分導體材料層,以暴露堆疊層102b的頂面。在一實施例中, 電荷儲存層106可例如是由氧化層/氮化層/氧化層(Oxide-Nitride-Oxide,ONO)所構成的複合層,此複合層可為三層或更多層,本發明並不限於此,其形成方法可以是化學氣相沉積法、熱氧化法等。導體柱108的材料可例如是摻雜多晶矽、非摻雜多晶矽或其組合,其形成方法可以利用化學氣相沈積法來形成。 Referring to FIG. 2G, the charge storage layer 106 and the corresponding conductor post 108 are sequentially formed in each trench or hole 140. The charge storage layer 106 is disposed between the conductor post 108 and the stacked layer 102b. Specifically, the charge storage layer 106 is conformally formed in each of the trenches 140. Next, a conductive material layer (not shown) is formed on the stacked layer 102b, wherein the conductive material layer is filled in the trench 140. Then, a planarization process is performed to remove a portion of the conductor material layer to expose the top surface of the stacked layer 102b. In an embodiment, The charge storage layer 106 may be, for example, a composite layer composed of an Oxide-Nitride-Oxide (ONO) layer. The composite layer may be three or more layers, and the present invention is not limited thereto. The formation method may be a chemical vapor deposition method, a thermal oxidation method, or the like. The material of the conductor post 108 may be, for example, doped polysilicon, non-doped polysilicon or a combination thereof, and the formation method thereof may be formed by chemical vapor deposition.

請回頭參照圖2E,本發明實施例之半導體元件包括基底100與堆疊層102a。基底100包括第一區110、第二區120以及第三區130。第三區130位於第一區110與第二區120之間。第一區110的基底100的頂面低於第二區120的基底100的頂面,第三區130的基底100具有第一階梯高度H1。堆疊層102a配置於第一區110與第三區130的基底100上。堆疊層102a包括多數個介電層101a與多數個導體層101b。上述介電層101a與導體層101b相互堆疊。在第一區110與在第三區130中的堆疊層102a的頂面與第二區120的基底100的頂面實質上共平面。 Referring back to FIG. 2E, the semiconductor device of the embodiment of the present invention includes a substrate 100 and a stacked layer 102a. The substrate 100 includes a first region 110, a second region 120, and a third region 130. The third zone 130 is located between the first zone 110 and the second zone 120. The top surface of the substrate 100 of the first region 110 is lower than the top surface of the substrate 100 of the second region 120, and the substrate 100 of the third region 130 has a first step height H1. The stacked layer 102a is disposed on the substrate 100 of the first region 110 and the third region 130. The stacked layer 102a includes a plurality of dielectric layers 101a and a plurality of conductor layers 101b. The dielectric layer 101a and the conductor layer 101b are stacked on each other. The top surface of the stacked layer 102a in the first region 110 and the third region 130 is substantially coplanar with the top surface of the substrate 100 of the second region 120.

綜上所述,本發明實施例利用覆蓋在記憶胞陣列區(例如是第一區)中的堆疊層中的堆疊層流動材料層做為罩幕,以蝕刻周邊電路區(例如是第二區)與邊界區域(例如是第三區)的堆疊層。藉此,可以使得記憶胞陣列區(例如是第一區)與邊界區域(例如是第三區)中的堆疊層的頂面大約等於第二區中的基底的頂面。如此一來,便可降低記憶胞陣列區(例如是第一區)與周邊電路區(例如是第二區)之間的邊界區域(例如是第三區) 的階梯高度,藉此簡化後續製程的複雜度。 In summary, the embodiment of the present invention uses a stacked layer of flowing material layer in a stacked layer covering a memory cell array region (for example, the first region) as a mask to etch a peripheral circuit region (for example, a second region). And a stacked layer with a boundary area (for example, the third area). Thereby, the top surface of the stacked layer in the memory cell array region (for example, the first region) and the boundary region (for example, the third region) can be made approximately equal to the top surface of the substrate in the second region. In this way, the boundary area between the memory cell array region (for example, the first region) and the peripheral circuit region (for example, the second region) can be reduced (for example, the third region). The height of the ladder, thereby simplifying the complexity of subsequent processes.

