TWI694667B - High boost converter - Google Patents

High boost converter Download PDF

Info

Publication number
TWI694667B
TWI694667B TW108119342A TW108119342A TWI694667B TW I694667 B TWI694667 B TW I694667B TW 108119342 A TW108119342 A TW 108119342A TW 108119342 A TW108119342 A TW 108119342A TW I694667 B TWI694667 B TW I694667B
Authority
TW
Taiwan
Prior art keywords
switch
diode
electrically connected
auxiliary
voltage
Prior art date
Application number
TW108119342A
Other languages
Chinese (zh)
Other versions
TW202046612A (en
Inventor
陳信助
楊松霈
黃昭明
許仕霖
Original Assignee
崑山科技大學
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 崑山科技大學 filed Critical 崑山科技大學
Priority to TW108119342A priority Critical patent/TWI694667B/en
Application granted granted Critical
Publication of TWI694667B publication Critical patent/TWI694667B/en
Publication of TW202046612A publication Critical patent/TW202046612A/en

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Abstract

一種高升壓轉換器包含第一與第二耦合電感、第一與第二開關、零電壓切換輔助單元、箝位電容、第一箝位二極體、電壓倍增單元,及輸出單元,第一及第二耦合電感用以接收直流的輸入電壓,第一及第二開關皆受控制而切換於導通與不導通之間,零電壓切換輔助單元分別電連接第一及第二開關,及箝位電容,用以使第一及第二開關達到零電壓切換,電壓倍增單元的兩端分別電連接第一箝位二極體及輸出單元,用以舉升輸出單元的輸出電壓。 A high-boost converter includes first and second coupling inductors, first and second switches, a zero-voltage switching auxiliary unit, a clamping capacitor, a first clamping diode, a voltage multiplying unit, and an output unit, the first And the second coupling inductor are used to receive the DC input voltage. Both the first and second switches are controlled to switch between conducting and non-conducting. The zero-voltage switching auxiliary unit is electrically connected to the first and second switches, respectively, and the clamp The capacitor is used to make the first and second switches reach zero-voltage switching. The two ends of the voltage multiplying unit are electrically connected to the first clamping diode and the output unit, respectively, to raise the output voltage of the output unit.

Description

高升壓轉換器 High boost converter

本發明是有關於一種轉換器,特別是指一種高升壓轉換器。 The invention relates to a converter, in particular to a high boost converter.

參閱圖1,一種傳統升壓轉換器,若不考慮寄生電阻的影響條件下,即寄生電阻rL等於零,其電壓增益跟一輸出電壓V2、一輸入電壓V1、一開關導通比(Duty cycle)D的關係如下之公式,其中,該導通比D為一大於0且小於1的實數。 Referring to FIG. 1, a conventional boost converter, if the parasitic resistance is not considered, that is, the parasitic resistance r L is equal to zero, its voltage gain is proportional to an output voltage V2, an input voltage V1, and a switch duty cycle. The relationship of D is as follows, where the conduction ratio D is a real number greater than 0 and less than 1.

Figure 108119342-A0305-02-0003-1
Figure 108119342-A0305-02-0003-1

理論上要得到高電壓增益,轉換器必須操作在極大導通比,但是實務上,由於寄生元件的存在,例如寄生電阻rL不等於零,在導通比D大於0.9時,傳統升壓轉換器會有以下問題: In theory, to obtain a high voltage gain, the converter must operate at a very large conduction ratio, but in practice, due to the presence of parasitic elements, such as parasitic resistance r L is not equal to zero, when the conduction ratio D is greater than 0.9, the traditional boost converter will have The following questions:

1.電壓增益M不增反減及轉換效率η不佳問題;2.容易產生很大的輸入電流漣波,減少燃料電池的使用壽命的問題;3.輸出二極體有嚴重的反向恢復損失及電磁干擾(EMI)雜訊問題。 1. The voltage gain M does not increase and decrease and the conversion efficiency η is not good; 2. It is easy to produce a large input current ripple and reduce the life of the fuel cell; 3. The output diode has serious reverse recovery Loss and electromagnetic interference (EMI) noise issues.

另一方面,傳統升壓轉換器的功率開關屬於硬性切換 (Hard switching),會產生切換損失,而導致無法達到更高效率的問題。 On the other hand, the power switch of the traditional boost converter is a hard switch (Hard switching), there will be a switching loss, which leads to the problem that higher efficiency cannot be achieved.

因此,本發明的目的,即在提供一種不需操作在極高的導通比就能達到高電壓增益的高升壓轉換器的高升壓轉換器。 Therefore, an object of the present invention is to provide a high-boost converter that can achieve a high-boost converter without operating at an extremely high turn-on ratio.

於是,本發明提供一種高升壓轉換器包含,一第一耦合電感、一第二耦合電感、一第一開關、一第二開關、一第一箝位二極體、一第二箝位二極體、一箝位電容、一零電壓切換輔助單元、一第三二極體、一第四二極體、一第一電容,及一輸出單元。 Therefore, the present invention provides a high boost converter including a first coupled inductor, a second coupled inductor, a first switch, a second switch, a first clamp diode, and a second clamp two A polar body, a clamping capacitor, a zero-voltage switching auxiliary unit, a third diode, a fourth diode, a first capacitor, and an output unit.

該第一與第二耦合電感分別具有一個一次側繞組及一個二次側繞組,每一個側繞組具有一第一端及一第二端,該第一及第二耦合電感的一次側繞組的第一端電連接一起以接收一直流的輸入電壓,該第一耦合電感的二次側繞組的第二端電連接該第二耦合電感的二次側繞組的第二端。該第一與第二開關分別具有一電連接該第一與第二耦合電感的一次側繞組的第二端的第一端,及一接地的第二端,且分別受控制切換於導通與不導通間。 The first and second coupled inductors respectively have a primary winding and a secondary winding. Each side winding has a first end and a second end. The primary windings of the first and second coupled inductors One end is electrically connected together to receive a DC input voltage, and the second end of the secondary winding of the first coupled inductor is electrically connected to the second end of the secondary winding of the second coupled inductor. The first and second switches respectively have a first end electrically connected to the second end of the primary winding of the first and second coupled inductors, and a second end connected to ground, and are controlled to switch between conducting and non-conducting, respectively between.

該第一與第二箝位二極體分別具有一電連接該第一與第二耦合電感的一次側繞組的第二端的陽極,及一陰極。該零電壓切換輔助單元電連接該第一開關的第一端、該第二開關的第一端,及 該箝位電容的第一端,用以使該第一開關與第二開關達到零電壓切換。該第三二極體具有一電連接該第一箝位二極體的陰極的陽極,及一電連接該第二耦合電感的二次側繞組的第一端的陰極。該第四二極體具有一電連接該第一耦合電感的二次側繞組的第一端的陽極,及一陰極。 The first and second clamp diodes respectively have an anode electrically connecting the second end of the primary winding of the first and second coupling inductors, and a cathode. The zero-voltage switching auxiliary unit is electrically connected to the first end of the first switch and the first end of the second switch, and The first end of the clamping capacitor is used to enable the first switch and the second switch to achieve zero voltage switching. The third diode has an anode electrically connected to the cathode of the first clamp diode, and a cathode electrically connected to the first end of the secondary winding of the second coupled inductor. The fourth diode has an anode electrically connected to the first end of the secondary winding of the first coupled inductor, and a cathode.

該第一電容具有一電連接該第四二極體的陰極的第一端,及一電連接該第二耦合電感的二次側繞組的第一端的第二端。該輸出單元電連接該第四二極體的陰極,用以提供一輸出電壓。 The first capacitor has a first end electrically connected to the cathode of the fourth diode, and a second end electrically connected to the first end of the secondary winding of the second coupled inductor. The output unit is electrically connected to the cathode of the fourth diode to provide an output voltage.

本發明的功效在於:藉由該第一與第二耦合電感的二次側繞組、該第一與第二電容,及該第三與第四二極體所形成的一電壓倍增單元,加上該零電壓切換輔助單元,有效地提高電壓增益卻不需要開關操作在高導通比,以及有效地提升轉換效率。 The effect of the present invention is that a voltage multiplying unit formed by the secondary winding of the first and second coupled inductors, the first and second capacitors, and the third and fourth diodes, plus The zero-voltage switching auxiliary unit effectively improves the voltage gain but does not require the switching operation at a high conduction ratio, and effectively improves the conversion efficiency.

2:零電壓切換輔助單元 2: zero voltage switching auxiliary unit

3:電壓倍增單元 3: voltage multiplication unit

4:輸出單元 4: output unit

5:控制單元 5: control unit

M:電壓增益 M: voltage gain

η:轉換效率 η: conversion efficiency

Np1:第一耦合電感的一次側繞組 N p1 : primary winding of the first coupled inductor

Np2:第二耦合電感的一次側繞組 N p2 : primary winding of the second coupled inductor

Ns1:第一耦合電感的二次側繞組 N s1 : secondary winding of the first coupled inductor

Ns2:第二耦合電感的二次側繞組 N s2 : secondary winding of the second coupled inductor

S1:第一開關 S 1 : first switch

Vin:輸入電壓 V in : input voltage

Vo:輸出電壓 V o : output voltage

VCc:箝位電容的跨壓 V Cc : voltage across the clamping capacitor

VC1:第一電容的跨壓 V C1 : voltage across the first capacitor

VC2:第二電容的跨壓 V C2 : voltage across the second capacitor

VS1-stress:第一開關的電壓應力 V S1-stress : voltage stress of the first switch

VS2-stress:第二開關的電壓應力 V S2-stress : voltage stress of the second switch

VSa-stress:輔助開關的電壓應力 V Sa-stress : voltage stress of auxiliary switch

vLa:輔助電感的跨壓 v La : Overvoltage of auxiliary inductance

vds1:第一開關的跨壓 v ds1 : cross voltage of the first switch

vds2:第二開關的跨壓 v ds2 : cross voltage of the second switch

vgs1:第一開關的切換控制電壓 v gs1 : switching control voltage of the first switch

vgs2:第二開關的切換控制電壓 v gs2 : switching control voltage of the second switch

vNs1:第一耦合電感的二次側繞組的跨壓 v Ns1 : voltage across the secondary winding of the first coupled inductor

