TWI541936B - Semiconductor structure and process thereof - Google Patents

Semiconductor structure and process thereof Download PDF

Info

Publication number
TWI541936B
TWI541936B TW101121306A TW101121306A TWI541936B TW I541936 B TWI541936 B TW I541936B TW 101121306 A TW101121306 A TW 101121306A TW 101121306 A TW101121306 A TW 101121306A TW I541936 B TWI541936 B TW I541936B
Authority
TW
Taiwan
Prior art keywords
layer
semiconductor
rich
germanium
rich layer
Prior art date
Application number
TW101121306A
Other languages
Chinese (zh)
Other versions
TW201351561A (en
Inventor
劉志建
張家隆
陳哲明
李瑞珉
林育民
Original Assignee
聯華電子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 聯華電子股份有限公司 filed Critical 聯華電子股份有限公司
Priority to TW101121306A priority Critical patent/TWI541936B/en
Publication of TW201351561A publication Critical patent/TW201351561A/en
Application granted granted Critical
Publication of TWI541936B publication Critical patent/TWI541936B/en

Links

Landscapes

  • Chemical Vapour Deposition (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Element Separation (AREA)

Description

半導體結構及其製程 Semiconductor structure and its process

本發明係關於一種半導體結構及其製程,且特別係關於一種形成一富矽層於凹槽表面的半導體結構及其製程。 The present invention relates to a semiconductor structure and process thereof, and more particularly to a semiconductor structure for forming a germanium-rich layer on a surface of a recess and a process therefor.

在目前半導體製程中,一般採用區域氧化法(localized oxidation isolation,LOCOS)或是淺溝隔離(shallow trench isolation,STI)方法來進行元件之間的隔離,以避免元件間相互干擾而產生短路現象。然而隨著半導體晶片的設計與製造線寬變得越來越細時,LOCOS製程中所產生之凹坑(pits)、晶體缺陷(crystal defect)以及鳥喙(bird’s beak)長度過長等缺點,便將大幅地影響半導體晶片的特性,且LOCOS方法所產生之場氧化層佔據較大的體積而會影響整個半導體晶片的積集度(integration)。因此在次微米(submicron)的半導體製程中,尺寸較小、可提高半導體晶片之積集度淺溝隔離(shallow trench isolation,簡稱STI)製程遂成為近來被廣泛使用的隔離技術。 In current semiconductor processes, localized oxidation isolation (LOCOS) or shallow trench isolation (STI) methods are generally used to isolate components to avoid short-circuit phenomena caused by mutual interference between components. However, as the design and manufacturing line width of semiconductor wafers become finer, the pits, crystal defects, and bird's beak lengths generated in the LOCOS process are too long. The characteristics of the semiconductor wafer will be greatly affected, and the field oxide layer produced by the LOCOS method occupies a large volume and affects the integration of the entire semiconductor wafer. Therefore, in a submicron semiconductor process, a small size and improved semiconductor wafer shallow trench isolation (STI) process has become a widely used isolation technology.

典型的STI的製作方法是在晶片表面的各MOS元件間製作一凹槽,並填入介電物質以產生電性隔離的效果。介電物質一般為氧化矽。在形成氧化矽時,用以形成氧化矽之步驟或後續製程的高溫會使氧擴散至凹槽旁欲形成電晶體的主動區的矽基底中,而將部分之矽基底氧化形成氧化矽。如此,不但無法精確控制每個淺溝隔離結 構的大小,而且相當於所形成之淺溝隔離結構的體積增加,而減少主動區之矽基底。然而,隨著半導體元件之尺寸日益微縮至接近物理極限,不同大小的淺溝隔離結構與主動區已嚴重影響其上元件的電性表現與製程品質。 A typical STI is fabricated by making a recess between the MOS components on the surface of the wafer and filling the dielectric material to create an electrical isolation effect. The dielectric material is typically cerium oxide. In the formation of yttrium oxide, the high temperature of the step of forming yttrium oxide or a subsequent process causes oxygen to diffuse into the ruthenium substrate adjacent to the groove to form the active region of the transistor, and a portion of the ruthenium substrate is oxidized to form ruthenium oxide. In this way, not only can not accurately control each shallow trench isolation junction The size of the structure is equivalent to an increase in the volume of the shallow trench isolation structure formed, and the base of the active region is reduced. However, as the size of semiconductor components is shrinking to near physical limits, different sizes of shallow trench isolation structures and active regions have severely affected the electrical performance and process quality of the components.

本發明提出一種半導體結構及其製程,其形成一富矽層於凹槽表面,特別是用以形成淺溝隔離結構的凹槽表面,以解決上述問題。 The present invention provides a semiconductor structure and process for forming a ytterbium-rich layer on a surface of a recess, particularly a recessed surface for forming a shallow trench isolation structure, to solve the above problems.