此外,本發明實施例還可利用流動材料層的厚度與第二階梯高度來調整蝕刻條件,使得在進行第二蝕刻製程之後,記憶胞陣列區(例如是第一區)與邊界區域(例如是第三區)中的堆疊層的頂面等於周邊電路區(例如是第二區)的基底的頂面,而且讓記憶胞陣列區(例如是第一區)中的堆疊層不受到損害。由於記憶胞陣列區(例如是第一區)與邊界區域(例如是第三區)中的堆疊層的頂面與周邊電路區(例如是第二區)中的基底的頂面實質上共平面,因此,本發明實施例可省略許多後續製程步驟,達到降低製程成本(約莫降低3%的製程成本)的功效。而且本發明實施例亦可減少記憶胞陣列區與周邊電路區之間的邊界區域,以增加晶片使用面積且更進一步降低製程成本。 In addition, the embodiment of the present invention may further adjust the etching condition by using the thickness of the flowing material layer and the second step height, so that after performing the second etching process, the memory cell array region (for example, the first region) and the boundary region (for example, The top surface of the stacked layer in the third region) is equal to the top surface of the substrate of the peripheral circuit region (for example, the second region), and the stacked layers in the memory cell array region (for example, the first region) are not damaged. The top surface of the stacked layer in the memory cell array region (eg, the first region) and the boundary region (eg, the third region) is substantially coplanar with the top surface of the substrate in the peripheral circuit region (eg, the second region) Therefore, the embodiment of the present invention can omit many subsequent process steps, and achieve the effect of reducing the process cost (about 3% of the process cost). Moreover, the embodiment of the present invention can also reduce the boundary area between the memory cell array region and the peripheral circuit region to increase the wafer use area and further reduce the process cost.

雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明的精神和範圍內,當可作些許的更動與潤飾,故本發明的保護範圍當視後附的申請專利範圍所界定者為準。 Although the present invention has been disclosed in the above embodiments, it is not intended to limit the present invention, and any one of ordinary skill in the art can make some changes and refinements without departing from the spirit and scope of the present invention. The scope of the invention is defined by the scope of the appended claims.

100‧‧‧基底 100‧‧‧Base

102a‧‧‧堆疊層 102a‧‧‧Stacking

110‧‧‧第一區 110‧‧‧First District

120‧‧‧第二區 120‧‧‧Second District

130‧‧‧第三區 130‧‧‧ Third District

Claims (10)

