TWI581367B - Method for manufacturing semiconductor structure - Google Patents

Method for manufacturing semiconductor structure Download PDF

Info

Publication number
TWI581367B
TWI581367B TW101146979A TW101146979A TWI581367B TW I581367 B TWI581367 B TW I581367B TW 101146979 A TW101146979 A TW 101146979A TW 101146979 A TW101146979 A TW 101146979A TW I581367 B TWI581367 B TW I581367B
Authority
TW
Taiwan
Prior art keywords
material layer
fabricating
semiconductor structure
structure according
trench
Prior art date
Application number
TW101146979A
Other languages
Chinese (zh)
Other versions
TW201423905A (en
Inventor
林耿任
王俞仁
陳致中
呂佐文
温在宇
Original Assignee
聯華電子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 聯華電子股份有限公司 filed Critical 聯華電子股份有限公司
Priority to TW101146979A priority Critical patent/TWI581367B/en
Publication of TW201423905A publication Critical patent/TW201423905A/en
Application granted granted Critical
Publication of TWI581367B publication Critical patent/TWI581367B/en

Links

Description

半導體結構之製作方法 Semiconductor structure manufacturing method

本發明係關於一種半導體結構之製作方法,且特別關於一種形成一選擇性成長材料層於凹槽表面的半導體結構之製作方法。 The present invention relates to a method of fabricating a semiconductor structure, and more particularly to a method of fabricating a semiconductor structure that forms a layer of selectively grown material on the surface of the recess.

在目前半導體製程中,一般採用區域氧化法(localized oxidation isolation,LOCOS)或是淺溝隔離(shallow trench isolation,STI)方法來進行元件之間的隔離,以避免元件間相互干擾而產生短路現象。然而隨著半導體晶片的設計與製造線寬變得越來越細時,LOCOS製程中所產生之凹坑(pits)、晶體缺陷(crystal defect)以及鳥喙(bird’s beak)長度過長等缺點,將大幅地影響半導體晶片的特性。又,由於LOCOS方法所產生之場氧化層會佔據較大的體積,而影響整個半導體晶片的積集度(integration)。因此在次微米(submicron)的半導體製程中,尺寸較小、可提高半導體晶片之積集度淺溝隔離製程便成為近來被廣泛使用的隔離技術。 In current semiconductor processes, localized oxidation isolation (LOCOS) or shallow trench isolation (STI) methods are generally used to isolate components to avoid short-circuit phenomena caused by mutual interference between components. However, as the design and manufacturing line width of semiconductor wafers become finer, the pits, crystal defects, and bird's beak lengths generated in the LOCOS process are too long. The characteristics of the semiconductor wafer will be greatly affected. Moreover, since the field oxide layer produced by the LOCOS method occupies a large volume, it affects the integration of the entire semiconductor wafer. Therefore, in a submicron semiconductor process, a small size and improved semiconductor wafer shallow trench isolation process has become a widely used isolation technique.

一般來說,現行製作的STI的方法包括先在晶片表面的各MOS元件間製作一溝渠。接著再填入介電材料至溝渠中以產生一電性隔離的結構。然而,隨著半導體元件之尺寸日益微縮至接近物理極限,溝渠的尺寸愈來愈小而造成介電材料填入的困難度逐漸提昇。因此,如何做出良好外觀與效能的STI,已成為當下業界急欲解決的 重要問題。 In general, current methods of fabricating STIs include first making a trench between MOS components on the surface of the wafer. The dielectric material is then filled into the trench to create an electrically isolated structure. However, as the size of semiconductor components is increasingly shrinking to near physical limits, the size of the trenches is getting smaller and smaller, and the difficulty in filling dielectric materials is gradually increasing. Therefore, how to make a good appearance and performance of STI has become an urgent need for the industry to solve. important question.

有鑑於此,本發明之一目的在於提供一種半導體結構之製作方法,其採用一填洞能力較佳的前驅物材料並形成一選擇性成長材料層於溝渠表面,特別是用以形成淺溝隔離結構的溝渠表面,以解決上述問題。 In view of the above, it is an object of the present invention to provide a method for fabricating a semiconductor structure using a precursor material having a better hole filling capability and forming a layer of selectively grown material on the surface of the trench, particularly for forming shallow trench isolation. The structure of the ditch surface to solve the above problems.

為了達到上述目的,根據本發明之一較佳實施例,係提供一種一種半導體結構的製作方法,包含下列步驟。首先,提供一半導體基底,並形成一圖案化墊層於半導體基底上,以暴露出部分半導體基底。接著,蝕刻暴露出的半導體基底,以形成一溝渠。選擇性地於溝渠表面形成一選擇性成長材料層,再填入一介電材料前驅物於溝渠中。最後,進行一轉化製程,將介電材料前驅物轉化成一介電材料,並同時將選擇性成長材料層轉化成一含氧非晶材料層。 In order to achieve the above object, in accordance with a preferred embodiment of the present invention, a method of fabricating a semiconductor structure is provided, comprising the following steps. First, a semiconductor substrate is provided and a patterned pad is formed over the semiconductor substrate to expose a portion of the semiconductor substrate. Next, the exposed semiconductor substrate is etched to form a trench. A layer of selectively growing material is selectively formed on the surface of the trench, and a dielectric material precursor is filled in the trench. Finally, a conversion process is performed to convert the dielectric material precursor into a dielectric material and simultaneously convert the layer of selectively grown material into an oxygen-containing amorphous material layer.

