TWI589610B - 聚電解質與儲能元件 - Google Patents

聚電解質與儲能元件 Download PDF

Info

Publication number
TWI589610B
TWI589610B TW103145220A TW103145220A TWI589610B TW I589610 B TWI589610 B TW I589610B TW 103145220 A TW103145220 A TW 103145220A TW 103145220 A TW103145220 A TW 103145220A TW I589610 B TWI589610 B TW I589610B
Authority
TW
Taiwan
Prior art keywords
segment
polyelectrolyte
formula
energy storage
independently
Prior art date
Application number
TW103145220A
Other languages
English (en)
Other versions
TW201533075A (zh
Inventor
趙崇翔
蔡麗端
方家振
張志清
趙基揚
劉昆霖
Original Assignee
財團法人工業技術研究院
國立臺灣大學
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 財團法人工業技術研究院, 國立臺灣大學 filed Critical 財團法人工業技術研究院
Priority to TW103145220A priority Critical patent/TWI589610B/zh
Priority to US14/583,598 priority patent/US9590269B2/en
Priority to CN201410833628.XA priority patent/CN104752762B/zh
Publication of TW201533075A publication Critical patent/TW201533075A/zh
Application granted granted Critical
Publication of TWI589610B publication Critical patent/TWI589610B/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F12/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F12/02Monomers containing only one unsaturated aliphatic radical
    • C08F12/04Monomers containing only one unsaturated aliphatic radical containing one ring
    • C08F12/14Monomers containing only one unsaturated aliphatic radical containing one ring substituted by hetero atoms or groups containing heteroatoms
    • C08F12/22Oxygen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0565Polymeric materials, e.g. gel-type or solid-type
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08CTREATMENT OR CHEMICAL MODIFICATION OF RUBBERS
    • C08C19/00Chemical modification of rubber
    • C08C19/04Oxidation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F212/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F212/02Monomers containing only one unsaturated aliphatic radical
    • C08F212/04Monomers containing only one unsaturated aliphatic radical containing one ring
    • C08F212/06Hydrocarbons
    • C08F212/08Styrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F212/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F212/02Monomers containing only one unsaturated aliphatic radical
    • C08F212/04Monomers containing only one unsaturated aliphatic radical containing one ring
    • C08F212/14Monomers containing only one unsaturated aliphatic radical containing one ring substituted by heteroatoms or groups containing heteroatoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F212/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F212/02Monomers containing only one unsaturated aliphatic radical
    • C08F212/04Monomers containing only one unsaturated aliphatic radical containing one ring
    • C08F212/14Monomers containing only one unsaturated aliphatic radical containing one ring substituted by heteroatoms or groups containing heteroatoms
    • C08F212/22Oxygen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F236/00Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds
    • C08F236/02Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds
    • C08F236/04Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated
    • C08F236/08Isoprene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F236/00Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds
    • C08F236/02Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds
    • C08F236/04Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated
    • C08F236/10Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated with vinyl-aromatic monomers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/12Hydrolysis
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/44Preparation of metal salts or ammonium salts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/54Electrolytes
    • H01G11/56Solid electrolytes, e.g. gels; Additives therein
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/022Electrolytes; Absorbents
    • H01G9/025Solid electrolytes
    • H01G9/028Organic semiconducting electrolytes, e.g. TCNQ
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/54Electrolytes
    • H01G11/58Liquid electrolytes
    • H01G11/60Liquid electrolytes characterised by the solvent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/54Electrolytes
    • H01G11/58Liquid electrolytes
    • H01G11/62Liquid electrolytes characterised by the solute, e.g. salts, anions or cations therein
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/54Electrolytes
    • H01G11/58Liquid electrolytes
    • H01G11/64Liquid electrolytes characterised by additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M2008/1095Fuel cells with polymeric electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0082Organic polymers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Emergency Medicine (AREA)
  • Inorganic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Dispersion Chemistry (AREA)
  • Secondary Cells (AREA)
  • Conductive Materials (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)