一種半導體元件的製造方法,包括:提供一基底,該基底包括一第一區、一第二區以及一第三區,其中該第一區的該基底的頂面低於該第二區的該基底的頂面,該第三區位於該第一區與該第二區之間,該第三區的該基底具有一第一階梯高度;於該基底上共形地形成一堆疊層,在該第三區中的該堆疊層具有一第二階梯高度;於該堆疊層上形成一流動材料層;對該流動材料層進行一第一蝕刻製程,以移除部分該流動材料層;以位在該第一區中的該流動材料層為罩幕,對該第二區與該第三區的該堆疊層進行一第二蝕刻製程,以暴露該第二區的該基底的頂面;以及完全移除該流動材料層。 A method of fabricating a semiconductor device, comprising: providing a substrate, the substrate comprising a first region, a second region, and a third region, wherein a top surface of the substrate of the first region is lower than the second region a top surface of the substrate, the third region being located between the first region and the second region, the substrate of the third region having a first step height; forming a stacked layer conformally on the substrate The stacked layer in the third region has a second step height; forming a flowing material layer on the stacked layer; performing a first etching process on the flowing material layer to remove a portion of the flowing material layer; The layer of flowing material in the first region is a mask, and a second etching process is performed on the stacked layer of the second region and the third region to expose a top surface of the substrate of the second region; and completely The layer of flowing material is removed. 如申請專利範圍第1項所述的半導體元件的製造方法,其中該流動材料層的材料包括一有機材料、一無機材料或是一有機無機複合材料。 The method of manufacturing a semiconductor device according to claim 1, wherein the material of the flowing material layer comprises an organic material, an inorganic material or an organic-inorganic composite material. 如申請專利範圍第1項所述的半導體元件的製造方法,其中該流動材料層的材料包括一有機材料,該有機材料包括光阻(PR)、有機底層材料(ODL)、底抗反射塗佈(BARC)、旋塗式玻璃(SOG)或其組合。 The method of manufacturing a semiconductor device according to claim 1, wherein the material of the flowing material layer comprises an organic material including a photoresist (PR), an organic underlayer (ODL), and a bottom anti-reflective coating. (BARC), spin on glass (SOG) or a combination thereof. 如申請專利範圍第1項所述的半導體元件的製造方法,其中該堆疊層包括多數個介電層與多數個導體層,該些介電層與該些導體層相互堆疊,其中該第二蝕刻製程對該些介電層的蝕刻速率等於對該些導體層的蝕刻速率。 The method of fabricating a semiconductor device according to claim 1, wherein the stacked layer comprises a plurality of dielectric layers and a plurality of conductor layers, and the dielectric layers and the conductor layers are stacked on each other, wherein the second etching The etch rate of the dielectric layers is equal to the etch rate of the conductor layers. 如申請專利範圍第1項所述的半導體元件的製造方法,其中對該流動材料層進行該第一蝕刻製程後,裸露出該第二區的該堆疊層。 The method of manufacturing a semiconductor device according to claim 1, wherein the stacked layer of the second region is exposed after the first etching process is performed on the flowing material layer. 如申請專利範圍第1項所述的半導體元件的製造方法,其中對該流動材料層進行該第一蝕刻製程後,留在該第一區的該流動材料層的厚度大於留在該第二區的該流動材料層的厚度,且大於該第二階梯高度。 The method of manufacturing a semiconductor device according to claim 1, wherein after the first etching process is performed on the flowing material layer, a thickness of the flowing material layer remaining in the first region is greater than remaining in the second region. The thickness of the layer of flowing material is greater than the second step height. 如申請專利範圍第1項所述的半導體元件的製造方法,其中對該流動材料層進行該第一蝕刻製程後,在該第一區的該流動材料層的厚度大於留在該第二區的該流動材料層的厚度,且小於該第二階梯高度。 The method of manufacturing a semiconductor device according to claim 1, wherein after the first etching process is performed on the flowing material layer, a thickness of the flowing material layer in the first region is greater than a thickness remaining in the second region. The thickness of the layer of flowing material is less than the second step height. 一種半導體元件,包括:一基底,包括一第一區、一第二區以及一第三區,其中該第三區配置於該第一區與該第二區之間,該第一區的該基底的頂面低於該第二區的該基底的頂面,該第三區的該基底具有一第一階梯高度,其中該第一區為記憶胞陣列區,該第二區為周邊電路區;以及一堆疊層,配置於該第一區與該第三區的該基底上,其中在 該第一區與該第三區中的該堆疊層的頂面與在該第二區中的該基底的頂面實質上共平面。 A semiconductor device comprising: a substrate comprising a first region, a second region, and a third region, wherein the third region is disposed between the first region and the second region, the first region The top surface of the substrate is lower than the top surface of the substrate of the second region, the substrate of the third region has a first step height, wherein the first region is a memory cell array region, and the second region is a peripheral circuit region And a stacked layer disposed on the substrate of the first region and the third region, wherein The top surface of the stacked layer in the first zone and the third zone is substantially coplanar with the top surface of the substrate in the second zone. 如申請專利範圍第8項所述的半導體元件,其中在該第三區中的該堆疊層的頂面實質上等於或低於該第二區中的該基底的頂面。 The semiconductor device of claim 8, wherein a top surface of the stacked layer in the third region is substantially equal to or lower than a top surface of the substrate in the second region. 如申請專利範圍第8項所述的半導體元件,其中該第三區的寬度為40nm至140nm。 The semiconductor device according to claim 8, wherein the third region has a width of 40 nm to 140 nm.
TW103129592A 2014-08-27 2014-08-27 Semiconductor device and method for fabricating the same TWI593007B (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
TW103129592A TWI593007B (en) 2014-08-27 2014-08-27 Semiconductor device and method for fabricating the same
KR1020140141025A KR102265650B1 (en) 2014-08-27 2014-10-17 Semiconductor device and method for fabricating the same
JP2015028953A JP6092277B2 (en) 2014-08-27 2015-02-17 Semiconductor device and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW103129592A TWI593007B (en) 2014-08-27 2014-08-27 Semiconductor device and method for fabricating the same