S2:第二開關 S 2 : Second switch

Sa:輔助開關 S a: the auxiliary switch

Cc:箝位電容 C c : clamping capacitance

Co:輸出電容 Co : output capacitance

C1:第一電容 C 1 : the first capacitor

C2:第二電容 C 2 : second capacitor

CS1:第一開關寄生電容 C S1 : Parasitic capacitance of the first switch

CS2:第二開關寄生電容 CS2 : Parasitic capacitance of the second switch

D:導通比 D: Turn-on ratio

Do:輸出二極體 D o : output diode

D1:第一箝位二極體 D 1 : First clamp diode

D2:第二箝位二極體 D 2 : Second clamp diode

D3:第三二極體 D 3 : Third diode

D4:第四二極體 D 4 : Fourth diode

Da1:第一輔助二極體 D a1 : first auxiliary diode

Da2:第二輔助二極體 D a2 : Second auxiliary diode

Da3:第三輔助二極體 D a3 : third auxiliary diode

La:輔助電感 L a : auxiliary inductance

Lm1:第一磁化電感 L m1 : the first magnetizing inductance

Lm2:第二磁化電感 L m2 : second magnetizing inductance

Lm:磁化電感 L m : magnetizing inductance

Lk1:第一漏電感 L k1 : first leakage inductance

Lk2:第二漏電感 L k2 : second leakage inductance

Lk:漏電感 L k : leakage inductance

n:耦合電感匝數比 n: Coupling inductance turns ratio

Ro:輸出負載 R o : output load

vNs2:第二耦合電感的二次側繞組的跨壓 v Ns2 : voltage across the secondary winding of the second coupled inductor

iin:輸入電流 i in : input current

iS1:第一開關的電流 i S1 : current of the first switch

iS2:第二開關的電流 i S2 : current of the second switch

iD1:第一箝位二極體的電流 i D1 : current of the first clamp diode

iD2:第一箝位二極體的電流 i D2 : current of the first clamp diode

iD3:第三二極體的電流 i D3 : current of the third diode

iD3:第四二極體的電流 i D3 : current of the fourth diode

iDo:輸出二極體的電流 i Do : output diode current

iLm1:第一電感的電流 i Lm1 : current of the first inductor

iLm2:第二電感的電流 i Lm2 : current of the second inductor

iLk1:第一漏電感的電流 i Lk1 : current of the first leakage inductance

iLk2:第二漏電感的電流 i Lk2 : current of the second leakage inductance

iLa:輔助電感的電流 i La : current of auxiliary inductor

rL:寄生電阻 r L : parasitic resistance

Ts:切換週期 T s : switching period

t:時間 t: time

t0~t15:第一開始時間~第十六開始時間 t0~t15: first start time~sixteenth start time

t16:第十六結束時間 t16: Sixteenth end time

本發明的其他的特徵及功效,將於參照圖式的實施方式中清楚地呈現,其中:圖1是習知的升壓轉換器的一電路圖;圖2是一電路圖,說明本發明高升壓轉換器之一較佳實施例;圖3是一等效電路圖,說明本發明高升壓轉換器之一較佳實施例; 圖4是該較佳實施例的一操作時序圖;圖5是該較佳實施例操作於第一階段的一電路圖;圖6是該較佳實施例操作於第二階段的一電路圖;圖7是該較佳實施例操作於第三階段的一電路圖;圖8是該較佳實施例操作於第四階段的一電路圖;圖9是該較佳實施例操作於第五階段的一電路圖;圖10是該較佳實施例操作於第六階段的一電路圖;圖11是該較佳實施例操作於第七階段的一電路圖;圖12是該較佳實施例操作於第八階段的一電路圖;圖13是該較佳實施例操作於第九階段的一電路圖;圖14是該較佳實施例操作於第十階段的一電路圖;圖15是該較佳實施例操作於第十一階段的一電路圖;圖16是該較佳實施例操作於第十二階段的一電路圖;圖17是該較佳實施例操作於第十三階段的一電路圖;圖18是該較佳實施例操作於第十四階段的一電路圖;圖19是該較佳實施例操作於第十五階段的一電路圖;圖20是該較佳實施例操作於第十六階段的一電路圖;圖21是一波形圖,說明該較佳實施例的一開關驅動信號、一輸入電壓,及一輸出電壓之間的關係;圖22是一波形圖,用以驗證該較佳實施例的一穩態特性的表 現;圖23是一波形圖,用以驗證該較佳實施例的一開關電壓應力的表現;圖24是一波形圖,說明該較佳實施例在一輸出功率為1000瓦時,一第一開關及一第二開關的切換波形;圖25是一波形圖,說明該較佳實施例在該輸出功率為200瓦時,該第一開關及該第二開關的切換波形;圖26是一波形圖,用以驗證該較佳實施例的一漣波電流的表現;圖27是一波形圖,說明該較佳實施例的各電容的跨(電)壓;圖28是一波形圖,說明該較佳實施例的一第一與第二箝位二極體的跨(電)壓與電流;及圖29是一波形圖,說明該較佳實施例的一第三與第四二極體,及一輸出二極體的跨(電)壓與電流。 Other features and effects of the present invention will be clearly presented in the embodiment with reference to the drawings, in which: FIG. 1 is a circuit diagram of a conventional boost converter; FIG. 2 is a circuit diagram illustrating the high boost of the present invention One of the preferred embodiments of the converter; FIG. 3 is an equivalent circuit diagram illustrating a preferred embodiment of the high boost converter of the present invention; 4 is an operation timing diagram of the preferred embodiment; FIG. 5 is a circuit diagram of the preferred embodiment operating in the first stage; FIG. 6 is a circuit diagram of the preferred embodiment operating in the second stage; FIG. 7 Is a circuit diagram of the preferred embodiment operating in the third stage; FIG. 8 is a circuit diagram of the preferred embodiment operating in the fourth stage; FIG. 9 is a circuit diagram of the preferred embodiment operating in the fifth stage; 10 is a circuit diagram of the preferred embodiment operating in the sixth stage; FIG. 11 is a circuit diagram of the preferred embodiment operating in the seventh stage; FIG. 12 is a circuit diagram of the preferred embodiment operating in the eighth stage; 13 is a circuit diagram of the preferred embodiment operating at the ninth stage; FIG. 14 is a circuit diagram of the preferred embodiment operating at the tenth stage; FIG. 15 is a circuit diagram of the preferred embodiment operating at the eleventh stage Circuit diagram; FIG. 16 is a circuit diagram of the preferred embodiment operating at the twelfth stage; FIG. 17 is a circuit diagram of the preferred embodiment operating at the thirteenth stage; FIG. 18 is the preferred embodiment operating at the tenth stage A circuit diagram of four stages; FIG. 19 is a circuit diagram of the preferred embodiment operating at the fifteenth stage; FIG. 20 is a circuit diagram of the preferred embodiment operating at the sixteenth stage; FIG. 21 is a waveform diagram illustrating The relationship between a switch driving signal, an input voltage, and an output voltage of the preferred embodiment; FIG. 22 is a waveform diagram for verifying a steady-state characteristic of the preferred embodiment. Figure 23 is a waveform diagram used to verify the performance of a switching voltage stress of the preferred embodiment; Figure 24 is a waveform diagram illustrating the preferred embodiment at an output power of 1000 watt hours, a first Switching waveforms of the switch and a second switch; FIG. 25 is a waveform diagram illustrating the switching waveforms of the first switch and the second switch of the preferred embodiment when the output power is 200 watts; FIG. 26 is a waveform Figure, to verify the performance of a ripple current of the preferred embodiment; FIG. 27 is a waveform diagram illustrating the trans-electrical voltage of each capacitor of the preferred embodiment; FIG. 28 is a waveform diagram illustrating the Transverse (electric) voltage and current of a first and second clamp diode of the preferred embodiment; and FIG. 29 is a waveform diagram illustrating a third and fourth diode of the preferred embodiment, And the output voltage and current of the output diode.

在本發明被詳細描述之前,應當注意在以下的說明內容中,類似的元件是以相同的編號來表示。 Before the present invention is described in detail, it should be noted that in the following description, similar elements are denoted by the same numbers.

參閱圖2,本發明高升壓直流轉換器之一較佳實施例,包含一第一耦合電感、一第二耦合電感、一第一開關S1、一第二開關 S2、一第一箝位二極體D1、一第二箝位二極體D2、一箝位電容Cc、一零電壓切換輔助單元2、一電壓倍增單元3、一輸出單元4,及一控制單元5。其中,該第一耦合電感具有一個一次側繞組Np1及一個二次側繞組Ns1,該第二耦合電感具有一個一次側繞組Np2及一個二次側繞組Ns2,每一個側繞組具有一第一端及一第二端。其中,該第一箝位二極體D1及該第二箝位二極體D2分別具有一陽極及一陰極。 Referring to FIG. 2, a preferred embodiment of the high-boost DC converter of the present invention includes a first coupled inductor, a second coupled inductor, a first switch S 1 , a second switch S 2 , and a first clamp A diode D 1 , a second clamp diode D 2 , a clamp capacitor C c , a zero-voltage switching auxiliary unit 2, a voltage multiplying unit 3, an output unit 4, and a control unit 5. Among them, the first coupled inductor has a primary winding N p1 and a secondary winding N s1 , the second coupled inductor has a primary winding N p2 and a secondary winding N s2 , each side winding has a The first end and a second end. Wherein, the first clamping diode D 1 and the second clamping diode D 2 have an anode and a cathode, respectively.

該第一耦合電感的一次側繞組Np1的第一端電連接該第二耦合電感的一次側繞組Np2的第一端,及一直流輸入電壓源,使該第一耦合電感的一次側繞組Np1及該第二耦合電感的一次側繞組Np2分別接收一輸入電壓Vin所提供的一輸入電流iInThe first end of the primary winding N p1 of the first coupling inductor is electrically connected to the first end of the primary winding N p2 of the second coupling inductor, and the DC input voltage source makes the primary winding of the first coupling inductor N p1 and the primary winding N p2 of the second coupled inductor respectively receive an input current i In provided by an input voltage V in .

該第一箝位二極體D1的陽極電連接該第一耦合電感的一次側繞組Np1的第二端,該第二箝位二極體D2的陽極電連接該第二耦合電感的一次側繞組Np2的第二端。該第二箝位二極體D2的陰極電連接於該第一箝位二極體D1的陰極。 The anode of the first clamping diode D 1 is electrically connected to the second end of the primary winding N p1 of the first coupling inductor, and the anode of the second clamping diode D 2 is electrically connected to the second coupling inductor The second end of the primary winding N p2 . The cathode of the second clamping diode D 2 is electrically connected to the cathode of the first clamping diode D 1 .

該零電壓切換輔助單元2包括一第一輔助二極體Da1、一第二輔助二極體Da2、一輔助電感La、一第三輔助二極體Da3,及一輔助開關SaThe zero-voltage switching auxiliary unit 2 includes a first auxiliary diode D a1 , a second auxiliary diode D a2 , an auxiliary inductance L a , a third auxiliary diode D a3 , and an auxiliary switch S a .

該第一輔助二極體Da1具有一電連接該第一開關S1的第一端的陽極,及一陰極。該第二輔助二極體Da2具有一電連接該第 二開關S2的第一端的陽極,及一電連接該第一輔助二極體Da1的陰極的陰極。該輔助電感La具有一電連接該第一輔助二極體Da1的陰極的的第一端,及一第二端。該第三輔助二極體Da3具有一電連接該輔助電感La的第二端的陽極,及一電連接該第一二極體D1的陰極的陰極。該輔助開關Sa具有一電連接該輔助電感La的第二端的第一端、一接地的第二端,及一電連接該控制單元5的第三端。因此,該第一輔助二極體Da1的陽極形成該零電壓切換輔助單元2的一第一端,該第二輔助二極體Da2的陽極形成該零電壓切換輔助單元2的一第二端,該第三輔助二極體Da3的陰極形成該零電壓切換輔助單元2的一第三端。 The first auxiliary diode D a1 has an anode electrically connected to the first end of the first switch S 1 , and a cathode. The second auxiliary diode D a2 has an anode electrically connected to the first end of the second switch S 2 , and a cathode electrically connected to the cathode of the first auxiliary diode D a1 . The auxiliary inductor L a having a cathode electrically connected to the first auxiliary diode D a1 of the first end and a second end. The third auxiliary diode D A3 having an anode electrically connected to a second end of the inductance L a of the auxiliary, and a cathode electrically connected to the cathode of the first diode D 1. The auxiliary switch S a having a first terminal electrically connected to the auxiliary inductor L a second end, a second ground terminal, and a control unit electrically connected to the third terminal 5. Therefore, the anode of the first auxiliary diode D a1 forms a first end of the zero-voltage switching auxiliary unit 2, and the anode of the second auxiliary diode D a2 forms a second of the zero-voltage switching auxiliary unit 2 At the end, the cathode of the third auxiliary diode D a3 forms a third end of the zero-voltage switching auxiliary unit 2.

該電壓倍增單元3包括該第三二極體D3、該第四二極體D4、該第一耦合電感的二次側繞組Ns1、該第二耦合電感的二次側繞組Ns2、該第一電容C1,及該第二電容C2The voltage multiplying unit 3 includes the third diode D 3 , the fourth diode D 4 , the secondary winding N s1 of the first coupled inductor, the secondary winding N s2 of the second coupled inductor, The first capacitor C 1 and the second capacitor C 2 .

該第一耦合電感的二次側繞組Ns1的第二端電連接該第二耦合電感的二次側繞組Ns2的第二端,該第三二極體D3具有一電連接該第一箝位二極體D1的陰極的陽極,及一電連接該第二耦合電感的二次側繞組Ns2的第一端的陰極,該第四二極體D4具有一電連接該第一耦合電感的二次側繞組Ns1的第一端的陽極,及一陰極。該第一電容C1具有一電連接該第四二極體D4的陰極的第一端,及一電連接該第三二極體D3的陰極的第二端。該第二電容C2具有一 電連接該第一耦合電感的二次側繞組Ns1的第一端的第一端,及一電連接該第一箝位二極體D1的陰極的第二端。因此,該第二電容C2的第二端形成該電壓倍增單元3的一輸入端,該第一電容C1的第一端形成該電壓倍增單元3的一輸出端。 The second end of the secondary winding N s1 of the first coupled inductor is electrically connected to the second end of the secondary winding N s2 of the second coupled inductor, and the third diode D 3 has an electrical connection to the first a first end of the secondary winding N s2 cathode anode of the clamp diode D 1 of the cathode, and an electrical connector coupled to the second inductor, the fourth diode D is electrically connected to the. 4 having a first The anode of the first end of the secondary winding N s1 of the coupled inductor and a cathode. The first capacitor C 1 has a first end electrically connected to the cathode of the fourth diode D 4 , and a second end electrically connected to the cathode of the third diode D 3 . The second capacitor C 2 has a first end electrically connected to the first end of the secondary winding N s1 of the first coupled inductor, and a second end electrically connected to the cathode of the first clamp diode D 1 end. Therefore, the second terminal of the second capacitor C 2 forms an input terminal of the voltage multiplying unit 3, and the first terminal of the first capacitor C 1 forms an output terminal of the voltage multiplying unit 3.

該輸出單元4包括一輸出二極體Do、一輸出電容Co,及一輸出電阻Ro。該輸出二極體Do具有一電連接該第一電容C1的第一端的陽極,及一提供該輸出電壓Vo的陰極。該輸出電容Co具有一電連接該輸出二極體Do的陰極的第一端,及一接地的第二端。該輸出電阻Ro具有一電連接該輸出二極體Do的陰極的第一端,及一接地的第二端。 The output unit 4 includes an output diode D o, an output capacitor C o, and an output resistor R o. The output diode D o having a first electrically connected to the first terminal of the capacitor C 1, an anode, a cathode, and providing the output voltage V o of. The output capacitor C o having a first output terminal electrically connected to the cathode of a diode D o, and a second end grounded. The output resistance R o having a first output terminal electrically connected to the cathode of a diode D o, and a second end grounded.

該第一開關S1具有一電連接該第一耦合電感的一次側繞組Np1的第二端的第一端、一接地的第二端,及一電連接該控制單元5的第三端,該控制單元5藉由輸出一第一脈波調變信號,以控制該第一開關S1在一導通狀態(即導通)及一不導通狀態(即不導通)間切換。該第二開關S2具有一電連接該第二耦合電感的一次側繞組Np2的第二端的第一端、一接地的第二端,及一電連接該控制單元5的第三端,該控制單元5藉由輸出一第二脈波調變信號,以控制該第二開關S2在一導通狀態及一不導通狀態間切換。此外,該控制單元5還輸出一第三脈波調變信號,以控制該輔助開關Sa在一導通狀態及一不導通狀態間切換。 The first switch S 1 has a first end electrically connected to the second end of the primary winding N p1 of the first coupled inductor, a second end grounded, and a third end electrically connected to the control unit 5, the The control unit 5 controls the first switch S 1 to switch between a conducting state (ie conducting) and a non-conducting state (ie non-conducting) by outputting a first pulse wave modulation signal. The second switch S 2 has a first end electrically connected to the second end of the primary winding N p2 of the second coupling inductor, a second end grounded, and a third end electrically connected to the control unit 5, the The control unit 5 controls the second switch S 2 to switch between a conducting state and a non-conducting state by outputting a second pulse modulation signal. Further, the control unit 5 also outputs a third pulse modulation signal, to control the auxiliary switch S a switch between a conductive state and a nonconductive state.

值得一提的是,在本實施例中,該第一開關S1、該第二開關S2,及該輔助開關Sa皆為N型功率半導體電晶體,但不以此為限。 It is worth mentioning that, in the present embodiment, the first switches S 1, the second switch S 2, and the auxiliary switch S a are all N-type power semiconductor transistor, but is not limited thereto.

此外,在本實施例中,該第一脈波調變信號與該第二脈波調變信號的時間週期一樣,但工作相位相差180°,且該第一開關S1的導通時間的一部份重疊於與該第二開關S2的導通時間的一部分。而該第三脈波調變信號的導通時間很短。 In addition, in this embodiment, the time period of the first pulse modulation signal and the second pulse modulation signal are the same, but the working phase differs by 180°, and a part of the on-time of the first switch S 1 parts overlaps a portion of the second on-time of S 2. The conduction time of the third pulse modulation signal is very short.

該第一耦合電感及該第二耦合電感的耦合打點分別以”‧”和”*”表示。 The coupling points of the first coupling inductance and the second coupling inductance are indicated by "‧" and "*" respectively.

參閱圖3,為本實施例的一非理想的等效電路圖,用以說明由該第一耦合電感所感應而成的一第一磁化電感Lm1與第一漏電感Lk1、該第二耦合電感所感應而成的一第二磁化電感Lm2與第二漏電感Lk2、一相關於該第一開關S1的第一開關寄生電容CS1,及一相關於該第二開關S2的第二開關寄生電容CS2Referring to FIG. 3, it is a non-ideal equivalent circuit diagram of this embodiment to illustrate a first magnetizing inductance L m1 and a first leakage inductance L k1 induced by the first coupling inductance, and the second coupling A second magnetizing inductance L m2 and a second leakage inductance L k2 induced by the inductance, a first switch parasitic capacitance C S1 related to the first switch S 1 , and a second switch S 2 related to the second switch S 2 The second switch parasitic capacitance CS2 .

根據該非理想的等效電路圖,該控制單元5產生該第一脈波調變信號、該第二脈波調變信號,及,以分別控制該第一開關S1與該第二開關S2,且一導通比D大於0.5(當該導通比D小於0.5,本發明高升壓轉換器也能操作,只是該電壓增益M較小),而且該第一開關S1與該第二開關S2以工作相位相差180度的交錯方式操作,該輔助開關Sa的導通時間很短,主要目的在幫助該第一開關S1 與該第二開關S2達到零電壓切換(ZVS)。穩態時,根據該第一開關S1、該第二開關S2狀態,以下將以十六個階段進一步說明一本發明高升壓轉換器的時序圖。 According to the non-ideal equivalent circuit diagram, the control unit 5 generates the first pulse modulation signal, the second pulse modulation signal, and, respectively, to control the first switch S 1 and the second switch S 2 , And a conduction ratio D is greater than 0.5 (when the conduction ratio D is less than 0.5, the high boost converter of the present invention can also operate, but the voltage gain M is smaller), and the first switch S 1 and the second switch S 2 work to 180 degrees of phase staggered manner, the auxiliary switch S a is turned on for a short time, the main purpose of helping the first switch S 1 and the second switch S 2 reaches zero voltage switching (ZVS). In the steady state, according to the states of the first switch S 1 and the second switch S 2 , a timing diagram of the high boost converter of the present invention will be further described in sixteen stages below.

以下為本實施例操作於十六階段的各電路圖,其中,導通的元件以實線表示,不導通的元件以虛線表示,且以下的分析是基於四個條件: The following are the circuit diagrams of the sixteen stages of operation of this embodiment, in which the conducting elements are indicated by solid lines and the non-conducting elements are indicated by dashed lines, and the following analysis is based on four conditions:

條件一:所有功率開關與二極體的導通壓降為零。 Condition 1: The conduction voltage drop between all power switches and diodes is zero.

條件二:該箝位電容Cc、該輸出電容Co、該第一電容C1,及該第二電容C2夠大,且該第一電容C1的電容值等於該第二電容C2的電容值,故,該箝位電容Cc的跨(電)壓、該輸出電容Co的跨壓、該第一電容C1的跨壓,及該第二電容C2的跨壓在一個切換週期內可視為常數。 Condition 2: The clamping capacitor C c , the output capacitor C o , the first capacitor C 1 , and the second capacitor C 2 are sufficiently large, and the capacitance of the first capacitor C 1 is equal to the second capacitor C 2 Capacitance, therefore, the voltage across the clamp capacitor C c , the voltage across the output capacitor C o , the voltage across the first capacitor C 1 , and the voltage across the second capacitor C 2 are in one It can be regarded as a constant during the switching cycle.

條件三:該第一耦合電感及該第二耦合電感的匝數比相等,即一耦合電感匝數比

Figure 108119342-A0305-02-0012-2
,且該第一磁化電感Lm1的電感值與該第二磁化電感Lm2的電感值同等於一磁化電感Lm的電感值,即Lm1=Lm2=Lm,該第一漏電感Lk1的電感值與該第二漏電感Lk2的電感值同等於一漏電感Lk1的電感值,即Lk1=Lk2=Lk,而該第一耦合電感及該第二耦合電感的耦合係數
Figure 108119342-A0305-02-0012-3
。 Condition 3: the turns ratio of the first coupled inductor and the second coupled inductor is equal, that is, the turns ratio of a coupled inductor
Figure 108119342-A0305-02-0012-2
, And the inductance value of the first magnetizing inductance L m1 and the inductance value of the second magnetizing inductance L m2 are equal to the inductance value of a magnetizing inductance L m , that is, L m1 =L m2 =L m , the first leakage inductance L The inductance value of k1 and the inductance value of the second leakage inductance L k2 are equal to the inductance value of a leakage inductance L k1 , that is, L k1 =L k2 =L k , and the coupling of the first coupling inductance and the second coupling inductance coefficient
Figure 108119342-A0305-02-0012-3
.

條件四:該耦合電感的磁化電感電流iLm操作在連續導通 模式(Continuous conduction mode,CCM)。 Condition 4: The magnetizing inductor current i Lm of the coupled inductor operates in continuous conduction mode (CCM).

分別針對每一階段在以下的內容中進行說明,其中,時間t對應每一階段的開始時間分別為一第一開始時間t0到一第十六開始時間t15,當時間t到達一第十六結束時間t16,整個轉換器完成一個循環的十六個階段。 Each stage is described in the following content, where the time t corresponds to the start time of each stage is a first start time t0 to a sixteenth start time t15, when the time t reaches a sixteenth end At time t16, the entire converter completes sixteen stages of a cycle.

第一階段[t:t0~t1]: The first stage [t: t0~t1]:

參閱圖4及圖5,本第一階段開始的時間t等於該第一開始時間t0,該第一開關S1與該第二開關S2皆在該導通狀態,所有的二極體皆為逆向偏壓而不導通,該第一耦合電感的一次側繞組Np1,及該第二耦合電感的一次側繞組Np2的跨壓均等於該輸入電壓Vin,即該第一磁化電感Lm1、該第二磁化電感Lm2、該第一漏電感Lk1,及該第二漏電感Lk2的跨壓皆為該輸入電壓Vin,其電流呈線性上升,斜率同為,

Figure 108119342-A0305-02-0013-4
Referring to FIGS. 4 and 5, the time t at which the first stage starts is equal to the first start time t0, the first switch S 1 and the second switch S 2 are both in the conducting state, and all diodes are reversed The bias voltage is not turned on. The primary winding N p1 of the first coupled inductor and the primary winding N p2 of the second coupled inductor are equal to the input voltage V in , that is, the first magnetizing inductance L m1 , The crossover voltage of the second magnetizing inductance L m2 , the first leakage inductance L k1 , and the second leakage inductance L k2 are all the input voltage V in , and their currents rise linearly with the same slope,
Figure 108119342-A0305-02-0013-4

當時間t等於該第二開始時間t1,該第二開關S2切換在該不導通狀態時,本階段結束。 When the time t is equal to the second start time t1 and the second switch S 2 is switched to the non-conducting state, this stage ends.

第二階段[t:t1~t2]: The second stage [t: t1~t2]:

參閱圖4及圖6,本第二階段開始的時間t等於該第二開始時間t1,該第二開關S2切換在該不導通狀態。一第二漏電感的電流 iLk2對該第二開關寄生電容CS2充電,該第二開關的跨壓vds2由零電壓開始上升,該第一與第二耦合電感的二次側繞組的壓差可表示為,

Figure 108119342-A0305-02-0014-5
4 and 6, the time t at which the second stage starts is equal to the second start time t1, and the second switch S 2 is switched to the non-conducting state. The current i Lk2 of a second leakage inductance charges the second switch parasitic capacitance C S2 , the voltage across the second switch v ds2 starts to rise from zero voltage, the voltage of the secondary winding of the first and second coupling inductors The difference can be expressed as,
Figure 108119342-A0305-02-0014-5

當時間t等於該第三開始時間t2,該第二開關的跨壓vds2等於一箝位電容的電壓VCc時,該第二箝位二極體D2、該第三二極體D3,及該第四二極體D4皆導通,本階段結束。因為該第二開關寄生電容CS2的電容值很小,所以本階段時間很短。 When the time t is equal to the third start time t2 and the voltage across the second switch v ds2 is equal to the voltage V Cc of a clamping capacitor, the second clamping diode D 2 and the third diode D 3 , And the fourth diode D 4 is turned on, this stage is over. Because the capacitance value of the second switch parasitic capacitance C S2 is very small, the time in this stage is very short.

第三階段[t:t2~t3]: The third stage [t: t2~t3]:

參閱圖4及圖7,本第三階段開始的時間t等於該第三開始時間t2,該第二箝位二極體D2、該第三二極體D3,及該第四二極體D4皆導通,該第二耦合電感的二次側繞組的跨壓小於零,即Vin-VCc<0,該第二漏電感的電流iLk2下降,且經由該第二箝位二極體D2對該箝位電容Cc充電,儲存在該第二磁化電感Lm2的能量藉由該第二耦合電感的一次側繞組Np2傳送到該第二耦合電感的二次側繞組Ns2,經由該第三二極體D3及該第四二極體D4,對該第一電容C1及該第二電容C2充電。另一方面,該第一與第二耦合電感的二次側繞組(Ns1、Ns2)的電流感應至該第一耦合電感的一次側繞組(Np1、Np2),使得該第一漏電感的電流iLk1以相關於一第一電感的電流iLm1、一第三二極體的電流iD3,及一第四二極體的電流iD4上 升,iLk1=iLm1+n(iD3+iD4)…式三 4 and 7, the time t at which the third stage starts is equal to the third start time t2, the second clamp diode D 2 , the third diode D 3 , and the fourth diode D 4 is turned on, the cross-voltage of the secondary winding of the second coupled inductor is less than zero, that is, V in -V Cc <0, the current i Lk2 of the second leakage inductor decreases, and passes through the second clamp diode The body D 2 charges the clamping capacitor C c , and the energy stored in the second magnetizing inductance L m2 is transferred to the secondary winding N s2 of the second coupled inductance through the primary winding N p2 of the second coupled inductance Through the third diode D 3 and the fourth diode D 4 , the first capacitor C 1 and the second capacitor C 2 are charged. On the other hand, the current of the secondary windings (N s1 , N s2 ) of the first and second coupled inductors is induced to the primary windings (N p1 , N p2 ) of the first coupled inductor, so that the first leakage The induced current i Lk1 increases with the current i Lm1 of a first inductor, the current i D3 of a third diode, and the current i D4 of a fourth diode, i Lk1 = i Lm1 + n (i D3 +i D4 )…Form 3

當時間t等於該第四開始時間t3,該第二漏電感的電流iLk2下降至零時,該第二箝位二極體D2以零電流切換(ZCS)而轉成不導通,本階段結束。因為該第二箝位二極體D2以零電流切換成不導通,因此沒有反向恢復損失問題。 When the time t is equal to the fourth start time t3, and the current i Lk2 of the second leakage inductance drops to zero, the second clamp diode D 2 becomes non-conducting with zero current switching (ZCS), this stage End. Because the second clamp diode D 2 switches to non-conduction with zero current, there is no reverse recovery loss problem.

第四階段[t:t3~t4]: The fourth stage [t: t3~t4]:

參閱圖4及圖8,本第四階段開始的時間t等於該第四開始時間t3,該第二箝位二極體D2為不導通,該第二磁化電感Lm2完全由該第一及第二耦合電感的一次側繞組(Np1、Np2)感應到該第一及第二耦合電感的二次側繞組(Ns1、Ns2),以持續對該第一電容C1及該第二電容C2充電,此時來自該第三二極體D3及該第四二極體D4的充電電流相關於一第二電感的電流iLm2且表示為,iD3+iD4=(iLm2/n)…式四 Referring to FIGS. 4 and 8, the time t at which the fourth stage starts is equal to the fourth start time t3, the second clamp diode D 2 is non-conductive, and the second magnetizing inductance L m2 is completely determined by the first and The primary winding (N p1 , N p2 ) of the second coupled inductor senses the secondary winding (N s1 , N s2 ) of the first and second coupled inductors to continue to the first capacitor C 1 and the first The second capacitor C 2 is charged, and the charging current from the third diode D 3 and the fourth diode D 4 is related to the current i Lm2 of a second inductor and is expressed as, i D3 + i D4 = ( i Lm2 / n )…Equation 4

該第一開關的電流iS1可表示為iS1=(iLm1+iLm2)…式五 The current i S1 of the first switch can be expressed as i S1 =(i Lm1 +i Lm2 )... Formula 5

當時間t等於該第五開始時間t4,該輔助開關Sa從該不導通狀態切換為該導通狀態時,本階段結束。 When the time t is equal to the fifth start time t4, the switching of the auxiliary switch S a, the end of the stage for the conductive state from the non-conductive state.

第五階段[t:t4~t5]: The fifth stage [t: t4~t5]:

參閱圖4及圖9,本第五階段開始的時間t等於該第五開始 時間t4,該輔助開關Sa在該導通狀態,該第二輔助二極體Da2從不導通轉成導通,因為該輔助電感La,且其電流初始值為零,所以該輔助開關Sa和該第二輔助二極體Da2能夠以零電流切換為導通。此時,該輔助電感La、第二開關寄生電容CS2,及該第二漏電感Lk2產生共振,該輔助電感的電流iLa以共振形式上升,該第二開關的跨壓vds2以共振形式下降,該第二漏電感的電流iLk2從零開始上升,導致該第一及第二耦合電感的二次側繞組(Ns1、Ns2)的電流開始下降,進而使該第三二極體的電流iD3及該第四二極體的電流iD4下降。 Referring to FIGS. 4 and 9, the time t at which the fifth stage starts is equal to the fifth start time t4, the auxiliary switch S a is in the conductive state, and the second auxiliary diode D a2 is never turned to conductive, because this auxiliary inductance L a, and its current initial value is zero, so that the auxiliary switches S a and the second auxiliary diode D a2 can be switched to zero current is turned on. At this time, the auxiliary inductance L a , the second switch parasitic capacitance C S2 , and the second leakage inductance L k2 resonate, the auxiliary inductance current i La rises in the form of resonance, and the voltage across the second switch v ds2 The resonance form drops, and the current i Lk2 of the second leakage inductance rises from zero, causing the currents of the secondary windings (N s1 and N s2 ) of the first and second coupling inductances to start to fall, thereby causing the third and second The current i D3 of the polar body and the current i D4 of the fourth diode decrease.

當時間t等於該第六開始時間t5,該第二漏電感的電流iLk2相等於該第二電感的電流iLm2,此時,該第三二極體的電流iD3及該第四二極體的電流iD4下降至零,該第三二極體D3及該第四二極體D4以零電流切換自然切換成不導通,本階段結束。 When the time t is equal to the start of the sixth time t5, the leakage inductance of the second current i Lk2 the second inductor current is equal to the i Lm2, at this time, the current i D3 of the third diode and the fourth diode The current i D4 of the body drops to zero, and the third diode D 3 and the fourth diode D 4 are naturally switched to non-conduction with zero current switching, and this stage ends.

第六階段[t:t5~t6]: The sixth stage [t: t5~t6]:

參閱圖4及圖10,本第六階段開始的時間t等於該第六開始時間t5,該第三二極體D3及該第四二極體D4皆為不導通,該第二開關的跨壓vds2因共振而繼續下降,當該第二開關的跨壓vds2下降至零,該第二開關S2的本體二極體導通,使該第二開關S2的零電壓切換的條件成立。 Referring to FIGS. 4 and 10, the time t at which the sixth stage starts is equal to the sixth start time t5, the third diode D 3 and the fourth diode D 4 are both non-conductive, and the second switch voltage across v ds2 continued to decline due to resonance, v ds2 when the voltage across the second switch drops to zero, the second switch S 2, the body diode conduction, the second switch S 2 zero-voltage switching condition Established.

當時間t等於該第七開始時間t6,該第二開關S2從該不導通狀態切換成該導通狀態,達到零電壓切換性能,本階段結束。 When the time t is equal to the seventh start time t6, the second switch S 2 switches from the non-conducting state to the conducting state, reaches zero voltage switching performance, and this stage ends.

第七階段[t:t6~t7]: The seventh stage [t: t6~t7]:

參閱圖4及圖11,本第七階段開始的時間t等於該第七開始時間t6,該第二開關S2以零電壓切換在該導通狀態,此時,一輔助電感的跨壓vLa為零,該輔助電感的電流iLa保持常數。 Referring to FIGS. 4 and 11, the time t at the beginning of the seventh stage is equal to the seventh start time t6, and the second switch S 2 switches to the on state with zero voltage. At this time, the cross-voltage v La of an auxiliary inductor is At zero, the current i La of the auxiliary inductor remains constant.

當時間t等於該第八開始時間t7,該輔助開關Sa受控於該第三脈波調變信號,從該導通狀態切換為該不導通狀態,本階段結束。 When the eighth time t equal to the start time T7, of the auxiliary switch S a is controlled by the third pulse modulation signal, switching from the conducting state for the non-conductive state, the end of the stage.

第八階段[t:t7~t8]: The eighth stage [t: t7~t8]:

參閱圖4及圖12,本第八階段開始的時間t等於該第八開始時間t7,該輔助開關Sa在該不導通狀態,因為該輔助電感的電流iLa的連續性,使得該第三輔助二極體Da3導通,該輔助電感的跨壓vLa的大小等於負的該箝位電容的電壓VCc,即(vLa=-VCc),該輔助電感的電流iLa呈現性下降,該輔助電感La儲存的能量傳送到該箝位電容CcReferring to FIG. 4 and FIG. 12, the beginning of the present time t is equal to an eighth of the eighth stage of the start time T7, of the auxiliary switch S a in the non-conducting state, since the current i La of the auxiliary inductor continuity, so that the third The auxiliary diode D a3 is turned on, and the magnitude of the cross-voltage v La of the auxiliary inductor is equal to the negative voltage V Cc of the clamping capacitor, that is (v La =-V Cc ), and the current i La of the auxiliary inductor drops demonstrably The energy stored in the auxiliary inductor L a is transferred to the clamping capacitor C c .

當時間t等於該第九開始時間t8,該輔助電感的電流iLa下降至零,該第二輔助二極體Da2及該第三輔助二極體Da3以零電流切換自然切換成不導通,本階段結束。 When the time t is equal to the ninth start time t8, the current i La of the auxiliary inductor drops to zero, and the second auxiliary diode D a2 and the third auxiliary diode D a3 are naturally switched to non-conducting with zero current switching , This stage is over.

參閱圖4及圖13,接著,進入後半切換週期的八個階段,儲存在該第一磁化電感Lm1的能量藉由耦合感應傳送至該輸出單元4所形成的負載,而且控制該輔助開關Sa使該第一開關S1達到零電 壓切換。由於第九與第十階段與前半切換週期的第一與二階段的操作原理相似,詳細分析在此省略,圖13表示在第九階段的電路。 Referring to FIGS. 4 and 13, then, in the eight stages of the second half of the switching cycle, the energy stored in the first magnetizing inductance L m1 is transmitted to the load formed by the output unit 4 through coupling induction, and the auxiliary switch S is controlled a Bring the first switch S 1 to zero voltage switching. Since the operating principles of the ninth and tenth stages are similar to those of the first and second stages of the first half of the switching cycle, detailed analysis is omitted here, and FIG. 13 shows the circuit in the ninth stage.

參閱圖4及圖14,該注意的是,在第十階段的電路與第九階段的電路的差別在於,在第十階段的電路中,該第一開關寄生電容CS1因開始充電而導通。 Referring to FIGS. 4 and 14, it should be noted that the difference between the circuit in the tenth stage and the circuit in the ninth stage is that in the circuit in the tenth stage, the first switch parasitic capacitance C S1 is turned on due to the start of charging.

第十一階段[t:t10~t11]: The eleventh stage [t: t10~t11]:

參閱圖4及圖15,本第十一階段開始的時間t等於該第十一開始時間t10,該第一開關S1切換在該不導通狀態且該第一箝位二極體D1導通,一第一漏電感的電流iLk1對該箝位電容的電壓VCc充電,該第一漏電感的電流iLk1開始下降。該第一磁化電感Lm1所儲存的能量藉由耦合感應傳送至該輸出單元4,該輸出二極體的電流iDo上升,其增加速率受該第一漏電感Lk1控制,該第一及第二耦合電感的二次側繞組(Ns1、Ns2)、該第一電容C1,及該第二電容C2作為電壓源來提升電壓增益M。 Referring to FIGS. 4 and 15, the time t at which the eleventh stage starts is equal to the eleventh starting time t10, the first switch S 1 is switched in the non-conduction state and the first clamp diode D 1 is turned on, The current i Lk1 of a first leakage inductance charges the voltage V Cc of the clamping capacitor, and the current i Lk1 of the first leakage inductance starts to decrease. The energy stored in the first magnetizing inductance L m1 is transmitted to the output unit 4 by coupling induction, and the current i Do of the output diode rises, the rate of increase is controlled by the first leakage inductance L k1 , the first and The secondary winding (N s1 , N s2 ) of the second coupled inductor, the first capacitor C 1 , and the second capacitor C 2 serve as voltage sources to increase the voltage gain M.

當時間t等於該第十二開始時間t11,該第一漏電感的電流iLk1下降至零,該第一箝位二極體D1以零電流切換自然切換成不導通,本階段結束。 When the time t is equal to the twelfth start time t11, the current i Lk1 of the first leakage inductance drops to zero, and the first clamp diode D 1 is naturally switched to non-conducting with zero current switching, and this stage ends.

第十二階段[t:t11~t12]: The twelfth stage [t: t11~t12]:

參閱圖4及圖16,本第十二階段開始的時間t等於該第十二開始時間t11,該第一箝位二極體D1切換成不導通,該第一電感 的電流iLm1該完全由耦合感應經該第一與第二耦合電感的二次側繞組(Ns1、Ns2)至該輸出單元4,因此,該輸出二極體的電流iDo可表示為,iDo=(iLm2/n)…式六 Referring to FIGS. 4 and 16, the time t at the beginning of the twelfth stage is equal to the twelfth starting time t11, the first clamp diode D 1 is switched off, and the current i Lm1 of the first inductor is completely From the coupled induction to the output unit 4 through the secondary windings (N s1 , N s2 ) of the first and second coupled inductors, the current i Do of the output diode can be expressed as, i Do = (i Lm2 / n )…Formula 6

該箝位電容的電壓VCc對該輸出單元4放電,其中,該第二開關的電流iS2等於該第一電感的電流iLm1加上該第二電感的電流iLm2,即iS2=(iLm1+iLm2)。 Voltage V Cc to the output unit 4 of the clamp capacitor is discharged, wherein the second switch current i S2 equal to the first coupled inductor current i Lm1 of the second inductor current i Lm2, i.e. i S2 = ( i Lm1 +i Lm2 ).

當時間t等於該第十三開始時間t12,該輔助開關Sa從該不導通狀態切換為該導通狀態時,本階段結束。 When the thirteenth time t equal to the start time T12, when the auxiliary switch S a conducting state for switching from the non-conductive state, the end of this phase.

第十三階段[t:t12~t13]: The thirteenth stage [t: t12~t13]:

參閱圖4及圖17,本第十三階段開始的時間t等於該第十三開始時間t12,該輔助開關Sa在該導通狀態,該第一輔助二極體Da1切換成導通,因為該輔助電感的電流iLa的初始值為零,所以該輔助開關Sa及該第一輔助二極體Da1以零電流切換切換在該導通狀態。該第一漏電感的電流iLk1從零開始上升,該輸出二極體的電流iDo下降。 Referring to FIGS. 4 and 17, the time t at the beginning of the thirteenth phase is equal to the thirteenth starting time t12, the auxiliary switch S a is in the on state, and the first auxiliary diode D a1 is switched on, because the the initial value of the current i La of the auxiliary inductor is zero, so that the auxiliary switch S a and the first auxiliary diode D a1 is switched to zero current switching the conducting state. The current i Lk1 of the first leakage inductance rises from zero, and the current i Do of the output diode decreases.

當時間t等於該第十四開始時間t13,該輸出二極體的電流iDo下降至零,該輸出二極體Do以零電流切換自然切換到該不導通狀態時,本階段結束。 When the time t is equal to the fourteenth time T13 starts, the output current is i Do diode drops to zero, the output diode D o to zero current switching is switched to the natural non-conducting state, the end of this phase.

第十四階段[t:t13~t14]: The fourteenth stage [t: t13~t14]:

參閱圖18、圖19,及圖20,由於第十四階段、第十五階段,及第十六階段分別與前半切換週期之相對應的第六階段、第七階段,及第八階段的操作原理相似,只差在前半切換週期導通的是該第二輔助二極體Da2,後半切換週期導通的是該第一輔助二極體Da1,故,詳細分析在此省略。 Referring to FIGS. 18, 19, and 20, since the operations of the fourteenth, fifteenth, and sixteenth phases correspond to the operations of the sixth, seventh, and eighth phases corresponding to the first half of the switching period, respectively The principle is similar, except that the second auxiliary diode D a2 is turned on in the first half of the switching period, and the first auxiliary diode D a1 is turned on in the second half of the switching period, so detailed analysis is omitted here.

上述之十六個階段完成後進入下一切換週期Ts,重新開始第一階段電路動作。 After the above-mentioned sixteen stages are completed, the next switching period T s is entered, and the circuit operation of the first stage is restarted.

由上述的十六個階段的分析可知,本發明高升壓轉換器的該第一開關S1及該第二開關S2皆可達到零電壓切換性能,雖然該輔助開關Sa不具有零電壓切換性能,但該輔助開關Sa可達到零電流切換到該導通狀態,降低切換損失。另外,因為該第一漏電感Lk1與該第二漏電感Lk2使得所有二極體都達到以零電流切換自然切換到該不導通狀態,改善反向恢復損失。 From the above-mentioned analysis of the sixteen stages, it can be seen that both the first switch S 1 and the second switch S 2 of the high boost converter of the present invention can achieve zero voltage switching performance, although the auxiliary switch S a does not have zero voltage handover performance, but it can reach the auxiliary switch S a zero current switching to the conducting state, switching losses decrease. In addition, because the first leakage inductance L k1 and the second leakage inductance L k2 enable all diodes to naturally switch to the non-conducting state with zero current switching, the reverse recovery loss is improved.

在做穩態電壓增益分析前,為了簡化分析,需基於以下的幾個條件下: Before doing the steady-state voltage gain analysis, in order to simplify the analysis, it needs to be based on the following conditions:

條件一:忽略時間極短的柔性切換階段,僅考慮第一、第三、第四、第九、第十一,及第十二階段。 Condition 1: Ignore the extremely short flexible switching stage, and only consider the first, third, fourth, ninth, eleventh, and twelfth stages.

條件二:忽略該第一漏電感Lk1與該第二漏電感Lk2Condition 2: ignore the first leakage inductance L k1 and the second leakage inductance L k2 .

條件三:該箝位電容Cc、該輸出電容Co、該第一電容C1,及該第二電容C2夠大,忽略電容的電壓漣波,使得電容的跨壓視為 常數。 Condition 3: The clamping capacitor C c , the output capacitor C o , the first capacitor C 1 , and the second capacitor C 2 are large enough to ignore the voltage ripple of the capacitor, so that the voltage across the capacitor is regarded as a constant.

電壓增益: Voltage gain:

由於該箝位電容Cc的跨壓VCc可視為傳統升壓型轉換器的輸出電壓,因此該箝位電容的跨壓VCc可推導如式七,

Figure 108119342-A0305-02-0021-6
Since the cross-voltage V Cc of the clamp capacitor C c can be regarded as the output voltage of the conventional boost converter, the cross-voltage V Cc of the clamp capacitor can be derived as shown in Equation 7,
Figure 108119342-A0305-02-0021-6

一第一電容C1的跨壓VC1及一第二電容C2的跨壓VC2,可藉由第三階段的該第一及第二耦合電感的一次側繞組感應到二次側繞組的電壓,使用該耦合電感匝數比n來表示,即vNs1=nVin,vNs2=n(Vin-VCc),因此該第一電容C1的跨壓VC1可推導如式八,

Figure 108119342-A0305-02-0021-8
A voltage across the first capacitor C1 of V C 1 and a second voltage V across the capacitor C 2 of C2, may be the primary winding by the first and second stages of a third inductor coupled to the secondary winding of the induction The voltage is expressed by the turns ratio n of the coupled inductor, that is, v Ns1 =nV in , v Ns2 =n(V in -V Cc ), so the voltage V C1 of the first capacitor C 1 can be derived as Equation 8,
Figure 108119342-A0305-02-0021-8

第十一階段的該第一及第二耦合電感的一次側繞組感應到二次側繞組的電壓,即vNs1=n(Vin-VCc),vNs2=nVin,因此該輸出電壓Vo可推導如式九,

Figure 108119342-A0305-02-0021-7
In the eleventh stage, the primary winding of the first and second coupled inductors induces the voltage of the secondary winding, that is, v Ns1 =n(V in -V Cc ), v Ns2 =nV in , so the output voltage V o can be derived as in formula 9,
Figure 108119342-A0305-02-0021-7

因此本轉換器的電壓增益可表示如式十,

Figure 108119342-A0305-02-0021-9
Therefore, the voltage gain of this converter can be expressed as
Figure 108119342-A0305-02-0021-9

從式十可知電壓增益具有該耦合電感匝數比n和該導通比D兩個設計自由度。本發明高升壓轉換器可藉由適當設計該耦合電感匝數比n,達到高電壓增益,而不必操作在極大的導通比。對 應於該耦合電感匝數比n及該導通比D的電壓增益曲線如圖21所示。由圖20可知當導通比D=0.6、該耦合電感匝數比n為1時,電壓增益為10倍。 From Equation 10, it can be seen that the voltage gain has two design degrees of freedom: the coupled inductor turns ratio n and the conduction ratio D. The high-boost converter of the present invention can achieve a high voltage gain by appropriately designing the coupled inductor turns ratio n, without having to operate at a very large conduction ratio. Correct The voltage gain curve corresponding to the turns ratio n of the coupled inductor and the conduction ratio D is shown in FIG. 21. It can be seen from FIG. 20 that when the conduction ratio D=0.6 and the turns ratio n of the coupled inductor is 1, the voltage gain is 10 times.

開關與二極體的電壓應力: Voltage stress of switch and diode:

由該高升壓轉換器操作原理可知該第一開關S1、該第二開關S2,及該輔助開關Sa的電壓應力等於該第一電容C1的跨壓VC1,表示如式十一

Figure 108119342-A0305-02-0022-10
According to the operating principle of the high-boost converter, the voltage stress of the first switch S 1 , the second switch S 2 , and the auxiliary switch S a is equal to the cross-voltage V C1 of the first capacitor C 1 , which is expressed as One
Figure 108119342-A0305-02-0022-10

該第一箝位二極體D1、該第二箝位二極體D2、該第三二極體D3、該第四二極體D4、該輸出二極體Do、該第一輔助二極體Da1、該第二輔助二極體Da2,及該第三輔助二極體Da3的電壓應力可由各階段而推導如式十二、式十三、式十四,及式十五,

Figure 108119342-A0305-02-0022-11
The first clamp diode D 1 , the second clamp diode D 2 , the third diode D 3 , the fourth diode D 4 , the output diode D o , the first The voltage stress of an auxiliary diode D a1 , the second auxiliary diode D a2 , and the third auxiliary diode D a3 can be derived from each stage as Equation 12, Equation 13, Equation 14, and Formula fifteen,
Figure 108119342-A0305-02-0022-11

Figure 108119342-A0305-02-0022-12
Figure 108119342-A0305-02-0022-12

Figure 108119342-A0305-02-0022-13
Figure 108119342-A0305-02-0022-13

Figure 108119342-A0305-02-0022-14
Figure 108119342-A0305-02-0022-14

傳統交錯式升壓型轉換器的功率開關及二極體的電壓應力為輸出電壓,而本發明高升壓轉換器的開關電壓應力僅為該輸出電壓Vo的1/(3n+1)倍,而二極體的最大電壓應力僅為Vo的2n/(3n+1)倍,若耦合電感匝數比n為1,僅為1/2倍。在高輸出電 壓應用中,可使用低額定耐壓具有較低的導通電阻(RDS(ON))的金屬氧化物半導體場效電晶體(MOSFET),降低開關導通損失。另外,較低電壓應力的二極體可採用蕭特基二極體,其導通壓降比一般功率二極體導通壓降為低,可降低導通損失。 Voltage of the conventional switching interleaved power converter and a boost diode output voltage stress, and the stress of the present invention, the high voltage switch of the boost converter output voltage V o is only a 1 / (3n + 1) times , And the maximum voltage stress of the diode is only 2n/(3n+1) times of Vo , if the coupling inductance turns ratio n is 1, it is only 1/2 times. In high output voltage applications, a metal oxide semiconductor field effect transistor (MOSFET) with a low rated withstand voltage and a low on-resistance (R DS(ON) ) can be used to reduce the switching conduction loss. In addition, the Schottky diode can be used for the diode with lower voltage stress, and its conduction voltage drop is lower than that of a general power diode, which can reduce conduction loss.

利用IsSpice軟體對本發明高升壓轉換器作初步的電路模擬與驗證: Using IsSpice software to make preliminary circuit simulation and verification of the high boost converter of the present invention:

根據電路動作分析結果,利用IsSpice軟體作初步的模擬,該高升壓轉換器規格為:輸入電壓40伏、輸出電壓400伏、最大輸出功率1000瓦、切換頻率50千赫茲(50KHz),及該耦合電感匝數比n為1,驗證該高升壓轉換器的特點,模擬結果與分析如下, According to the circuit operation analysis results, IsSpice software is used for preliminary simulation. The specifications of the high boost converter are: input voltage 40V, output voltage 400V, maximum output power 1000W, switching frequency 50KHz (50KHz), and the The turns ratio n of the coupled inductor is 1, verifying the characteristics of the high boost converter, the simulation results and analysis are as follows,

(1)驗證穩態特性: (1) Verify the steady-state characteristics:

滿載1000瓦時,該第一開關S1、該第二開關S2,及該輔助開關Sa的驅動信號、輸入電壓與輸出電壓波形如圖22所示,其中該輔助開關Sa的導通時間為1微秒,從圖21可以看出該輸入電壓Vin等於40伏,該輸出電壓Vo等於400伏,該導通比D為0.61,與理論上的導通比為0.6相當接近,符合電壓增益(式十)的分析結果。驗證了電壓增益10倍,但轉換器不必操作在極大的導通比。 1000 watts at full load, the first switches S 1, the second switch S 2, and the auxiliary switch S a drive signal, the input voltage and the output voltage waveform shown in Figure 22, wherein the auxiliary switch S a ON time 1 microsecond, it can be seen from FIG. 21 of the input voltage V in is equal to 40 volts, the output voltage V o is equal to 400 V, the conduction ratio D is 0.61, the theoretical ratio of conduction is very close to 0.6, in line with the voltage gain The analysis result of (Formula 10). It is verified that the voltage gain is 10 times, but the converter does not have to operate at a very large turn-on ratio.

(2)驗證開關電壓應力: (2) Verify the switching voltage stress:

參閱圖23,為各個開關的驅動信號及各個開關的跨壓的波形,由圖可知各開關的跨壓最大值約為100伏,因此電壓應力僅 為輸出電壓400伏的四分之一,符合式十一的推導結果,驗證該高升壓轉換器的各個開關具有低電壓應力的優點。 Referring to FIG. 23, it is the drive signal of each switch and the waveform of the voltage across each switch. From the figure, it can be seen that the maximum voltage across each switch is about 100 volts, so the voltage stress It is a quarter of the output voltage of 400 volts, which is in accordance with the derivation result of Equation 11, which verifies that each switch of the high boost converter has the advantage of low voltage stress.

(3)驗證兩個開關皆能達到零電壓切換的操作: (3) Verify that both switches can achieve zero voltage switching operation:

滿載1000瓦時,該第一開關S1及該第二開關S2的驅動信號,以及該第一開關的跨壓vds1、該第二開關的跨壓vds2的波形如圖24所示,由切換瞬間的波形可看到開關切換為導通狀態之前,該第一開關的跨壓vds1及該第二開關的跨壓vds2均已先降至零,因此達到零電壓切換的操作。 At a full load of 1000 watt-hours, the driving signals of the first switch S 1 and the second switch S 2 and the waveforms of the voltage across the first switch v ds1 and the voltage across the second switch v ds2 are shown in FIG. 24. From the waveform at the moment of switching, it can be seen that before the switch is switched to the on state, the cross-over voltage v ds1 of the first switch and the cross-over voltage v ds2 of the second switch have both dropped to zero first, so the operation of zero-voltage switching is reached.

當負載為輕載200瓦時,該第一開關S1及該第二開關S2的驅動信號,以及該第一開關的跨壓vds1、該第二開關的跨壓vds2的波形如圖25所示,可看出該第一開關S1及該第二開關S2仍然達到零電壓切換的操作。 When the load is 200 watts at light load, the driving signals of the first switch S 1 and the second switch S 2 and the waveforms of the voltage across the first switch v ds1 and the voltage across the second switch v ds2 are as shown in the figure As shown in 25, it can be seen that the first switch S 1 and the second switch S 2 still reach zero voltage switching operation.

(4)驗證交錯式操作具有低輸入漣波電流性能: (4) Verify that the interleaved operation has low input ripple current performance:

參閱圖26,為滿載1000瓦時,該第一漏電感的電流iLk1、該第二漏電感的電流iLk2,及該輸入電流iin的波形,由圖26可知該第一漏電感的電流iLk1和該第二漏電感的電流iLk2的漣波電流均大約28安培(A),而該輸入電流iin的漣波電流僅約1.77安培,驗證交錯式操作具有降低輸入漣波電流之性能。 Referring to Figure 26, when loaded with 1000 watts, the leakage inductance of the first current i Lk1, the leakage inductance of the second current i Lk2, and the waveform of the input current i in, the current of the leakage inductance of the first 26 seen from FIG. The ripple current of i Lk1 and the current of the second leakage inductance i Lk2 are both about 28 amperes (A), while the ripple current of the input current i in is only about 1.77 amperes, verifying that the interleaved operation has the effect of reducing the input ripple current performance.

(5)驗證電容電壓: (5) Verify the capacitor voltage:

參閱圖27,分別呈現該箝位電容Cc、該第一電容C1,及 該第二電容C2,及該輸出電容Co的跨壓波形,該箝位電容的跨壓VCc略大於100伏,該第一電容C1的跨壓VC1,及一第二電容C2的跨壓VC2大約都等於100伏,該輸出電容Co的跨壓等於400伏,原則上皆符合式七、式八,及式九的推導結果。 Referring to FIG. 27, the cross-voltage waveforms of the clamping capacitor C c , the first capacitor C 1 , the second capacitor C 2 , and the output capacitor C o are presented. The voltage across the clamping capacitor V Cc is slightly greater than 100 volts, the voltage across the first capacitor C V C1 1, the capacitor C and a second cross voltage V C2 2 is approximately equal to 100 volts, the output voltage across capacitor C o is equal to 400 volts, are in compliance with the principle of formula The derivation results of formula 7, formula 8, and formula 9.

(6)驗證箝位二極體反向恢復問題及電壓應力: (6) Verify the reverse recovery problem and voltage stress of the clamp diode:

參閱圖28,為該第一箝位二極體的電流iD1與電壓(vD1),及該第二箝位二極體的電流iD2與電壓(vD2)的波形,由圖28可知該第一箝位二極體的電流iD1及該第二箝位二極體的電流iD2都先降至為零,該第一箝位二極體的跨壓及該第二箝位二極體的跨壓才從導通切換為不導通,故,沒有反向恢復電流的產生,因此可降低反向恢復損失及電磁干擾(EMI)的雜訊。另一方面,該第一箝位二極體D1及該第二箝位二極體D2的電壓應力約為100伏,僅為該輸出電壓Vo的1/4,符合式十二的推導結果。 Referring to FIG. 28, the waveforms of the current i D1 and the voltage (v D1 ) of the first clamp diode, and the current i D2 and the voltage (v D2 ) of the second clamp diode are known from FIG. 28 The current i D1 of the first clamp diode and the current i D2 of the second clamp diode both drop to zero first, the cross-voltage of the first clamp diode and the second clamp two The voltage across the polar body is switched from conducting to non-conducting. Therefore, no reverse recovery current is generated, thus reducing the reverse recovery loss and electromagnetic interference (EMI) noise. On the other hand, the voltage stress of the first clamp diode D 1 and the second clamp diode D 2 is about 100 volts, which is only 1/4 of the output voltage V o , which is in accordance with Equation 12 Derive the results.

(7)驗證切換二極體和輸出二極體反向恢復問題及電壓應力: (7) Verify reverse recovery problems and voltage stress of switching diodes and output diodes:

參閱圖29,為該第三二極體的電流iD3與電壓(vD3),及該第四二極體的電流iD4與電壓(vD4)的波形,由圖28可知沒有反向恢復電流的產生,因此可降低反向恢復損失及電磁干擾的雜訊,另一方面,該第三二極體D3及該第四二極體D4的電壓應力約為200伏,僅為該輸出電壓Vo的1/2,符合式十三的推導結果。 Referring to FIG. 29, the waveforms of the current i D3 and voltage (v D3 ) of the third diode, and the current i D4 and voltage (v D4 ) of the fourth diode, as shown in FIG. 28, there is no reverse recovery The generation of current can reduce the noise of reverse recovery loss and electromagnetic interference. On the other hand, the voltage stress of the third diode D 3 and the fourth diode D 4 is about 200 volts, which is only The 1/2 of the output voltage V o conforms to the derivation result of Equation 13.

綜上所述,上述實施例具有以下優點是: In summary, the above embodiments have the following advantages:

(1)由於導入具有該第一耦合電感及第二耦合電感的該電壓倍增單元3,使該第一耦合電感及第二耦合電感之匝數比增加電壓增益的設計自由度。 (1) Since the voltage multiplying unit 3 having the first coupling inductor and the second coupling inductor is introduced, the turn ratio of the first coupling inductor and the second coupling inductor increases the design freedom of the voltage gain.

(2)由於加入該零電壓切換輔助單元2,可利用該第一開關寄生電容CS1及該第二開關寄生電容CS2分別與該輔助電感La的共振技術,使得該第一開關S1及該第二開關S2皆能達到零電壓切換,該輔助開關Sa能達到零電流切換的柔切性能,以降低切換損失,提升效率。 (2) Since the zero voltage switching is added to the auxiliary unit 2, may utilize the first switch parasitic capacitances C S1 and the second switch parasitic capacitance C S2 respectively of the auxiliary inductor L a resonance technology, such that the first switch S 1 is Both the second switch S 2 can achieve zero voltage switching, and the auxiliary switch S a can achieve the soft cut performance of zero current switching, so as to reduce switching losses and improve efficiency.

(3)由於開關電壓應力遠低於該輸出電壓Vo,所以可使用低額定耐壓具有較低的導通電阻(RDS(ON))的金屬氧化物半導體場效電晶體(MOSFET),降低開關導通損失。 (3) Since the switching voltage stress is much lower than the output voltage V o , a metal oxide semiconductor field effect transistor (MOSFET) with a low rated withstand voltage and a low on-resistance (R DS(ON) ) can be used to reduce Switch conduction loss.

(4)輸入側的該第一漏電感Lk1及該第二漏電感Lk2為並聯架構與交錯式操作,具有分擔輸入電流與降低輸入電流漣波的效能。 (4) The first leakage inductance L k1 and the second leakage inductance L k2 on the input side are of a parallel architecture and interleaved operation, and have the effect of sharing input current and reducing input current ripple.

(5)該第一漏電感Lk1及該第二漏電感Lk2可緩和該第一箝位二極體D1、該第二箝位二極體D2、該第三二極體D3,及該第四二極體D4的反向恢復問題與降低反向恢復損失。該第一漏電感Lk1及該第二漏電感Lk2的能量能夠回收再利用,不但可避免主開關的電壓突波,也能提升效率。 (5) The first leakage inductance L k1 and the second leakage inductance L k2 can alleviate the first clamping diode D 1 , the second clamping diode D 2 , and the third diode D 3 , And the reverse recovery problem of the fourth diode D 4 and reduce the reverse recovery loss. The energy of the first leakage inductance L k1 and the second leakage inductance L k2 can be recovered and reused, which can not only avoid voltage surge of the main switch, but also improve efficiency.

上述的優點(1)~(5)確實可解決習知傳統升壓轉換器的缺點,確實達到本發明的目的。 The above advantages (1) to (5) can indeed solve the shortcomings of the conventional boost converter, and indeed achieve the purpose of the present invention.

惟以上所述者,僅為本發明的實施例而已,當不能以此限定本發明實施的範圍,凡是依本發明申請專利範圍及專利說明書內容所作的簡單的等效變化與修飾,皆仍屬本發明專利涵蓋的範圍內。 However, the above are only examples of the present invention, and the scope of implementation of the present invention cannot be limited by this, any simple equivalent changes and modifications made according to the scope of the patent application of the present invention and the content of the patent specification are still classified as Within the scope of the invention patent.

2:零電壓切換輔助單元 2: zero voltage switching auxiliary unit

3:電壓倍增單元 3: voltage multiplication unit

4:輸出單元 4: output unit

5:控制單元 5: control unit

Np1:第一耦合電感的一次側繞組 N p1 : primary winding of the first coupled inductor

Np2:第二耦合電感的一次側繞組 N p2 : primary winding of the second coupled inductor

Ns1:第一耦合電感的二次側繞組 N s1 : secondary winding of the first coupled inductor

CS1:第一開關的寄生電容 C S1 : Parasitic capacitance of the first switch

CS2:第二開關的寄生電容 CS2 : Parasitic capacitance of the second switch

Do:輸出二極體 D o : output diode

D1:第一箝位二極體 D 1 : First clamp diode

D2:第二箝位二極體 D 2 : Second clamp diode

D3:第三二極體 D 3 : Third diode

D4:第四二極體 D 4 : Fourth diode

Da1:第一輔助二極體 D a1 : first auxiliary diode

Da2:第二輔助二極體 D a2 : Second auxiliary diode

Da3:第三輔助二極體 D a3 : third auxiliary diode

Ns2:第二耦合電感的二次側繞組 N s2 : secondary winding of the second coupled inductor

S1:第一開關 S 1 : first switch

S2:第二開關 S 2 : Second switch

Sa:輔助開關 S a: the auxiliary switch

Cc:箝位電容 C c : clamping capacitance

Co:輸出電容 Co : output capacitance

C1:第一電容 C 1 : the first capacitor

C2:第二電容 C 2 : second capacitor

La:輔助電感 L a : auxiliary inductance

Ro:輸出負載 R o : output load

Vin:輸入電壓 V in : input voltage

Vo:輸出電壓 V o : output voltage

Claims (9)

一種高升壓轉換器,包含:一第一耦合電感及一第二耦合電感,該第一與第二耦合電感分別具有一個一次側繞組及一個二次側繞組,每一個側繞組具有一第一端及一第二端,該第一及第二耦合電感的一次側繞組的第一端電連接一起以接收一直流的輸入電壓,該第一耦合電感的二次側繞組的第二端電連接該第二耦合電感的二次側繞組的第二端;一第一開關,具有一電連接該第一耦合電感的一次側繞組的第二端的第一端,及一接地的第二端,且受控制切換於導通與不導通間;一第二開關,具有一電連接該第二耦合電感的一次側繞組的第二端的第一端,及一接地的第二端,且受控制切換於導通與不導通間;一第一箝位二極體,具有一電連接該第一耦合電感的一次側繞組的第二端的陽極,及一陰極;一第二箝位二極體,具有一電連接該第二耦合電感的一次側繞組的第二端的陽極,及一電連接於該第一箝位二極體的陰極的陰極;一箝位電容,具有一電連接於該第一箝位二極體的陰極的第一端及一接地的第二端;一零電壓切換輔助單元,電連接該第一開關的第一端、該第二開關的第一端,及該箝位電容的第一端,用以使該第一開關與第二開關達到零電壓切換; 一第三二極體,具有一電連接該第一箝位二極體的陰極的陽極,及一電連接該第二耦合電感的二次側繞組的第一端的陰極;一第四二極體,具有一電連接該第一耦合電感的二次側繞組的第一端的陽極,及一陰極;一第一電容,具有一電連接該第四二極體的陰極的第一端,及一電連接該第二耦合電感的二次側繞組的第一端的第二端;一第二電容,具有一電連接該第一耦合電感的二次側繞組的第一端的第一端,及一電連接該第一箝位二極體的陰極的第二端;及一輸出單元,電連接該第四二極體的陰極,用以提供一輸出電壓;該零電壓切換輔助單元包括一第一輔助二極體、一第二輔助二極體、一輔助電感、一第三輔助二極體與一輔助開關;該第一輔助二極體具有一電連接該第一開關的第一端的陽極及一陰極;該第二輔助二極體具有一電連接該第二開關的第一端的陽極,及一電連接該第一輔助二極體的陰極的陰極;該輔助電感具有一電連接該第一輔助二極體的陰極的第一端,及一第二端;該第三輔助二極體具有一電連接該輔助電感的第二端的陽極,及一電連接該第一二極體的陰極的陰極; 該輔助開關具有一電連接該輔助電感的第二端的第一端,及一接地的第二端。 A high boost converter includes: a first coupled inductor and a second coupled inductor, the first and second coupled inductors have a primary winding and a secondary winding, each side winding has a first And a second end, the first ends of the primary windings of the first and second coupled inductors are electrically connected together to receive a DC input voltage, and the second ends of the secondary windings of the first coupled inductor are electrically connected A second terminal of the secondary winding of the second coupled inductor; a first switch having a first terminal electrically connected to the second terminal of the primary winding of the first coupled inductor and a second terminal grounded, and Controlled switching between conducting and non-conducting; a second switch having a first end electrically connected to the second end of the primary winding of the second coupled inductor and a second end connected to ground, and controlled to switch on And non-conducting; a first clamp diode with an anode electrically connected to the second end of the primary winding of the first coupling inductor, and a cathode; a second clamp diode with an electrical connection An anode at the second end of the primary winding of the second coupling inductor, and a cathode electrically connected to the cathode of the first clamping diode; a clamping capacitor has an electrical connection to the first clamping diode A first end of the cathode of the body and a second end connected to the ground; a zero-voltage switching auxiliary unit electrically connecting the first end of the first switch, the first end of the second switch, and the first of the clamping capacitor Terminal for the first switch and the second switch to achieve zero voltage switching; A third diode with an anode electrically connected to the cathode of the first clamp diode, and a cathode electrically connected to the first end of the secondary winding of the second coupled inductor; a fourth diode The body has an anode electrically connected to the first end of the secondary winding of the first coupled inductor, and a cathode; a first capacitor has a first end electrically connected to the cathode of the fourth diode, and A second end electrically connected to the first end of the secondary winding of the second coupled inductor; a second capacitor having a first end electrically connected to the first end of the secondary winding of the first coupled inductor, And a second end electrically connected to the cathode of the first clamp diode; and an output unit electrically connected to the cathode of the fourth diode to provide an output voltage; the zero-voltage switching auxiliary unit includes a A first auxiliary diode, a second auxiliary diode, an auxiliary inductor, a third auxiliary diode and an auxiliary switch; the first auxiliary diode has a first end electrically connected to the first switch Anode and cathode; the second auxiliary diode has an anode electrically connected to the first end of the second switch, and a cathode electrically connected to the cathode of the first auxiliary diode; the auxiliary inductor has an electric A first end connected to the cathode of the first auxiliary diode and a second end; the third auxiliary diode has an anode electrically connected to the second end of the auxiliary inductor, and an electrically connected to the first diode Cathode of body cathode; The auxiliary switch has a first terminal electrically connected to the second terminal of the auxiliary inductor, and a second terminal grounded. 如請求項1所述的高升壓轉換器,其中,該輸出單元包括一輸出二極體,具有一電連接該第一電容的第一端的陽極,及一提供該輸出電壓的陰極;一輸出電容,具有一電連接該輸出二極體的陰極的第一端,及一接地的第二端;及一輸出電阻,具有一電連接該輸出二極體的陰極的第一端,及一接地的第二端。 The high boost converter according to claim 1, wherein the output unit includes an output diode, an anode electrically connected to the first end of the first capacitor, and a cathode providing the output voltage; The output capacitor has a first end electrically connected to the cathode of the output diode and a second end grounded; and an output resistor has a first end electrically connected to the cathode of the output diode, and a The second end of the ground. 如請求項1所述的高升壓轉換器,其中,每一個一次側繞組的第一端是打點端,每一個一次側繞組的第二端是非打點端。 The high-boost converter according to claim 1, wherein the first end of each primary winding is a dotted end, and the second end of each primary winding is a non-dotted end. 如請求項1所述的高升壓轉換器,其中,每一個二次側繞組的第一端是打點端,每一個二次側繞組的第二端是非打點端。 The high boost converter according to claim 1, wherein the first end of each secondary winding is a dotted end, and the second end of each secondary winding is a non-dotted end. 如請求項1所述的高升壓轉換器,其中,該第一開關是一N型功率半導體電晶體,且該第一開關的第一端是汲極,該第一開關的第二端是源極。 The high-boost converter according to claim 1, wherein the first switch is an N-type power semiconductor transistor, and the first end of the first switch is a drain, and the second end of the first switch is Source. 如請求項1所述的高升壓轉換器,其中,該第二開關是一N型功率半導體電晶體,且該第二開關的第一端是汲極,該第二開關的第二端是源極。 The high-boost converter according to claim 1, wherein the second switch is an N-type power semiconductor transistor, and the first end of the second switch is a drain, and the second end of the second switch is Source. 如請求項1所述的高升壓轉換器,更包括一控制單元,該控制單元產生一切換該第一開關的第一脈波信號,及一切 換該第二開關的第二脈波信號,該第一脈波信號與該第二脈波信號具有相同的周期時間。 The high-boost converter according to claim 1, further includes a control unit that generates a first pulse signal that switches the first switch, and everything For the second pulse signal of the second switch, the first pulse signal and the second pulse signal have the same cycle time. 如請求項7所述的高升壓轉換器,其中,該控制單元還產生一用以控制該零電壓切換輔助單元的第三脈波信號。 The high boost converter according to claim 7, wherein the control unit further generates a third pulse signal for controlling the zero-voltage switching auxiliary unit. 如請求項1所述的高升壓轉換器,其中,該第一開關的導通時間的一部份重疊於與該第二開關的導通時間的一部分。 The high boost converter according to claim 1, wherein a part of the on-time of the first switch overlaps with a part of the on-time of the second switch.
TW108119342A 2019-06-04 2019-06-04 High boost converter TWI694667B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW108119342A TWI694667B (en) 2019-06-04 2019-06-04 High boost converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW108119342A TWI694667B (en) 2019-06-04 2019-06-04 High boost converter

Publications (2)

Publication Number Publication Date
TWI694667B true TWI694667B (en) 2020-05-21
TW202046612A TW202046612A (en) 2020-12-16

Family

ID=71896354

Family Applications (1)

Application Number Title Priority Date Filing Date
TW108119342A TWI694667B (en) 2019-06-04 2019-06-04 High boost converter

Country Status (1)

Country Link
TW (1) TWI694667B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI792945B (en) * 2022-03-15 2023-02-11 崑山科技大學 High Voltage Gain DC Converter

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016040832A1 (en) * 2014-09-12 2016-03-17 The Regents Of The University Of California Hybrid boosting converters
US9444326B2 (en) * 2014-01-31 2016-09-13 Tdk-Lambda Uk Limited Sepic-type voltage converter
TW201817144A (en) * 2016-10-26 2018-05-01 崑山科技大學 Interleaved high efficiency high-step-up direct current transformer
CN207835353U (en) * 2018-01-18 2018-09-07 许继电气股份有限公司 A kind of high-gain converter based on coupling inductance and a kind of power-supply system
CN208461695U (en) * 2018-05-04 2019-02-01 南通科技职业学院 A kind of double coupling alternating expression booster converters of fuel cell
TW201914194A (en) * 2017-09-12 2019-04-01 崑山科技大學 High boost converter including a first and a second coupled inductors, a first and a second switches, a first and a second clamping diodes, a first and a second clamping capacitors, a first to a fourth diodes, and a first to a fourth capacitors

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9444326B2 (en) * 2014-01-31 2016-09-13 Tdk-Lambda Uk Limited Sepic-type voltage converter
WO2016040832A1 (en) * 2014-09-12 2016-03-17 The Regents Of The University Of California Hybrid boosting converters
TW201817144A (en) * 2016-10-26 2018-05-01 崑山科技大學 Interleaved high efficiency high-step-up direct current transformer
TW201914194A (en) * 2017-09-12 2019-04-01 崑山科技大學 High boost converter including a first and a second coupled inductors, a first and a second switches, a first and a second clamping diodes, a first and a second clamping capacitors, a first to a fourth diodes, and a first to a fourth capacitors
CN207835353U (en) * 2018-01-18 2018-09-07 许继电气股份有限公司 A kind of high-gain converter based on coupling inductance and a kind of power-supply system
CN208461695U (en) * 2018-05-04 2019-02-01 南通科技职业学院 A kind of double coupling alternating expression booster converters of fuel cell

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI792945B (en) * 2022-03-15 2023-02-11 崑山科技大學 High Voltage Gain DC Converter

Also Published As

Publication number Publication date
TW202046612A (en) 2020-12-16

Similar Documents

Publication Publication Date Title
Do Zero-voltage-switching synchronous buck converter with a coupled inductor
CN105141138B (en) A kind of voltage-multiplying type Sofe Switch type recommends DC converter
WO2017012328A1 (en) Phase-shift full-bridge topology circuit for single-stage power factor correction
TWI513164B (en) Flyback active clamping power converter
CN109039067B (en) Voltage-multiplying type three-winding coupling inductance high-gain direct current converter
CN109245545B (en) High-voltage gain LCL resonant DC-DC converter
CN108199579B (en) High-transformation-ratio soft-switching DC-DC buck converter with coupling inductor
Zhao et al. Efficiency improvement of an adaptive-energy-storage full-bridge converter by modifying turns ratio of a coupled inductor
TWI580166B (en) Interleaved boost converter
CN114640255A (en) Series resonant converter and control method thereof
CN104935173A (en) Current source type full-bridge PWM convertor with auxiliary converter circuit
Wang et al. High efficiency high step-up isolated dc-dc converter for photovoltaic applications
CN113541503A (en) Zero-current switch active clamping current type push-pull direct-current converter
TWI739539B (en) High voltage gain converter
CN114157150A (en) High-gain bidirectional Y source-LLC isolation direct current-direct current converter
TWI694667B (en) High boost converter
TWI666863B (en) High boost DC converter
TWI501527B (en) High voltage ratio interleaved converter with soft-switching using single auxiliary switch
CN109728730A (en) A kind of modified flyback converter
CN113472215A (en) Control method, circuit and device for widening LLC output voltage range
Sha et al. Unequal PWM control for a current-fed dc-dc converter for battery application
TWI441435B (en) Low voltage stress DC converter
CN109149951B (en) Soft-switching three-phase current type push-pull direct-current converter
CN109149954B (en) Wide-load-range soft-switching current type push-pull direct-current converter
TW201703414A (en) Direct current power converter

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees