TWI580167B - Single stage buck converter - Google Patents
Single stage buck converter Download PDFInfo
- Publication number
- TWI580167B TWI580167B TW105126378A TW105126378A TWI580167B TW I580167 B TWI580167 B TW I580167B TW 105126378 A TW105126378 A TW 105126378A TW 105126378 A TW105126378 A TW 105126378A TW I580167 B TWI580167 B TW I580167B
- Authority
- TW
- Taiwan
- Prior art keywords
- output
- inductor
- electrically connected
- voltage
- side winding
- Prior art date
Links
Landscapes
- Dc-Dc Converters (AREA)
Description
本發明是有關於一種電源轉換技術,特別是指一種單級降壓轉換器。The present invention relates to a power conversion technique, and more particularly to a single stage buck converter.
習知降壓轉換器可以採用單級架構或多級架構來將一直流輸入電壓轉換成一直流輸出電壓。與多級降壓轉換器相比,單級降壓轉換器具有較高的轉換效率、較簡單的控制邏輯、較少的元件及較低的成本。對於單級降壓轉換器而言,為了降低輸出電壓,需降低單級降壓轉換器中之開關的導通責任比或將單級降壓轉換器中之變壓器的匝數比(即,變壓器的初級側繞組的匝數比上次級側繞組的匝數)提高。Conventional buck converters can use a single-stage architecture or a multi-stage architecture to convert a DC input voltage to a DC output voltage. Compared to multi-stage buck converters, single-stage buck converters offer higher conversion efficiency, simpler control logic, fewer components, and lower cost. For a single-stage buck converter, in order to reduce the output voltage, it is necessary to reduce the turn-on duty ratio of the switch in the single-stage buck converter or the turns ratio of the transformer in the single-stage buck converter (ie, the transformer The number of turns of the primary side winding is increased compared to the number of turns of the upper secondary winding.
然而,降低開關的導通責任比會使單級降壓轉換器不易做閉迴路穩壓控制,使得輸出電壓無法穩壓,且開關利用率低,影響轉換器整體的轉換效率。此外,將變壓器的匝數比提高會導致變壓器的寄生元件增大,使得單級降壓轉換器的信號波形產生突波,且元件選擇上需要耐壓較大的元件,造成單級降壓轉換器的成本上升。因此,習知降壓轉換器仍有改進的空間。However, reducing the turn-on duty ratio of the switch makes the single-stage buck converter difficult to perform closed-loop voltage regulation control, so that the output voltage cannot be regulated, and the switch utilization rate is low, which affects the overall conversion efficiency of the converter. In addition, increasing the turns ratio of the transformer will increase the parasitic components of the transformer, causing the signal waveform of the single-stage buck converter to generate a glitch, and the component selection requires a component with a large withstand voltage, resulting in a single-stage buck conversion. The cost of the device has risen. Therefore, there is still room for improvement in conventional buck converters.
因此,本發明的目的,即在提供一種能夠克服先前技術缺點的單級降壓轉換器。Accordingly, it is an object of the present invention to provide a single stage buck converter that overcomes the shortcomings of the prior art.
於是,本發明單級降壓轉換器包含一疊接輸入電路、一第一變壓器、一第二變壓器、一第一整流二極體、一第一降壓電感、一第二整流二極體、一第二降壓電感及一並聯輸出電路。Therefore, the single-stage buck converter of the present invention comprises a stacked input circuit, a first transformer, a second transformer, a first rectifying diode, a first step-down inductor, a second rectifying diode, A second step-down inductor and a parallel output circuit.
該疊接輸入電路適用於接收一直流輸入電壓,且根據該直流輸入電壓產生一第一輸出電壓及一第二輸出電壓,該等第一及第二輸出電壓小於該直流輸入電壓。The spliced input circuit is adapted to receive a DC input voltage, and generate a first output voltage and a second output voltage according to the DC input voltage, the first and second output voltages being less than the DC input voltage.
該第一變壓器具有一電連接該疊接輸入電路以接收該第一輸出電壓的初級側繞組,及一次級側繞組,該等初級及次級側繞組中的每一者具有一第一端及一第二端。The first transformer has a primary side winding electrically connected to the stacked input circuit to receive the first output voltage, and a primary side winding, each of the primary and secondary side windings having a first end and A second end.
該第二變壓器具有一電連接該疊接輸入電路以接收該第二輸出電壓的初級側繞組,及一次級側繞組,該第二變壓器之該等初級及次級側繞組中的每一者具有一第一端及一第二端,該第二變壓器之該初級側繞組的該第一端電連接該第一變壓器之該初級側繞組的該第二端。The second transformer has a primary side winding electrically connected to the stacked input circuit to receive the second output voltage, and a primary side winding, each of the primary and secondary side windings of the second transformer having a first end and a second end, the first end of the primary side winding of the second transformer is electrically connected to the second end of the primary side winding of the first transformer.
該第一整流二極體具有一電連接該第一變壓器之該次級側繞組的該第一端的陽極,及一陰極。The first rectifying diode has an anode electrically connected to the first end of the secondary side winding of the first transformer, and a cathode.
該第一降壓電感具有一電連接該第一整流二極體的該陰極的第一端,及一輸出一第一降壓電感電流的第二端,該第一降壓電感電流正相關於該第一變壓器之該次級側繞組的跨壓,且反相關於該第一降壓電感的電感值。The first buck inductor has a first end electrically connected to the cathode of the first rectifying diode, and a second end outputting a first buck inductor current, the first buck inductor current is positively correlated with The voltage across the secondary side winding of the first transformer is reversed with respect to the inductance of the first step-down inductor.
該第二整流二極體具有一電連接該第二變壓器之該次級側繞組的該第一端的陽極,及一陰極。The second rectifying diode has an anode electrically connected to the first end of the secondary side winding of the second transformer, and a cathode.
該第二降壓電感具有一電連接該第二整流二極體的該陰極的第一端,及一輸出一第二降壓電感電流的第二端,該第二降壓電感電流正相關於該第二變壓器之該次級側繞組的跨壓,且反相關於該第二降壓電感的電感值。The second buck inductor has a first end electrically connected to the cathode of the second rectifying diode, and a second end outputting a second buck inductor current, the second buck inductor current being positively correlated The voltage across the secondary side winding of the second transformer is reversed with respect to the inductance of the second step-down inductor.
該並聯輸出電路電連接該等第一及第二降壓電感的該等第二端以接收該等第一及第二降壓電感電流,及電連接該等第一及第二變壓器之該等次級側繞組的該等第二端,且根據該等第一及第二降壓電感電流產生一直流輸出電壓。The parallel output circuit electrically connects the second ends of the first and second buck inductors to receive the first and second buck inductor currents, and electrically connect the first and second transformers The second ends of the secondary side windings, and generating a DC output voltage based on the first and second step-down inductor currents.
本發明之功效在於:藉由該等第一及第二降壓電感達到高降壓,而無需提高該等第一及第二變壓器的匝數比。The effect of the present invention is that high voltage reduction is achieved by the first and second step-down inductors without increasing the turns ratio of the first and second transformers.
參閱圖1,本發明單級降壓轉換器的實施例適用於從一電壓源1接收一直流輸入電壓Vin,並將該直流輸入電壓Vin轉換成一直流輸出電壓Vo,且適用於將該直流輸出電壓Vo輸出到一電阻R。本實施例的單級降壓轉換器包含一疊接輸入電路2、一第一變壓器3、一第二變壓器4、一第一整流二極體D11、一第一降壓電感Lb1、一第二整流二極體D21、一第二降壓電感Lb2、一並聯輸出電路5及一控制電路6。Referring to FIG. 1, an embodiment of the single-stage buck converter of the present invention is adapted to receive a DC input voltage Vin from a voltage source 1 and convert the DC input voltage Vin into a DC output voltage Vo, and is suitable for the DC output. The voltage Vo is output to a resistor R. The single-stage buck converter of this embodiment includes a stacked input circuit 2, a first transformer 3, a second transformer 4, a first rectifying diode D11, a first buck inductor Lb1, and a second The rectifier diode D21, a second step-down inductor Lb2, a parallel output circuit 5, and a control circuit 6.
該疊接輸入電路2適用於電連接該電壓源1以接收該直流輸入電壓Vin,還接收一第一控制信號Vgs1及一第二控制信號Vgs2,且根據該直流輸入電壓Vin、該等第一及第二控制信號Vgs1、Vgs2,產生一第一輸出電壓V P1及一第二輸出電壓V P2,該等第一及第二輸出電壓V P1、V P2小於該直流輸入電壓Vin。在本實施例中,該疊接輸入電路2具有一第一輸入端21、一第二輸入端22、一第一輸出端23、一第二輸出端24及一第三輸出端25,且包括一第一開關S1、一第二開關S2、一第一輸入電容C1、一第二輸入電容C2及一共振電感Lr。 The splicing input circuit 2 is adapted to electrically connect the voltage source 1 to receive the DC input voltage Vin, and further receive a first control signal Vgs1 and a second control signal Vgs2, and according to the DC input voltage Vin, the first And the second control signals Vgs1, Vgs2, generating a first output voltage V P1 and a second output voltage V P2 , wherein the first and second output voltages V P1 , V P2 are smaller than the DC input voltage Vin. In this embodiment, the splicing input circuit 2 has a first input terminal 21, a second input terminal 22, a first output terminal 23, a second output terminal 24, and a third output terminal 25, and includes A first switch S1, a second switch S2, a first input capacitor C1, a second input capacitor C2 and a resonant inductor Lr.
該等第一及第二輸入端21、22接收該直流輸入電壓Vin。該等第一及第二輸出端23、24輸出該第一輸出電壓V P1。該等第二及第三輸出端24、25輸出該第二輸出電壓V P2。該第一開關S1具有一第一端、一電連接該第二輸入端22的第二端,及一接收該第一控制信號Vgs1的控制端,以致該第一開關S1根據該第一控制信號Vgs1而導通或不導通。該第二開關S2具有一電連接該第一輸入端21的第一端、一電連接該第一開關S1之該第一端的第二端,及一接收該第二控制信號Vgs2的控制端,以致該第二開關S2根據該第二控制信號Vgs2而導通或不導通。該第一輸入電容C1電連接在該第二開關S2之該第一端與該第一輸出端23之間。該第二輸入電容C2電連接在該第一開關S1之該第二端與該第三輸出端25之間。該共振電感Lr電連接在該第一開關S1之該第一端與該第二輸出端24之間。在本實施例中,該等第一及第二開關S1、S2各自為一N型金氧半場效電晶體,且該N型金氧半場效電晶體的汲極、源極及閘極分別為該等第一及第二開關S1、S2中的每一者的該第一端、該第二端及該控制端。 The first and second input terminals 21, 22 receive the DC input voltage Vin. The first and second output terminals 23, 24 output the first output voltage V P1 . The second and third output terminals 24, 25 output the second output voltage V P2 . The first switch S1 has a first end, a second end electrically connected to the second input end 22, and a control end receiving the first control signal Vgs1, so that the first switch S1 is based on the first control signal Vgs1 is turned on or off. The second switch S2 has a first end electrically connected to the first input end 21, a second end electrically connected to the first end of the first switch S1, and a control end receiving the second control signal Vgs2 Therefore, the second switch S2 is turned on or off according to the second control signal Vgs2. The first input capacitor C1 is electrically connected between the first end of the second switch S2 and the first output end 23. The second input capacitor C2 is electrically connected between the second end of the first switch S1 and the third output end 25. The resonant inductor Lr is electrically connected between the first end of the first switch S1 and the second output end 24. In this embodiment, the first and second switches S1 and S2 are each an N-type MOS field effect transistor, and the drain, source and gate of the N-type MOS field-effect transistor are respectively The first end, the second end, and the control end of each of the first and second switches S1, S2.
該第一變壓器3具有一電連接該疊接輸入電路2之該等第一及第二輸出端23、24以接收該第一輸出電壓V P1的初級側繞組31,及一次級側繞組32。該等初級及次級側繞組31、32中的每一者具有一第一端及一第二端,該初級側繞組31的該第一端及該第二端分別電連接該疊接輸入電路2之該等第一及第二輸出端23、24。該第二變壓器4具有一電連接該疊接輸入電路2之該等第二及第三輸出端24、25以接收該第二輸出電壓VP2的初級側繞組41,及一次級側繞組42。該等初級及次級側繞組41、42中的每一者具有一第一端及一第二端,該初級側繞組41的該第一端及該第二端分別電連接該疊接輸入電路2之該等第二及第三輸出端24、25,且該初級側繞組41的該第一端還電連接該第一變壓器3之該初級側繞組31的該第二端。在本實施例中,該等初級及次級側繞組31、41、32、42的該等第一端為極性點端,該等初級及次級側繞組31、41、32、42的該等第二端為非極性點端。於該等第一及第二變壓器3、4的每一者中,該初級側繞組31的一匝數N31等於該次級側繞組32的一匝數N32,該初級側繞組41的一匝數N41等於該次級側繞組42的一匝數N42。該第一變壓器3的匝數比n1(即,n1=N31/N32)與該第二變壓器4的匝數比n2(即,n2=N41/N42)相等且等於一(即n1=n2=1)。 The first transformer 3 has a primary side winding 31 electrically connected to the first and second output terminals 23, 24 of the stacked input circuit 2 to receive the first output voltage V P1 , and a primary side winding 32. Each of the primary and secondary side windings 31, 32 has a first end and a second end, and the first end and the second end of the primary side winding 31 are electrically connected to the stacked input circuit The first and second output ends 23, 24 of 2. The second transformer 4 has a primary side winding 41 electrically connected to the second and third output terminals 24, 25 of the stacked input circuit 2 to receive the second output voltage V P2 , and a primary side winding 42. Each of the primary and secondary side windings 41, 42 has a first end and a second end, and the first end and the second end of the primary side winding 41 are electrically connected to the stacked input circuit The second and third output terminals 24, 25 of the second and fourth ends of the primary side winding 41 are also electrically connected to the second end of the primary side winding 31 of the first transformer 3. In the present embodiment, the first ends of the primary and secondary side windings 31, 41, 32, 42 are polar point ends, and the primary and secondary side windings 31, 41, 32, 42 The second end is a non-polar point end. In each of the first and second transformers 3, 4, a number N31 of the primary side winding 31 is equal to a number N32 of the secondary side winding 32, and a number of turns of the primary side winding 41 N41 is equal to a number N42 of the secondary side winding 42. The turns ratio n 1 of the first transformer 3 (i.e., n 1 = N31 / N32) is equal to the turns ratio n 2 of the second transformer 4 (i.e., n 2 = N41 / N42) and is equal to one (i.e., n 1 = n 2 =1).
該第一整流二極體D11具有一電連接該第一變壓器3之該次級側繞組32的該第一端的陽極,及一陰極。該第二整流二極體D21具有一電連接該第二變壓器4之該次級側繞組42的該第一端的陽極,及一陰極。該第一降壓電感Lb1具有一電連接該第一整流二極體D11的該陰極的第一端,及一輸出一第一降壓電感電流i1的第二端,該第一降壓電感電流i1正相關於該第一變壓器3之該次級側繞組32的跨壓,且反相關於該第一降壓電感Lb1的電感值。該第二 降壓電感Lb2具有一電連接該第二整流二極體D21的該陰極的第一端,及一輸出一第二降壓電感電流i2的第二端,該第二降壓電感電流i2正相關於該第二變壓器4之該次級側繞組42的跨壓,且反相關於該第二降壓電感Lb2的電感值。 The first rectifying diode D11 has an anode electrically connected to the first end of the secondary side winding 32 of the first transformer 3, and a cathode. The second rectifying diode D21 has an anode electrically connected to the first end of the secondary side winding 42 of the second transformer 4, and a cathode. The first buck inductor Lb1 having a first end electrically connected to the first rectifying diode D11 is the cathode, and a second output terminal of a first buck inductor current i 1 of the first buck inductor The current i 1 is positively related to the voltage across the secondary side winding 32 of the first transformer 3 and inverts the inductance value with respect to the first step-down inductor Lb1. The second step-down inductor Lb2 has a first end electrically connected to the cathode of the second rectifying diode D21, and a second end outputting a second step-down inductor current i 2 , the second step-down inductor The current i 2 is positively related to the voltage across the secondary side winding 42 of the second transformer 4 and inverts the inductance value with respect to the second step-down inductor Lb2.
該並聯輸出電路5電連接該等第一及第二降壓電感Lb1、Lb2的該等第二端以接收該等第一及第二降壓電感電流i1、i2,及電連接該等第一及第二變壓器3、4之該等次級側繞組32、42的該等第二端,且適用於電連接該電阻R。該並聯輸出電路5根據該等第一及第二降壓電感電流i1、i2產生給該電阻R的該直流輸出電壓Vo。在本實施例中,該並聯輸出電路5包括一第一飛輪二極體D12、一第二飛輪二極體D22、一第一輸出電感L1、一第二輸出電感L2及一輸出電容Co。 The parallel output circuit 5 electrically connects the second ends of the first and second buck inductors Lb1, Lb2 to receive the first and second buck inductor currents i 1 , i 2 , and electrically connect the same The second ends of the secondary side windings 32, 42 of the first and second transformers 3, 4 are adapted to electrically connect the resistor R. The parallel output circuit 5 generates the DC output voltage Vo to the resistor R based on the first and second step-down inductor currents i 1 , i 2 . In this embodiment, the parallel output circuit 5 includes a first flywheel diode D12, a second flywheel diode D22, a first output inductor L1, a second output inductor L2, and an output capacitor Co.
該第一飛輪二極體D12具有一電連接該第一變壓器3之該次級側繞組32的該第二端的陽極,及一電連接該第一降壓電感Lb1之該第二端的陰極。該第二飛輪二極體D22具有一電連接該第二變壓器4之該次級側繞組42的該第二端的陽極,及一電連接該第二降壓電感Lb2之該第二端的陰極。該第一輸出電感L1具有一電連接該第一降壓電感Lb1之該第二端的第一端,及一第二端。該第二輸出電感L2具有一電連接該第二降壓電感Lb2之該第二端的第一端,及一電連接該第一輸出電感L1之該第二端的第二端。該輸出電容Co具有一電連接該第一輸出電感L1之該第二端的第一端,及一電連接該等第一及第二飛輪二極體D12、D22之該等陽極的第二端,且該輸出電容Co的跨壓作為該直流輸出電壓Vo。The first flywheel diode D12 has an anode electrically connected to the second end of the secondary side winding 32 of the first transformer 3, and a cathode electrically connected to the second end of the first step-down inductor Lb1. The second flywheel diode D22 has an anode electrically connected to the second end of the secondary side winding 42 of the second transformer 4, and a cathode electrically connected to the second end of the second step-down inductor Lb2. The first output inductor L1 has a first end electrically connected to the second end of the first buck inductor Lb1, and a second end. The second output inductor L2 has a first end electrically connected to the second end of the second buck inductor Lb2, and a second end electrically connected to the second end of the first output inductor L1. The output capacitor Co has a first end electrically connected to the second end of the first output inductor L1, and a second end electrically connected to the anodes of the first and second flywheel diodes D12, D22, And the voltage across the output capacitor Co acts as the DC output voltage Vo.
該控制電路6產生該等第一及第二控制信號Vgs1、Vgs2,並將該等第一及第二控制信號Vgs1、Vgs2分別輸出至該等第一及第二開關S1、S2的該等控制端。The control circuit 6 generates the first and second control signals Vgs1, Vgs2, and outputs the first and second control signals Vgs1, Vgs2 to the first and second switches S1, S2, respectively. end.
參閱圖2,為本實施例的一等效電路圖,用以說明該等第一及第二開關S1、S2中的每一者的一本體二極體(body diode)D S1、D S2及一寄生電容C r1、C r2被畫出,用於模擬該第一變壓器3的非理想特性的一假想的第一激磁電感L m1及一假想的第一漏電感L lk1被畫出,用於模擬該第二變壓器4的非理想特性的一假想的第二激磁電感L m2及一假想的第二漏電感L lk2被畫出,該控制電路6(見圖1)沒被畫出。其中,參數V Cr1、V Cr2分別為該等寄生電容C r1、C r2二端的跨壓,參數V C1、V C2分別為該等第一及第二輸入電容C1、C2二端的跨壓,參數V S1為該次級側繞組32二端的跨壓,參數V S2為該次級側繞組42二端的跨壓,參數i S1、i S2分別為流經該等第一及第二開關S1、S2的電流,參數i Lr為流經該共振電感Lr的電流,參數i Lm1、i Lm2分別為流經該等第一及第二激磁電感L m1、L m2的電流,參數i D11、i D21分別為流經該等第一及第二整流二極體D11、D21的電流,參數i Lb1、i Lb2分別為流經該等第一及第二降壓電感Lb1、Lb2的電流,參數i D12、i D22分別為流經該等第一及第二飛輪二極體D12、D22的電流,參數i L1、i L2分別為流經該等第一及第二輸出電感L1、L2的電流,參數i Lo為流經該等第一及第二輸出電感L1、L2的電流的加總,參數i O為總輸出電流。電流i S1、i S2、i Lr、i Lm1、i Lm2、i D11、i D21、i Lb1、i Lb2、i D12、i D22、i L1、i L2、i Lo、i O中的每一個的方向由一個相對應的箭頭表示,且代表相對應之元件的預設電流流向。 Referring to FIG. 2, an equivalent circuit diagram of the present embodiment is used to illustrate a body diode D S1 , D S2 and a body of each of the first and second switches S1 and S2. Parasitic capacitances C r1 , C r2 are drawn, an imaginary first magnetizing inductance L m1 for simulating the non-ideal characteristics of the first transformer 3 and an imaginary first leakage inductance L lk1 are drawn for simulation An imaginary second magnetizing inductance L m2 of the non-ideal characteristic of the second transformer 4 and an imaginary second leakage inductance L lk2 are drawn, and the control circuit 6 (see Fig. 1) is not shown. Wherein, the parameters V Cr1 and V Cr2 are the cross-voltages of the two ends of the parasitic capacitances C r1 and C r2 , respectively, and the parameters V C1 and V C2 are the cross-pressures of the first and second input capacitors C1 and C2 respectively. V S1 is the cross-voltage of the two ends of the secondary side winding 32, the parameter V S2 is the cross-voltage of the two ends of the secondary side winding 42 , and the parameters i S1 and i S2 respectively flow through the first and second switches S1 and S2 The current i, the parameter i Lr is the current flowing through the resonant inductor Lr, and the parameters i Lm1 and i Lm2 are the currents flowing through the first and second magnetizing inductances L m1 and L m2 , respectively, and the parameters i D11 and i D21 respectively For the current flowing through the first and second rectifying diodes D11 and D21, the parameters i Lb1 and i Lb2 are currents flowing through the first and second step-down inductors Lb1 and Lb2, respectively, the parameter i D12 , i D22 is a current flowing through the first and second flywheel diodes D12 and D22, respectively, and parameters i L1 and i L2 are currents flowing through the first and second output inductors L1 and L2, respectively, parameter i Lo is the sum of the currents flowing through the first and second output inductors L1, L2, and the parameter i O is the total output current. Each of the currents i S1 , i S2 , i Lr , i Lm1 , i Lm2 , i D11 , i D21 , i Lb1 , i Lb2 , i D12 , i D22 , i L1 , i L2 , i Lo , i O The direction is indicated by a corresponding arrow and represents the preset current flow direction of the corresponding component.
參閱圖3,為本實施例的操作時序圖,參數Vgs1、Vgs2分別為該等第一及第二控制信號,參數Ts為該第一控制信號Vgs1的一切換週期的長度,參數V Cr1、V Cr2、i Lm1、i Lm2、i Lr、i Lb1、i Lb2、i L1、i L2、i Lo各自的定義與圖2中相對應的參數相同,故於此不贅述。需說明的是,在本實施例中,該等第一及第二控制信號Vgs1、Vgs2中的每一者在一有效狀態(例如邏輯高準位,且對應到圖1之該等第一及第二開關S1、S2中的相對應者導通)及一非有效狀態(例如邏輯低準位,且對應到圖1之該等第一及第二開關S1、S2中的相對應者不導通)之間切換。該等第一及第二控制信號Vgs1、Vgs2具有相同的切換週期(其長度為Ts),且交替地在該有效狀態。當該等第一及第二控制信號Vgs1、Vgs2中的一者在該有效狀態時,該等第一及第二控制信號Vgs1、Vgs2中的另一者在該非有效狀態。在從該第一控制信號Vgs1及該第二控制信號Vgs2中的一者切換到該非有效狀態的每一個時間點起算的一預設的死區時段(其長度為Td)之後,該第一控制信號Vgs1及該第二控制信號Vgs2中的另一者才切換到該有效狀態。 Referring to FIG. 3, which is an operation timing diagram of the embodiment, the parameters Vgs1 and Vgs2 are the first and second control signals respectively, and the parameter Ts is the length of a switching period of the first control signal Vgs1, and the parameters V Cr1 and V are The definitions of Cr2 , i Lm1 , i Lm2 , i Lr , i Lb1 , i Lb2 , i L1 , i L2 , i Lo are the same as those in FIG. 2, and thus will not be described herein. It should be noted that, in this embodiment, each of the first and second control signals Vgs1, Vgs2 is in an active state (eg, a logic high level, and corresponds to the first and The corresponding ones of the second switches S1 and S2 are turned on) and an inactive state (for example, a logic low level, and corresponding to the corresponding ones of the first and second switches S1 and S2 of FIG. 1 are not turned on) Switch between. The first and second control signals Vgs1, Vgs2 have the same switching period (the length of which is Ts) and are alternately in the active state. When one of the first and second control signals Vgs1, Vgs2 is in the active state, the other of the first and second control signals Vgs1, Vgs2 is in the inactive state. The first control after switching from one of the first control signal Vgs1 and the second control signal Vgs2 to a predetermined dead time period (the length of which is Td) from each time point of the inactive state The other of the signal Vgs1 and the second control signal Vgs2 is switched to the active state.
參閱圖3至圖15,本實施例的單級降壓轉換器循環地操作在第一階段至第十二階段。圖4至圖15的電路圖與圖2相似,差異在於圖4至圖15中,導通的元件以實線畫出,而不導通的元件以虛線畫出,且更以較粗且帶有箭頭的實線說明電路中實際電流流向。以下分別針對每一階段進行說明。 Referring to FIGS. 3 through 15, the single-stage buck converter of the present embodiment operates cyclically in the first to twelfth stages. The circuit diagrams of Figures 4 to 15 are similar to those of Figure 2, except that in Figures 4 to 15, the conductive elements are drawn in solid lines, the non-conducting elements are drawn in dashed lines, and are thicker and arrowed. The solid line shows the actual current flow in the circuit. The following is a description of each stage.
第一階段(時間點:t0~t1): The first stage (time point: t0~t1):
參閱圖3與圖4,該等第一及第二開關S1、S2不導通,該等本體二極體DS1、DS2不導通,該第一整流二極體D11導通,該第一飛輪二極體D12不導通,該第二整流二極體D21導通,該第二飛輪二極體D22導通。 Referring to FIG. 3 and FIG. 4, the first and second switches S1 and S2 are not turned on, the body diodes D S1 and D S2 are not turned on, and the first rectifying diode D11 is turned on. The first flywheel 2 is The pole body D12 is not conducting, the second rectifier diode D21 is turned on, and the second flywheel diode D22 is turned on.
該第二降壓電感Lb2反射至該初級側繞組41,且該第二降壓電感Lb2、該等第一及第二漏電感Llk1、Llk2及該共振電感Lr與該等寄生電容Cr1、Cr2共振,並將流經該等第一及第二激磁電感Lm1、Lm2的電流iLm1、iLm2、流經該第一降壓電感Lb1的電流iLb1與流經該第一輸出電感L1的電流iL1視為定電流。此時,流經該共振電感Lr並流入該寄生電容Cr1的一電流(即,電流iLr的一分流,該分流之電流方向與電流iS1同向)對該寄生電容Cr1進行充電,且流經 該共振電感Lr並流入該寄生電容Cr2的一電流(即,電流iLr的另一分流,該另一分流的電流方向與電流iS2反向)對該寄生電容Cr2進行放電,使得該寄生電容Cr1二端的跨壓VCr1上升,而該寄生電容Cr2二端的跨壓VCr2下降。當t=t1時,該寄生電容Cr2二端的跨壓VCr2下降至VCr2=VC1-(Lb1n1Vo)/L1,參數Lb1、L1分別為該第一降壓電感Lb1及該第一輸出電感L1的電感值,則該第一飛輪二極體D12變為導通。接著,進入第二階段。 The second step-down inductor Lb2 is reflected to the primary side winding 41, and the second step-down inductor Lb2, the first and second leakage inductors L lk1 , L lk2 and the resonant inductor Lr and the parasitic capacitance C r1 And C r2 resonate, and the current i Lm1 , i Lm2 flowing through the first and second magnetizing inductances L m1 , L m2 , and the current i Lb1 flowing through the first step-down inductor Lb1 and flowing through the first The current i L1 of the output inductor L1 is regarded as a constant current. At this time, a current flowing through the resonant inductor Lr and flowing into the parasitic capacitance C r1 (that is, a shunt of the current i Lr , the current direction of the shunt is in the same direction as the current i S1 ) charges the parasitic capacitance C r1 . And flowing a current flowing through the resonant inductor Lr and flowing into the parasitic capacitance C r2 (ie, another shunt of the current i Lr , the current direction of the other shunt is opposite to the current i S2 ) discharging the parasitic capacitance C r2 , so that the parasitic capacitance C r1 voltage across the two ends of V Cr1 rises, and the parasitic capacitance C r2 voltage across the two terminals of V Cr2 decrease. When t=t1, the voltage across the two ends of the parasitic capacitance C r2 V Cr2 drops to V Cr2 =V C1 -(L b1 n 1 Vo)/L 1 , and the parameters L b1 and L 1 are the first step-down inductors, respectively. The inductance value of Lb1 and the first output inductor L1 turns on the first flywheel diode D12. Then, enter the second stage.
第二階段(時間點:t1~t2): The second stage (time point: t1~t2):
參閱圖3與圖5,該等第一及第二開關S1、S2不導通,該等本體二極體DS1、DS2不導通,該第一整流二極體D11導通,該第一飛輪二極體D12導通,該第二整流二極體D21導通,該第二飛輪二極體D22導通。 Referring to FIG. 3 and FIG. 5, the first and second switches S1 and S2 are not turned on, the body diodes D S1 and D S2 are not turned on, and the first rectifier diode D11 is turned on. The first flywheel 2 is turned on. The pole body D12 is turned on, the second rectifier diode D21 is turned on, and the second flywheel diode D22 is turned on.
該第一降壓電感Lb1反射至該初級側繞組31,且該第一降壓電感Lb1、該等第一及第二漏電感Llk1、Llk2及該共振電感Lr與該等寄生電容Cr1、Cr2共振。此時,流經該共振電感Lr並流入該寄生電容Cr1的該電流持續對該寄生電容Cr1進行充電,且流經該共振電感Lr並流入該寄生電容Cr2的該電流持續對該寄生電容Cr2進行放電。當t=t2時,該寄生電容Cr2二端的跨壓VCr2下降至零,該本體二極體DS2變為導通,且將該寄生電容Cr2二端的跨壓VCr2箝制在零。接著,進入第三階段。 The first step-down inductor Lb1 is reflected to the primary side winding 31, and the first step-down inductor Lb1, the first and second leakage inductors L lk1 , L lk2 , and the resonant inductor Lr and the parasitic capacitance C r1 , C r2 resonance. At this time, the current flowing through the resonant inductor Lr and flowing into the parasitic capacitance C r1 continues to charge the parasitic capacitance C r1 , and the current flowing through the resonant inductor Lr and flowing into the parasitic capacitance C r2 continues to the parasitic The capacitor C r2 is discharged. When t=t2, the voltage across the two ends of the parasitic capacitance C r2 V Cr2 drops to zero, the body diode D S2 becomes conductive, and the voltage across the two ends of the parasitic capacitance C r2 V Cr2 is clamped to zero. Then, enter the third stage.
第三階段(時間點:t2~t3):The third stage (time point: t2~t3):
參閱圖3與圖6,該第一開關S1不導通,該第二開關S2導通,該本體二極體D S1不導通,該本體二極體D S2導通,該第一整流二極體D11導通,該第一飛輪二極體D12導通,該第二整流二極體D21導通,該第二飛輪二極體D22導通。 Referring to FIG. 3 and FIG. 6 , the first switch S1 is not turned on, the second switch S2 is turned on, the body diode D S1 is not turned on, the body diode D S2 is turned on, and the first rectifying diode D11 is turned on. The first flywheel diode D12 is turned on, the second rectifying diode D21 is turned on, and the second flywheel diode D22 is turned on.
由於該寄生電容C r2二端的跨壓V Cr2箝制在零,因此該寄生電容C r1二端的跨壓V Cr1等於該直流輸入電壓Vin(即,V Cr1=Vin)。此時,將該第二開關S2導通即可達到零電壓切換(Zero Voltage Switching,ZVS)。此外,該共振電感Lr開始線性釋放能量,即流經該共振電感Lr的電流i Lr以斜率-V Lr/L r開始線性下降,其中,參數V Lr為該共振電感Lr的跨壓V Lr=-(Vin-V C1+ V C2/2)/[L r+(L b2+L lk2’)/2]<0,參數L r、L b2、L lk2’分別為該共振電感Lr、該第二降壓電感Lb2及該第二漏電感L lk2的電感值。同時,流經該第一降壓電感Lb1的電流i Lb1以斜率-V C1/L b1線性下降,流經該第二降壓電感Lb2的電流i Lb2以斜率(Vin-V C2)/L b2線性上升,流經該第一輸出電感L1的電流i L1以斜率-Vo/L 1線性下降,且流經該第二輸出電感L2的電流i L2以斜率-Vo/L 2線性下降,參數L 2為該第二輸出電感L2的電感值。當t=t3時,流經該共振電感Lr的電流i Lr線性下降至零,該本體二極體D S2變為不導通。接著,進入第四階段。 Since the parasitic capacitance C r2 voltage across the two ends of the clamp V Cr2 zero, so that the parasitic capacitance C r1 voltage across the two terminals of the DC V Cr1 equal to the input voltage Vin (i.e., V Cr1 = Vin). At this time, the second switch S2 is turned on to achieve Zero Voltage Switching (ZVS). In addition, the resonant inductor Lr starts to linearly release energy, that is, the current i Lr flowing through the resonant inductor Lr starts to decrease linearly with a slope of -V Lr /L r , wherein the parameter V Lr is the voltage across the resonant inductor Lr V Lr = -(Vin-V C1 + V C2 /2)/[L r +(L b2 +L lk2' )/2]<0, the parameters L r , L b2 , L lk2 ' are the resonant inductor Lr, the first The inductance value of the second step-down inductor Lb2 and the second drain inductor L lk2 . At the same time, the current i Lb1 flowing through the first step-down inductor Lb1 linearly decreases with a slope of -V C1 /L b1 , and the current i Lb2 flowing through the second step-down inductor Lb2 has a slope (Vin-V C2 )/L b2 . Linearly rising, the current i L1 flowing through the first output inductor L1 linearly decreases with a slope of -Vo/L 1 , and the current i L2 flowing through the second output inductor L2 linearly decreases with a slope of -Vo/L 2 , parameter L 2 is the inductance value of the second output inductor L2. When t=t3, the current i Lr flowing through the resonant inductor Lr linearly drops to zero, and the body diode D S2 becomes non-conductive. Then, enter the fourth stage.
第四階段(時間點:t3~t4):The fourth stage (time point: t3~t4):
參閱圖3與圖7,該第一開關S1不導通,該第二開關S2導通,該等本體二極體D S1、D S2不導通,該第一整流二極體D11導通,該第一飛輪二極體D12導通,該第二整流二極體D21導通,該第二飛輪二極體D22導通。 Referring to FIG. 3 and FIG. 7 , the first switch S1 is not turned on, the second switch S2 is turned on, the body diodes D S1 and D S2 are not turned on, and the first rectifying diode D11 is turned on. The first flywheel is turned on. The diode D12 is turned on, the second rectifying diode D21 is turned on, and the second flywheel diode D22 is turned on.
第四階段與第三階段的操作相似,流經該共振電感Lr的電流i Lr持續線性下降至負值,流經該第一降壓電感Lb1的電流i Lb1、流經該第一輸出電感L1的電流i L1及流經該第二輸出電感L2的電流i L2持續線性下降。流經該第二降壓電感Lb2的電流i Lb2持續線性上升。當t=t4時,該第二降壓電感Lb2的電流i Lb2與該第二輸出電感L2的電流i L2相同,此時,該第二飛輪二極體D22變為不導通。接著,進入第五階段。 The fourth stage is similar to the operation of the third stage. The current i Lr flowing through the resonant inductor Lr continuously decreases linearly to a negative value, and the current i Lb1 flowing through the first step-down inductor Lb1 flows through the first output inductor L1. The current i L1 and the current i L2 flowing through the second output inductor L2 continue to decrease linearly. The current i Lb2 flowing through the second step-down inductor Lb2 continues to rise linearly. When t=t4, the current i Lb2 of the second step-down inductor Lb2 is the same as the current i L2 of the second output inductor L2. At this time, the second flywheel diode D22 becomes non-conductive. Then, enter the fifth stage.
第五階段(時間點:t4~t5):The fifth stage (time point: t4~t5):
參閱圖3與圖8,該第一開關S1不導通,該第二開關S2導通,該等本體二極體D S1、D S2不導通,該第一整流二極體D11導通,該第一飛輪二極體D12導通,該第二整流二極體D21導通,該第二飛輪二極體D22不導通。 Referring to FIG. 3 and FIG. 8 , the first switch S1 is not turned on, the second switch S2 is turned on, the body diodes D S1 and D S2 are not turned on, and the first rectifying diode D11 is turned on. The first flywheel is turned on. The diode D12 is turned on, the second rectifying diode D21 is turned on, and the second flywheel diode D22 is not turned on.
此時,流經該第一降壓電感Lb1的電流i Lb1及流經該第一輸出電感L1的電流i L1持續線性下降。流經該第二降壓電感Lb2的電流i Lb2與流經該第二輸出電感L2的電流i L2以斜率(Vin-VC2-Vo)/(Lb2+L2)一同線性上升(即該第二降壓電感Lb2與該第二輸出電感L2處於儲存能量的狀態)。當t=t5時,流經該第一降壓電感Lb1的電流iLb1下降至零,且該第一整流二極體D11變為不導通。接著,進入第六階段。 At this time, the current i Lb1 flowing through the first step-down inductor Lb1 and the current i L1 flowing through the first output inductor L1 continue to linearly decrease. L2 is a current flowing through the second inductor Lb2 down Lb2 current I flowing through the second output inductor L2 I slope (Vin-V C2 -Vo) / (L b2 + L 2) increases linearly with (i.e., the The second step-down inductor Lb2 and the second output inductor L2 are in a state of storing energy). When t=t5, the current i Lb1 flowing through the first step-down inductor Lb1 falls to zero, and the first rectifying diode D11 becomes non-conductive. Then, enter the sixth stage.
第六階段(時間點:t5~t6): The sixth stage (time point: t5~t6):
參閱圖3與圖9,該第一開關S1不導通,該第二開關S2導通,該等本體二極體DS1、DS2不導通,該第一整流二極體D11不導通,該第一飛輪二極體D12導通,該第二整流二極體D21導通,該第二飛輪二極體D22不導通。 Referring to FIG. 3 and FIG. 9 , the first switch S1 is not turned on, the second switch S2 is turned on, the body diodes D S1 and D S2 are not turned on, and the first rectifying diode D11 is not turned on. The flywheel diode D12 is turned on, the second rectifying diode D21 is turned on, and the second flywheel diode D22 is not turned on.
該第一降壓電感Lb1停止釋放能量。流經該第一輸出電感L1的電流iL1持續線性下降。流經該第二降壓電感Lb2的電流iLb2與流經該第二輸出電感L2的電流iL2持續線性上升。當t=t6時,該第二開關S2由導通切換為不導通。接著,進入第七階段。 The first step-down inductor Lb1 stops releasing energy. The current i L1 flowing through the first output inductor L1 continues to decrease linearly. The current i Lb2 flowing through the second step-down inductor Lb2 and the current i L2 flowing through the second output inductor L2 continue to rise linearly. When t=t6, the second switch S2 is switched from conductive to non-conductive. Then, enter the seventh stage.
第七階段(時間點:t6~t7): The seventh stage (time point: t6~t7):
參閱圖3與圖10,該等第一及第二開關S1、S2不導通,該等本體二極體DS1、DS2不導通,該第一整流二極體D11導通,該第一飛輪二極體D12導通,該第二整流二極體D21導通,該第二飛輪二極體D22不導通。 Referring to FIG. 3 and FIG. 10, the first and second switches S1 and S2 are not turned on, the body diodes D S1 and D S2 are not turned on, and the first rectifying diode D11 is turned on. The first flywheel 2 is turned on. The pole body D12 is turned on, the second rectifier diode D21 is turned on, and the second flywheel diode D22 is not turned on.
該第一降壓電感Lb1反射至該初級側繞組31,且該第一降壓電感Lb1、該等第一及第二漏電感Llk1、Llk2及該共振電感Lr 與該等寄生電容Cr1、Cr2共振,並將流經該等第一及第二激磁電感Lm1、Lm2的電流iLm1、iLm2、流經該第二降壓電感Lb2的電流iLb2與流經該第一輸出電感L1的電流iL1視為定電流。此時,流經該寄生電容Cr1並流入該共振電感Lr的一電流(其電流方向與電流iS1反向)對該寄生電容Cr1進行放電,且流經該寄生電容Cr2並流入該共振電感Lr的一電流(其電流方向與電流iS2同向)對該寄生電容Cr2進行充電,使得該寄生電容Cr1二端的跨壓VCr1下降,而該寄生電容Cr2二端的跨壓VCr2上升。當t=t7時,該寄生電容Cr1二端的跨壓VCr1下降至VCr1=VC2-(Lb2n2Vo)/L2,則該第二飛輪二極體D22變為導通。接著,進入第八階段。 The first step-down inductor Lb1 is reflected to the primary side winding 31, and the first step-down inductor Lb1, the first and second leakage inductors L lk1 , L lk2 , and the resonant inductor Lr and the parasitic capacitance C r1 And C r2 resonate, and currents i Lm1 , i Lm2 flowing through the first and second magnetizing inductances L m1 , L m2 , and current i Lb2 flowing through the second step-down inductor Lb2 and flowing through the first The current i L1 of the output inductor L1 is regarded as a constant current. At this time, a current flowing through the parasitic capacitance C r1 and flowing into the resonant inductor Lr (the current direction thereof is opposite to the current i S1 ) discharges the parasitic capacitance C r1 and flows through the parasitic capacitance C r2 and flows into the resonant inductor Lr is a current (which is the current direction of the current i S2 in the same direction) of the parasitic capacitance C r2 charged, so that the parasitic capacitance C R1 ends of the cross voltage V Cr1 decreased, and the parasitic capacitance C voltage across r2 two ends V Cr2 rises. When t=t7, the voltage V Cr1 at both ends of the parasitic capacitance C r1 drops to V Cr1 =V C2 -(L b2 n 2 Vo)/L 2 , and the second flywheel diode D22 becomes conductive. Then, enter the eighth stage.
第八階段(時間點:t7~t8): The eighth stage (time point: t7~t8):
參閱圖3與圖11,該等第一及第二開關S1、S2不導通,該等本體二極體DS1、DS2不導通,該第一整流二極體D11導通,該第一飛輪二極體D12導通,該第二整流二極體D21導通,該第二飛輪二極體D22導通。 Referring to FIG. 3 and FIG. 11 , the first and second switches S1 and S2 are not turned on, the body diodes D S1 and D S2 are not turned on, and the first rectifying diode D11 is turned on. The first flywheel 2 is turned on. The pole body D12 is turned on, the second rectifier diode D21 is turned on, and the second flywheel diode D22 is turned on.
該第二降壓電感Lb2反射至該初級側繞組41,且該第二降壓電感Lb2、該等第一及第二漏電感Llk1、Llk2及該共振電感Lr與該等寄生電容Cr1、Cr2共振。此時,流經該寄生電容Cr1的電流持續對該寄生電容Cr1進行放電,且流經該寄生電容Cr2的電流持續對該寄生電容Cr2進行充電。當t=t8時,該寄生電容Cr1二端的跨壓V Cr1下降至零,該本體二極體D S1變為導通,且將該寄生電容C r1二端的跨壓V Cr1箝制在零。接著,進入第九階段。 The second step-down inductor Lb2 is reflected to the primary side winding 41, and the second step-down inductor Lb2, the first and second leakage inductors L lk1 , L lk2 and the resonant inductor Lr and the parasitic capacitance C r1 , C r2 resonance. At this time, the current flowing through the parasitic capacitance C r1 continues to discharge the parasitic capacitance C r1 , and the current flowing through the parasitic capacitance C r2 continues to charge the parasitic capacitance C r2 . When t=t8, the voltage across the two ends of the parasitic capacitance C r1 V Cr1 drops to zero, the body diode D S1 becomes conductive, and the voltage across the two ends of the parasitic capacitance C r1 V Cr1 is clamped to zero. Then, enter the ninth stage.
第九階段(時間點:t8~t9):The ninth stage (time point: t8~t9):
參閱圖3與圖12,該第一開關S1導通,該第二開關S2不導通,該本體二極體D S1導通,該本體二極體D S2不導通,該第一整流二極體D11導通,該第一飛輪二極體D12導通,該第二整流二極體D21導通,該第二飛輪二極體D22導通。 Referring to FIG. 3 and FIG. 12, the first switch S1 is turned on, the second switch S2 is not turned on, the body diode D S1 is turned on, the body diode D S2 is not turned on, and the first rectifying diode D11 is turned on. The first flywheel diode D12 is turned on, the second rectifying diode D21 is turned on, and the second flywheel diode D22 is turned on.
由於該寄生電容C r1二端的跨壓V Cr1箝制在零,因此該寄生電容C r2二端的跨壓V Cr2等於該直流輸入電壓Vin(即,V Cr2=Vin)。此時,將該第一開關S1導通即可達到零電壓切換ZVS。此外,該共振電感Lr開始線性儲存能量,即流經該共振電感Lr的電流i Lr以斜率V Lr/L r開始線性上升,且該共振電感Lr的跨壓V Lr=(Vin-V C2+ V C1/2)L r/[L r+(L b1+L lk1’)/2]>0,參數L lk1’為該第一漏電感L lk1的電感值。同時,流經該第一降壓電感Lb1的電流i Lb1以斜率(Vin-V C1)/L b1線性上升,流經該第二降壓電感Lb2的電流i Lb2以斜率-V C2/L b2線性下降,流經該第一輸出電感L1的電流i L1以斜率-Vo/L 1線性下降,且流經該第二輸出電感L2的電流i L2以斜率-Vo/L 2線性下降。當t=t9時,流經該共振電感Lr的電流i Lr線性上升至零,此時,該本體二極體D S1變為不導通。接著,進入第十階段。 Since the voltage across the two ends of the parasitic capacitance C r1 V Cr1 is clamped at zero, the voltage across the two ends of the parasitic capacitance C r2 V Cr2 is equal to the DC input voltage Vin (ie, V Cr2 =Vin). At this time, the first switch S1 is turned on to achieve zero voltage switching ZVS. In addition, the resonant inductor Lr starts to store energy linearly, that is, the current i Lr flowing through the resonant inductor Lr starts to rise linearly with the slope V Lr /L r , and the transposition voltage V Lr of the resonant inductor Lr is (Vin-V C2 + V C1 /2) L r /[L r +(L b1 +L lk1' )/2]>0, the parameter L lk1 ' is the inductance value of the first leakage inductance L lk1 . At the same time, the current i Lb1 flowing through the first step-down inductor Lb1 linearly rises with a slope (Vin−V C1 )/L b1 , and the current i Lb2 flowing through the second step-down inductor Lb2 has a slope of −V C2 /L b2 . Linearly decreasing, the current i L1 flowing through the first output inductor L1 linearly decreases with a slope of -Vo/L 1 , and the current i L2 flowing through the second output inductor L2 linearly decreases with a slope of -Vo/L 2 . When t=t9, the current i Lr flowing through the resonant inductor Lr linearly rises to zero, and at this time, the body diode D S1 becomes non-conductive. Then, enter the tenth stage.
第十階段(時間點:t9~t10):The tenth stage (time point: t9~t10):
參閱圖3與圖13,該第一開關S1導通,該第二開關S2不導通,該等本體二極體D S1、D S2不導通,該第一整流二極體D11導通,該第一飛輪二極體D12導通,該第二整流二極體D21導通,該第二飛輪二極體D22導通。 Referring to FIG. 3 and FIG. 13 , the first switch S1 is turned on, the second switch S2 is not turned on, the body diodes D S1 and D S2 are not turned on, and the first rectifying diode D11 is turned on. The first flywheel is turned on. The diode D12 is turned on, the second rectifying diode D21 is turned on, and the second flywheel diode D22 is turned on.
第十階段與第九階段的操作相似,流經該共振電感Lr的電流i Lr持續線性上升至正值,流經該第一降壓電感Lb1的電流i Lb1持續線性上升。流經該第二降壓電感Lb2的電流i Lb2、流經該第一輸出電感L1的電流i L1及流經該第二輸出電感L2的電流i L2持續線性下降。當t=t10時,該第一降壓電感Lb1的電流i Lb1與該第一輸出電感L1的電流i L1相同,此時,該第一飛輪二極體D12變為不導通。接著,進入第十一階段。 Similarly to the operation of the ninth stage, the current i Lr flowing through the resonant inductor Lr continues to rise linearly to a positive value, and the current i Lb1 flowing through the first step-down inductor Lb1 continues to rise linearly. The current i Lb2 flowing through the second step-down inductor Lb2, the current i L1 flowing through the first output inductor L1, and the current i L2 flowing through the second output inductor L2 continue to linearly decrease. When t=t10, the current i Lb1 of the first step-down inductor Lb1 is the same as the current i L1 of the first output inductor L1. At this time, the first flywheel diode D12 becomes non-conductive. Then, enter the eleventh stage.
第十一階段(時間點:t10~t11):The eleventh stage (time point: t10~t11):
參閱圖3與圖14,該第一開關S1導通,該第二開關S2不導通,該等本體二極體D S1、D S2不導通,該第一整流二極體D11導通,該第一飛輪二極體D12不導通,該第二整流二極體D21導通,該第二飛輪二極體D22導通。 Referring to FIG. 3 and FIG. 14 , the first switch S1 is turned on, the second switch S2 is not turned on, the body diodes D S1 and D S2 are not turned on, and the first rectifying diode D11 is turned on. The first flywheel is turned on. The diode D12 is not turned on, the second rectifying diode D21 is turned on, and the second flywheel diode D22 is turned on.
此時,流經該第二降壓電感Lb2的電流i Lb2、流經該第二輸出電感L2的電流i L2持續線性下降。流經該第一降壓電感Lb1的電流i Lb1與流經該第一輸出電感L1的電流i L1以斜率(Vin- V C1-Vo)/(L b1+L 1)一同線性上升(即該第一降壓電感Lb1與該第一輸出電感L1處於儲存能量的狀態)。當t=t11時,流經該第二降壓電感Lb2的電流i Lb2下降至零,且該第二整流二極體D21變為不導通。接著,進入第十二階段。 At this time, the current i Lb2 flowing through the second step-down inductor Lb2 and the current i L2 flowing through the second output inductor L2 continue to linearly decrease. Flowing through the first buck inductor Lb1 Lb1 current I flowing through the first output current I L1 of inductor L1 slope (Vin- V C1 -Vo) / ( L b1 + L 1) increases linearly with (i.e., the The first step-down inductor Lb1 and the first output inductor L1 are in a state of storing energy). When t=t11, the current i Lb2 flowing through the second step-down inductor Lb2 falls to zero, and the second rectifying diode D21 becomes non-conductive. Then, enter the twelfth stage.
第十二階段(時間點:t11~t12):The twelfth stage (time point: t11~t12):
參閱圖3與圖15,該第一開關S1導通,該第二開關S2不導通,該等本體二極體D S1、D S2不導通,該第一整流二極體D11導通,該第一飛輪二極體D12不導通,該第二整流二極體D21不導通,該第二飛輪二極體D22導通。 Referring to FIG. 3 and FIG. 15 , the first switch S1 is turned on, the second switch S2 is not turned on, the body diodes D S1 and D S2 are not turned on, and the first rectifying diode D11 is turned on. The first flywheel is turned on. The diode D12 is not turned on, the second rectifying diode D21 is not turned on, and the second flywheel diode D22 is turned on.
該第二降壓電感Lb2停止釋放能量。流經該第一降壓電感Lb1的電流i Lb1與流經該第一輸出電感L1的電流i L1持續線性上升,而流經該第二輸出電感L2的電流i L2持續線性下降。當t=t12,該第一開關S1由導通切換為不導通時,回到第一階段。 The second step-down inductor Lb2 stops releasing energy. The current i Lb1 flowing through the first step-down inductor Lb1 and the current i L1 flowing through the first output inductor L1 continue to rise linearly, and the current i L2 flowing through the second output inductor L2 continues to decrease linearly. When t=t12, the first switch S1 is switched from on to off, and returns to the first stage.
本實施例單級降壓轉換器的電路電氣規格與元件參數如表1所示,其中元件設計係利用電路動作分析推導公式且輔以IsSpice模擬試誤法。 表1 : <TABLE border="1" borderColor="#000000" width="_0020"><TBODY><tr><td> 直流輸入電壓 Vin </td><td> 400V </td><td> 第一及第二變壓器匝數比n<sub>1</sub>、n<sub>2</sub></td><td> 1 </td></tr><tr><td> 直流輸出電壓Vo </td><td> 48V </td><td> 第一及第二激磁電感L<sub>m1</sub>、L<sub>m2</sub></td><td><img wi="125" he="24" file="02_image001.jpg" img-format="jpg"></img></td></tr><tr><td> 輸出功率 </td><td> 150~750 W </td><td> 第一及第二漏電感L<sub>lk1</sub>、L<sub>lk2</sub></td><td><img wi="52" he="24" file="02_image003.jpg" img-format="jpg"></img></td></tr><tr><td> 第一及第二輸入電容C1、C2 </td><td><img wi="45" he="24" file="02_image005.jpg" img-format="jpg"></img></td><td> 共振電感Lr </td><td><img wi="63" he="24" file="02_image007.jpg" img-format="jpg"></img></td></tr><tr><td> 第一及第二輸出電感L1、L2 </td><td><img wi="59" he="24" file="02_image009.jpg" img-format="jpg"></img></td><td> 切換頻率 </td><td> 100kHz </td></tr><tr><td> 第一及第二降壓電感Lb1、Lb2 </td><td><img wi="63" he="24" file="02_image011.jpg" img-format="jpg"></img></td><td> 輸出電容Co </td><td><img wi="56" he="24" file="02_image013.jpg" img-format="jpg"></img></td></tr></TBODY></TABLE>The circuit electrical specifications and component parameters of the single-stage buck converter of this embodiment are shown in Table 1. The component design uses the circuit action analysis derivation formula and is supplemented by the IsSpice simulation trial and error method. Table 1 : <TABLE border="1" borderColor="#000000" width="_0020"><TBODY><tr><td> DC input voltage Vin </td><td> 400V </td><td> First and The second transformer turns ratio n<sub>1</sub>, n<sub>2</sub></td><td> 1 </td></tr><tr><td> DC output voltage Vo </td><td> 48V </td><td> first and second magnetizing inductances L<sub>m1</sub>, L<sub>m2</sub></td><td>< Img wi="125" he="24" file="02_image001.jpg" img-format="jpg"></img></td></tr><tr><td> Output Power</td> <td> 150~750 W </td><td> First and second leakage inductances L<sub>lk1</sub>, L<sub>lk2</sub></td><td><img wi ="52" he="24" file="02_image003.jpg" img-format="jpg"></img></td></tr><tr><td> First and second input capacitors C1 , C2 </td><td><img wi="45" he="24" file="02_image005.jpg" img-format="jpg"></img></td><td> Resonance Inductance Lr </td><td><img wi="63" he="24" file="02_image007.jpg" img-format="jpg"></img></td></tr><tr>< Td> first and second output inductors L1, L2 </td><td><img wi="59" he="24" file="02_image009.jpg" img-format="jpg"></img> </td><td> Switching frequency</td><td> 100kHz </td></tr><tr ><td> First and second step-down inductors Lb1, Lb2 </td><td><img wi="63" he="24" file="02_image011.jpg" img-format="jpg">< /img></td><td> Output Capacitance Co </td><td><img wi="56" he="24" file="02_image013.jpg" img-format="jpg"></img ></td></tr></TBODY></TABLE>
實驗模擬 :Experimental simulation:
參閱圖16,為該第一控制信號Vgs1、該直流輸入電壓Vin與該直流輸出電壓Vo之波形圖。該第一開關S1的責任導通比 ,該直流輸出電壓Vo為48V。由模擬結果可知本實施例的單級降壓轉換器所輸出的該直流輸出電壓Vo可降至訂定的電氣規格。 Referring to FIG. 16, a waveform diagram of the first control signal Vgs1, the DC input voltage Vin, and the DC output voltage Vo is shown. The duty-conducting ratio of the first switch S1 The DC output voltage Vo is 48V. It can be seen from the simulation results that the DC output voltage Vo outputted by the single-stage buck converter of the present embodiment can be lowered to a predetermined electrical specification.
參閱圖17及圖18,圖17為該第一控制信號Vgs1及該第一開關S1的汲源極間的一跨壓Vds1之波形圖,圖18為該第二控制信號Vgs2及該第二開關S2的汲源極間的一跨壓Vds2之波形圖。由圖17可知,該第一開關S1之跨壓Vds1下降至零後,該第一控制信號Vgs1才切換為邏輯高準位,進而使該第一開關S1達到零電壓切換ZVS的柔切性能。由圖18可知,該第二開關S2之跨壓Vds2下降至零後,該第二控制信號Vgs2才切換為邏輯高準位,進而使該第二開關S2達到零電壓切換ZVS的柔切性能。此外,由圖17及圖18也可知該等第一及第二開關S1、S2之電壓應力皆等於該直流輸入電壓Vin(等於400V) ,適用於高電壓輸入應用。Referring to FIG. 17 and FIG. 18, FIG. 17 is a waveform diagram of the first control signal Vgs1 and a voltage Vds1 between the source and the source of the first switch S1, and FIG. 18 is the second control signal Vgs2 and the second switch. A waveform diagram of a cross-over voltage Vds2 between the source and the source of S2. It can be seen from FIG. 17 that after the voltage across the first switch S1 drops to zero, the first control signal Vgs1 is switched to a logic high level, thereby causing the first switch S1 to achieve the soft switching performance of the zero voltage switching ZVS. As can be seen from FIG. 18, after the voltage across the second switch S2 drops to zero, the second control signal Vgs2 is switched to a logic high level, thereby enabling the second switch S2 to achieve the soft switching performance of the zero voltage switching ZVS. In addition, as can be seen from FIG. 17 and FIG. 18, the voltage stress of the first and second switches S1 and S2 is equal to the DC input voltage Vin (equal to 400 V), which is suitable for high voltage input applications.
參閱圖19,為該第一控制信號Vgs1、流經該等第一及第二輸出電感L1、L2的電流的加總i Lo、及流經該等第一及第二輸出電感L1、L2的電流i L1、i L2之波形圖。由於本實施例的單級降壓轉換器採輸出並聯架構,該總輸出電流i O等於電流i Lo,而電流i Lo= i L1+i L2,也就是說,該等第一及第二輸出電感L1、L2可分攤輸出電流(即電流i Lo),使輸出電流具漣波相消性能且可降低輸出電流之漣波。 Referring to FIG. 19, the first control signal Vgs1, the sum i Lo of currents flowing through the first and second output inductors L1, L2, and the first and second output inductors L1, L2 flowing through the first and second output inductors L1, L2 Waveforms of currents i L1 and i L2 . Since the single-stage buck converter of the present embodiment adopts an output parallel architecture, the total output current i O is equal to the current i Lo , and the current i Lo = i L1 +i L2 , that is, the first and second outputs Inductors L1 and L2 can share the output current (ie, current i Lo ), so that the output current has chopped cancellation performance and can reduce the chopping of the output current.
參閱圖20及圖21,圖20為該第一控制信號Vgs1、流經該第一降壓電感Lb1及該第一輸出電感L1的電流i Lb1、i L1之波形圖,圖21為該第二控制信號Vgs2、流經該第二降壓電感Lb2及該第二輸出電感L2的電流i Lb2、i L2之波形圖。本實施例的單級降壓轉換器藉由該等第一及第二降壓電感Lb1、Lb2能達到高降壓。由於當該第一開關S1切換為導通時,該第一飛輪二極體D12持續導通,流經該第一降壓電感Lb1的電流i Lb1開始上升,且須等到流經該第一降壓電感Lb1的電流i Lb1等於流經該第一輸出電感L1的電流i L1(即i Lb1=i L1),及該第一飛輪二極體D12變為不導通時,能量才能傳至負載(即電阻R),同理,當該第二開關S2切換為導通時,也須等到流經該第二降壓電感Lb2的電流i Lb2等於流經該第二輸出電感L2的電流i L2(即i Lb2=i L2),及該第二飛輪二極體D22變為不導通時,能量才能傳至負載。因此,本實施例的單級降壓轉換器實際操作的導通比D1、D2(即,D1=t s1/Ts,參數t s1為該切換週期Ts中流經該第一降壓電感Lb1的電流i Lb1等於流經該第一輸出電感L1的電流i L1的時間,D2=t s2/Ts,參數t s2為該切換週期Ts中流經該第二降壓電感Lb2的電流i Lb2等於流經該第二輸出電感L2的電流i L2的時間)分別小於該等第一及第二開關S1、S2的責任導通比Ds1、Ds2(即,Ds1=t s3/Ts,參數t s3為該切換週期Ts中該第一開關S1導通的時間,Ds2=t s4/Ts,參數t s4為該切換週期Ts中該第二開關S2導通的時間),使本實施例的單級降壓轉換器達到高降壓性能。 Referring to FIG. 20 and FIG. 21, FIG. 20 is a waveform diagram of the first control signal Vgs1, currents i Lb1 and i L1 flowing through the first buck inductor Lb1 and the first output inductor L1, and FIG. 21 is the second A waveform diagram of the control signal Vgs2, the currents i Lb2 , i L2 flowing through the second buck inductor Lb2 and the second output inductor L2. The single-stage buck converter of this embodiment can achieve high buck voltage by the first and second buck inductors Lb1, Lb2. When the first switch S1 is turned on, the first flywheel diode D12 is continuously turned on, and the current i Lb1 flowing through the first buck inductor Lb1 starts to rise, and has to wait until flowing through the first buck inductor. The current i Lb1 of Lb1 is equal to the current i L1 flowing through the first output inductor L1 (ie, i Lb1 =i L1 ), and when the first flywheel diode D12 becomes non-conducting, energy can be transmitted to the load (ie, the resistance) R), similarly, when the second switch S2 is switched to be on, the current i Lb2 flowing through the second step-down inductor Lb2 is also equal to the current i L2 flowing through the second output inductor L2 (ie, i Lb2 =i L2 ), and when the second flywheel diode D22 becomes non-conducting, energy can be transferred to the load. Therefore, the conduction ratio D1, D2 of the actual operation of the single-stage buck converter of the embodiment (ie, D1=t s1 /Ts, the parameter t s1 is the current flowing through the first step-down inductor Lb1 in the switching period Ts) Lb1 is equal to the time of current i L1 flowing through the first output inductor L1, D2=t s2 /Ts, and the parameter t s2 is the current i Lb2 flowing through the second step-down inductor Lb2 in the switching period Ts is equal to flowing through the first The time of the current i L2 of the two output inductors L2 is smaller than the duty conduction ratios Ds1 and Ds2 of the first and second switches S1 and S2, respectively (ie, Ds1=t s3 /Ts, and the parameter t s3 is in the switching period Ts) The time when the first switch S1 is turned on, Ds2=t s4 /Ts, and the parameter t s4 is the time when the second switch S2 is turned on in the switching period Ts), so that the single-stage buck converter of the embodiment reaches the high buck. performance.
綜上所述,上述本實施例實施例具有以下優點:In summary, the above embodiment of the embodiment has the following advantages:
1. 藉由該等第一及第二降壓電感Lb1、Lb2,使本實施例的單級降壓轉換器實際操作的導通比D1、D2分別小於該等第一及第二開關S1、S2的責任導通比Ds1、Ds2,藉此即可達到高降壓特性。因此,本實施例的單級降壓轉換器不需如習知技術需降低習知單級降壓轉換器中之開關的導通責任比或將變壓器的匝數比(即,變壓器的初級側繞組的匝數比上次級側繞組的匝數)提高。1. The first and second buck inductors Lb1, Lb2, the conduction ratios D1, D2 of the single-stage buck converter of the present embodiment are respectively smaller than the first and second switches S1, S2. The responsibility is turned on than Ds1, Ds2, thereby achieving high buck characteristics. Therefore, the single-stage buck converter of the present embodiment does not need to reduce the turn-on duty ratio of the switch in the conventional single-stage buck converter or the turns ratio of the transformer (ie, the primary side winding of the transformer) as in the prior art. The number of turns is higher than the number of turns of the secondary side winding).
2. 藉由該等第一及第二降壓電感Lb1、Lb2達到高降壓,使得該等第一及第二變壓器3、4匝數比各自為一(n 1=n 2=1),因而降低該等第一及第二變壓器3、4各自的寄生元件,可有效抑制該等第一及第二開關S1、S2切換時所產生的突波,且本實施例的單級降壓轉換器在元件選擇上可選用耐壓較低的元件,進而降低本實施例單級降壓轉換器的成本。 2. The first and second step-down inductors Lb1, Lb2 reach a high step-down such that the first and second transformers 3, 4 have a turns ratio of one (n 1 = n 2 =1), Therefore, the parasitic elements of the first and second transformers 3 and 4 are reduced, and the surge generated when the first and second switches S1 and S2 are switched can be effectively suppressed, and the single-stage step-down conversion of the embodiment is performed. The device can select components with lower withstand voltage in component selection, thereby reducing the cost of the single-stage buck converter of the embodiment.
3. 藉由該等第一及第二降壓電感Lb1、Lb2、該等第一及第二漏電感L lk1、L lk2及該共振電感Lr與該等寄生電容C r1、C r2共振之共振電路設計,使該等第一及第二開關S1、S2均能達到零電壓切換ZVS的柔切性能。因此,可降低開關切換損失,並提高本實施例單級降壓轉換器的轉換效率。 3. Resonance of the first and second buck inductors Lb1, Lb2, the first and second leakage inductances L lk1 , L lk2 , and the resonant inductor Lr with the parasitic capacitances C r1 , C r2 The circuit design enables the first and second switches S1, S2 to achieve the soft cutting performance of the zero voltage switching ZVS. Therefore, the switching loss of the switch can be reduced, and the conversion efficiency of the single-stage buck converter of the embodiment can be improved.
4. 由於該等第一及第二開關S1、S2採疊接輸入架構,可維持該等第一及第二開關S1、S2各自的電壓應力等於該直流輸入電壓Vin,適用於高電壓輸入應用。4. Since the first and second switches S1 and S2 are stacked and connected to the input structure, the voltage stress of each of the first and second switches S1 and S2 can be maintained equal to the DC input voltage Vin, which is suitable for high voltage input applications. .
5. 由於本實施例單級降壓轉換器採輸出並聯架構,使得輸出電流i Lo等於流經該等第一及第二輸出電感L1、L2的電流i L1、i L2的加總,以致該等第一及第二輸出電感L1、L2可分攤輸出電流,且該等第一及第二輸出電感L1、L2的電流i L1、i L2加總後使輸出電流具漣波相消性能,可降低輸出電流的漣波。因此,可降低該輸出電容Co的電容值與其尺寸,故可選用較小的該輸出電容Co,進而達到減小整體電路體積,提高功率密度。此外,藉由該等第一及第二輸出電感L1、L2分攤輸出電流,更可降低磁性元件與半導體元件的導通損失,適用於高功率及輸出低壓大電流應用。 5. Since the single-stage buck converter of the present embodiment adopts an output parallel architecture, the output current i Lo is equal to the sum of the currents i L1 and i L2 flowing through the first and second output inductors L1 and L2, so that the The first and second output inductors L1 and L2 can share the output current, and the currents i L1 and i L2 of the first and second output inductors L1 and L2 are combined to make the output current have chopping cancellation performance. Reduce the ripple of the output current. Therefore, the capacitance value of the output capacitor Co and its size can be reduced, so that the smaller output capacitor Co can be selected, thereby reducing the overall circuit volume and increasing the power density. In addition, by distributing the output currents by the first and second output inductors L1 and L2, the conduction loss of the magnetic element and the semiconductor element can be further reduced, and the utility model is suitable for high power and output low voltage and high current applications.
惟以上所述者,僅為本發明的實施例而已,當不能以此限定本發明實施的範圍,凡是依本發明申請專利範圍及專利說明書內容所作的簡單的等效變化與修飾,皆仍屬本發明專利涵蓋的範圍內。However, the above is only the embodiment of the present invention, and the scope of the invention is not limited thereto, and all the simple equivalent changes and modifications according to the scope of the patent application and the patent specification of the present invention are still Within the scope of the invention patent.
1‧‧‧電壓源 1‧‧‧voltage source
2‧‧‧疊接輸入電路 2‧‧‧Stacked input circuit
21‧‧‧第一輸入端 21‧‧‧ first input
22‧‧‧第二輸入端 22‧‧‧second input
23‧‧‧第一輸出端 23‧‧‧ first output
24‧‧‧第二輸出端 24‧‧‧second output
25‧‧‧第三輸出端 25‧‧‧ third output
3‧‧‧第一變壓器 3‧‧‧First transformer
31‧‧‧初級側繞組 31‧‧‧Primary winding
32‧‧‧次級側繞組 32‧‧‧Secondary side winding
4‧‧‧第二變壓器 4‧‧‧Second transformer
41‧‧‧初級側繞組 41‧‧‧Primary winding
42‧‧‧次級側繞組 42‧‧‧Secondary side winding
5‧‧‧並聯輸出電路 5‧‧‧ parallel output circuit
6‧‧‧控制電路 6‧‧‧Control circuit
C1‧‧‧第一輸入電容 C1‧‧‧first input capacitor
C2‧‧‧第二輸入電容 C2‧‧‧second input capacitor
Co‧‧‧輸出電容 Co‧‧‧ output capacitor
Cr1‧‧‧寄生電容 C r1 ‧‧‧ parasitic capacitance
Cr2‧‧‧寄生電容 C r2 ‧‧‧ parasitic capacitance
DS1‧‧‧本體二極體 D S1 ‧‧‧ body diode
DS2‧‧‧本體二極體 D S2 ‧‧‧ body diode
D11‧‧‧第一整流二極體 D11‧‧‧First Rectifier Diode
D12‧‧‧第一飛輪二極體 D12‧‧‧First flywheel diode
D21‧‧‧第二整流二極體 D21‧‧‧Secondary rectifier diode
D22‧‧‧第二飛輪二極體 D22‧‧‧Second flywheel diode
iS1‧‧‧流經第一開關的電流 i S1 ‧‧‧current flowing through the first switch
iS2‧‧‧流經第二開關的電流 i S2 ‧‧‧current flowing through the second switch
iLr‧‧‧流經共振電感的電流 i Lr ‧‧‧current flowing through the resonant inductor
iLm1‧‧‧流經第一激磁電感的電流 i Lm1 ‧‧‧current flowing through the first magnetizing inductor
iLm2‧‧‧流經第二激磁電感的電流 i Lm2 ‧‧‧current flowing through the second magnetizing inductor
iD11‧‧‧流經第一整流二極體的電流 i D11 ‧‧‧current flowing through the first rectifying diode
iD21‧‧‧流經第二整流二極體的電流 i D21 ‧‧‧current flowing through the second rectifying diode
iLb1‧‧‧流經第一降壓電感的電流 i Lb1 ‧‧‧current flowing through the first step-down inductor
iLb2‧‧‧流經第二降壓電感的電流 i Lb2 ‧‧‧current flowing through the second step-down inductor
iD12‧‧‧流經第一飛輪二極體的電流 i D12 ‧‧‧current flowing through the first flywheel diode
iD22‧‧‧第二飛輪二極體的電流 i D22 ‧‧‧second flywheel diode current
iL1‧‧‧流經第一輸出電感的電流 i L1 ‧‧‧current flowing through the first output inductor
iL2‧‧‧流經第二輸出電感的電流 i L2 ‧‧‧current flowing through the second output inductor
iLo‧‧‧流經第一及第二輸出電感的電流的加總 i Lo ‧‧‧The sum of the currents flowing through the first and second output inductors
io‧‧‧總輸出電流 i o ‧‧‧ total output current
i1‧‧‧第一降壓電感電流 i 1 ‧‧‧First step-down inductor current
Lb1‧‧‧第一降壓電感 Lb1‧‧‧ first step-down inductor
Lb2‧‧‧第二降壓電感 Lb2‧‧‧Second step-down inductor
Lr‧‧‧共振電感 Lr‧‧‧Resonance Inductance
Lm1‧‧‧第一激磁電感 L m1 ‧‧‧first magnetizing inductance
L1k1‧‧‧第一漏電感 L 1k1 ‧‧‧First leakage inductance
Lm2‧‧‧第二激磁電感 L m2 ‧‧‧second magnetizing inductance
L1k2‧‧‧第二漏電感 L 1k2 ‧‧‧Second leakage inductance
R‧‧‧電阻 R‧‧‧resistance
S1‧‧‧第一開關 S1‧‧‧ first switch
S2‧‧‧第二開關 S2‧‧‧ second switch
t‧‧‧時間 t‧‧‧Time
t0~t12‧‧‧時間點 T0~t12‧‧‧ time point
Ts‧‧‧切換週期的長度 Length of Ts‧‧‧ switching cycle
Td‧‧‧預設的死區時段的長度 Td‧‧‧Predetermined length of dead zone
Vin‧‧‧直流輸入電壓 Vin‧‧‧DC input voltage
i2‧‧‧第二降壓電感電流 i 2 ‧‧‧second step-down inductor current
L1‧‧‧第一輸出電感 L1‧‧‧first output inductor
L2‧‧‧第二輸出電感 L2‧‧‧second output inductor
Vo‧‧‧直流輸出電壓 Vo‧‧‧DC output voltage
Vgs1‧‧‧第一控制信號 Vgs1‧‧‧ first control signal
Vgs2‧‧‧第二控制信號 Vgs2‧‧‧ second control signal
VCr1‧‧‧寄生電容的跨壓 Cross-voltage of V Cr1 ‧‧‧ parasitic capacitance
VCr2‧‧‧寄生電容的跨壓 Cross-voltage of V Cr2 ‧‧‧ parasitic capacitance
VC1‧‧‧第一輸入電容的跨壓 V C1 ‧‧‧cross-voltage of the first input capacitor
VC2‧‧‧第二輸入電容的跨壓 V C2 ‧‧‧cross-voltage of the second input capacitor
VP1‧‧‧第一輸出電壓 V P1 ‧‧‧first output voltage
VS1‧‧‧第一變壓器的次級側繞組的跨壓 V S1 ‧‧‧cross-voltage of the secondary winding of the first transformer
VP2‧‧‧第二輸出電壓 V P2 ‧‧‧second output voltage
VS2‧‧‧第二變壓器的次級側繞組的跨壓 V S2 ‧‧‧cross-voltage of the secondary winding of the second transformer
本發明的其他的特徵及功效,將於參照圖式的實施方式中清楚地呈現,其中: 圖1是一電路圖,說明本發明單級降壓轉換器之一實施例; 圖2是一等效電路圖,說明該實施例; 圖3是一時序圖,說明該實施例的操作; 圖4至15是等效電路圖,分別說明該實施例操作在第一階段至第十二階段的情況; 圖16是一波形圖,說明該實施例的一第一控制信號、一直流輸入電壓及一直流輸出電壓; 圖17是一波形圖,說明該實施例的該第一控制信號及一第一開關的汲源極間的一跨壓; 圖18是一波形圖,說明該實施例的一第二控制信號及一第二開關的汲源極間的一跨壓; 圖19是一波形圖,說明該實施例的該第一控制信號、流經第一及第二輸出電感的電流的加總,及流經該等第一及第二輸出電感的電流; 圖20是一波形圖,說明該實施例的該第一控制信號、流經一第一降壓電感的電流,及流經該第一輸出電感的電流;及 圖21是一波形圖,說明該實施例的該第二控制信號、流經一第二降壓電感的電流,及流經該第二輸出電感的電流。Other features and advantages of the present invention will be apparent from the embodiments of the present invention, wherein: Figure 1 is a circuit diagram illustrating one embodiment of a single stage buck converter of the present invention; BRIEF DESCRIPTION OF THE DRAWINGS FIG. 3 is a timing chart illustrating the operation of the embodiment; FIGS. 4 to 15 are equivalent circuit diagrams illustrating the operation of the embodiment in the first to twelfth stages, respectively; Is a waveform diagram illustrating a first control signal, a DC input voltage, and a DC output voltage of the embodiment; FIG. 17 is a waveform diagram illustrating the first control signal and a first switch of the embodiment. FIG. 18 is a waveform diagram illustrating a second control signal of the embodiment and a voltage across the source and the drain of a second switch; FIG. 19 is a waveform diagram illustrating the implementation. The first control signal, the sum of currents flowing through the first and second output inductors, and the current flowing through the first and second output inductors; FIG. 20 is a waveform diagram illustrating the embodiment The first control signal flows through a first step-down The current of the inductor and the current flowing through the first output inductor; and FIG. 21 is a waveform diagram illustrating the second control signal of the embodiment, the current flowing through a second step-down inductor, and flowing through the The current of the two output inductors.
1‧‧‧電壓源 1‧‧‧voltage source
2‧‧‧疊接輸入電路 2‧‧‧Stacked input circuit
21‧‧‧第一輸入端 21‧‧‧ first input
22‧‧‧第二輸入端 22‧‧‧second input
23‧‧‧第一輸出端 23‧‧‧ first output
24‧‧‧第二輸出端 24‧‧‧second output
25‧‧‧第三輸出端 25‧‧‧ third output
3‧‧‧第一變壓器 3‧‧‧First transformer
31‧‧‧初級側繞組 31‧‧‧Primary winding
32‧‧‧次級側繞組 32‧‧‧Secondary side winding
4‧‧‧第二變壓器 4‧‧‧Second transformer
41‧‧‧初級側繞組 41‧‧‧Primary winding
42‧‧‧次級側繞組 42‧‧‧Secondary side winding
5‧‧‧並聯輸出電路 5‧‧‧ parallel output circuit
6‧‧‧控制電路 6‧‧‧Control circuit
C1‧‧‧第一輸入電容 C1‧‧‧first input capacitor
C2‧‧‧第二輸入電容 C2‧‧‧second input capacitor
Co‧‧‧輸出電容 Co‧‧‧ output capacitor
D11‧‧‧第一整流二極體 D11‧‧‧First Rectifier Diode
D12‧‧‧第一飛輪二極體 D12‧‧‧First flywheel diode
D21‧‧‧第二整流二極體 D21‧‧‧Secondary rectifier diode
D22‧‧‧第二飛輪二極體 D22‧‧‧Second flywheel diode
i1‧‧‧第一降壓電感電流 i 1 ‧‧‧First step-down inductor current
i2‧‧‧第二降壓電感電流 i 2 ‧‧‧second step-down inductor current
L1‧‧‧第一輸出電感 L1‧‧‧first output inductor
L2‧‧‧第二輸出電感 L2‧‧‧second output inductor
Lb1‧‧‧第一降壓電感 Lb1‧‧‧ first step-down inductor
Lb2‧‧‧第二降壓電感 Lb2‧‧‧Second step-down inductor
Lr‧‧‧共振電感 Lr‧‧‧Resonance Inductance
R‧‧‧電阻 R‧‧‧resistance
S1‧‧‧第一開關 S1‧‧‧ first switch
S2‧‧‧第二開關 S2‧‧‧ second switch
Vin‧‧‧直流輸入電壓 Vin‧‧‧DC input voltage
Vo‧‧‧直流輸出電壓 Vo‧‧‧DC output voltage
Vgs1‧‧‧第一控制信號 Vgs1‧‧‧ first control signal
Vgs2‧‧‧第二控制信號 Vgs2‧‧‧ second control signal
VP1‧‧‧第一輸出電壓 V P1 ‧‧‧first output voltage
VP2‧‧‧第二輸出電壓 V P2 ‧‧‧second output voltage
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW105126378A TWI580167B (en) | 2016-08-18 | 2016-08-18 | Single stage buck converter |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW105126378A TWI580167B (en) | 2016-08-18 | 2016-08-18 | Single stage buck converter |
Publications (2)
Publication Number | Publication Date |
---|---|
TWI580167B true TWI580167B (en) | 2017-04-21 |
TW201807942A TW201807942A (en) | 2018-03-01 |
Family
ID=59241179
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW105126378A TWI580167B (en) | 2016-08-18 | 2016-08-18 | Single stage buck converter |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI580167B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI658684B (en) * | 2017-09-14 | 2019-05-01 | 崑山科技大學 | High buck converter |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20020131284A1 (en) * | 2001-03-16 | 2002-09-19 | Delta Electronics, Inc. | Auxiliary output voltage control implemented with a bi-directionally magnetizing Magnetic amplifier |
US7071582B2 (en) * | 2003-04-29 | 2006-07-04 | Delta Electronics, Inc. | Output rising slope control technique for power converter |
CN103493594A (en) * | 2010-11-05 | 2014-01-01 | 香港城市大学 | Driver for two or more parallel LED light strings |
TWI433443B (en) * | 2010-11-05 | 2014-04-01 | Univ Nat Cheng Kung | Interleaved forward converter with inherent demagnetizing |
TWI439034B (en) * | 2012-04-23 | 2014-05-21 | Univ Kun Shan | Zero voltage switching power converter |
TWI501531B (en) * | 2014-03-18 | 2015-09-21 | Univ Kun Shan | Interleaved zero voltage switching converter |
-
2016
- 2016-08-18 TW TW105126378A patent/TWI580167B/en not_active IP Right Cessation
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20020131284A1 (en) * | 2001-03-16 | 2002-09-19 | Delta Electronics, Inc. | Auxiliary output voltage control implemented with a bi-directionally magnetizing Magnetic amplifier |
US7071582B2 (en) * | 2003-04-29 | 2006-07-04 | Delta Electronics, Inc. | Output rising slope control technique for power converter |
CN103493594A (en) * | 2010-11-05 | 2014-01-01 | 香港城市大学 | Driver for two or more parallel LED light strings |
TWI433443B (en) * | 2010-11-05 | 2014-04-01 | Univ Nat Cheng Kung | Interleaved forward converter with inherent demagnetizing |
TWI439034B (en) * | 2012-04-23 | 2014-05-21 | Univ Kun Shan | Zero voltage switching power converter |
TWI501531B (en) * | 2014-03-18 | 2015-09-21 | Univ Kun Shan | Interleaved zero voltage switching converter |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI658684B (en) * | 2017-09-14 | 2019-05-01 | 崑山科技大學 | High buck converter |
Also Published As
Publication number | Publication date |
---|---|
TW201807942A (en) | 2018-03-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9997988B2 (en) | Zero-crossing detection circuit | |
TWI596880B (en) | A quasi-resonant half-bridge converter and control method | |
US10181798B2 (en) | Step-up DC-DC power converter | |
US7535733B2 (en) | Method of controlling DC-to-DC converter whereby switching control sequence applied to switching elements suppresses voltage surges at timings of switch-off of switching elements | |
TWI569565B (en) | Staggered high boost DC converter | |
CN111656661B (en) | Constant frequency DC/DC power converter | |
TW201914194A (en) | High boost converter including a first and a second coupled inductors, a first and a second switches, a first and a second clamping diodes, a first and a second clamping capacitors, a first to a fourth diodes, and a first to a fourth capacitors | |
TW201541838A (en) | Flyback active clamping power converter | |
TWI580166B (en) | Interleaved boost converter | |
TWI739539B (en) | High voltage gain converter | |
TWI580167B (en) | Single stage buck converter | |
TWI666863B (en) | High boost DC converter | |
KR101456654B1 (en) | A common-core power factor correction resonant converter | |
Muhammad et al. | Non-isolated, high gain, boost converter for power electronic applications | |
TWI586092B (en) | Single-stage ac-to-dc converter | |
KR102413600B1 (en) | Non-Isolation, high??voltage-output DC-DC converter using self-driven synchronous switch | |
Hwu et al. | An isolated high step-up converter with continuous input current and LC snubber | |
TWI658684B (en) | High buck converter | |
TWI439034B (en) | Zero voltage switching power converter | |
TWI441435B (en) | Low voltage stress DC converter | |
TWI587618B (en) | High buck converter | |
TWI568163B (en) | Isolated converter and isolated converter? control method | |
RU2581600C1 (en) | Two-stroke flyback dc-to-dc converter | |
Moorthy et al. | Analysis and design of impulse commutated ZCS three-phase current-fed push-pull DC/DC converter | |
TW202408133A (en) | High voltage gain converter comprises a coupling inductor, two diodes, a switch, and an output circuit to receive a DC input voltage and generate a DC output voltage |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | Annulment or lapse of patent due to non-payment of fees |