綜上所述,本發明提出一種半導體結構之製作方法,其形成一選擇性成長材料層於溝渠表面。由於在填入介電材料前驅物至溝渠內之前,溝渠表面已經形成有一選擇性成長材料層。因此,在後續之轉換製程中,源自於介電材料前驅物或外界環境之氧原子便可以被選擇性成長材料層完全消耗,而不會直接擴散至溝渠旁的半導體基底中,使得主動區域之大小不致改變。此外,由於含氧非晶材料層具有緩衝介電材料與半導體基底間應力的作用,其也能避免半導體 基底承受不必要之壓縮應力。 In summary, the present invention provides a method of fabricating a semiconductor structure that forms a layer of selectively grown material on the surface of the trench. A layer of selectively grown material has been formed on the surface of the trench prior to filling the precursor of the dielectric material into the trench. Therefore, in the subsequent conversion process, the oxygen atoms originating from the precursor of the dielectric material or the external environment can be completely consumed by the selective growth material layer without directly diffusing into the semiconductor substrate beside the trench, so that the active region The size does not change. In addition, since the oxygen-containing amorphous material layer has a function of buffering the stress between the dielectric material and the semiconductor substrate, it can also avoid the semiconductor. The substrate is subjected to unnecessary compressive stress.

為使熟習本發明所屬技術領域之一般技藝者能更進一步了解本發明,下文特列舉本發明之較佳實施例,並配合所附圖式,詳細說明本發明的構成內容及所欲達成之功效。 The present invention will be further understood by those of ordinary skill in the art to which the present invention pertains. .

第1圖至第10圖係根據本發明較佳實施例所繪示之半導體結構之製作方法剖面示意圖。如第1圖所示。首先,提供一半導體基底110,其上定義有至少一主動區域10以及至少一絕緣區域20,以分別作為設置電性元件以及電絕緣材料之區域。接著,利用沈積製程,於半導體基底110上之主動區域10及絕緣區域20內堆疊至少一墊層120(或稱硬遮罩層)。在後續製程中,可以圖案化此墊層120,以於絕緣區域20定義出溝渠之圖案。根據本發明之一較佳實施例,墊層120由下而上可包含一氧化墊層122以及一氮化墊層124,但不限於此。其中,上述之半導體基底110包含矽基底、含矽基底、三五族覆矽基底(例如GaN-on-silicon)、石墨烯覆矽基底(graphene-on-silicon)或矽覆絕緣(silicon-on-insulator,SOI)基底等半導體基底,但不限於此。 1 to 10 are schematic cross-sectional views showing a method of fabricating a semiconductor structure according to a preferred embodiment of the present invention. As shown in Figure 1. First, a semiconductor substrate 110 is provided having at least one active region 10 and at least one insulating region 20 defined therein as regions for providing electrical components and electrically insulating materials, respectively. Next, at least one pad layer 120 (or hard mask layer) is stacked in the active region 10 and the insulating region 20 on the semiconductor substrate 110 by a deposition process. In a subsequent process, the underlayer 120 can be patterned to define a pattern of trenches in the insulating region 20. According to a preferred embodiment of the present invention, the pad layer 120 may include an oxide pad layer 122 and a nitride pad layer 124 from bottom to top, but is not limited thereto. The semiconductor substrate 110 includes a germanium substrate, a germanium-containing substrate, a three-five-layer germanium substrate (eg, GaN-on-silicon), a graphene-on-silicon or a silicon-on insulator. -insulator, SOI) A semiconductor substrate such as a substrate, but is not limited thereto.

接著,利用一圖案化製程,將墊層120圖案化,以於半導體基底110上形成如第2圖所示之圖案化墊層120’。為了明確起見,以下大致描述本實施例圖案化墊層120’之製作方法。如第1圖及第2 圖所示,首先,利用光微影的方法,於墊層120上形成一圖案化光阻(圖未示),以定義出下方欲形成溝渠的位置。接著,以圖案化光阻(圖未示)當作蝕刻遮罩,對第1圖內之墊層120進行一蝕刻製程而形成如第2圖所示之圖案化墊層120’。最後再去除圖案化光阻(圖未示),而形成如第2圖所示之結構。其中,圖案化墊層120’會包含圖案化氧化墊層122’以及圖案化氮化墊層124’,其可以暴露出部分之半導體基底110,以定義出後續製程中欲形成溝渠的位置。 Next, the pad layer 120 is patterned by a patterning process to form a patterned pad layer 120' as shown in FIG. 2 on the semiconductor substrate 110. For the sake of clarity, a method of fabricating the patterned pad layer 120' of this embodiment will be generally described below. As shown in Figure 1 and 2 As shown in the figure, first, a patterned photoresist (not shown) is formed on the underlayer 120 by means of photolithography to define the position at which the trench is to be formed below. Next, a patterned photoresist (not shown) is used as an etch mask, and the underlayer 120 in FIG. 1 is subjected to an etching process to form a patterned pad layer 120' as shown in FIG. Finally, the patterned photoresist (not shown) is removed to form a structure as shown in FIG. The patterned pad layer 120' may include a patterned oxide pad layer 122' and a patterned nitride pad layer 124' that may expose a portion of the semiconductor substrate 110 to define a location in the subsequent process where the trench is to be formed.

如第3圖所示。接著,進行至少一蝕刻製程,例如乾式蝕刻製程,將圖案化墊層120’的圖案轉移至半導體基底110中,而於絕緣區域20內形成相對應之溝渠R圖案。在此需注意的是,由於溝渠R係形成於半導體基底110內,因此其較佳可以暴露出半導體基底110之內部區域,例如一單晶區域。接著,可以選擇性地對圖案化墊層120’進行一退縮製程(pull back),以暴露出鄰近溝渠R開口處之半導體基底110。藉由此退縮製程,可以幫助後續製程中介電材料前驅物之填隙能力以及作為後續介電材料被過度蝕刻時之緩衝用途。 As shown in Figure 3. Next, at least one etching process, such as a dry etching process, is performed to transfer the pattern of the patterned pad layer 120' into the semiconductor substrate 110 to form a corresponding trench R pattern in the insulating region 20. It should be noted here that since the trench R is formed in the semiconductor substrate 110, it is preferable to expose an inner region of the semiconductor substrate 110, such as a single crystal region. Next, a patterned back layer 120' can be selectively subjected to a pull back to expose the semiconductor substrate 110 adjacent the opening of the trench R. By this retracting process, the interstitial ability of the precursor of the subsequent process dielectric material and the buffering effect when the subsequent dielectric material is over-etched can be assisted.

第4圖和第5圖係根據本發明實施例分別繪示溝渠表面具有選擇性成長材料層或沈積材料層之剖面示意圖。如第4圖所示,在圖案化墊層120’之覆蓋下,施行一選擇性成長製程P1而於溝渠R的表面S上順向性地形成至少一選擇性成長材料層130,例如為一非晶材料(amorphous material),較佳為一非晶矽。更精確來說,根據 本發明之一較佳實施例,此選擇性成長材料層130同時可以視為是一應力緩衝層及/或一犧牲層,其除了可以作為緩衝後續製程中介電材料(圖未示)以及半導底基底110間之應力外,其也可以消耗在後續轉化製程中從介電材料向半導體基底110擴散之活性原子,例如氧原子,此兩特徵將於下文詳述之。此外,上述之選擇性成長製程P1較佳採用並流(co-flow)沈積製程或循環(cyclic)沈積製程的方式以形成此選擇性成長材料層130。對於一循環沈積製程而言,舉例來說,當選擇性成長材料層130為非晶矽材質時,可在製程溫度低於攝氏500度之環境下,交替通入矽來源氣體以及蝕刻氣體,並搭配載體氣體,以反覆進行多次沈積和蝕刻之循環,使其厚度較佳介於5埃(angstrom)至100埃之間。由於非晶矽材質在溝渠R表面S(也就是半導體基底110之暴露面)之沈積速率大於其在圖案化墊層120’之沈積速率,若搭配週期性的蝕刻處理,便能確保非晶矽材質僅選擇性地形成於溝渠R內。上述之矽來源氣體包含矽烷(silane,SiH4)、二氯矽烷(dichlorosilane,SiH2Cl2)或其鹵化物,蝕刻氣體包含氯氣(Cl2)、氯化氫(HCl)或其他蝕刻氣體,載體氣體包含氫氣(H2)、氬氣(Ar)或其他合適之惰性氣體。又根據不同製程需求,選擇性成長材料層130和半導體基底110間或選擇性成長材料層130之表面上另可包含一襯墊層(圖未示),例如為一氧化層及/或一氮化層等,其可以用於緩衝選擇性成長材料層130和半導體基底110間之應力差異或增進之間之附著力,但不限於此。 4 and 5 are schematic cross-sectional views showing a surface of a trench having a selective growth material layer or a deposition material layer, respectively, according to an embodiment of the present invention. As shown in FIG. 4, a selective growth process P1 is performed under the coverage of the patterned pad layer 120', and at least one selective growth material layer 130 is formed on the surface S of the trench R, for example, as a An amorphous material is preferably an amorphous material. More precisely, according to a preferred embodiment of the present invention, the selective growth material layer 130 can be regarded as a stress buffer layer and/or a sacrificial layer at the same time, which can be used as a buffer for subsequent process dielectric materials (Fig. In addition to the stress between the semi-substrate substrate 110, it may also consume active atoms, such as oxygen atoms, that diffuse from the dielectric material to the semiconductor substrate 110 during subsequent conversion processes, as will be described in more detail below. In addition, the selective growth process P1 described above preferably employs a co-flow deposition process or a cyclic deposition process to form the selective growth material layer 130. For a cyclic deposition process, for example, when the selective growth material layer 130 is made of amorphous germanium, the germanium source gas and the etching gas may be alternately introduced in an environment where the process temperature is lower than 500 degrees Celsius. In combination with the carrier gas, the cycle of multiple deposition and etching is repeated to have a thickness of preferably between 5 angstroms and 100 angstroms. Since the deposition rate of the amorphous germanium material on the surface S of the trench R (that is, the exposed surface of the semiconductor substrate 110) is greater than the deposition rate of the patterned pad layer 120', an amorphous germanium can be ensured by a periodic etching process. The material is selectively formed only in the trench R. The above-mentioned gas source gas includes silane (SiH 4 ), dichlorosilane (SiH 2 Cl 2 ) or a halide thereof, and the etching gas contains chlorine gas (Cl 2 ), hydrogen chloride (HCl) or other etching gas, carrier gas. Contains hydrogen (H 2 ), argon (Ar) or other suitable inert gas. According to different process requirements, the surface of the selective growth material layer 130 and the semiconductor substrate 110 or the selective growth material layer 130 may further include a liner layer (not shown), such as an oxide layer and/or a nitrogen. The layer or the like can be used to buffer the difference or increase in adhesion between the selective growth material layer 130 and the semiconductor substrate 110, but is not limited thereto.

