TWI441435B - Low voltage stress DC converter - Google Patents

Low voltage stress DC converter Download PDF

Info

Publication number
TWI441435B
TWI441435B TW101122815A TW101122815A TWI441435B TW I441435 B TWI441435 B TW I441435B TW 101122815 A TW101122815 A TW 101122815A TW 101122815 A TW101122815 A TW 101122815A TW I441435 B TWI441435 B TW I441435B
Authority
TW
Taiwan
Prior art keywords
switch
transformer
electrically connected
diode
capacitor
Prior art date
Application number
TW101122815A
Other languages
Chinese (zh)
Other versions
TW201401746A (en
Original Assignee
Univ Kun Shan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ Kun Shan filed Critical Univ Kun Shan
Priority to TW101122815A priority Critical patent/TWI441435B/en
Publication of TW201401746A publication Critical patent/TW201401746A/en
Application granted granted Critical
Publication of TWI441435B publication Critical patent/TWI441435B/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Landscapes

  • Dc-Dc Converters (AREA)

Description

低電壓應力直流轉換器Low voltage stress DC converter

本發明是有關於一種轉換器,特別是指一種低電壓應力直流轉換器。This invention relates to a converter, and more particularly to a low voltage stress DC converter.

在論文「B.R.Lin and H.K.Chiang,“Analysis and Implementation of a Soft Switching Interleaved Forward Converter with Current Double Rectifier,”IET Electr.Power Appl.,Vol.1,No.5,pp.697-704,2007.」提出一種習知的電源轉換器。In the paper "BRLin and HKChiang, "Analysis and Implementation of a Soft Switching Interleaved Forward Converter with Current Double Rectifier," IET Electr. Power Appl., Vol. 1, No. 5, pp. 697-704, 2007." A conventional power converter is proposed.

但是習知的電源轉換器的缺點為:However, the disadvantages of conventional power converters are:

1.所使用的開關應力是vin /1-D,其中vin 為輸入電壓,D為功率開關導通比(duty ratio),當D=0.5,開關應力為2vin ,不適合高輸入電壓應用。1. The switching stress used is v in /1-D, where v in is the input voltage and D is the power switch duty ratio. When D = 0.5, the switching stress is 2v in , which is not suitable for high input voltage applications.

2.使用四個開關,增加硬體成本。2. Use four switches to increase hardware cost.

因此,本發明之目的,即在提供一種低電壓應力直流轉換器。Accordingly, it is an object of the present invention to provide a low voltage stress DC converter.

該低電壓應力直流轉換器,包含:第一及第二變壓器,每一變壓器具有一個一次側繞組和一個二次側繞組,且每一側繞組皆具有一第一端及一第二端,其中,該第二變壓器的一次側繞組的第一端電連接於該第一變壓器的一次側繞組的第二端,該第二變壓器的二次側繞組的第二端電連接於該第一變壓器的二次側繞組 的第二端;一第一電容,具有一接收一呈直流的輸入電壓的第一端,及一第二端;一第二電容,具有一電連接於該第一電容之第二端的第一端,及一接收該輸入電壓的負極的第二端;一共振電感,電連接於該第一電容的第二端與該第一變壓器的一次側繞組的第二端之間;一第一開關,具有一電連接於該第一電容之第一端的第一端,及一電連接於該第一變壓器的一次側繞組的第一端的第二端,且該第一開關受控制以切換於導通狀態和不導通狀態間;一第二開關,具有一電連接於該第二變壓器的一次側繞組的第二端的第一端,及一電連接於該第二電容之第二端的第二端,且該第二開關受控制以切換於導通狀態和不導通狀態間;一初級側二極體,具有一電連接於該第二變壓器的一次側繞組的第二端的陽極及一電連接於該第一變壓器的一次側繞組的第一端的陰極;一第一二極體,具有一電連接於該第一變壓器的二次側繞組的第一端的陰極,及一陽極;一第二二極體,具有一電連接於該第二變壓器的二次側繞組的第一端的陰極,及一電連接於該第一二極體的陽極的陽極;一第一輸出電感,具有一電連接於該第一二極體之陰 極的第一端,及一第二端;一第二輸出電感,具有一電連接於該第二二極體之陰極的第一端,及一第二端;及一輸出電容,電連接於該第一輸出電感的第二端與該第一二極體的陽極之間,用於提供一輸出電壓。The low voltage stress DC converter comprises: first and second transformers, each transformer having a primary side winding and a secondary side winding, and each side winding has a first end and a second end, wherein a first end of the primary winding of the second transformer is electrically connected to a second end of the primary winding of the first transformer, and a second end of the secondary winding of the second transformer is electrically connected to the first transformer Secondary winding a second end; a first capacitor having a first end receiving a DC input voltage and a second end; a second capacitor having a first electrical connection to the second end of the first capacitor And a second end of the negative electrode receiving the input voltage; a resonant inductor electrically connected between the second end of the first capacitor and the second end of the primary winding of the first transformer; a first switch a first end electrically connected to the first end of the first capacitor, and a second end electrically connected to the first end of the primary side winding of the first transformer, and the first switch is controlled to switch a second switch having a first end electrically connected to the second end of the primary winding of the second transformer, and a second electrically connected to the second end of the second capacitor And the second switch is controlled to switch between the conducting state and the non-conducting state; a primary side diode having an anode electrically connected to the second end of the primary winding of the second transformer and an electrical connection First end of the primary winding of the first transformer a cathode; a first diode having a cathode electrically connected to the first end of the secondary winding of the first transformer; and an anode; a second diode having an electrical connection to the second transformer a cathode of the first end of the secondary winding, and an anode electrically connected to the anode of the first diode; a first output inductor having an electrical connection to the cathode of the first diode a first end of the pole, and a second end; a second output inductor having a first end electrically connected to the cathode of the second diode, and a second end; and an output capacitor electrically connected The second end of the first output inductor is coupled to the anode of the first diode for providing an output voltage.

有關本發明之前述及其他技術內容、特點與功效,在以下配合參考圖式之一個較佳實施例的詳細說明中,將可清楚的呈現。The above and other technical contents, features and advantages of the present invention will be apparent from the following detailed description of the preferred embodiments.