Description

聚電解質與儲能元件
本發明是有關於一種儲能技術,且特別是有關於一種適用於儲能元件的聚電解質。
隨著人們對於高功率和高能量密度的鋰二次電池需求不斷地提高,越來越多研究單位致力於提升其安全性及穩定性。又由於人們對於攜帶型電子產品依賴度提升,並且期望增加電化學儲能裝置於車輛、不斷電系統等的應用,鋰二次電池的安全性又必須進一步被嚴格要求,特別是用於高空飛行的飛機或是太空梭等。目前對於安全性的相關研究通常專注於發展阻燃添加劑、固態電解質或是新電解液系統等,這些都是為了要改善液態電解液的種種問題並增加電化學儲能元件的熱穩定性,並且期望能有效降低或是完全不使用高揮發性、易燃的有機溶劑。
固態電解質中的聚電解質為陰離子或陽離子以共價鍵結於高分子的重複單元上,又稱單離子導體(Single Ion Conductor,SIC)。由於陰離子或陽離子固定於高分子鏈上,此離子並不會造 成濃度梯度變化,減低鹽類沉積於電極或隔離膜的可能性,延長元件循環特性。
上述聚電解質雖然可以抑制鋰金屬的沉積穿刺,增加鋰電池安全性,並且在尺寸及形狀上可彈性製備,適用於各種鋰電池,但其較差的離子導電度(固態高分子電解質為~10-5S/cm,單離子導體為~10-6S/cm)一直阻礙其應用與商業化。
本發明的聚電解質包括第一鏈段以及第二鏈段,其中第一鏈段結構為式(1)與式(2)中至少之一;第二鏈段結構為式(3)與式(4)中至少之一。
式(1)中,R1~R8各自獨立為H、F或,n=1~10,x=1~1000。
式(2)中,R9~R11各自獨立為H、F或,R12,R13,R14為H、或-CN,n=1~10,y=1~1000。
式(3)中,R15~R17各自獨立為H、F或,R18~R19 R20為SO3 -M+、PO4 -M+或COO-M+,n=1~10,M+為H+、Li+、Na+或K+,p=1~500。
式(4)中,R21~R23各自獨立為H、F或,R24~R28各自獨立 為H、F、,且R24~R28中至少一個為 R29,R30為SO3 -M+、PO4 -M+或COO-M+,n=1~10,M+為 H+、Li+、Na+或K+,q=1~500。
本發明的另一聚電解質包括第一鏈段、第二鏈段以及第三鏈段,且所述第三鏈段在所述第一鏈段與所述第二鏈段之間。 其中,第一鏈段結構為上式(1)與式(2)中至少之一,第二鏈段結構為上式(3)與上式(4)中至少之一,而第三鏈段結構為式(5)。
式(5)中,R31~R36各自獨立為H、F或,n=1~10,w=1~500。
本發明的儲能元件則包括上述聚電解質,其中聚電解質是藉由混合、塗佈、包覆或添加,應用於所述儲能元件內。
基於上述,藉由本發明的聚電解質,能減少儲能元件中易揮發、易燃的電解液的使用,甚至完全不用。而且,在室溫下不含任何電解液的情形下,本發明的聚電解質仍然具有~10-5S/cm的離子導電度,且在具有少量電解液的情形下可以有~10-4S/cm的離子導電度。這種聚電解質可應用於電化學儲能元件,有效排除或降低電解液的使用,大幅提升電化學儲能元件的特性。
為讓本發明的上述特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。
100‧‧‧儲能元件
圖1是依照本發明的一實施例的一種儲能元件的示意圖。
圖2是實驗例一的核磁共振氫譜圖。
圖3是實驗例一中含塑化劑的聚電解質的TEM切片照片。
圖4是實驗例二的凝膠滲透層析圖。
圖5是實驗例二的核磁共振氫譜圖。
圖6是實驗例二中不含塑化劑和電解液的聚電解質之TEM切片照片。
圖7是實驗例三的未接液晶反應物之聚電解質的凝膠滲透層析圖。
圖8是實驗例三的未接液晶反應物之聚電解質的核磁共振氫譜圖。
圖9是實驗例三的含液晶反應物之聚電解質的核磁共振氫譜圖。
圖10是實驗例三的含液晶反應物之聚電解質的核磁共振氫譜圖。
圖11是實驗例三之末端官能基分別為PIOSCLCN、PIOSCLC6和PIOSCLC的聚電解質的TEM切片照片。
圖12是實驗例四的凝膠滲透層析圖。
圖13是實驗例四的核磁共振氫譜圖。
圖14是實驗例四中不含塑化劑和電解液的聚電解質的TEM切片照片。
本揭露的聚電解質包括第一鏈段以及第二鏈段,其中第一鏈段結構為式(1)與式(2)中至少之一;第二鏈段結構為式(3)與式 (4)中至少之一。所述第一鏈段的分子量(MW)例如在10000~90000之間;所述第二鏈段的分子量例如在10000~30000之間。
式(1)中,R1~R8各自獨立為H、F或,n=1~10,x=1~1000。 此外,第一鏈段分子重複單元x較佳為300~900。
式(2)中,R9~R11各自獨立為H、F或,R12,R13,R14為H、或-CN,n=1~10,y=1~1000。 此外,第一鏈段分子重複單元y較佳為300~900。