Publications (2)

Publication Number Publication Date
TW201608633A TW201608633A (en) 2016-03-01
TWI593007B true TWI593007B (en) 2017-07-21

Family

ID=55534425

Family Applications (1)

Application Number Title Priority Date Filing Date
TW103129592A TWI593007B (en) 2014-08-27 2014-08-27 Semiconductor device and method for fabricating the same

Country Status (3)

Country Link
JP (1) JP6092277B2 (en)
KR (1) KR102265650B1 (en)
TW (1) TWI593007B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021044295A (en) 2019-09-06 2021-03-18 キオクシア株式会社 Semiconductor device and manufacturing method for the same

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009152360A (en) * 2007-12-20 2009-07-09 Toshiba Corp Manufacturing method of semiconductor device
JP2010157557A (en) * 2008-12-26 2010-07-15 Panasonic Corp Method of manufacturing non-volatile semiconductor memory device
KR101548674B1 (en) * 2009-08-26 2015-09-01 삼성전자주식회사 3 Three dimensional semiconductor memory device and method for fabricating the same
JP2011014666A (en) * 2009-07-01 2011-01-20 Toshiba Corp Semiconductor device and method of manufacturing the same
KR101759926B1 (en) * 2009-07-23 2017-07-21 삼성전자주식회사 Memory Semiconductor Device and Methods of Fabricating and Operating the Same
KR101990904B1 (en) * 2012-07-17 2019-06-19 삼성전자주식회사 A vertical type semiconductor device

Also Published As

Publication number Publication date
KR20160025428A (en) 2016-03-08
JP6092277B2 (en) 2017-03-08
JP2016048773A (en) 2016-04-07
KR102265650B1 (en) 2021-06-17
TW201608633A (en) 2016-03-01

Similar Documents

Publication Publication Date Title
US8685859B2 (en) Self-aligned semiconductor trench structures
US9613967B1 (en) Memory device and method of fabricating the same
US8304175B2 (en) Patterning method
WO2011135641A1 (en) Semiconductor device and method for manufacturing same
US8071439B2 (en) Method for manufacturing semiconductor device
KR102327667B1 (en) Methods of manufacturing semiconductor devices
TWI593007B (en) Semiconductor device and method for fabricating the same
US9343477B2 (en) Semiconductor device and method for fabricating the same
TWI653712B (en) Semiconductor structure and manufacturing method thereof
US9029216B1 (en) Memory and manufacturing method thereof
TWI469269B (en) Method of forming word line of embedded flash memory
US9123579B2 (en) 3D memory process and structures
JP2012134378A (en) Method of manufacturing semiconductor device
TWI766698B (en) Method of manufacturing semiconductor structure
US20110201170A1 (en) Method of fabricating memory
KR101173478B1 (en) Method for fabricating semiconductor device
JP2013172103A (en) Method of forming interconnection
CN105448868B (en) Semiconductor element and its manufacturing method
JP2013030698A (en) Method of manufacturing semiconductor device
KR100782790B1 (en) Semiconductor device and fabrication method of thereof
KR101067875B1 (en) Method of manufacturing semiconductor device
KR100772706B1 (en) Method for fabricating contact in semiconductor device
US20080160744A1 (en) Method for fabricating semiconductor device and improving thin film uniformity
TWI518842B (en) Method of fabricating semiconductor device
KR101094914B1 (en) Semiconductor Apparatus with Multiple Layer Wiring Structure and Fabrication Method Thereof