又根據本發明之另一實施例,如第5圖所示,也可以透過一沈 積製程P1’而形成一沈積材料層132順向性地同時覆蓋於溝渠R的表面S以及圖案化墊層120’之表面上。然而,值得注意的是,若沈積材料層132同時覆蓋於溝渠R的表面S及圖案化墊層120’之表面上,將會較不利於後續溝渠R內介電材料(圖未示)之平坦化製程。舉例來說,需採取兩段式的平坦化製程,以分別移除介電材料以及沈積材料層132。因此,較佳地僅將選擇性成長材料層130形成於溝渠R表面S,使其具有如第4圖所示之結構。 According to another embodiment of the present invention, as shown in FIG. 5, it is also possible to pass through a sink. The deposition process P1' forms a deposition material layer 132 which covers the surface S of the trench R and the surface of the patterned pad layer 120. However, it is worth noting that if the deposition material layer 132 covers both the surface S of the trench R and the surface of the patterned pad layer 120', it will be disadvantageous for the flatness of the dielectric material (not shown) in the subsequent trench R. Process. For example, a two-stage planarization process is required to remove the dielectric material and the deposited material layer 132, respectively. Therefore, it is preferable to form only the selective growth material layer 130 on the surface S of the trench R to have a structure as shown in FIG.

如第6圖所示,接著進行一填充製程,以填入一介電材料前驅物150於溝渠R中。由於半導體元件持續微縮之故,使得溝渠R之深寬比不斷提昇(例如深度達3000埃、開口直徑僅500埃之溝渠)。因此,較佳而言,介電材料前驅物150較佳係呈液態狀,以具有較佳之填隙能力。舉例來說,可以利用流體化學氣相沈積(flowable chemical vapor deposition,FCVD)製程或旋轉塗佈介電層(spin-on dielectric,SOD)製程將液態之介電材料前驅物150填入溝渠R。根據本較佳實施例,介電材料前驅物150較佳為一呈現液態之矽烷胺化物,例如三甲基矽烷胺(trisilylamine,TSA),但不以此為限。 As shown in FIG. 6, a filling process is then performed to fill a dielectric material precursor 150 in the trench R. Due to the continued shrinkage of the semiconductor components, the aspect ratio of the trench R is continuously increased (for example, a trench having a depth of 3000 angstroms and an opening diameter of only 500 angstroms). Therefore, preferably, the dielectric material precursor 150 is preferably in a liquid state to have a better interstitial capacity. For example, a liquid dielectric material precursor 150 can be filled into the trench R by a fluid chemical vapor deposition (FCVD) process or a spin-on dielectric (SOD) process. According to the preferred embodiment, the dielectric material precursor 150 is preferably a liquid decylamine, such as trisilylamine (TSA), but is not limited thereto.

接著,進行一轉化製程,以將介電材料前驅物轉化成一介電材料,並同時將選擇性成長材料層轉化成一含氧非晶材料層,其詳細步驟如下所述。如第7圖所示,並搭配參照第6圖。進行一轉化製程P2,以將第6圖之選擇性成長材料層130轉換成含氧非晶材料層140。其中,轉化製程P2可以是上述流體化學氣相沈積製程或一旋 轉塗佈介電層製程之子步驟或接續步驟,其至少包含氧化製程以及緻密化製程。舉例來說,對於一流體化學氣相沈積製程而言,當液態之矽氮化物被填入溝渠R內之後,可以接續進行一氧化製程,使得液態之矽氮化物產生交聯(curing)反應,而產生-Si-O-Si-之鍵結。最後,再進行一緻密化製程,使得交聯後的矽氮化物產生進一步的反應,而成為緻密的氧化矽結構。其中,上述氧化製程及緻密化製程均包含通入氧氣(O2)、臭氧(O3)或水蒸氣(H2O),且其製程溫度分別介於500℃~700℃間及大於1000℃。 Next, a conversion process is performed to convert the dielectric material precursor into a dielectric material and simultaneously convert the layer of selectively grown material into an oxygen-containing amorphous material layer, the detailed steps of which are as follows. As shown in Figure 7, and with reference to Figure 6. A conversion process P2 is performed to convert the selective growth material layer 130 of FIG. 6 into the oxygen-containing amorphous material layer 140. The conversion process P2 may be a sub-step or a subsequent step of the fluid chemical vapor deposition process or a spin-coating dielectric layer process, which includes at least an oxidation process and a densification process. For example, for a fluid chemical vapor deposition process, after the liquid niobium nitride is filled into the trench R, an oxidation process can be successively performed to cause a liquid tantalum nitride to undergo a curing reaction. The bond of -Si-O-Si- is produced. Finally, a uniform densification process is performed to cause the cross-linked niobium nitride to react further and become a dense tantalum oxide structure. Wherein, the oxidation process and the densification process both include oxygen (O 2 ), ozone (O 3 ) or water vapor (H 2 O), and the process temperatures thereof are between 500 ° C and 700 ° C and greater than 1000 ° C respectively. .

對於現行技術而言,若經過上述之轉化製程,由於氧原子會持續從溝渠內部往外擴散至溝渠周圍之半導體基底內之故,將會造成主動區域範圍之減少。此外,當介電材料前驅物經過轉換製程而成為介電材料後,由於其體積會稍微增加,而對溝渠周圍之半導體基底產生一壓縮應力。然而,根據本發明之較佳實施例,由於半導體基底110與介電材料前驅物150間存在有選擇性成長材料層130,其可以與氧原子反應而防止了氧原子之進一步擴散。仍如第6圖及第7圖所示,舉例來說,當選擇性成長材料層130為多晶矽材質時,其可以和氧原子反應而生成氧化矽,使得轉化後的含氧非晶材料層140之組成包含非晶矽及/或氧化矽。其中,含氧非晶材料層140內之含氧量呈一梯度分佈。更進一步來說,此梯度分佈係自介電材料160與含氧非晶材料層140的接觸面S1向含氧非晶材料層140與溝渠R的接觸面S2遞減。此特徵繪示如第8圖所示,並於下文詳述之。 For the current technology, if the above conversion process is carried out, the oxygen atoms will continue to diffuse from the inside of the trench to the semiconductor substrate around the trench, which will reduce the range of the active region. In addition, when the dielectric material precursor is converted into a dielectric material by a conversion process, a compressive stress is generated on the semiconductor substrate around the trench due to a slight increase in volume. However, in accordance with a preferred embodiment of the present invention, a selective growth material layer 130 is present between the semiconductor substrate 110 and the dielectric material precursor 150, which can react with oxygen atoms to prevent further diffusion of oxygen atoms. Still as shown in FIGS. 6 and 7, for example, when the selective growth material layer 130 is a polycrystalline germanium material, it can react with oxygen atoms to form cerium oxide, so that the converted oxygen-containing amorphous material layer 140 The composition comprises amorphous germanium and/or germanium oxide. The oxygen content in the oxygen-containing amorphous material layer 140 has a gradient distribution. Further, the gradient distribution is reduced from the contact surface S1 of the dielectric material 160 and the oxygen-containing amorphous material layer 140 to the contact surface S2 of the oxygen-containing amorphous material layer 140 and the trench R. This feature is illustrated in Figure 8, and is detailed below.

第8圖是沿著第7圖中I-I’切線之含氧量隨位置變化之曲線圖。在第8圖中,D1係對應於C0,且D2係對應於C1,其中D1代表在含氧非晶材料層內,位於接觸面S1或鄰近接觸面S1之位置,而D2代表含氧非晶材料層內,位於接觸面S2或鄰近接觸面S2之位置;C1和C0分別代表含氧非晶材料層內之一含氧量,較佳而言,C1≧C0≧0;而t1、t2、t3分別代表不同轉化時間下的曲線分佈,較佳而言,0<t1<t2<t3。如第8圖所示,搭配參照第7圖。經過一定的轉化時間t1後,部份之多晶矽材質會與活性原子,例如氧原子,反應而生成氧化矽,使得含氧非晶材料層140內之含氧量會呈現一梯度分佈,且此梯度分佈係自介電材料160與含氧非晶材料層140的接觸面S1向含氧非晶材料層140與溝渠R的接觸面S2遞減。更明確來說,靠近接觸面S1之氧化矽/多晶矽之比值會大於靠近接觸面S2之氧化矽/多晶矽之比值。且隨著轉化時間持續增加,例如由t2增加至t3,位於含氧非晶材料層140內介於D1與D2間之含氧量會逐漸提昇,亦即,有更多之非晶矽材質會反應成氧化矽。根據本發明之較佳實施例,較佳而言,氧原子在擴散至接觸面S2前就會被完全反應,因而不會擴散至靠近接觸面S2之半導體基底110內。若經過足夠長之轉化時間,位於含氧非晶材料層140內與D1與D2間相對應之含氧量也可能會均達到C1之濃度,亦即,位於含氧非晶材料層140內之所有選擇性成長矽均會被反應成氧化矽,但不限於此。透過此反應機制,位於主動區域內之半導體基底110便不會因為轉化製程P2之施行而有所減損。另需注意的是,由於選擇性成 長材料層130係為一鬆散之結構,因此即便形成含氧非晶材料層140後,其也不會對主動區域造成不必要之應力。 Fig. 8 is a graph showing the oxygen content as a function of position along the line I-I' in Fig. 7. In Fig. 8, D1 corresponds to C 0 and D2 corresponds to C 1 , wherein D1 represents a position in the oxygen-containing amorphous material layer at the contact surface S1 or adjacent to the contact surface S1, and D2 represents oxygen. In the amorphous material layer, at the contact surface S2 or adjacent to the contact surface S2; C 1 and C 0 respectively represent an oxygen content in the oxygen-containing amorphous material layer, preferably, C 1 ≧C 0 ≧0 And t 1 , t 2 , and t 3 respectively represent curve distributions at different conversion times, preferably 0 < t 1 < t 2 < t 3 . As shown in Figure 8, the reference is shown in Figure 7. After a certain conversion time t 1 , part of the polysilicon material reacts with active atoms, such as oxygen atoms, to form cerium oxide, so that the oxygen content in the oxygen-containing amorphous material layer 140 exhibits a gradient distribution, and The gradient distribution decreases from the contact surface S1 of the dielectric material 160 to the oxygen-containing amorphous material layer 140 to the contact surface S2 of the oxygen-containing amorphous material layer 140 and the trench R. More specifically, the ratio of cerium oxide/polycrystalline germanium near the contact surface S1 will be greater than the ratio of cerium oxide/polycrystalline germanium near the contact surface S2. And as the conversion time continues to increase, for example, from t 2 to t 3 , the oxygen content between D1 and D2 in the oxygen-containing amorphous material layer 140 gradually increases, that is, there are more amorphous germanium. The material reacts to yttrium oxide. In accordance with a preferred embodiment of the present invention, preferably, the oxygen atoms are fully reacted prior to diffusion to the contact surface S2 and thus do not diffuse into the semiconductor substrate 110 adjacent the contact surface S2. If a conversion time is sufficiently long, the oxygen content corresponding to the relationship between D1 and D2 in the oxygen-containing amorphous material layer 140 may also reach the concentration of C1, that is, in the oxygen-containing amorphous material layer 140. All selective growth enthalpy is reacted to cerium oxide, but is not limited thereto. Through this reaction mechanism, the semiconductor substrate 110 located in the active region is not degraded by the implementation of the conversion process P2. It should also be noted that since the selective growth material layer 130 is a loose structure, even if the oxygen-containing amorphous material layer 140 is formed, it does not cause unnecessary stress on the active region.

隨後,平坦化介電材料160,直至暴露出圖案化墊層120’,而形成如第9圖所示之平坦化的介電材料160a以及平坦化的圖案化墊層120’。在此需注意的是,根據本發明之一較佳實施例,由於圖案化墊層120’之表面上並沒有被選擇性成長材料層(圖未式)所覆蓋,因此平坦化製程可以持續進行直至圖案化墊層120’之表面被暴露。亦即,透過本發明之較佳實施例,可以對介電材料160採用一次性的研磨製程,而不需分段性地移除介電材料160及選擇性成長材料層。 Subsequently, the dielectric material 160 is planarized until the patterned pad layer 120' is exposed to form a planarized dielectric material 160a and a planarized patterned pad layer 120' as shown in FIG. It should be noted that, according to a preferred embodiment of the present invention, since the surface of the patterned pad layer 120' is not covered by the selective growth material layer (not shown), the planarization process can be continued. Until the surface of the patterned pad layer 120' is exposed. That is, through the preferred embodiment of the present invention, a one-time polishing process can be employed on the dielectric material 160 without the need to remove the dielectric material 160 and the selectively grown material layer in sections.

之後,移除圖案化墊層120’,便可於絕緣區域20中形成如第10圖所示之一淺溝隔離結構G。此淺溝隔離結構G包含介電材料160a以及含氧非晶材料層140。然後,可進行主動區域10中之電晶體等半導體製程。此半導體製程為本領域之通常知識者所熟知故不再贅述。 Thereafter, the patterned pad layer 120' is removed, and a shallow trench isolation structure G as shown in Fig. 10 can be formed in the insulating region 20. The shallow trench isolation structure G includes a dielectric material 160a and an oxygen-containing amorphous material layer 140. Then, a semiconductor process such as a transistor in the active region 10 can be performed. This semiconductor process is well known to those of ordinary skill in the art and will not be described again.

綜上所述,本發明提出一種半導體結構之製作方法,其形成一選擇性成長材料層130於溝渠R表面。由於在介電材料前驅物150填入至溝渠R內之前,溝渠R表面S已經形成有一選擇性成長材料層130,因此在後續之轉換製程P2中,源自於介電材料前驅物150或外界環境之活性原子,例如氧原子,便可以被選擇性成長材料層 130完全消耗而轉換成一含氧非晶材料層140,而不會直接擴散至溝渠R旁的半導體基底110中,使得主動區域之範圍大小不致改變。此外,由於含氧非晶材料層140具有緩衝介電材料160與半導體基底110間應力的作用,因此也能避免半導體基底110承受不必要之壓縮應力,進而提昇相對應電晶體元件之載子遷移率。 In summary, the present invention provides a method of fabricating a semiconductor structure that forms a layer of selective growth material 130 on the surface of the trench R. Since the surface R of the trench R has formed a layer of selective growth material 130 before the dielectric material precursor 150 is filled into the trench R, in the subsequent conversion process P2, it is derived from the dielectric material precursor 150 or the outside. An active atom of the environment, such as an oxygen atom, can be selectively grown 130 is completely consumed and converted into an oxygen-containing amorphous material layer 140 without directly diffusing into the semiconductor substrate 110 beside the trench R, so that the extent of the active region does not change. In addition, since the oxygen-containing amorphous material layer 140 has the function of buffering the stress between the dielectric material 160 and the semiconductor substrate 110, the semiconductor substrate 110 can be prevented from withstanding unnecessary compressive stress, thereby enhancing the carrier migration of the corresponding transistor element. rate.

以上所述僅為本發明之較佳實施例,凡依本發明申請專利範圍所做之均等變化與修飾,皆應屬本發明之涵蓋範圍。 The above are only the preferred embodiments of the present invention, and all changes and modifications made to the scope of the present invention should be within the scope of the present invention.

10‧‧‧主動區域 10‧‧‧Active area

20‧‧‧絕緣區域 20‧‧‧Insulated area

110‧‧‧半導體基底 110‧‧‧Semiconductor substrate

120‧‧‧墊層 120‧‧‧ cushion

122‧‧‧氧化墊層 122‧‧‧Oxide cushion

124‧‧‧氮化墊層 124‧‧‧Nitrided mat

120’‧‧‧圖案化墊層 120’‧‧‧ patterned cushion

122’‧‧‧圖案化氧化墊層 122'‧‧‧ patterned oxidized cushion

124’‧‧‧圖案化氮化墊層 124'‧‧‧ patterned nitride pad

130‧‧‧選擇性成長材料層 130‧‧‧Selective growth material layer

132‧‧‧沈積材料層 132‧‧‧layer of deposited material

140‧‧‧含氧非晶材料層 140‧‧‧Oxygen-containing amorphous material layer

150‧‧‧介電材料前驅物 150‧‧‧ dielectric material precursor

160‧‧‧介電材料 160‧‧‧ dielectric materials

160a‧‧‧介電材料 160a‧‧‧ dielectric materials

G‧‧‧淺溝隔離結構 G‧‧‧Shallow trench isolation structure

P1’‧‧‧沈積製程 P1'‧‧‧ deposition process

P2‧‧‧轉化製程 P2‧‧‧ conversion process

R‧‧‧溝渠 R‧‧‧ Ditch

S‧‧‧表面 S‧‧‧ surface

S1、S2‧‧‧接觸面 S1, S2‧‧‧ contact surface

P1‧‧‧選擇性成長製程 P1‧‧‧Selective Growth Process

第1圖至第10圖係根據本發明實施例所繪示之半導體結構之製作方法剖面示意圖。 1 to 10 are schematic cross-sectional views showing a method of fabricating a semiconductor structure according to an embodiment of the invention.

110‧‧‧半導體基底 110‧‧‧Semiconductor substrate

120’‧‧‧圖案化墊層 120’‧‧‧ patterned cushion

122’‧‧‧圖案化氧化墊層 122'‧‧‧ patterned oxidized cushion

124’‧‧‧圖案化氮化墊層 124'‧‧‧ patterned nitride pad

130‧‧‧選擇性成長材料層 130‧‧‧Selective growth material layer

150‧‧‧介電材料前驅物 150‧‧‧ dielectric material precursor

R‧‧‧溝渠 R‧‧‧ Ditch

S‧‧‧表面 S‧‧‧ surface

Claims (17)

一種半導體結構的製作方法,包含:提供一半導體基底;形成一圖案化墊層於該半導體基底上,以暴露出部分該半導體基底;蝕刻暴露出的該半導體基底,以形成一溝渠;選擇性地於該溝渠表面形成一選擇性成長材料層;填入一介電材料前驅物於該溝渠中;以及進行一轉化製程,將該介電材料前驅物轉化成一介電材料,並同時將該選擇性成長材料層轉化成一含氧非晶材料層,其中在經過該轉換製程之後,該含氧非晶材料層內的含氧量呈一梯度分佈,且該含氧量係自該介電材料與該含氧非晶材料層的接觸面向該溝渠與該含氧非晶材料層的接觸面遞減。 A method of fabricating a semiconductor structure, comprising: providing a semiconductor substrate; forming a patterned pad on the semiconductor substrate to expose a portion of the semiconductor substrate; etching the exposed semiconductor substrate to form a trench; Forming a selective growth material layer on the surface of the trench; filling a dielectric material precursor into the trench; and performing a conversion process to convert the dielectric material precursor into a dielectric material and simultaneously selecting the selectivity Converting the growth material layer into an oxygen-containing amorphous material layer, wherein after the conversion process, the oxygen content in the oxygen-containing amorphous material layer is in a gradient distribution, and the oxygen content is from the dielectric material and the The contact of the oxygen-containing amorphous material layer decreases toward the contact surface of the trench and the oxygen-containing amorphous material layer. 如申請專利範圍第1項所述之半導體結構的製作方法,其中該選擇性成長材料層僅位於該溝渠表面上。 The method of fabricating a semiconductor structure according to claim 1, wherein the selective growth material layer is located only on the surface of the trench. 如申請專利範圍第1項所述之半導體結構的製作方法,其中形成該選擇性成長材料層之製程包含選擇性成長(selective growth)製程。 The method of fabricating a semiconductor structure according to claim 1, wherein the process of forming the selective growth material layer comprises a selective growth process. 如申請專利範圍第1項所述之半導體結構的製作方法,其中形成該選擇性成長材料層之製程包含並流(co-flow)沈積製程或循環(cyclic)沈積製程。 The method of fabricating a semiconductor structure according to claim 1, wherein the process of forming the selective growth material layer comprises a co-flow deposition process or a cyclic deposition process. 如申請專利範圍第1項所述之半導體製程的製作方法,其中形成該選擇性成長材料層之製程溫度低於攝氏500度(℃)。 The method of fabricating the semiconductor process of claim 1, wherein the process temperature for forming the selective growth material layer is less than 500 degrees Celsius (° C.). 如申請專利範圍第1項所述之半導體結構的製作方法,其中該選擇性成長材料層係為一非晶矽材料層。 The method of fabricating a semiconductor structure according to claim 1, wherein the selective growth material layer is an amorphous germanium material layer. 如申請專利範圍第1項所述之半導體結構的製作方法,其中該選擇性成長材料層之厚度介於5埃(angstrom)至100埃。 The method of fabricating a semiconductor structure according to claim 1, wherein the selective growth material layer has a thickness of from 5 angstroms to 100 angstroms. 如申請專利範圍第1項所述之半導體結構的製作方法,其中在形成該選擇性成長材料層之前,另包含對該圖案化墊層進行一退縮(pull back)製程。 The method for fabricating a semiconductor structure according to claim 1, wherein before the forming the selective growth material layer, a pull back process is performed on the patterned pad layer. 如申請專利範圍第1項所述之半導體結構的製作方法,其中在形成該選擇性成長材料層之前,另包含形成一襯墊層於該溝渠表面。 The method of fabricating a semiconductor structure according to claim 1, wherein before forming the selective growth material layer, forming a liner layer on the surface of the trench. 如申請專利範圍第1項所述之半導體結構的製作方法,其中該介電材料前驅物包含三甲基矽烷胺(trisilylamine,TSA)。 The method of fabricating a semiconductor structure according to claim 1, wherein the dielectric material precursor comprises trisilylamine (TSA). 如申請專利範圍第1項所述之半導體製程的製作方法,其中填入該介電材料前驅物之製程係為一流體化學氣相沈積(flowable chemical vapor deposition,FCVD)製程或一旋轉塗佈介電層(spin-on dielectric,SOD)製程。 The method for fabricating a semiconductor process according to claim 1, wherein the process of filling the precursor of the dielectric material is a flow chemical vapor deposition (FCVD) process or a spin coating process. Electric layer (spin-on Dielectric, SOD) process. 如申請專利範圍第1項所述之半導體結構的製作方法,其中該轉化製程包含一氧化製程。 The method of fabricating a semiconductor structure according to claim 1, wherein the conversion process comprises an oxidation process. 如申請專利範圍第12項所述之半導體結構的製作方法,其中該氧化製程包含通入氧氣、臭氧或水蒸氣。 The method of fabricating a semiconductor structure according to claim 12, wherein the oxidizing process comprises introducing oxygen, ozone or water vapor. 如申請專利範圍第1項所述之半導體結構的製作方法,其中該轉化製程包含一緻密化製程,用以緻密化該介電材料以及該含氧非晶材料層。 The method of fabricating a semiconductor structure according to claim 1, wherein the conversion process comprises a uniform densification process for densifying the dielectric material and the oxygen-containing amorphous material layer. 如申請專利範圍第1項所述之半導體結構的製作方法,其中該轉化製程的製程溫度為500℃~700℃。 The method for fabricating a semiconductor structure according to claim 1, wherein the conversion process has a process temperature of 500 ° C to 700 ° C. 如申請專利範圍第1項所述之半導體結構的製作方法,在進行該轉化製程之後,更包含:進行一平坦化製程,以去除位於該溝渠之外之該介電材料。 The method for fabricating a semiconductor structure according to claim 1, after performing the conversion process, further comprising: performing a planarization process to remove the dielectric material outside the trench. 如申請專利範圍第1項所述之半導體結構的製作方法,其中該含氧非晶材料層之組成包含非晶矽和氧化矽。 The method for fabricating a semiconductor structure according to claim 1, wherein the composition of the oxygen-containing amorphous material layer comprises amorphous germanium and germanium oxide.
TW101146979A 2012-12-12 2012-12-12 Method for manufacturing semiconductor structure TWI581367B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW101146979A TWI581367B (en) 2012-12-12 2012-12-12 Method for manufacturing semiconductor structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW101146979A TWI581367B (en) 2012-12-12 2012-12-12 Method for manufacturing semiconductor structure

Publications (2)

Publication Number Publication Date
TW201423905A TW201423905A (en) 2014-06-16
TWI581367B true TWI581367B (en) 2017-05-01

Family

ID=51394135

Family Applications (1)

Application Number Title Priority Date Filing Date
TW101146979A TWI581367B (en) 2012-12-12 2012-12-12 Method for manufacturing semiconductor structure

Country Status (1)

Country Link
TW (1) TWI581367B (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW455985B (en) * 1999-06-11 2001-09-21 Taiwan Semiconductor Mfg Shallow trench isolation method
US20050085047A1 (en) * 2003-10-20 2005-04-21 Texas Instruments Incorporated In situ hardmask pullback using an in situ plasma resist trim process
US20050266655A1 (en) * 2004-06-01 2005-12-01 Applied Materials Inc. Dielectric gap fill with oxide selectively deposited over silicon liner
TW201034117A (en) * 2009-02-09 2010-09-16 Tel Epion Inc Method for forming trench isolation using a gas cluster ion beam growth process

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW455985B (en) * 1999-06-11 2001-09-21 Taiwan Semiconductor Mfg Shallow trench isolation method
US20050085047A1 (en) * 2003-10-20 2005-04-21 Texas Instruments Incorporated In situ hardmask pullback using an in situ plasma resist trim process
US20050266655A1 (en) * 2004-06-01 2005-12-01 Applied Materials Inc. Dielectric gap fill with oxide selectively deposited over silicon liner
TW201034117A (en) * 2009-02-09 2010-09-16 Tel Epion Inc Method for forming trench isolation using a gas cluster ion beam growth process

Also Published As

Publication number Publication date
TW201423905A (en) 2014-06-16

Similar Documents

Publication Publication Date Title
JP4021593B2 (en) Semiconductor device and manufacturing method thereof
US9209243B2 (en) Method of forming a shallow trench isolation structure
KR100839529B1 (en) Method for fabricating isolation in semiconductor device
KR100870616B1 (en) Methods of Forming Trench Isolation Regions
US7332409B2 (en) Methods of forming trench isolation layers using high density plasma chemical vapor deposition
JP2004311487A (en) Method of manufacturing semiconductor device
JP2012231007A (en) Method of manufacturing semiconductor device
US8304322B2 (en) Methods of filling isolation trenches for semiconductor devices and resulting structures
US9117878B2 (en) Method for manufacturing shallow trench isolation
TW200924109A (en) Method for forming shallow trench isolation structure and method for preparing recessed gate structure using the same
CN113345834A (en) Low-voltage device and manufacturing method thereof
US20070004139A1 (en) Method of manufacturing a non-volatile semiconductor device
TW201918578A (en) Methods of forming silicon oxide layer
KR100555472B1 (en) Trench isolation method using selective epitaxial growth
JP2010263104A (en) Semiconductor device and method of manufacturing the same
TWI581367B (en) Method for manufacturing semiconductor structure
TWI466230B (en) Method for fabricating trench isolation structure
TWI579959B (en) Shallow trench isolation and method of forming the same
TWI541936B (en) Semiconductor structure and process thereof
JP2012134288A (en) Semiconductor device manufacturing method
CN103515285B (en) Semiconductor structure and its manufacture craft
TW544807B (en) Method for forming shallow trench isolation
TWI257653B (en) Seamless trench fill method utilizing sub-atmospheric pressure chemical vapor deposition technique
CN113451119A (en) Method for improving uniformity of grid oxide layer
TW200830457A (en) STI of a semiconductor device and fabrication method thereof