式(3)中,R15~R17各自獨立為H、F或,R18~R19 R20為SO3 -M+、PO4 -M+或COO-M+,n=1~10,M+為H+、Li+、Na+或K+,p=1~500。第二鏈段分子重複單元p較佳為50~200。
式(4)中,R21~R23各自獨立為H、F或,R24~R28各自獨立 為H、F、,且R24~R28中至少一個為 R29,R30為SO3 -M+、PO4 -M+或COO-M+,n=1~10,M+為 H+、Li+、Na+或K+,q=1~500。第二鏈段分子重複單元q較佳為50~200。
在本實施例中,第一鏈段負責提供聚電解質的機械強度和阻水氧特性,可選擇式(1)的結構或式(2)的結構,也可同時有式 (1)與式(2)的結構;第二鏈段則負責提供聚電解質的離子傳導,可選擇式(3)的結構或式(4)的結構,也可同時有式(3)與式(4)的結構。如此一來,聚電解質會微相分離(microphase separation)而形成具有奈米等級有序的自組裝微結構。
本揭露的另一種聚電解質是在上述第一鏈段與上述第二鏈段之間還有一第三鏈段,且第三鏈段之結構為式(5)。在本實施例中,第三鏈段的分子量例如在10000~20000之間。
式(5)中,R31~R36各自獨立為H、F或,n=1~10,w=1~500。 第三鏈段分子重複單元w較佳為100~400。
在本實施例中,第三鏈段在第一與第二鏈段間,主要能讓第二鏈段遠離第一鏈段,讓第二鏈段不受第一鏈段的牽制,可以有更大的自由擺動空間,進而提升聚電解質的離子傳導度。
由於本揭露的上述聚電解質均可進行微相分離而形成奈米等級有序的自組裝微結構。而且在聚電解質內的第一鏈段所形成的主架構提供了高分子的機械強度與阻止水、氣穿透的功能;離子傳導通道則負責傳遞離子。至於聚電解質內的第二鏈段是由具有磺酸根、磷酸根或羧酸根等基團的部分(Moiety)以共價鍵結, 固定於主鏈上而不會移動,因此可大幅提升離子遷移係數。另外,由於離子僅能於奈米通道中移動,所形成的金屬沉積也會被限制於其中,而減少金屬晶枝穿刺的可能。
而且,在本揭露的上述聚電解質中,如果添加不同比例的塑化劑、高介電係數溶劑或液態電解液,也被發現有助於離子傳導度的提升。舉例來說,塑化劑可為鄰苯二甲酸二(2-乙基己基)酯(bis(2-ethylhexyl)phthalate,BEHP)、鄰苯二甲酸二丁酯(Dibutyl phthalate,DBP)、鄰苯二甲酸二異丁酯(Diisobutyl phthalate,DIBP)等,高介電係數溶劑可為碳酸丙烯酯(Propylene carbonate,PC)、碳酸乙烯酯(Ethylene carbonate,EC)、碳酸二乙酯(Diethyl carbonate,DEC)、碳酸二甲酯(Dimethyl carbonate,DEC)、碳酸甲基乙基酯(Ethyl methyl carbonate,EMC)等,液態電解液可為電解質(即鋰鹽)LiPF6、LiBF4、LiClO4、LiTFSI(雙三氟甲磺醯亞胺鋰鹽)等溶於前述高介電係數溶劑中所形成的液態電解液。
因此,本揭露的聚電解質在室溫、不含任何溶劑或電解液的情形下,離子導電度都大於10-5S/cm。而在少量的電解液吸附(<30wt%)時,則有10-4S/cm的離子傳導度。
圖1是依照本發明的一實施例的一種儲能元件的示意圖。
在圖1中的儲能元件100只是示意圖,其可為鋰離子一次電池、鋰離子二次電池、電容器、超級電容器、燃料電池、金屬硫電池、或金屬空氣電池等。而本揭露的聚電解質可藉由混合、塗佈、包覆或添加等方式應用於儲能元件100內。
以下列舉一些實驗例來驗證本發明的功效,但本發明並不侷限於以下的內容。
實驗例一
依照下面合成流程,在-78℃下、四氫呋喃(THF)溶劑中加入100μl的仲丁基鋰(sec-butyllithium,sec-BuLi)(1.3M in cyclohexane)和12.88ml的苯乙烯單體,攪拌反應15分鐘,之後在同一溫度下加入4.17ml的對叔丁氧基苯乙烯(p-tert-butoxystyrene)單體,反應三天,以無水甲醇終止反應,並沉澱析出聚苯乙烯和PtBuOS(poly(p-tert-butoxystyrene))共聚高分子。
取此高分子12g溶於1,4-二噁烷(1,4-dioxane),並加入7.1ml 37wt%的鹽酸(HCl)水溶液,升溫至60℃反應兩天,再將高分子沉澱於正己烷中,並以純水反復清洗,可得去保護的聚(對羥基苯乙烯)(poly(p-hydroxystyrene))共聚高分子。
取去保護的共聚高分子10g溶於THF,升溫到60℃後加入3.6g氫化鉀(KH),反應2小時,再加入5.36g的1,3-丙磺酸內酯(1,3-propanesultone),反應24小時,以甲醇清洗後,產物分別加入過量的TBAOH(tetrabutylammonium hydroxide)、1.5M硫酸水溶液,最後再以1M LiOH水溶液清洗得最終聚電解質。
然後利用凝膠滲透層析(Gel permeation chromatography,GPC)比對PS標準品,發現兩鏈段分子量分別為Mw90000和30000(估算a、b分別約為865及717),氫譜核磁共振儀(1H-Nuclear Magnetic Resonance spectroscopy)也證實了兩鏈段的比例,請見圖2。然後添加不同量的塑化劑:鄰苯二甲酸二丁酯(Dibutyl phthalate,DBP)幫助成膜。對乾膜進行量測,但因乾膜並無法測量到離子導電度,所以進一步將其浸潤到電解液(1M LiClO4 in EC/PC)的濕膜進行鋰離子導電度量測,結果顯示於下表一。
由表一可以知道,濕膜離子導電度1.2×10-5~4.1×10-5 S/cm,含浸量為10.8wt%~30.8wt%。圖3顯示含塑化劑的聚電解質的TEM切片照片,可觀察實驗例一的聚電解質會微相分離成球狀結構。
實驗例二
依照下面合成流程,在-78℃下、THF溶劑中加入70μl的仲丁基鋰(sec-BuLi)(1.3M in cyclohexane)和5ml的苯乙烯單體,攪拌反應15分鐘,之後在同一溫度下加入2.67ml的異戊二烯單體,再升溫至-30℃反應三天,以無水甲醇終止反應,並沉澱析出聚苯乙烯和聚(1,2或3,4-異戊二烯)共聚高分子。
取此高分子1.5g溶於THF中,於-15℃下加入40ml的9-硼雙環[3.3.1]壬烷(9-borabicyclo(3.3.1)nonane)(簡稱9-BBN[0.5M in THF]),升溫至55℃反應兩天,再冷卻至-25℃,加入1ml甲醇攪拌反應30分鐘後,加入0.46g 6N的NaOH和4ml 30% H2O2水溶液反應2小時,再升溫到55℃反應1小時,待兩相分層後,將上層溶液沉澱於0.25M的NaOH水溶液中,過濾可得異戊二烯雙鍵水解成氫氧基共聚高分子。
取水解完的共聚高分子0.5g溶於THF,升溫到60℃後加入0.6g KH,反應2小時,再加入0.37ml的1,3-丙磺酸內酯(1,3-propanesultone),反應8小時,以甲醇清洗後,產物分別加入過量的TBAOH(tetrabutylammonium hydroxide)、1.5M硫酸水溶液,最後再以1M LiOH水溶液清洗得最終聚電解質(R代表CH3或H)。
利用GPC比對PS標準品,發現兩鏈段分子量分別為Mw50000、20000(請見圖4與下表二)(估算c、d分別約為480及294)。氫譜核磁共振儀也證實了兩鏈段的比例,如圖5所示。
然後添加不同量塑化劑DBP幫助成膜,再對乾膜進行鋰離子導電度量測,結果顯示於下表三。
由表三可知,實驗例二的聚電解質在室溫且無添加任何 塑化劑或電解液的情形下,就可達到導電度2.8×10-5S/cm;而添加5~20wt%的DPB乾膜離子導電度提升至4.0×10-5S/cm以上。
另外,對不添加塑化劑的聚電解質進行測試,得到僅含浸電解液(1M LiClO4 in EC/PC),導電度提升至23×10-5S/cm,含浸量為22wt%。圖6顯示不含塑化劑和電解液的聚電解質之TEM切片照片,並可觀察實驗例二的聚電解質會微相分離成柱狀結構。
實驗例三
依照下面合成流程,在-78℃下、THF溶劑中加入100μl的仲丁基鋰(sec-BuLi)(1.3M in cyclohexane)和1.39ml的對叔丁氧基苯乙烯(p-tert-butoxystyrene)單體,攪拌反應三天,之後在同一溫度下加入3.82ml的異戊二烯單體,再升溫至-30℃反應三天,以無水甲醇終止反應,並沉澱析出聚(對羥基苯乙烯)和聚(1,2或3,4-異戊二烯)共聚高分子。
取此高分子2g溶於THF中,於-15℃下加入50ml的9-BBN[0.5M in THF],升溫至55℃反應兩天,再冷卻至-25℃,加入1ml甲醇攪拌反應30分鐘後,加入0.5g 6N的NaOH和5ml 30% H2O2水溶液反應2小時,再升溫到55℃反應1小時,待兩相分層後,將上層溶液沉澱於0.25M的NaOH水溶液中,過濾可得異戊二烯雙鍵水解成氫氧基共聚高分子。
取水解完的共聚高分子2mmol溶於THF,加入2.5mmol NaOH,攪拌反應12小時,再加入2.8mmol的含液晶反應物()和3mmol(10% excess)四丁基溴化銨 (tetrabutylammonium bromide,TBAB),升溫至60℃反應4天,以大量純水清洗後,再以乙醇清洗,可得液晶高分子。
取液晶高分子12g溶於1,4-二噁烷(1,4-dioxane),並加入9.82ml 85wt%的磷酸水溶液,室溫反應12小時,再將高分子沉澱於正己烷中,並以純水反覆清洗,可得去保護的液晶高分子。
取去保護的液晶高分子10.8g溶於THF,加入3.6g KH,反應1小時,再加入5.35g的1,3-丙磺酸內酯(1,3-propanesultone),升溫至60℃反應24小時,以甲醇清洗後,產物加入過量的TBAOH(tetrabutylammonium hydroxide),最後再以1.5M硫酸水溶液清洗得最終聚電解質(R代表CH3或H)。
利用GPC比對PS標準品,發現兩鏈段分子量分別為Mn10000、20000,如下表四與圖7(估算h、i分別約為57及295)。圖7中顯示的是PtBS與PtBS-b-PI,而氫譜核磁共振儀則證實了兩鏈段的比例,請見圖8。圖9和圖10則是PtBS-b-PIOBP、PtBS-b-PIOLCN與PtBS-b-PIOLC6的氫譜核磁共振儀,其可證實兩鏈段的比例。
此聚電解質酸洗後濕膜進行質子導電度量測,結果顯示於下表五。
由表五可知,實驗例三的聚電解質的質子導電度為1.01×10-2S/cm~2.33×10-2S/cm。圖11是末端官能基分別為PIOSCLCN、PIOSCLC6和PIOSCLC的聚電解質的TEM切片照片,並可觀察到此高分子會微相分離成層狀或不規則結構。
實驗例四
利用下面合成流程,在室溫下、甲苯(toluene)溶劑中加入347.9μl的仲丁基鋰(sec-BuLi)(1.3M in cyclohexane)和20ml的苯乙烯單體,攪拌反應15分鐘,之後在同一溫度下加入6.65ml的異戊二烯單體,此時溶液顏色由深紅轉為淺黃色,反應12小時後,將溫度降溫至-78℃,再將含13.28ml異戊二烯單體於THF的溶液加入其中,待溶液顏色變淺時,將反應溫度升到-30℃維持四天,以無水甲醇終止反應,並沉澱析出聚苯乙烯、聚1,4-異戊二烯和聚(1,2或3,4-異戊二烯)共聚高分子。
取此高分子4g溶於THF中,於-15℃下加入100ml的9-硼雙環[3.3.1]壬烷(9-BBN[0.5M in THF]),升溫至55℃反應兩 天,再冷卻至-25℃,加入1ml甲醇攪拌反應30分鐘後,加入2g 6N的NaOH和11ml 30% H2O2水溶液反應2小時,再升溫到55℃反應1小時,待兩相分層後,將上層溶液沉澱於0.25M的NaOH水溶液中,過濾可得異戊二烯雙鍵水解成氫氧基共聚高分子。
取水解完的共聚高分子1g溶於THF,升溫到60℃後加入0.66g KH,反應2小時,再加入0.44ml的1,3-丙磺酸內酯(1,3-propanesultone),反應8小時,以甲醇清洗後,再以1M LiOH水溶液清洗,產物分別加入過量的TBAOH(tetrabutylammonium hydroxide)、1.5M硫酸水溶液,最後再以1M LiOH水溶液清洗得最終聚電解質(R代表CH3或H)。
利用GPC比對PS標準品,發現三鏈段分子量分別為Mw40000、10000、20000,請見圖12與下表六(估算e、f、g分別約為236、148及294)。
氫譜核磁共振儀也證實了三鏈段的比例,如圖13所示。
然後添加不同量的塑化劑DBP。分別對乾膜以及浸潤到電解液(1M LiClO4的EC/PC溶液)的濕膜進行量測,結果顯示於下表七。
由表七可知,在室溫沒有添加任何塑化劑或電解液的情形下,離子導電度為4.8×10-5S/cm;不添加添加劑,僅含浸電解液導電度提升至3.2×10-4S/cm,吸液量為10wt%。而添加10wt%~20wt%的DPB乾膜離子導電度1.2×10-5~4.8×10-5S/cm,含20wt%DPB之聚電解質如含浸電解液,則離子導電度提高至3×10-4S/cm。圖14中顯示不含塑化劑和電解液的實驗例四之聚電解質的TEM切片照片,其顯示此高分子會微相分離成柱狀結構。
實驗例五
同實驗例四,製作不同分子量比例的聚電解質,SII-411 的重量平均分子量分別為40000、10000、10000;SII-412的重量平均分子量分別為40000、10000、20000;SII-422的重量平均分子量分別為40000、20000、20000;SII-522的重量平均分子量分別為50000、20000、20000,其導電率如表八所示。
由表八可知不同厚度的聚電解質在室溫沒有添加任何塑化劑或電解液的情形下,離子導電度為5.3×10-5S/cm~12×10-5S/cm;不添加添加劑,僅含浸電解液導電度提升至9.8×10-5S/cm~11.6×10-5S/cm,吸液量為7.6~20wt%。
綜上所述,本發明提出的聚電解質能降低或完全不使用儲能元件中易揮發、易燃的電解液,並在室溫下不含任何電解液的情形下,仍然具有~10-5S/cm的離子導電度,而在具有少量電解液的情形下可以有~10-4S/cm的離子導電度。此種聚電解質可應用於任何電化學儲能元件,有效排除或降低電解液的使用,大幅提升電化學儲能元件的特性。
雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明的 精神和範圍內,當可作些許的更動與潤飾,故本發明的保護範圍當視後附的申請專利範圍所界定者為準。

Claims (24)

  1. 一種聚電解質,包括第一鏈段以及第二鏈段,其中所述第一鏈段結構為式(2): 式(2)中,R9~R11各自獨立為H、F或,R12,R13,R14為H、或-CN,n=1~10,y=1~1000;所述第二鏈段結構為式(3)與式(4)其中至少之一: 式(3)中,R15~R17各自獨立為H、F或,R18~R19R20為SO3 -M+,n=1~10,M+為H+、Li+、Na+或K+,p=1~500; 式(4)中,R21~R23各自獨立為H、F或,R24~R28各自獨立為H、F、,且R24~R28中至少一個為,R29,R30為SO3 -M+,n=1~10,M+為H+、Li+、Na+或K+,q=1~500。
  2. 如申請專利範圍第1項所述的聚電解質,其中所述第一鏈段與所述第二鏈段是交錯、重複或隨機排列。
  3. 如申請專利範圍第1項所述的聚電解質,其中所述第一鏈段的分子量在10000~90000之間。
  4. 如申請專利範圍第1項所述的聚電解質,其中所述第二鏈段的分子量在10000~30000之間。
  5. 如申請專利範圍第1項所述的聚電解質,其中所述第一鏈段分子重複單元y為300~900。
  6. 如申請專利範圍第1項所述的聚電解質,其中所述第二鏈段分子重複單元p或q為50~200。
  7. 如申請專利範圍第1項所述的聚電解質,其中所述聚電解 質,在室溫、不含任何溶劑或電解液的情形下,離子導電度大於10-5S/cm。
  8. 一種聚電解質,包括第一鏈段、第二鏈段以及第三鏈段,且所述第三鏈段在所述第一鏈段與所述第二鏈段之間,其中所述第一鏈段結構為式(2): 式(2)中,R9~R11各自獨立為H、F或,R12,R13,R14為H、或-CN,n=1~10,y=1~1000;所述第二鏈段結構為式(3)與式(4)其中至少之一: 式(3)中,R15~R17各自獨立為H、F或,R18~R19R20為SO3 -M+,n=1~10,M+為H+、Li+、Na+或K+,p=1~500; 式(4)中,R21~R23各自獨立為H、F或,R24~R28各自獨立為H、F、,且R24~R28中至少一個為R29,R30為SO3 -M+,n=1~10,M+為H+、Li+、Na+或K+,q=1~500;所述第三鏈段結構為式(5): 式(5)中,R31~R36各自獨立為H、F或,n=1~10,w=1~500。
  9. 如申請專利範圍第8項所述的聚電解質,其中所述第一鏈段、所述第二鏈段與所述第三鏈段是交錯、重複或隨機排列。
  10. 如申請專利範圍第8項所述的聚電解質,其中所述第一鏈段的分子量在10000~90000之間。
  11. 如申請專利範圍第8項所述的聚電解質,其中所述第二鏈段的分子量在10000~30000之間。
  12. 如申請專利範圍第8項所述的聚電解質,其中所述第三鏈 段的分子量在10000~20000之間。
  13. 如申請專利範圍第8項所述的聚電解質,其中所述第一鏈段分子重複單元y為300~900。
  14. 如申請專利範圍第8項所述的聚電解質,其中所述第二鏈段分子重複單元p或q為50~200。
  15. 如申請專利範圍第8項所述的聚電解質,其中所述第三鏈段分子重複單元w為100~400。
  16. 如申請專利範圍第8項所述的聚電解質,其中所述聚電解質,在室溫、不含任何溶劑或電解液的情形下,離子導電度大於10-5S/cm。
  17. 一種儲能元件,包括如申請專利範圍第1~16項所述的聚電解質,其中所述聚電解質藉由混合、塗佈、包覆或添加應用於所述儲能元件內。
  18. 如申請專利範圍第17項所述的儲能元件,其中所述儲能元件包括鋰離子一次電池、鋰離子二次電池、電容器、超級電容器、燃料電池、金屬硫電池、或金屬空氣電池。
  19. 如申請專利範圍第17項所述的儲能元件,更包括於所述聚電解質中添加的塑化劑。
  20. 如申請專利範圍第19項所述的儲能元件,其中所述塑化劑包括鄰苯二甲酸二(2-乙基己基)酯(bis(2-ethylhexyl)phthalate,BEHP)、鄰苯二甲酸二丁酯(Dibutyl phthalate,DBP)或鄰苯二甲酸二異丁酯(Diisobutyl phthalate,DIBP)。
  21. 如申請專利範圍第17項所述的儲能元件,更包括於所述聚電解質中添加的高介電係數溶劑或液態電解液。
  22. 如申請專利範圍第21項所述的儲能元件,其中所述高介電係數溶劑包括碳酸丙烯酯(Propylene carbonate,PC)、碳酸乙烯酯(Ethylene carbonate,EC)、碳酸二乙酯(Diethyl carbonate,DEC)碳酸二甲酯(Dimethyl carbonate,DEC)或碳酸甲基乙基酯(Ethyl methyl carbonate,EMC)。
  23. 如申請專利範圍第21項所述的儲能元件,其中所述液態電解液包括所述高介電係數溶劑與溶於所述高介電係數溶劑的鋰鹽。
  24. 如申請專利範圍第23項所述的儲能元件,其中所述鋰鹽包括LiPF6、LiBF4、LiClO4或LiTFSI。
TW103145220A 2013-12-31 2014-12-24 聚電解質與儲能元件 TWI589610B (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
TW103145220A TWI589610B (zh) 2013-12-31 2014-12-24 聚電解質與儲能元件
US14/583,598 US9590269B2 (en) 2013-12-31 2014-12-27 Polyelectrolyte and energy storage device
CN201410833628.XA CN104752762B (zh) 2013-12-31 2014-12-29 聚电解质与储能元件

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
TW102149147 2013-12-31
TW103145220A TWI589610B (zh) 2013-12-31 2014-12-24 聚電解質與儲能元件

Publications (2)

Publication Number Publication Date
TW201533075A TW201533075A (zh) 2015-09-01
TWI589610B true TWI589610B (zh) 2017-07-01

Family

ID=53480989

Family Applications (1)

Application Number Title Priority Date Filing Date
TW103145220A TWI589610B (zh) 2013-12-31 2014-12-24 聚電解質與儲能元件

Country Status (3)

Country Link
US (1) US9590269B2 (zh)
CN (1) CN104752762B (zh)
TW (1) TWI589610B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9972451B2 (en) * 2015-11-30 2018-05-15 City University Of Hong Kong Polyelectrolyte and a method for manufacturing an energy storage device
FR3054223A1 (fr) * 2016-07-21 2018-01-26 Total Marketing Services Copolymere et son utilisation comme additif detergent pour carburant
US10790538B2 (en) 2017-08-11 2020-09-29 Industrial Technology Research Institute Negative electrode and lithium ion battery

Family Cites Families (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58188062A (ja) 1982-04-16 1983-11-02 ユナイテッド キングドム アトミック エナ↓−ヂイ オ↓−ソリテイ 固体状態の電気化学的電池
US4471037A (en) 1982-04-16 1984-09-11 United Kingdom Atomic Energy Authority Solid state electrochemical cell
DE3665649D1 (en) 1985-07-12 1989-10-19 Elf Aquitaine Macromolecular material with ion conductivity
US5183715A (en) 1987-02-18 1993-02-02 Gould Electronics Limited Solid state cell electrolyte
GB8717799D0 (en) 1987-07-28 1987-09-03 Atomic Energy Authority Uk Polymer electrolytes
US4882243A (en) 1988-11-22 1989-11-21 Polytechnic University Preparation of metallic cation conducting polymers based on sterically hindered phenols containing polymeric systems
US5332631A (en) 1990-10-24 1994-07-26 E.I.C. Corp. Solid polymer electrolytes to alleviate voltage delay of lithiium cells
USH1546H (en) 1993-03-16 1996-06-04 The United States Of America As Represented By The Secretary Of The Army Solid polymer electrolyte and electrochemical cell including said electrolyte
CH691209A5 (de) 1993-09-06 2001-05-15 Scherrer Inst Paul Herstellungsverfahren für einen Polmerelektrolyten und elektrochemische Zelle mit diesem Polymerelektrolyten.
US5518838A (en) 1995-08-10 1996-05-21 Motorola, Inc. Electrochemical cell having solid polymer electrolyte and asymmetric inorganic electrodes
DE69608702T2 (de) 1995-12-28 2001-02-01 Univ New York State Res Found Membranen aus sulfoniertem polyphenylenoxid (s-ppo) und polymerblends mit polyvinylidenfluorid (pvdf) zum einsatz als polymerelektrolyt in elektrochemischen zellen
US5989742A (en) 1996-10-04 1999-11-23 The Research Foundation Of State University Of New York Blend membranes based on sulfonated poly(phenylene oxide) for enhanced polymer electrochemical cells
US5688614A (en) 1996-05-02 1997-11-18 Motorola, Inc. Electrochemical cell having a polymer electrolyte
US5723231A (en) 1996-12-09 1998-03-03 Motorola, Inc. Polymer electrolyte and an electrochemical cell containing the electrolyte
US6096453A (en) 1998-06-19 2000-08-01 Adven Polymers, Inc. Polymeric thin-film reversible electrochemical charge storage devices
JP4214615B2 (ja) 1999-05-10 2009-01-28 株式会社ジーエス・ユアサコーポレーション 高分子固体電解質マトリックス用ジ(メタ)アクリレートおよび高分子固体電解質マトリックス用ジ(メタ)アクリレート重合体。
JP3974371B2 (ja) 2001-10-19 2007-09-12 シロウマサイエンス株式会社 ポリマーゲル電解質組成物およびその製造法
US7226702B2 (en) 2002-03-22 2007-06-05 Quallion Llc Solid polymer electrolyte and method of preparation
WO2003083972A1 (en) 2002-03-22 2003-10-09 Quallion Llc Nonaqueous liquid electrolyte
US20030180624A1 (en) 2002-03-22 2003-09-25 Bookeun Oh Solid polymer electrolyte and method of preparation
US20040214090A1 (en) 2002-03-22 2004-10-28 West Robert C Polymer electrolyte for electrochemical cell
AU2003242351B2 (en) * 2002-05-22 2006-06-29 Nippon Shokubai Co., Ltd. Solid oxide type fuel cell-use electrode support substrate and production method therefor
US7473491B1 (en) 2003-09-15 2009-01-06 Quallion Llc Electrolyte for electrochemical cell
CN100568613C (zh) 2004-02-06 2009-12-09 波利普拉斯电池有限公司 具有非水中间层构造的受保护的活性金属电极和电池组电池结构
CN1279105C (zh) 2004-03-12 2006-10-11 南亚塑胶工业股份有限公司 碱性聚乙烯醇掺合聚环氧氯丙烷高分子电解质薄膜及其应用
US20060062982A1 (en) 2004-09-17 2006-03-23 Massachusetts Institute Of Technology Carbon-polymer electrochemical systems and methods of fabricating them using layer-by-layer technology
JP5205687B2 (ja) * 2004-11-01 2013-06-05 日産自動車株式会社 電池電極の製造方法
TWI378942B (en) 2005-05-24 2012-12-11 Arkema Inc Blend of ionic (co)polymer resins and matrix (co)polymers
TWI326691B (en) 2005-07-22 2010-07-01 Kraton Polymers Res Bv Sulfonated block copolymers, method for making same, and various uses for such block copolymers
TW200820483A (en) 2006-10-24 2008-05-01 Univ Yuan Ze Proton exchange membrane of direct methanol fuel cell and manufacturing method thereof
US9076570B2 (en) * 2007-04-13 2015-07-07 Rochester Institute Of Technology Nano-composite structures, methods of making, and use thereof
US20090258275A1 (en) * 2008-03-17 2009-10-15 Canon Kabushiki Kaisha Polymer electrolyte, polymer electrolyte membrane, membrane electrode assembly, and fuel cell
JP5333913B2 (ja) 2009-02-03 2013-11-06 独立行政法人日本原子力研究開発機構 アルキルエーテルグラフト鎖からなる高分子電解質膜、及び、その製造方法
KR20110135933A (ko) 2009-02-11 2011-12-20 다우 글로벌 테크놀로지스 엘엘씨 고전도성 중합체 전해질 및 이를 포함하는 2차 배터리
WO2010111308A1 (en) 2009-03-23 2010-09-30 Tda Research, Inc. Liquid electrolyte filled polymer electrolyte
JPWO2013031634A1 (ja) 2011-08-31 2015-03-23 株式会社クラレ ブロック共重合体、高分子電解質膜、膜−電極接合体及び固体高分子型燃料電池
CA2853800C (en) 2011-10-28 2020-03-24 Lubrizol Advanced Materials, Inc. Polyurethane based electrolyte systems for electrochemical cells

Also Published As

Publication number Publication date
TW201533075A (zh) 2015-09-01
US20150183897A1 (en) 2015-07-02
CN104752762B (zh) 2017-05-10
CN104752762A (zh) 2015-07-01
US9590269B2 (en) 2017-03-07

Similar Documents

Publication Publication Date Title
Mi et al. Topology crafting of polyvinylidene difluoride electrolyte creates ultra-long cycling high-voltage lithium metal solid-state batteries
Che et al. Electrolyte design strategies and research progress for room-temperature sodium-ion batteries
Schaefer et al. Electrolytes for high-energy lithium batteries
EP3093906B1 (en) Lithium metal battery
EP3001495B1 (en) Composite, method of preparing the composite, electrolyte comprising the composite, and lithium secondary battery comprising the electrolyte
KR102452944B1 (ko) 전해질 복합체, 및 이를 포함하는 음극과 리튬 이차 전지
Voropaeva et al. Polymer electrolytes for metal-ion batteries
Lu et al. Zwitterionic impetus on single lithium-ion conduction in solid polymer electrolyte for all-solid-state lithium-ion batteries
KR102303831B1 (ko) 고분자, 이를 포함하는 전해질 및 리튬이차전지
Gan et al. Self-healing single-ion conducting polymer electrolyte formed via supramolecular networks for lithium metal batteries
Lian et al. Polyvinyl formal based single-ion conductor membranes as polymer electrolytes for lithium ion batteries
Li et al. Polymer electrolytes for rechargeable lithium metal batteries
Yao et al. Rational design of biomimetic ant-nest solid polymer electrolyte for high-voltage Li-metal battery with robust mechanical and electrochemical performance
Zeng et al. Enhanced interfacial stability with a novel boron-centered crosslinked hybrid polymer gel electrolytes for lithium metal batteries
EP3091603B1 (en) Electrolytic solution and electrochemical device
EP3125352B1 (en) Electrolyte and electrochemical device
Yang et al. Decoupling the mechanical strength and ionic conductivity of an ionogel polymer electrolyte for realizing thermally stable lithium-ion batteries
CN103618111A (zh) 一种离子液体电解液及含有该电解液的二次锂电池
CN111864258A (zh) 固态复合电解质膜及其制造方法、以及聚合物二次电池
Gao et al. A review on materials for flame retarding and improving the thermal stability of lithium ion batteries
Waqas et al. A robust bi-layer separator with Lewis acid-base interaction for high-rate capacity lithium-ion batteries
Yuan et al. Flexible all-solid-state electrolytes with ordered fast Li-ion-conductive nano-pathways for rechargeable lithium batteries
TWI589610B (zh) 聚電解質與儲能元件
Huo et al. New insights into designation of single-ion conducting gel polymer electrolyte for high-performance lithium metal batteries
Han et al. Dual effects from in-situ polymerized gel electrolyte and boric acid for ultra-long cycle-life Li metal batteries