本發明提供一種半導體結構位於一基底之一凹槽中。半導體結構包含有一襯墊層、一富矽層以及一填充材料。襯墊層位於凹槽的表面。富矽層位於襯墊層上。填充材料位於富矽層上並填滿凹槽。 The present invention provides a semiconductor structure in a recess in a substrate. The semiconductor structure includes a liner layer, a germanium-rich layer, and a filler material. The backing layer is on the surface of the groove. The ruthenium rich layer is on the liner layer. The filler material is located on the rich layer and fills the grooves.

本發明提供一種半導體製程,包含有下述步驟。首先,形成一凹槽於一基底中。接著,形成一襯墊層覆蓋凹槽的表面。接續,形成一富矽層於襯墊層上。繼之,填入一矽氮化物於凹槽中。然後,進行一轉化製程,將矽氮化物轉化成一氧化矽,並至少氧化部分富矽層。 The present invention provides a semiconductor process comprising the steps described below. First, a recess is formed in a substrate. Next, a liner layer is formed to cover the surface of the groove. Successively, a ruthenium-rich layer is formed on the liner layer. Next, a nitride is filled in the recess. Then, a conversion process is performed to convert the niobium nitride into niobium oxide and at least partially oxidize the niobium-rich layer.

基於上述,本發明提出一種半導體結構及其製程,其形成一富矽層於凹槽表面,特別是用以形成淺溝隔離結構的凹槽表面,然後填入矽氮化物於凹槽中,再將此矽氮化物轉化為填充材料以作為主動區之間之絕緣用。如此,由於本發明在填入矽氮化物之前已先形成 富矽層於凹槽表面,是以可防止轉化過程中所通入之成分例如氧原子擴散至凹槽旁的基底中,其佔據部分主動區之基底並擴充所形成之淺溝隔離結構的體積。 Based on the above, the present invention provides a semiconductor structure and a process thereof for forming a ruthenium-rich layer on a surface of a groove, particularly a groove surface for forming a shallow trench isolation structure, and then filling the ruthenium nitride into the groove, and then This niobium nitride is converted to a filler material for insulation between the active regions. Thus, since the present invention was formed prior to filling the niobium nitride The ruthenium-rich layer is on the surface of the groove so as to prevent the components introduced during the conversion process, such as oxygen atoms, from diffusing into the substrate beside the groove, occupying the base of the active region and expanding the volume of the shallow trench isolation structure formed. .

第1-10圖繪示本發明一實施例之半導體製程之剖面示意圖。如第1-3圖所示,提供具有一凹槽R的一基底110。詳細而言,如第1圖所示,提供基底110,其中基底110例如是一矽基底、一含矽基底、一三五族覆矽基底(例如GaN-on-silicon)、一石墨烯覆矽基底(graphene-on-silicon)或一矽覆絕緣(silicon-on-insulator,SOI)基底等半導體基底。接著,形成一硬遮罩層120於基底110上。在本實施例中,硬遮罩層120由下而上可包含一墊氧化層122以及一墊氮化層124於基底110上,但本發明不以此為限。 1 to 10 are schematic cross-sectional views showing a semiconductor process according to an embodiment of the present invention. As shown in Figures 1-3, a substrate 110 having a recess R is provided. In detail, as shown in FIG. 1, a substrate 110 is provided, wherein the substrate 110 is, for example, a germanium substrate, a germanium-containing substrate, a tri-five-layer germanium substrate (eg, GaN-on-silicon), and a graphene coating. A semiconductor substrate such as a graphene-on-silicon or a silicon-on-insulator (SOI) substrate. Next, a hard mask layer 120 is formed on the substrate 110. In this embodiment, the hard mask layer 120 may include a pad oxide layer 122 and a pad nitride layer 124 on the substrate 110 from bottom to top, but the invention is not limited thereto.

如第2圖所示,將硬遮罩層120圖案化以形成一圖案化的硬遮罩層120’,其包含一圖案化的墊氧化層122’以及一圖案化的墊氮化層124’。形成圖案化的硬遮罩層120’的方法可例如為:先利用微影的方法,形成一圖案化的光阻(未繪示)於硬遮罩層120上,此圖案化的光阻(未繪示)的圖案則定義其下方對應欲形成凹槽R的位置。然後進行蝕刻,並以圖案化的光阻(未繪示)的圖案當作遮罩來形成圖案化的硬遮罩層120’。接著在選擇性去除圖案化的光阻(未繪示)後,如第3圖所示,再利用蝕刻等方法,將圖案化的硬遮罩層120’的圖案轉移至基底110,以於基底110中形成凹槽R。 As shown in FIG. 2, the hard mask layer 120 is patterned to form a patterned hard mask layer 120' comprising a patterned pad oxide layer 122' and a patterned pad nitride layer 124'. . The method of forming the patterned hard mask layer 120 ′ can be, for example, first forming a patterned photoresist (not shown) on the hard mask layer 120 by using a lithography method, and the patterned photoresist ( The pattern (not shown) defines the position below which the groove R is to be formed. Etching is then performed and a patterned hard mask layer 120' is formed using a pattern of patterned photoresist (not shown) as a mask. Then, after selectively removing the patterned photoresist (not shown), as shown in FIG. 3, the pattern of the patterned hard mask layer 120' is transferred to the substrate 110 by etching or the like to form the substrate. A groove R is formed in 110.

如第4圖所示,形成一襯墊層130全面覆蓋基底110,特別是凹 槽R的表面S。襯墊層130可例如為一氧化層和/或一氮化層等,可例如經由原處蒸汽產生((in situ steam generation,ISSG)製程形成,但本發明不以此為限。 As shown in FIG. 4, a liner layer 130 is formed to completely cover the substrate 110, particularly concave. The surface S of the groove R. The liner layer 130 can be, for example, an oxide layer and/or a nitride layer, etc., and can be formed, for example, by an in situ steam generation (ISSG) process, but the invention is not limited thereto.

如第5圖所示,形成一富矽層140於襯墊層130上。在本實施例中,富矽層140為一矽質層。但在其他實施例中,富矽層140亦可為一氮化矽層、一氧化矽層、一氮氧化矽層或一氮化碳矽層等富含矽成分的化合材料層,亦即在該等化合材料層中,含有低於正常定比組成之氧的比例,例如若為氧化矽層,則其分子式為SiOx,x小於2。再者,富矽層140可由電漿輔助化學氣相沉積(Plasma Enhanced Chemical Vapor Deposition,PECVD)製程或原子層沉積(Atomic Layer Deposition,ALD)製程等形成,採用何種方式形成富矽層140係由欲形成富矽層140的作用而定。 As shown in FIG. 5, a germanium-rich layer 140 is formed on the liner layer 130. In the present embodiment, the germanium-rich layer 140 is a tantalum layer. In other embodiments, the antimony-rich layer 140 may also be a layer of a germanium-rich compound such as a tantalum nitride layer, a hafnium oxide layer, a hafnium oxynitride layer or a carbonitride layer, that is, The chemical material layer contains a ratio of oxygen lower than a normal composition, for example, if it is a ruthenium oxide layer, its molecular formula is SiOx and x is less than 2. Furthermore, the yttrium-rich layer 140 may be formed by a Plasma Enhanced Chemical Vapor Deposition (PECVD) process or an Atomic Layer Deposition (ALD) process, and a method for forming a lanthanum-rich layer 140 It depends on the role of the formation of the rich layer 140.

本發明形成富矽層140的目的係為防止後續填入於凹槽R而形成於富矽層140上之填充材料(未繪示)中的成分或者是後續製程中所通入之成分,例如氧,擴散至凹槽R旁的基底110中,佔據部分欲形成電晶體等半導體結構之主動區A、B並擴充所形成之淺溝隔離結構(未繪示)的體積。因此,防止填充材料或後續製程的成分污染基底110的方法可例如:(1)以富矽層140吸收該填充材料或後續製程的成分,例如提供矽的反應源,以消耗該填充材料中的氧原子,進而防止填充材料或後續製程的氧成分進入基底110中。此時富矽層140較佳為一具有較鬆散之結構,俾能有足夠空間吸收填充材料或後續製程的成分,此時較佳適用以電漿輔助化學氣相沉積(Plasma Enhanced Chemical Vapor Deposition,PECVD)製程形成 富矽層140。或者,(2)直接阻擋該填充材料或後續製程的成分進入富矽層140中。此時之富矽層140較佳為一具有較緻密之結構,俾能有效阻擋填充材料或後續製程的成分進入富矽層140中,而富矽層140因此較佳適用以原子層沉積(Atomic Layer Deposition,ALD)製程形成。 The purpose of forming the germanium-rich layer 140 in the present invention is to prevent the components which are subsequently filled in the recess R and which are formed in the filling material (not shown) on the germanium-rich layer 140 or the components which are introduced in the subsequent process, for example. Oxygen diffuses into the substrate 110 beside the recess R, occupies a portion of the active regions A, B of the semiconductor structure to be formed into a transistor and expands the volume of the shallow trench isolation structure (not shown) formed. Therefore, the method of preventing the filler material or the components of the subsequent process from contaminating the substrate 110 may, for example, be: (1) absorbing the filler material or a component of a subsequent process with the germanium-rich layer 140, for example, providing a reaction source of germanium to consume the filler material. The oxygen atoms, in turn, prevent the filler material or subsequent process oxygen components from entering the substrate 110. At this time, the ytterbium-rich layer 140 is preferably a structure having a loose structure, which has sufficient space for absorbing the filling material or a subsequent process. In this case, it is preferably applied by plasma enhanced chemical vapor deposition (Plasma Enhanced Chemical Vapor Deposition, PECVD) process formation Rich layer 140. Alternatively, (2) directly blocking the filler material or subsequent process components into the enthalpy rich layer 140. At this time, the germanium-rich layer 140 is preferably a relatively dense structure, and the germanium can effectively block the filling material or the components of the subsequent process into the germanium-rich layer 140, and the germanium-rich layer 140 is therefore preferably suitable for atomic layer deposition (Atomic). Layer Deposition, ALD) Process formation.

另外,富矽層140較佳形成於襯墊層130上,由於富矽層140富含矽成分且一般基底110亦為矽基底,襯墊層130可隔離二者,俾使所形成之富矽層140具有較佳之結構,且襯墊層130可進一步阻擋填充材料中的成分進入基底110中。更進一步而言,當富矽層140的應力較大時,例如為一具有高應力的富矽氮化矽層,則襯墊層130可以作為應力緩衝層以預防富矽層140剝落。 In addition, the germanium-rich layer 140 is preferably formed on the liner layer 130. Since the germanium-rich layer 140 is rich in germanium and the substrate 110 is also a germanium substrate, the liner layer 130 can isolate the two, so that the formed layer is rich. Layer 140 has a preferred structure, and liner layer 130 can further block components of the fill material from entering substrate 110. Furthermore, when the stress of the germanium-rich layer 140 is large, such as a germanium-rich tantalum nitride layer having high stress, the liner layer 130 can serve as a stress buffer layer to prevent the germanium-rich layer 140 from peeling off.

如第6圖所示,填入一填入物150於凹槽R中。在本實施例中,填入物150為一矽氮化物;但在其他實施例中,填入物150亦可為一矽氧化物等,本發明不以此為限。填入物150一般呈液態以充分填滿凹槽R,其中填入物150例如包含三甲基矽烷胺(trisilylamine,TSA),但本發明不以此為限。因為當半導體元件微縮後,凹槽R之深度可達例如3000埃(angstrom),開口直徑僅有500埃(angstrom)的大小,欲蝕刻如此高深寬比之凹槽並使其具有上寬下窄的平滑剖面結構實為不易,是以當填入物150呈液態狀時,則可完整流入並填滿具高深寬比的凹槽R。當然,在其他實施例中,填入物150亦可呈其他物性狀態。 As shown in Fig. 6, a fill 150 is filled in the recess R. In the present embodiment, the filling material 150 is a tantalum nitride; however, in other embodiments, the filling material 150 may also be a tantalum oxide or the like, and the invention is not limited thereto. The fill 150 is generally in a liquid state to sufficiently fill the recess R, wherein the fill 150 comprises, for example, trisilylamine (TSA), but the invention is not limited thereto. Since the depth of the groove R can be, for example, 3,000 angstroms when the semiconductor element is shrunk, and the opening diameter is only 500 angstroms, the groove having such a high aspect ratio is to be etched and made to have an upper width and a lower width. The smooth cross-sectional structure is not easy, so that when the filling material 150 is in a liquid state, it can completely flow into and fill the groove R having a high aspect ratio. Of course, in other embodiments, the filler 150 may also be in other physical states.

接著如第7圖所示,進行一轉化製程P1,將填入物150轉化成 一填充材料160,以位於欲形成電晶體等半導體元件之二主動區A,B之間作絕緣之用。在本實施例中,填充材料160為一氧化矽,並且在轉化填入物150時,此轉化製程P1會至少氧化部分富矽層140,而形成一含氧的富矽層140a。由於本實施例之富矽層140為一矽質層,故在一較佳的實施態樣中,可將富矽層140完全轉化為一氧化矽層。如此,富矽層140可與填充材料160一併轉化為氧化矽,以作絕緣之用,但本發明不以此為限。在其他實施例中,當富矽層140為一氮化矽層,則含氧的富矽層140a為一氮氧化矽層;當富矽層140為一氮化碳矽層,則含氧的富矽層140a為一氮氧化碳矽層。在本實施例中,轉化製程P1為一氧化製程,但本發明不以此為限。具體而言,氧化製程可包含直接通入氧氣、臭氧或水蒸氣等。轉化製程P1之製程溫度係例如500℃~700℃,以充分將填入物150轉化成填充材料160。當然,在填入物150轉化成填充材料160的過程中,會有部分之富矽層140亦同時被氧化而形成含氧的富矽層140a。在一實施例中,含氧的富矽層140a的含氧量呈一梯度分佈。例如,含氧的富矽層140a的含氧量呈一自填充材料160與含氧的富矽層140a的接觸面S1向含氧的富矽層140a與襯墊層130的接觸面S2遞減的梯度分佈。含氧的富矽層140a的含氧量多寡則視所通入之氧的濃度或者富矽層140的結構緻密度等而定。承前述所言,當富矽層140由電漿輔助化學氣相沉積(Plasma Enhanced Chemical Vapor Deposition,PECVD)製程形成,則具有較為鬆散之結構,而會吸附較多之氧原子,故含氧的富矽層140a的含氧量較多;當富矽層140由原子層沉積(Atomic Layer Deposition,ALD)製程形成, 則具有較為緻密之結構,其將多數之氧原子阻擋於其之外,俾使較少之氧原子位於其中,故含氧的富矽層140a的含氧量較少。 Then, as shown in FIG. 7, a conversion process P1 is performed to convert the fill 150 into A filling material 160 is used for insulation between the active regions A, B of the semiconductor element to be formed into a transistor or the like. In the present embodiment, the filler material 160 is niobium oxide, and when the filler 150 is converted, the conversion process P1 oxidizes at least a portion of the germanium-rich layer 140 to form an oxygen-rich germanium-rich layer 140a. Since the germanium-rich layer 140 of the present embodiment is a tantalum layer, in a preferred embodiment, the germanium-rich layer 140 can be completely converted into a hafnium oxide layer. Thus, the enriched layer 140 can be converted into yttrium oxide together with the filler material 160 for insulation, but the invention is not limited thereto. In other embodiments, when the antimony-rich layer 140 is a tantalum nitride layer, the oxygen-rich germanium-rich layer 140a is a hafnium oxynitride layer; when the antimony-rich layer 140 is a carbonitride layer, the oxygen-containing layer The ruthenium rich layer 140a is a carbon oxynitride layer. In the present embodiment, the conversion process P1 is an oxidation process, but the invention is not limited thereto. Specifically, the oxidation process may include direct introduction of oxygen, ozone or water vapor, and the like. The process temperature of the conversion process P1 is, for example, 500 ° C to 700 ° C to sufficiently convert the fill 150 into the filler material 160. Of course, during the conversion of the fill 150 into the filler material 160, a portion of the germanium-rich layer 140 is also oxidized to form an oxygen-rich germanium-rich layer 140a. In one embodiment, the oxygen-containing cerium-rich layer 140a has an oxygen content in a gradient distribution. For example, the oxygen-containing enthalpy-rich layer 140a has an oxygen content which decreases from the contact surface S1 of the self-filling material 160 to the oxygen-containing cerium-rich layer 140a to the contact surface S2 of the oxygen-containing cerium-rich layer 140a and the liner layer 130. Gradient distribution. The oxygen content of the oxygen-rich cerium-rich layer 140a depends on the concentration of oxygen to be introduced or the structural density of the cerium-rich layer 140. As mentioned above, when the yttrium-rich layer 140 is formed by a Plasma Enhanced Chemical Vapor Deposition (PECVD) process, it has a loose structure and adsorbs more oxygen atoms, so oxygen-containing The ruthenium-rich layer 140a has a large oxygen content; when the yttrium-rich layer 140 is formed by an Atomic Layer Deposition (ALD) process, It has a relatively dense structure which blocks most of the oxygen atoms from it, so that less oxygen atoms are located therein, so the oxygen-rich cerium-rich layer 140a has less oxygen.

如第8圖所示,可選擇性地再進行一緻密化製程P2,以進一步緻密化填充材料160以及含氧的富矽層140a。緻密化製程P2可包含一熱製程或一含氧製程等。緻密化製程P2的製程溫度較佳高於1000℃,以達到顯著之緻密效果。在一較佳的實施例中,緻密化製程P2的製程溫度為1100℃。相類似的,本發明的富矽層140a同樣可用以吸收或阻擋此緻密化製程P2本身或受其高溫活化的氧原子。 As shown in FIG. 8, the uniform densification process P2 can be selectively performed to further densify the fill material 160 and the oxygen-rich germanium-rich layer 140a. The densification process P2 may include a thermal process or an oxygen process. The process temperature of the densification process P2 is preferably higher than 1000 ° C to achieve a significant dense effect. In a preferred embodiment, the process temperature of the densification process P2 is 1100 °C. Similarly, the cerium-rich layer 140a of the present invention can also be used to absorb or block the oxygenation process of the densification process P2 itself or by its high temperature.

隨後,平坦化填充材料160、含氧的富矽層140a以及襯墊層130,而如第9圖所示,形成一平坦化的填充材料160a、一平坦化的富矽層140b以及一平坦化的襯墊層130a,使之與硬遮罩層120’齊平。之後,移除硬遮罩層120’,如第10圖所示,形成一淺溝隔離結構G。然後,可進行主動區A、B中之電晶體等半導體製程。此半導體製程為本領域之通常知識者所熟知故不再贅述。 Subsequently, the filling material 160, the oxygen-containing germanium-rich layer 140a, and the liner layer 130 are planarized, and as shown in FIG. 9, a planarized filling material 160a, a planarized germanium-rich layer 140b, and a planarization are formed. The backing layer 130a is flush with the hard mask layer 120'. Thereafter, the hard mask layer 120' is removed, and as shown in Fig. 10, a shallow trench isolation structure G is formed. Then, a semiconductor process such as a transistor in the active regions A and B can be performed. This semiconductor process is well known to those of ordinary skill in the art and will not be described again.

承上,本發明係先填入填入物150,再進行轉化製程P1以形成填充材料160並至少氧化部分的富矽層140的步驟可應用一流體化學氣相沉積(flowable chemical vapor deposition,FCVD)製程或一旋轉塗佈介電層(spin-on dielectric,SOD)製程的步驟,但本發明不以此為限。 According to the above description, the step of filling the filling material 150 and then performing the conversion process P1 to form the filling material 160 and at least oxidizing part of the cerium-rich layer 140 may be applied by flow chemical vapor deposition (FCVD). The process or a step of spin coating a spin-on dielectric (SOD) process, but the invention is not limited thereto.

綜上所述,本發明提出一種半導體結構及其製程,其形成一富矽層於凹槽表面,特別是用以形成淺溝隔離結構的凹槽表面,然後填 入矽氮化物於凹槽中,再將此矽氮化物轉化為填充材料以作為二主動區之間之絕緣用。如此,由於本發明在填入矽氮化物之前已先形成一富矽層於凹槽表面,是以可防止轉化過程中所通入之成分或者是填充材料本身的成分,例如氧原子,擴散至凹槽旁的基底中,佔據部分主動區之基底並擴張所形成之淺溝隔離結構的體積。更進一步而言,富矽層可包含一矽質層、一氮化矽層、一氧化矽層、一氮氧化矽層或一氮化碳矽層,且富矽層可由電漿輔助化學氣相沉積(Plasma Enhanced Chemical Vapor Deposition,PECVD)製程或原子層沉積(AtomicLayer Deposition,ALD)製程等形成。 In summary, the present invention provides a semiconductor structure and a process thereof for forming a ruthenium-rich layer on a surface of a groove, particularly a groove surface for forming a shallow trench isolation structure, and then filling The niobium nitride is introduced into the recess, and the tantalum nitride is converted into a filling material for insulation between the active regions. Thus, since the present invention forms a ruthenium-rich layer on the surface of the groove before filling the ruthenium nitride, it is possible to prevent the components introduced during the conversion process or the components of the filler material itself, such as oxygen atoms, from diffusing to The substrate adjacent to the recess occupies a portion of the active region and expands the volume of the shallow trench isolation structure formed. Further, the antimony layer may comprise a tantalum layer, a tantalum nitride layer, a niobium monoxide layer, a niobium oxynitride layer or a carbonitride layer, and the niobium rich layer may be plasma-assisted chemical vapor phase. Formed by a Plasma Enhanced Chemical Vapor Deposition (PECVD) process or an Atomic Layer Deposition (ALD) process.

以上所述僅為本發明之較佳實施例,凡依本發明申請專利範圍所做之均等變化與修飾,皆應屬本發明之涵蓋範圍。 The above are only the preferred embodiments of the present invention, and all changes and modifications made to the scope of the present invention should be within the scope of the present invention.

110‧‧‧基底 110‧‧‧Base

120‧‧‧硬遮罩層 120‧‧‧hard mask layer

122‧‧‧墊氧化層 122‧‧‧Mat oxide layer

124‧‧‧墊氮化層 124‧‧‧Material Nitride

120’‧‧‧圖案化的硬遮罩層 120'‧‧‧ patterned hard mask

122’‧‧‧圖案化的墊氧化層 122'‧‧‧ patterned pad oxide

124’‧‧‧圖案化的墊氮化層 124'‧‧‧ patterned pad nitride layer

130‧‧‧襯墊層 130‧‧‧ liner

130a‧‧‧平坦化的襯墊層 130a‧‧‧Flating cushion layer

140、140a‧‧‧富矽層 140, 140a‧‧‧ rich layer

140b‧‧‧平坦化的富矽層 140b‧‧‧flattened eucalyptus

150‧‧‧矽氮化物 150‧‧‧矽Nitride

160‧‧‧填充材料 160‧‧‧Filling materials

160a‧‧‧平坦化的填充材料 160a‧‧‧Flating filler material

A、B‧‧‧主動區 A, B‧‧ active area

G‧‧‧淺溝隔離結構 G‧‧‧Shallow trench isolation structure

P1‧‧‧轉化製程 P1‧‧‧ conversion process

P2‧‧‧緻密化製程 P2‧‧‧ Densification process

R‧‧‧凹槽 R‧‧‧ groove

S‧‧‧表面 S‧‧‧ surface

S1、S2‧‧‧接觸面 S1, S2‧‧‧ contact surface

第1-10圖繪示本發明一實施例之半導體製程之剖面示意圖。 1 to 10 are schematic cross-sectional views showing a semiconductor process according to an embodiment of the present invention.

110‧‧‧基底 110‧‧‧Base

130a‧‧‧平坦化的襯墊層 130a‧‧‧Flating cushion layer

140b‧‧‧平坦化的富矽層 140b‧‧‧flattened eucalyptus

160a‧‧‧平坦化的填充材料 160a‧‧‧Flating filler material

A、B‧‧‧主動區 A, B‧‧ active area

R‧‧‧凹槽 R‧‧‧ groove

S‧‧‧表面 S‧‧‧ surface

S1、S2‧‧‧接觸面 S1, S2‧‧‧ contact surface

Claims (17)

一種半導體結構,位於一基底之一凹槽中,該半導體結構包含有:一襯墊層位於該凹槽的表面;一富矽層位於該襯墊層上,其中該富矽層包含一含氧的富矽層,且該含氧的富矽層的含氧量呈一梯度分佈;以及一填充材料位於該富矽層上並填滿該凹槽。 A semiconductor structure is disposed in a recess of a substrate, the semiconductor structure comprising: a liner layer on a surface of the recess; a germanium-rich layer on the liner layer, wherein the germanium-rich layer comprises an oxygen-containing layer The cerium-rich layer, and the oxygen-containing enthalpy layer has a gradient of oxygen content; and a filler material is located on the cerium-rich layer and fills the groove. 如申請專利範圍第1項所述之半導體結構,其中該襯墊層包含一氧化層。 The semiconductor structure of claim 1, wherein the liner layer comprises an oxide layer. 如申請專利範圍第1項所述之半導體結構,其中該富矽層包含一矽質層、一氮化矽層、一氧化矽層、一氮氧化矽層或一氮化碳矽層。 The semiconductor structure of claim 1, wherein the germanium-rich layer comprises a tantalum layer, a tantalum nitride layer, a hafnium oxide layer, a hafnium oxynitride layer or a carbonitride layer. 如申請專利範圍第1項所述之半導體結構,其中該梯度分佈係自該填充材料與該富矽層的接觸面向該富矽層與該襯墊層的接觸面遞減。 The semiconductor structure of claim 1, wherein the gradient distribution decreases from a contact surface of the filler material with the germanium-rich layer toward a contact surface of the germanium-rich layer and the liner layer. 如申請專利範圍第1項所述之半導體結構,其中該填充材料包含一氧化矽。 The semiconductor structure of claim 1, wherein the filler material comprises ruthenium oxide. 一種半導體製程,包含有:形成一凹槽於一基底中; 形成一襯墊層覆蓋該凹槽的表面;形成一富矽層於該襯墊層上;填入一矽氮化物於該凹槽中;以及進行一轉化製程,將該矽氮化物轉化成一氧化矽,並至少氧化部分該富矽層。 A semiconductor process comprising: forming a recess in a substrate; Forming a liner layer covering the surface of the recess; forming a ruthenium-rich layer on the liner layer; filling a niobium nitride in the recess; and performing a conversion process to convert the niobium nitride into an oxidation矽, and at least partially oxidize the ruthenium-rich layer. 如申請專利範圍第6項所述之半導體製程,其中該襯墊層包含一氧化層。 The semiconductor process of claim 6, wherein the liner layer comprises an oxide layer. 如申請專利範圍第6項所述之半導體製程,其中該富矽層包含以電漿輔助化學氣相沉積(Plasma Enhanced Chemical Vapor Deposition,PECVD)製程或原子層沉積(Atomic Layer Deposition,ALD)製程形成。 The semiconductor process of claim 6, wherein the germanium-rich layer comprises a plasma enhanced chemical vapor deposition (PECVD) process or an atomic layer deposition (ALD) process. . 如申請專利範圍第6項所述之半導體製程,其中該富矽層包含一矽質層、一氮化矽層、一氧化矽層、一氮氧化矽層或一氮化碳矽層。 The semiconductor process of claim 6, wherein the germanium-rich layer comprises a tantalum layer, a tantalum nitride layer, a hafnium oxide layer, a hafnium oxynitride layer or a carbonitride layer. 如申請專利範圍第6項所述之半導體製程,其中該轉化製程的製程溫度為500℃~700℃。 For example, the semiconductor process described in claim 6 wherein the process temperature of the conversion process is from 500 ° C to 700 ° C. 如申請專利範圍第6項所述之半導體製程,其中該轉化製程包含一氧化製程。 The semiconductor process of claim 6, wherein the conversion process comprises an oxidation process. 如申請專利範圍第11項所述之半導體製程,其中該氧化製程包含通入氧氣、臭氧或水蒸氣。 The semiconductor process of claim 11, wherein the oxidizing process comprises introducing oxygen, ozone or water vapor. 如申請專利範圍第6項所述之半導體製程,在進行該轉化製程之後,更包含:進行一緻密化製程,以緻密化該氧化矽以及該富矽層。 For example, in the semiconductor process described in claim 6, after performing the conversion process, the method further comprises: performing a uniform densification process to densify the cerium oxide and the cerium-rich layer. 如申請專利範圍第13項所述之半導體製程,其中該緻密化製程的製程溫度高於1000℃。 The semiconductor process of claim 13, wherein the process temperature of the densification process is higher than 1000 °C. 如申請專利範圍第14項所述之半導體製程,其中該緻密化製程的製程溫度為1100℃。 The semiconductor process of claim 14, wherein the process temperature of the densification process is 1100 °C. 如申請專利範圍第6項所述之半導體製程,其中該矽氮化物包含三甲基矽烷胺(trisilylamine,TSA)。 The semiconductor process of claim 6, wherein the niobium nitride comprises trisilylamine (TSA). 如申請專利範圍第6項所述之半導體製程,其中填入該矽氮化物以及進行該轉化製程的步驟為一流體化學氣相沉積(flowable chemical vapor deposition,FCVD)製程或一旋轉塗佈介電層(spin-on dielectric,SOD)製程的步驟。 The semiconductor process of claim 6, wherein the step of filling the germanium nitride and performing the conversion process is a fluid chemical vapor deposition (FCVD) process or a spin coating dielectric process. The step of a spin-on dielectric (SOD) process.
TW101121306A 2012-06-14 2012-06-14 Semiconductor structure and process thereof TWI541936B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW101121306A TWI541936B (en) 2012-06-14 2012-06-14 Semiconductor structure and process thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW101121306A TWI541936B (en) 2012-06-14 2012-06-14 Semiconductor structure and process thereof

Publications (2)

Publication Number Publication Date
TW201351561A TW201351561A (en) 2013-12-16
TWI541936B true TWI541936B (en) 2016-07-11

Family

ID=50158120

Family Applications (1)

Application Number Title Priority Date Filing Date
TW101121306A TWI541936B (en) 2012-06-14 2012-06-14 Semiconductor structure and process thereof

Country Status (1)

Country Link
TW (1) TWI541936B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI809671B (en) * 2022-01-20 2023-07-21 南亞科技股份有限公司 Method of manufacturing semiconductor structure

Also Published As

Publication number Publication date
TW201351561A (en) 2013-12-16

Similar Documents

Publication Publication Date Title
TWI374515B (en) Method of forming integrated circuit structure
US8580649B2 (en) Method for manufacturing semiconductor device
KR100839529B1 (en) Method for fabricating isolation in semiconductor device
US9034726B2 (en) Semiconductor process
US20140191358A1 (en) Two-Portion Shallow-Trench Isolation
JP2004311487A (en) Method of manufacturing semiconductor device
TWI504650B (en) Method for increasing adhesion between polysilazane and silicon nitride and method for forming a trench isolation
TW200924109A (en) Method for forming shallow trench isolation structure and method for preparing recessed gate structure using the same
CN113345834A (en) Low-voltage device and manufacturing method thereof
CN103377980A (en) Shallow trench isolation structure and forming method thereof
US9117878B2 (en) Method for manufacturing shallow trench isolation
KR20100059297A (en) Method for fabricating semiconductor device
TWI541936B (en) Semiconductor structure and process thereof
TWI579959B (en) Shallow trench isolation and method of forming the same
US7867870B2 (en) Semiconductor device and method for forming device isolation film of semiconductor device
TWI590377B (en) Method of forming an isolation structure
CN103515285B (en) Semiconductor structure and its manufacture craft
TWI581367B (en) Method for manufacturing semiconductor structure
JP2007142311A (en) Semiconductor device, and method for manufacturing same
KR20070000062A (en) Method of filling a opening and method of forming a trench isolation structure using the same
KR20060136032A (en) Method of filling a opening and method of forming a trench isolation structure using the same
KR100653704B1 (en) Methods of forming trench isolation in semiconductor device and trench isolation structure fabricated thereby
JP2014086494A (en) Method of manufacturing semiconductor device
KR100779370B1 (en) Method for forming the isolation layer in semiconductor device
TWI344684B (en) Process of manufacturing a shallow trench isolation and process of treating bottom surface of the trench for avoiding bubble defects