如圖1所示,本發明低電壓應力直流轉換器之較佳實施例,包含:第一及第二變壓器T1 、T2 、第一及第二電容C1 、C2 、一共振電感Lr 、第一及第二開關Q1 、Q2 、一初級側二極體Dr 、第一及第二二極體D1 、D2 、第一及第二輸出電感L1 、L2 ,及一輸出電容COAs shown in FIG. 1, a preferred embodiment of the low voltage stress DC converter of the present invention comprises: first and second transformers T 1 , T 2 , first and second capacitors C 1 , C 2 , and a resonant inductor L r , first and second switches Q 1 , Q 2 , a primary side diode D r , first and second diodes D 1 , D 2 , first and second output inductors L 1 , L 2 , And an output capacitor C O .

每一變壓器T1 、T2 具有一個一次側繞組Lp1 、Lp2 和一個二次側繞組Ls1 、Ls2 ,且每一側繞組Ls1 、Ls2 、Lp1 、Lp2 皆具有一第一端及一第二端,其中,該第二變壓器T2 的一次側繞組Lp2 的第一端電連接於該第一變壓器T1 的一次側繞組Lp1 的第二端,該第二變壓器T2 的二次側繞組Ls2 的第二端電連接於該第一變壓器T1 的二次側繞組Ls1 的第二端。該第一及第二變壓器T1 、T2 的匝數比相等,且每一個一次側繞組Lp1 、Lp2 的第一端是打點端,每一個一次側繞組Lp1 、Lp2 的第二端是非打點端。每一個二次側繞組Ls1 、Ls2 的第一端是打點端,每一個二次側繞組Ls1 、Ls2 的第二端是非打點端。Each of the transformers T 1 and T 2 has a primary side winding L p1 , L p2 and a secondary side winding L s1 , L s2 , and each of the side windings L s1 , L s2 , L p1 , L p2 has a first One end and a second end, wherein the first end of the primary side winding L p2 of the second transformer T 2 is electrically connected to the second end of the primary side winding L p1 of the first transformer T 1 , the second transformer The second end of the secondary winding L s2 of T 2 is electrically connected to the second end of the secondary winding L s1 of the first transformer T 1 . The first and second transformers T 1, T 2 ratio is equal to the number of turns, and each of the primary winding L p1, L p2 of the dot end is the first end, each of the primary winding L p1, L p2 of the second The end is the non-dip end. The first end of each of the secondary side windings L s1 , L s2 is a striking end, and the second end of each of the secondary side windings L s1 , L s2 is a non-tapping end.

第一電容C1 具有一接收一呈直流的輸入電壓的正極的第一端,及一第二端。The first capacitor C 1 has a first end that receives a positive input voltage and a second end.

第二電容C2 具有一電連接於該第一電容C1 之第二端的第一端,及一接收該輸入電壓vin 的負極的第二端。The second capacitor C 2 has a first end electrically connected to the second end of the first capacitor C 1 and a second end receiving the input voltage v in the negative pole.

共振電感Lr 電連接於該第一電容C1 的第二端與該第一變壓器T1 的一次側繞組Lp1 的第二端之間。The resonant inductor L r is electrically connected between the second end of the first capacitor C 1 and the second end of the primary side winding L p1 of the first transformer T 1 .

第一開關Q1 具有一電連接於該第一電容C1 之第一端的第一端,及一電連接於該第一變壓器T1 的一次側繞組Lp1 的第一端的第二端,且該第一開關Q1 受控制以切換於導通狀態和不導通狀態間。該第一開關Q1 是一N型功率半導體電晶體,且該第一開關Q1 的第一端是汲極,該第一開關Q1 的第二端是源極。The first switch Q 1 has a first end electrically connected to the first end of the first capacitor C 1 and a second end electrically connected to the first end of the primary side winding L p1 of the first transformer T 1 And the first switch Q 1 is controlled to switch between a conducting state and a non-conducting state. The first switch Q 1 is an N-type power semiconductor transistor, and a first terminal of the first switch Q 1 is a drain, the second terminal of the first switch Q 1 is a source electrode.

第二開關Q2 具有一電連接於該第二變壓器T2 的一次側繞組Lp2 的第二端的第一端,及一電連接於該第二電容C2 之第二端的第二端,且該第二開關Q2 受控制以切換於導通狀態和不導通狀態間。該第二開關Q2 是一N型功率半導體電晶體,且該第二開關Q2 的第一端是汲極,該第二開關Q2 的第二端是源極。The second switch Q 2 has a first end electrically connected to the second end of the primary side winding L p2 of the second transformer T 2 , and a second end electrically connected to the second end of the second capacitor C 2 , and The second switch Q 2 is controlled to switch between a conducting state and a non-conducting state. The second switch Q 2 is an N-type power semiconductor transistor, and a first end of the second switch Q 2 is a drain, the second terminal of the second switch Q 2 is a source electrode.

初級側二極體Dr 具有一電連接於該第二變壓器T2 的一次側繞組Lp2 的第二端的陽極及一電連接於該第一變壓器T1 的一次側繞組Lp1 的第一端的陰極。The primary side diode D r has an anode electrically connected to the second end of the primary side winding L p2 of the second transformer T 2 and a first end electrically connected to the primary side winding L p1 of the first transformer T 1 Cathode.

第一二極體D1 具有一電連接於該第一變壓器T1 的二次 側繞組Ls1 的第一端的陰極,及一陽極。The first diode D 1 has a cathode electrically connected to the first end of the secondary winding L s1 of the first transformer T 1 , and an anode.

第二二極體D2 具有一電連接於該第二變壓器T2 的二次側繞組Ls2 的第一端的陰極,及一電連接於該第一二極體D1 的陽極的陽極。The second diode D 2 has a cathode electrically connected to the first end of the secondary winding L s2 of the second transformer T 2 , and an anode electrically connected to the anode of the first diode D 1 .

第一輸出電感L1 具有一電連接於該第一二極體D1 之陰極的第一端,及一第二端。The first output inductor L 1 has a first end electrically connected to the cathode of the first diode D 1 and a second end.

第二輸出電感L2 具有一電連接於該第二二極體D2 之陰極的第一端,及一第二端。The second output inductor L 2 has a first end electrically connected to the cathode of the second diode D 2 and a second end.

輸出電容CO 電連接於該第一輸出電感L1 的第二端與該第一二極體D1 的陽極之間,用於提供一輸出電壓VOThe output capacitor C O is electrically connected between the second end of the first output inductor L 1 and the anode of the first diode D 1 for providing an output voltage V O .

參閱圖2,為本實施例的操作時序圖,其中,參數vg1 、vg2 分別代表控制該第一及第二開關Q1 、Q2 是否導通的電壓,參數vCr1 、vCr2 分別代表該第一及第二開關Q1 、Q2 的寄生電容Cr1 、Cr2 的跨壓,參數iLm1 、iLm2 分別代表流經該二變壓器T1 、T2 的磁化電感Lm1 、Lm2 之電流,參數iLr 代表流經該共振電感Lr 之電流,參數iD1 ~iD2 分別代表流過第一至第二二極體D1 ~D2 的電流,參數iL1 、iL2 分別代表流過該第一輸出電感L1 的電流、流過該第二輸出電感L2 的電流,參數iO 代表總輸出電流。依據該二開關Q1 、Q2 的切換,本實施例會在八種模式下操作,且在以下模式中會於圖示中畫出該二變壓器T1 、T2 的磁化電感Lm1 、Lm2 ,且導通的元件以實線表示,不導通的元件以虛線表示,以下分別針對每一模式進行說明且令該二開關Q1 、Q2 的責任導通週期D<0.5。Referring to FIG. 2, it is an operation timing diagram of the embodiment, wherein the parameters v g1 and v g2 respectively represent voltages for controlling whether the first and second switches Q 1 and Q 2 are turned on, and the parameters v Cr1 and v Cr2 respectively represent the The voltages of the parasitic capacitances C r1 and C r2 of the first and second switches Q 1 and Q 2 , the parameters i Lm1 and i Lm2 respectively represent the magnetizing inductances L m1 and L m2 flowing through the two transformers T 1 and T 2 . Current, the parameter i Lr represents the current flowing through the resonant inductor L r , and the parameters i D1 ~i D2 represent the current flowing through the first to second diodes D 1 -D 2 , respectively, and the parameters i L1 and i L2 respectively represent output current of the first inductor of L 1 flows, flows through the output inductor L current second parameter representative of the output current i O 2. According to the switching of the two switches Q 1 and Q 2 , the present embodiment operates in eight modes, and in the following modes, the magnetizing inductances L m1 and L m2 of the two transformers T 1 and T 2 are drawn in the figure. The components that are turned on are indicated by solid lines, and the components that are not turned on are indicated by broken lines. Hereinafter, each mode is described for each mode and the duty-on period D<0.5 of the two switches Q 1 and Q 2 is made.

且以下分析,假設條件為:And the following analysis, the assumptions are:

1.第一及第二變壓器T1 、T2 的匝數比相等且磁化電感值相等(Lm1 =Lm2 =Lm ),且其漏電感相等。1. The first and second transformers T 1 and T 2 have equal turns ratios and equal magnetization inductance values (L m 1 = L m 2 = L m ), and their leakage inductances are equal.

2.磁化電感L m 遠大於共振電感Lr 及漏電感。2. The magnetizing inductance L m is much larger than the resonant inductor L r and the leakage inductance.

3.第一及第二電容C1 、C2 的電容值遠大於第一及第二開關Q1 、Q2 的寄生電容Cr1 、Cr23. The capacitance values of the first and second capacitors C 1 and C 2 are much larger than the parasitic capacitances C r1 and C r2 of the first and second switches Q 1 and Q 2 .

4.第一及第二輸出電感L1 、L2 的電感值相等,即L 1 =L 24. The inductance values of the first and second output inductors L 1 and L 2 are equal, that is, L 1 = L 2 .

5.輸出電容CO 很大,輸出電壓v o 可視為常數。5. The output capacitor C O is large, and the output voltage v o can be regarded as a constant.

6.操作在連續導通模式(CCM)。6. Operate in continuous conduction mode (CCM).

7.儲存於共振電感Lr 及漏電感的能量大於寄生電容C r 1C r 2 的能量,以達成零電壓切換(Zero voltage switching,ZVS)操作。7. The energy stored in the resonant inductor L r and the leakage inductance is greater than the energy of the parasitic capacitances C r 1 , C r 2 to achieve a zero voltage switching (ZVS) operation.

模式一(時間:tMode one (time: t 00 ~t~t 11 ):):

參閱圖2及圖3a,第一開關Q1 導通,而第二開關Q2 不導通。Referring to Figures 2 and 3a, the first switch Q 1 is turned on and the second switch Q 2 is turned off.

第一開關Q1 處於導通狀態,使儲存於第一電容C1 的能量藉由第一變壓器T1 傳遞至負載,其詳細操作為:第一開關Q1 跨壓vCr1 =0,第一變壓器T1 的一次側電壓vP1 vC1 >0,磁化電感電流iLm1 線性上升,變壓器T 1 的二次側電壓,且第二開關Q2 跨壓vCr2 =vin ,第二變壓器T2 經由初級側二極體Dr 作去磁重置,所以vP2 -vP1 <0,而使第二二極體D2 導通且第一二極體D1 為不導通,第一輸出電感電壓vL1 =2nvC1 -vo >0,其電流i L 1 線性上升,此時儲存於 第一電容C1 的能量藉由第一變壓器T1 傳遞至負載。且第二輸出電感電壓vL2 =-vo <0,其電流iL2 線性下降,因此總輸出電流i0 =iL1 +iL2 會有漣波相消的效果The first switch Q 1 is in an on state, so that the energy stored in the first capacitor C 1 is transmitted to the load through the first transformer T 1 , and the detailed operation is as follows: the first switch Q 1 crosses the voltage v Cr1 =0, the first transformer Primary side voltage of V 1 v P1 v C1 >0, the magnetizing inductor current i Lm1 rises linearly, and the secondary side voltage of the transformer T 1 And the second switch Q 2 crosses the voltage v Cr2 =v in , and the second transformer T 2 is demagnetized reset via the primary side diode D r , so v P2 -v P1 <0, and the second diode D 2 is turned on and the first diode D 1 is non-conducting, the first output inductor voltage v L1 =2nv C1 -v o >0, and the current i L 1 is linear Ascending, the energy stored in the first capacitor C 1 is transferred to the load by the first transformer T 1 . And the second output inductor voltage v L2 = -v o <0, the current i L2 linearly decreases, so the total output current i 0 = i L1 + i L2 will have the effect of chopping cancellation

模式二(時間:tMode two (time: t 11 ~t~t 22 ):):

參閱圖2及圖3b,第一及第二開關Q1 、Q2 皆不導通。Referring to FIG. 2 and FIG. 3b, the first and second switches Q 1 and Q 2 are not turned on.

流經第一開關Q1 的電流iQ1 為正值且對其寄生電容Cr1 充電,而使寄生電容Cr1 的電壓vCr1 上升,初級側二極體Dr 導通,而使二寄生電容Cr1 、Cr2 的電壓vCr1 和vCr2 滿足vCr1 +vCr2 =vin ,所以寄生電容Cr2 放電,其電壓v Cr 2 下降。由於二寄生電容Cr1 和Cr2 非常小,因此vCr1 上升和vCr2 下降非常快,因此模式二歷時很短,磁化電感電流iLm 可視為常數,同時iQ1 =niL1 ,因此寄生電容Cr1 受電流iQ1 快速充電。Current flowing through the first switch Q 1 i Q1 and its positive charge parasitic capacitance C R1, the stray capacitance of the voltage v C r1 Cr1 rises, the primary-side diode D r is turned on, the two parasitic capacitance C The voltages v Cr1 and v Cr2 of r1 and C r2 satisfy v Cr1 +v Cr2 =v in , so the parasitic capacitance C r2 is discharged, and the voltage v Cr 2 thereof is lowered. Since the two parasitic capacitances C r1 and C r2 are very small, v Cr1 rises and v Cr2 drops very fast, so mode 2 lasts for a short time, and magnetizing inductor current i Lm can be regarded as a constant At the same time, i Q1 =ni L1 , so the parasitic capacitance C r1 is quickly charged by the current i Q1 .

t =t 2 時,第一開關跨壓vCr1 上升至vC1 時,此時vCr2 也下降至vC2 ,則第一變壓器T1 的一次側電壓vP1 =0,第二變壓器T2 的一次側電壓vP2 =0,因此vS1 =0,而且vS2 =0,使第一二極體D1 開始導通,進入電流換向(commutation),而進入模式三。When t = t 2 , when the first switch voltage v Cr1 rises to v C1 , at this time v Cr2 also drops to v C2 , the primary side voltage v P1 =0 of the first transformer T 1 , the second transformer T 2 The primary side voltage v P2 =0, so v S1 =0, and v S2 =0, causes the first diode D 1 to start conducting, enters current commutation, and enters mode three.

模式三(時間:tMode three (time: t 22 ~t~t 33 ):):

參閱圖2及圖3c,第一及第二開關Q1 、Q2 皆不導通。Referring to FIG. 2 and FIG. 3c, the first and second switches Q 1 and Q 2 are not turned on.

第一及第二開關Q1 、Q2 的跨壓vCr1 =vC1 、vCr2 =vC2 ,第一及第二變壓器T1 和T2 的一次側電壓箝位在零,iLm1 和iLm2 保持常數,第一及第二變壓器T1 和T2 的二次側電壓vS1 =vS2 =0,進行換向過程。The voltage across the first and second switches Q 1 , Q 2 is v Cr1 = v C1 , v Cr2 = v C2 , and the primary side voltages of the first and second transformers T 1 and T 2 are clamped at zero, i Lm1 and i Lm2 is kept constant, and the secondary side voltages V S1 =v S2 =0 of the first and second transformers T 1 and T 2 are subjected to a commutation process.

共振電感Lr 、寄生電容Cr1 和Cr2 形成共振電路,第一開 關Q1 跨壓vCr1 持續上升,第二開關Q2 跨壓vCr2 持續下降,共振電感Lr 跨負電壓,其電流iLr 下降,而使第二二極體電流iD2 遞減,第一二極體電流iD1 遞增。The resonant inductor L r and the parasitic capacitances C r1 and C r2 form a resonant circuit. The first switch Q 1 continues to rise across the voltage v Cr1 , the second switch Q 2 continues to fall across the voltage v Cr2 , and the resonant inductor L r crosses the negative voltage. i Lr drops, causing the second diode current i D2 to decrease, and the first diode current i D1 to increase.

模式三的共振電感Lr 的初始儲能必須大於寄生電容Cr1 和Cr2 的初始儲能,方能使第二開關Q2 跨壓vCr2 下降至零,達到零電壓切換(ZVS)的條件。The initial energy storage of the resonant inductor L r of mode 3 must be greater than the initial energy storage of the parasitic capacitances C r1 and C r2 to enable the second switch Q 2 to fall to zero across the voltage v Cr2 to achieve zero voltage switching (ZVS) conditions. .

當第二開關Q2 跨壓vCr2 下降至0,第二開關Q2 的本體二極體(body diode)導通,模式三結束。When the second switch Q 2 falls to zero across the voltage v Cr2 , the body diode of the second switch Q 2 is turned on, and the mode three ends.

模式四(時間:t Mode four (time: t 33 ~t ~ T 44 ):):

參閱圖2及圖3d,第一及第二開關Q 1 Q 2 皆不導通。Referring to Figures 2 and 3d, the first and second switches Q 1 and Q 2 are not turned on.

第二開關Q2 跨壓vCr2 箝位在0,而且vCr1 =vin 。第二開關Q2 之本體二極體導通,第二開關Q2 之跨壓為零,在流經第二開關電流iQ2 變成正值之前,必須將第二開關Q2 切換為導通,達成ZVS操作。The second switch Q 2 is clamped at 0 across voltage v Cr2 and v Cr1 = v in . Before the second switch Q 2 of the body diode is turned on, the voltage across the second switch Q 2 is zero, the current flowing through the second switch i Q2 becomes positive, the second switch Q 2 must be switched on, to achieve ZVS operating.

第一變壓器T1 的一次側電壓vP1 =0,而且vP2 =0,共振電感電壓vLr -vC2 ,共振電感電流iLr 線性下降。The primary side voltage v P1 =0 of the first transformer T 1 and v P2 =0, the resonant inductor voltage v Lr -v C2 , the resonant inductor current i Lr decreases linearly.

當第一二極體電流iD1 上升至iL1 ,且第二二極體電流iD2 下升至0,換向完成,第二二極體D2 不導通,模式四結束。When the first diode current i D1 rises to i L1 and the second diode current i D2 rises to 0, the commutation is completed, the second diode D 2 is not turned on, and the mode four ends.

模式五(時間:tMode five (time: t 44 ~t~t 55 ):):

參閱圖2及圖3e,第一開關Q 1 不導通,而第二開關Q 2 導通。Referring to FIG. 2 and FIG. 3E, a first switch Q 1 is not turned on, the second switch Q 2 is turned on.

第一二極體電流iD1 =iL2 ,且第二二極體電流iD2 =0,vP2 =vC2 ,iLm2 線性上升,斜率為vC2 /Lm ,第二變壓器T2 的二 次側電壓vS2 =nvp2 >0,此時儲存在第二電容C2 之能量經由第二變壓器T2 傳遞至輸出負載側。此時第一變壓器T1 經由初級側二極體Dr 作磁通重置(flux resetting),且vP1 =-vP2 ,因此磁化電流iLm1 線性下降。在輸出電感電流方面,因為vL2 =2nvC2 -vo >0,iL2 線性上升;vL1 =-vo ,iL1 線性下降,所以總輸出電流iO =iL1 +iL2 會有漣波相消的效果。The first diode current i D1 =i L2 , and the second diode current i D2 =0, v P2 =v C2 , i Lm2 linearly rises, the slope is v C2 /L m , and the second transformer T 2 The secondary side voltage v S2 =nv p2 >0, at which time the energy stored in the second capacitor C 2 is transferred to the output load side via the second transformer T 2 . At this time, the first transformer T 1 is flux resetted via the primary side diode D r , and v P1 =−v P2 , so the magnetizing current i Lm1 linearly decreases. In terms of output inductor current, since v L2 = 2nv C2 - v o > 0, i L2 rises linearly; v L1 = -v o , i L1 decreases linearly, so the total output current i O = i L1 + i L2 will be 涟The effect of wave cancellation.

模式六(時間:tMode six (time: t 55 ~t~t 66 ):):

參閱圖2及圖3f,第一開關Q 1 不導通,而第二開關Q 2 不導通。Referring to Figures 2 and 3f, the first switch Q 1 is not conducting, and the second switch Q 2 is not conducting.

流經第二開關Q 2 的電流iQ2 為正值且對其寄生電容Cr2 充電,電壓vCr2 上升,由於初級側二極體Dr 導通,電壓vCr1 和vCr2 滿足vin =vCr1 +vCr2 ,所以電容Cr1 放電,電壓vCr1 下降。由於第一及第二開關Q 1 Q 2 的寄生電容Cr1 和Cr2 非常小,vCr2 上升和vCr1 下降非常快,因此模式六歷經的時間很短。The current i Q2 flowing through the second switch Q 2 is positive and charges the parasitic capacitance C r2 , and the voltage v Cr2 rises. Since the primary side diode D r is turned on, the voltages v Cr1 and v Cr2 satisfy v in = v Cr1 . +v Cr2 , so the capacitor C r1 discharges and the voltage v Cr1 drops. Since the parasitic capacitances C r1 and C r2 of the first and second switches Q 1 , Q 2 are very small, v Cr2 rises and v Cr1 drops very fast, so the mode 6 has a very short time.

當第二開關Q2 跨壓vCr2 上升至vC2 ,此時vCr1 下降至vC1 ,第二變壓器T2 的一次側電壓vP2 =0而且vP1 =0。當第二二極體D2 開始導通,模式六結束。When the second switch Q 2 rises to v C2 across the voltage v Cr2 , v Cr1 drops to v C1 at this time, and the primary side voltage v P2 =0 of the second transformer T 2 and v P1 =0. When the second diode D 2 begins to conduct, mode six ends.

模式七(時間:t Mode seven (time: t 66 ~t ~ T 77 ):):

參閱圖2及圖3g,第一及第二開關Q1 、Q2 皆不導通。Referring to FIG. 2 and FIG. 3g, the first and second switches Q 1 and Q 2 are not turned on.

第一及第二變壓器T1 、T2 的一次側電壓vP1 和vP2 箝位於零,第一及第二二極體D1 、D2 進行換向,模式七相似於模式三,磁化電感電壓箝位於零,iLm1 和iLm2 保持常數。共振電感Lr 、寄生電容Cr1 和Cr2 形成共振電路,vCr2 持續上升(vCr2 >vC2 ),vCr1 持續下降(vCr2 <vC1 )。共振電感Lr 跨正電壓 ,共振電流iLr 上升,電流iD2 遞增,iD1 遞減。The primary side voltages v P1 and v P2 of the first and second transformers T 1 and T 2 are clamped at zero, the first and second diodes D 1 and D 2 are commutated, and the mode seven is similar to the mode three, the magnetizing inductance The voltage clamp is at zero and i Lm1 and i Lm2 remain constant. The resonant inductor L r , the parasitic capacitances C r1 and C r2 form a resonant circuit, v Cr2 continues to rise (v Cr2 >v C2 ), and v Cr1 continues to decrease (v Cr2 <v C1 ). The resonant inductor L r crosses the positive voltage, the resonant current i Lr rises, the current i D2 increases, and i D1 decreases.

模式七的共振電感Lr 及漏電感的初始儲能必須大於該二寄生電容Cr1 和Cr2 的初始儲能,方能使第一開關跨壓vCr1 下降至零,達到零電壓切換(ZVS)的條件。The initial energy storage of the resonant inductor L r and the leakage inductance of mode 7 must be greater than the initial energy storage of the two parasitic capacitances C r1 and C r2 in order to reduce the first switching voltage v Cr1 to zero and achieve zero voltage switching (ZVS). )conditions of.

當第一開關電壓vCr1 下降至零,第一開關Q1 的本體二極體導通,模式七結束。When the first switching voltage v Cr1 drops to zero, the body diode of the first switch Q 1 is turned on, and the mode seven ends.

模式八(時間:tMode eight (time: t 77 ~T~T SS +t+t 00 ):):

參閱圖2及圖3h,第一及第二開關Q1 、Q2 皆不導通。Referring to FIG. 2 and FIG. 3h, the first and second switches Q 1 and Q 2 are not turned on.

電流流經第一開關Q1 之本體二極體,第一開關Q1 之跨壓為零,第一開關跨壓vCr1 箝位在零,且vCr2 =vin 。因為vCr1 =0,當流經第一開關電流iQ1 變成正值之前,必須將第一開關Q1 切換為導通,達成ZVS操作。A current flowing through the first switch Q 1 of the body diode, the first switch Q 1 is zero voltage across the first switch voltage across v Cr1 clamped to zero, and v Cr2 = v in. Since v Cr1 =0, before the first switching current i Q1 flows to a positive value, the first switch Q 1 must be switched to be turned on to achieve a ZVS operation.

共振電感電壓vLr vC1 ,共振電感電流iLr 線性上升,該二二極體D1 、D2 持續進行換向過程。Resonant inductor voltage v Lr v C1 , the resonant inductor current i Lr rises linearly, and the dipoles D 1 , D 2 continue to perform the commutation process.

當第二二極體電流iD2 =iL1 ,且第一二極體電流iD1 下降至0,第一二極體D1 轉為不導通而換向完成,進入下一切換週期。When the second diode current i D2 =i L1 and the first diode current i D1 falls to 0, the first diode D 1 turns non-conductive and the commutation is completed, and enters the next switching period.

實驗模擬Experimental simulation

由圖4可知,在vin =400V時,第一開關Q1 之跨壓vQ1,ds 都下降至零後,驅動信號vg1 才切換為導通,達到ZVS性能,而第二開關Q2 之跨壓vQ2,d 都下降至零後,驅動信號vg2 才切換為導通,達到ZVS性能。從圖中可知其電壓應力皆為vin ,量測結果符合第一及第二開關Q1 、Q2 具有低電壓應力。When seen from the rear in FIG. 4, the v in = 400V, the voltage across the first switch Q v Q1, ds of 1 has fallen to zero, the drive signal v g1 was switched on to achieve ZVS performance, the second switch Q 2 After the voltage v Q2, d drops to zero, the drive signal v g2 is switched to conduct to achieve ZVS performance. It can be seen from the figure that the voltage stress is v in , and the measurement result is consistent with the first and second switches Q 1 , Q 2 having low voltage stress.

如圖5為輸出電感電流iL1 、iL2 及總輸出電流iO 的波形量測圖,由模擬波形可知:在穩態操作下,iL1 和iL2 漣波反相,確實使漣波△iO (=0.3A)降低許多(△iL1 △iL2 3.9A),可選用較小的輸出濾波電容元件,可使得轉換器體積減小,提高功率密度。另外,iL1 =iL2 =7.5A確實分擔總輸出電流(15A),可分散磁性元件的功率損失及熱應力,且具有高輸出電流且低輸出電流漣波的性能。Figure 5 shows the waveform measurement of the output inductor currents i L1 , i L2 and the total output current i O . It can be seen from the analog waveform that under steady state operation, i L1 and i L2 are chopped in opposite directions, which indeed makes the ripple △ i O (=0.3A) is reduced a lot (△i L1 △i L2 3.9A), a smaller output filter capacitor can be used to reduce the converter's size and increase the power density. In addition, i L1 =i L2 =7.5A does share the total output current (15A), disperses the power loss and thermal stress of the magnetic element, and has high output current and low output current chopping performance.

如圖6為第一及第二二極體D1 ~D2 的電流量測圖,從圖中可看出該二開關Q1 、Q2 的驅動信號vg1 、vg2 與第一及第二二極體D1 ~D2 的電流換向的波形。6 is a current measurement diagram of the first and second diodes D 1 to D 2 , and the driving signals v g1 and v g2 of the two switches Q 1 and Q 2 can be seen from the figure. The current commutation waveform of the diodes D 1 to D 2 .

綜上所述,上述實施例具有以下優點:In summary, the above embodiment has the following advantages:

1.每一開關Q1 、Q2 有較低的電壓應力,其開關應力等同於輸入電壓vin ,適用於高輸入電壓的應用。1. Each switch Q 1 , Q 2 has a lower voltage stress, and its switching stress is equivalent to the input voltage v in , which is suitable for high input voltage applications.

2.只包含二個開關Q1 、Q2 ,能降低硬體成本。2. Only two switches Q 1 and Q 2 are included , which can reduce the hardware cost.

3.第一及第二開關Q1 、Q2 都能達到零電壓切換(ZVS)操作,減少切換損失,能提高功率轉換效率。3. The first and second switches Q 1 and Q 2 can achieve zero voltage switching (ZVS) operation, reduce switching losses, and improve power conversion efficiency.

4.利用第一及第二輸出電感L1 、L2 來分擔輸出電流,適合高輸出電流應用。4. The first and second output inductors L 1 and L 2 are used to share the output current, which is suitable for high output current applications.

5.流經第一及第二輸出電感L1 、L2 的電流的漣波為反相,可進行漣波互消作用,所以具有低輸出電流漣波。5. The chopping of the current flowing through the first and second output inductors L 1 and L 2 is inverted, and the chopping canceling action can be performed, so that the output current is chopped with low output current.

6.輸出電容CO 的操作頻率為開關Q1 、Q2 切換頻率兩倍,在相同的輸出漣波規格下,可選擇較小之濾波元件。6. The operating frequency of the output capacitor C O is twice the switching frequency of the switches Q 1 and Q 2 . Under the same output chopping specification, a smaller filter component can be selected.

惟以上所述者,僅為本發明之較佳實施例而已,當不能以此限定本發明實施之範圍,即大凡依本發明申請專利 範圍及發明說明內容所作之簡單的等效變化與修飾,皆仍屬本發明專利涵蓋之範圍內。However, the above is only the preferred embodiment of the present invention, and the scope of the present invention cannot be limited thereto, that is, the patent application according to the present invention The scope of the invention and the equivalent equivalents and modifications of the invention are still within the scope of the invention.

T1 ‧‧‧第一變壓器T 1 ‧‧‧First Transformer

D2 ‧‧‧第二二極體D 2 ‧‧‧Secondary

T2 ‧‧‧第二變壓器T 2 ‧‧‧second transformer

L1 ‧‧‧第一輸出電感L 1 ‧‧‧first output inductor

C1 ‧‧‧第一電容C 1 ‧‧‧first capacitor

L2 ‧‧‧第二輸出電感L 2 ‧‧‧second output inductor

C2 ‧‧‧第二電容C 2 ‧‧‧second capacitor

CO ‧‧‧輸出電容C O ‧‧‧ output capacitor

Lr ‧‧‧共振電感L r ‧‧‧Resonance inductance

Lp1 、Lp2 ‧‧‧一次側繞組L p1 , L p2 ‧‧‧ primary winding

Q1 ‧‧‧第一開關Q 1 ‧‧‧First switch

Ls1 、Ls2 ‧‧‧二次側繞組L s1 , L s2 ‧‧‧ secondary winding

Q2 ‧‧‧第二開關Q 2 ‧‧‧Second switch

Lm1 ~Lm2 ‧‧‧磁化電感L m1 ~L m2 ‧‧‧ Magnetizing inductance

Dr ‧‧‧初級側二極體D r ‧‧‧Primary side diode

vin ‧‧‧輸入電壓v in ‧‧‧Input voltage

D1 ‧‧‧第一二極體D 1 ‧‧‧First Diode

VO ‧‧‧輸出電壓V O ‧‧‧Output voltage

圖1是本發明低電壓應力直流轉換器之較佳實施例的一電路圖;圖2是該較佳實施例的一時序圖;圖3a是該較佳實施例於模式一的一電路圖;圖3b是該較佳實施例於模式二的一電路圖;圖3c是該較佳實施例於模式三的一電路圖;圖3d是該較佳實施例於模式四的一電路圖;圖3e是該較佳實施例於模式五的一電路圖;圖3f是該較佳實施例於模式六的一電路圖;圖3g是該較佳實施例於模式七的一電路圖;圖3h是該較佳實施例於模式八的一電路圖;圖4是該較佳實施例的第一種量測圖;圖5是該較佳實施例的第二種量測圖;及圖6是該較佳實施例的第三種量測圖。1 is a circuit diagram of a preferred embodiment of a low voltage stress DC converter of the present invention; FIG. 2 is a timing diagram of the preferred embodiment; FIG. 3a is a circuit diagram of the preferred embodiment in mode one; Figure 3c is a circuit diagram of the preferred embodiment in mode three; Figure 3d is a circuit diagram of the preferred embodiment in mode four; Figure 3e is a preferred embodiment of the preferred embodiment Figure 3f is a circuit diagram of the preferred embodiment in mode six; Figure 3g is a circuit diagram of the preferred embodiment in mode seven; Figure 3h is a preferred embodiment of mode eight FIG. 4 is a first measurement diagram of the preferred embodiment; FIG. 5 is a second measurement diagram of the preferred embodiment; and FIG. 6 is a third measurement of the preferred embodiment. Figure.

T1 ‧‧‧第一變壓器T 1 ‧‧‧First Transformer

L1 ‧‧‧第一輸出電感L 1 ‧‧‧first output inductor

T2 ‧‧‧第二變壓器T 2 ‧‧‧second transformer

L2 ‧‧‧第二輸出電感L 2 ‧‧‧second output inductor

C1 ‧‧‧第一電容C 1 ‧‧‧first capacitor

CO ‧‧‧輸出電容C O ‧‧‧ output capacitor

C2 ‧‧‧第二電容C 2 ‧‧‧second capacitor

Lp1 、Lp2 ‧‧‧一次側繞組L p1 , L p2 ‧‧‧ primary winding

Lr ‧‧‧共振電感L r ‧‧‧Resonance inductance

Ls1 、Ls2 ‧‧‧二次側繞組L s1 , L s2 ‧‧‧ secondary winding

Q1 ‧‧‧第一開關Q 1 ‧‧‧First switch

vin ‧‧‧輸入電壓v in ‧‧‧Input voltage

Q2 ‧‧‧第二開關Q 2 ‧‧‧Second switch

VO ‧‧‧輸出電壓V O ‧‧‧Output voltage

Dr ‧‧‧初級側二極體D r ‧‧‧Primary side diode

D1 ‧‧‧第一二極體D 1 ‧‧‧First Diode

D2 ‧‧‧第二二極體D 2 ‧‧‧Secondary

Claims (8)

一種低電壓應力直流轉換器,包含:第一及第二變壓器,每一變壓器具有一個一次側繞組和一個二次側繞組,且每一側繞組皆具有一第一端及一第二端,其中,該第二變壓器的一次側繞組的第一端電連接於該第一變壓器的一次側繞組的第二端,該第二變壓器的二次側繞組的第二端電連接於該第一變壓器的二次側繞組的第二端;一第一電容,具有一接收一呈直流的輸入電壓的第一端,及一第二端;一第二電容,具有一電連接於該第一電容之第二端的第一端,及一接收該輸入電壓的負極的第二端;一共振電感,電連接於該第一電容的第二端與該第一變壓器的一次側繞組的第二端之間;一第一開關,具有一電連接於該第一電容之第一端的第一端,及一電連接於該第一變壓器的一次側繞組的第一端的第二端,且該第一開關受控制以切換於導通狀態和不導通狀態間;一第二開關,具有一電連接於該第二變壓器的一次側繞組的第二端的第一端,及一電連接於該第二電容之第二端的第二端,且該第二開關受控制以切換於導通狀態和不導通狀態間;一初級側二極體,具有一電連接於該第二變壓器的一次側繞組的第二端的陽極及一電連接於該第一變壓器 的一次側繞組的第一端的陰極;一第一二極體,具有一電連接於該第一變壓器的二次側繞組的第一端的陰極,及一陽極;一第二二極體,具有一電連接於該第二變壓器的二次側繞組的第一端的陰極,及一電連接於該第一二極體的陽極的陽極;一第一輸出電感,具有一電連接於該第一二極體之陰極的第一端,及一第二端;一第二輸出電感,具有一電連接於該第二二極體之陰極的第一端,及一第二端;及一輸出電容,電連接於該第一輸出電感的第二端與該第一二極體的陽極之間,用於提供一輸出電壓。 A low voltage stress DC converter comprising: first and second transformers, each transformer having a primary side winding and a secondary side winding, and each side winding has a first end and a second end, wherein a first end of the primary winding of the second transformer is electrically connected to a second end of the primary winding of the first transformer, and a second end of the secondary winding of the second transformer is electrically connected to the first transformer a second end of the secondary winding; a first capacitor having a first end receiving a DC input voltage, and a second end; a second capacitor having an electrical connection to the first capacitor a first end of the two ends, and a second end of the negative pole receiving the input voltage; a resonant inductor electrically connected between the second end of the first capacitor and the second end of the primary side winding of the first transformer; a first switch having a first end electrically connected to the first end of the first capacitor, and a second end electrically connected to the first end of the primary side winding of the first transformer, and the first switch Controlled to switch to conduction and non-conduction a second switch having a first end electrically connected to the second end of the primary winding of the second transformer, and a second end electrically connected to the second end of the second capacitor, and the second The switch is controlled to switch between a conducting state and a non-conducting state; a primary side diode having an anode electrically connected to the second end of the primary winding of the second transformer and an electrical connection to the first transformer a cathode of the first end of the primary winding; a first diode having a cathode electrically connected to the first end of the secondary winding of the first transformer; and an anode; a second diode a cathode having a first end electrically connected to the secondary winding of the second transformer, and an anode electrically connected to the anode of the first diode; a first output inductor having an electrical connection to the first a first end of the cathode of the diode and a second end; a second output inductor having a first end electrically connected to the cathode of the second diode, and a second end; and an output A capacitor is electrically connected between the second end of the first output inductor and the anode of the first diode to provide an output voltage. 依據申請專利範圍第1項所述之低電壓應力直流轉換器,其中,該第一及第二變壓器的匝數比相等。 The low voltage stress DC converter of claim 1, wherein the first and second transformers have equal turns ratios. 依據申請專利範圍第1項所述之低電壓應力直流轉換器,其中,該每一個二次側繞組的第一端是打點端,且該每一個二次側繞組的第二端是非打點端。 The low voltage stress DC converter of claim 1, wherein the first end of each of the secondary windings is a striking end, and the second end of each of the secondary windings is a non-tapping end. 依據申請專利範圍第1項所述之低電壓應力直流轉換器,其中,該每一個一次側繞組的第一端是打點端,且該每一個一次側繞組的第二端是非打點端。 The low voltage stress DC converter of claim 1, wherein the first end of each of the primary windings is a striking end, and the second end of each of the primary windings is a non-tapping end. 依據申請專利範圍第1項所述之低電壓應力直流轉換器,其中,該第一開關是一N型功率半導體電晶體,且該第一開關的第一端是汲極,該第一開關的第二端是源極。 The low voltage stress DC converter of claim 1, wherein the first switch is an N-type power semiconductor transistor, and the first end of the first switch is a drain, the first switch The second end is the source. 依據申請專利範圍第1項所述之低電壓應力直流轉換器,其中,該第二開關是一N型功率半導體電晶體,且該第二開關的第一端是汲極,該第二開關的第二端是源極。 The low voltage stress DC converter of claim 1, wherein the second switch is an N-type power semiconductor transistor, and the first end of the second switch is a drain, the second switch The second end is the source. 依據申請專利範圍第1項所述之低電壓應力直流轉換器,其中,該第一及第二開關的切換是零電壓切換。 The low voltage stress DC converter of claim 1, wherein the switching of the first and second switches is zero voltage switching. 依據申請專利範圍第1項所述之低電壓應力直流轉換器,其中,該第一及第二輸出電感的電感值相等。 The low voltage stress DC converter of claim 1, wherein the first and second output inductors have equal inductance values.
TW101122815A 2012-06-26 2012-06-26 Low voltage stress DC converter TWI441435B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW101122815A TWI441435B (en) 2012-06-26 2012-06-26 Low voltage stress DC converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW101122815A TWI441435B (en) 2012-06-26 2012-06-26 Low voltage stress DC converter

Publications (2)

Publication Number Publication Date
TW201401746A TW201401746A (en) 2014-01-01
TWI441435B true TWI441435B (en) 2014-06-11

Family

ID=50345225

Family Applications (1)

Application Number Title Priority Date Filing Date
TW101122815A TWI441435B (en) 2012-06-26 2012-06-26 Low voltage stress DC converter

Country Status (1)

Country Link
TW (1) TWI441435B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI607622B (en) * 2016-09-23 2017-12-01 亞力電機股份有限公司 Step-up direct current converter

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI587618B (en) * 2016-03-17 2017-06-11 High buck converter

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI607622B (en) * 2016-09-23 2017-12-01 亞力電機股份有限公司 Step-up direct current converter

Also Published As

Publication number Publication date
TW201401746A (en) 2014-01-01

Similar Documents

Publication Publication Date Title
US7405955B2 (en) Switching power supply unit and voltage converting method
US10686387B2 (en) Multi-transformer LLC resonant converter circuit
CN109245545B (en) High-voltage gain LCL resonant DC-DC converter
TWI569565B (en) Staggered high boost DC converter
CN108199579B (en) High-transformation-ratio soft-switching DC-DC buck converter with coupling inductor
TWI489750B (en) High-efficiency bidirectional single-input and multi-outputs dc/dc converter
TWI520472B (en) High efficiency wide range of output voltage of the DC power boost circuit
CN109586583B (en) Soft switch current feed push-pull type DC-DC converter
TWI580166B (en) Interleaved boost converter
TW201914194A (en) High boost converter including a first and a second coupled inductors, a first and a second switches, a first and a second clamping diodes, a first and a second clamping capacitors, a first to a fourth diodes, and a first to a fourth capacitors
TWI739539B (en) High voltage gain converter
TWI441435B (en) Low voltage stress DC converter
TWI666863B (en) High boost DC converter
CN109104092B (en) Low switch tube voltage stress current type output resonant converter
TWI439034B (en) Zero voltage switching power converter
CN101557172A (en) Input interleaved series forward DC-DC converter
TW201342782A (en) Power converting device with control switch
TWI572132B (en) Dual-output power converter
TWI694667B (en) High boost converter
TWI524646B (en) Staggered DC conversion device
TWI658684B (en) High buck converter
CN109194140B (en) Low switch tube voltage stress voltage type output resonant converter
TWI587618B (en) High buck converter
TWI580167B (en) Single stage buck converter
KR102413600B1 (en) Non-Isolation, high??voltage-output DC-DC converter using self-driven synchronous switch

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees