TWI580020B - 以苝為基質之半導體及其製備方法與用途 - Google Patents

以苝為基質之半導體及其製備方法與用途 Download PDF

Info

Publication number
TWI580020B
TWI580020B TW100149618A TW100149618A TWI580020B TW I580020 B TWI580020 B TW I580020B TW 100149618 A TW100149618 A TW 100149618A TW 100149618 A TW100149618 A TW 100149618A TW I580020 B TWI580020 B TW I580020B
Authority
TW
Taiwan
Prior art keywords
group
thin film
stereoisomers
alkyl
film semiconductor
Prior art date
Application number
TW100149618A
Other languages
English (en)
Other versions
TW201234579A (en
Inventor
安東尼歐 法奇提
陳志華
顏河
馬可 凱斯特勒
芙羅拉 朵茲
Original Assignee
巴地斯顏料化工廠
保利艾拉公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 巴地斯顏料化工廠, 保利艾拉公司 filed Critical 巴地斯顏料化工廠
Publication of TW201234579A publication Critical patent/TW201234579A/zh
Application granted granted Critical
Publication of TWI580020B publication Critical patent/TWI580020B/zh

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D471/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00
    • C07D471/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00 in which the condensed system contains two hetero rings
    • C07D471/06Peri-condensed systems
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/621Aromatic anhydride or imide compounds, e.g. perylene tetra-carboxylic dianhydride or perylene tetracarboxylic di-imide
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
    • H10K10/40Organic transistors
    • H10K10/46Field-effect transistors, e.g. organic thin-film transistors [OTFT]
    • H10K10/462Insulated gate field-effect transistors [IGFETs]
    • H10K10/464Lateral top-gate IGFETs comprising only a single gate
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
    • H10K10/40Organic transistors
    • H10K10/46Field-effect transistors, e.g. organic thin-film transistors [OTFT]
    • H10K10/462Insulated gate field-effect transistors [IGFETs]
    • H10K10/466Lateral bottom-gate IGFETs comprising only a single gate

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Thin Film Transistor (AREA)
  • Heterocyclic Carbon Compounds Containing A Hetero Ring Having Oxygen Or Sulfur (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Nitrogen Condensed Heterocyclic Rings (AREA)
  • Photovoltaic Devices (AREA)

Description

以苝為基質之半導體及其製備方法與用途
有機發光二極體(OLED)、光伏打裝置(OPV)、及場效電晶體(OFET)之最新開發已在有機電子領域中開啟諸多機會。此領域中之一挑戰係開發具有高遷移率之環境安定性電子傳輸(n型)有機半導體之薄膜裝置。有機n型材料之性能及安定性已顯著落後於其p型對應物。改進有機n型材料技術之一些挑戰包括其等易受周圍環境(例如空氣)損害及溶液可加工性。舉例而言,希望此等材料可溶於常見溶劑,以可將其等調配成用於便宜的印刷方法之墨水。
最普遍之空氣安定性n型有機半導體包括全氟化銅酞菁(CuF16Pc)、氟醯基寡聚噻吩(例如DFCO-4TCO)、N,N'-經氟碳取代之萘二醯亞胺(例如NDI-F、NDI-XF)、經氰基取代之苝雙(二甲醯亞胺)(例如PDI-FCN2)、及經氰基取代之萘雙(二甲醯亞胺)(例如NDI-8CN2)。參見(例如)Bao等人(1998),J. Am. Chem. Soc.,120: 207-208;de Oteyza等人(2005),Appl. Phys. Lett.,87: 183504;Schn等人(2000),Adv Mater. 12: 1539-1542;Ye等人(2005),Appl. Phys. Lett.,86: 253505;Yoon等人(2006),J. Am. Chem. Soc.,128: 12851-12869;Tong等人(2006),J. Phys. Chem. B.,110: 17406-17413;Yuan等人(2004),Thin Solid Films,450: 316-319;Yoon等人(2005),J. Am. Chem. Soc.,127: 1348-1349;Katz等人(2000),J. Am. Chem. Soc.,122: 7787-7792;Katz等人(2000),Nature(London),404: 478-481;Katz等人(2001),Chem. Phys. Chem.,3: 167-172;Jung等人(2006),Appl. Phys. Lett.,88: 183102;Yoo等人(2006),IEEE Electron Device Lett.,27: 737-739;Jones等人(2004),Angew. Chem.,Int. Ed. Engl.,43: 6363-6366;及Jones等人(2007),J. Am. Chem. Soc.,129: 15259-15278。芮(rylene)雙(二甲醯亞胺)因其安定的性質、可撓性分子軌道能力學、及極佳的電荷傳輸特性而特別受關注。然而,高遷移率芮化合物(包括PDI-FCN2及NDI-F)之可溶性較差。另一方面,可溶性芮化合物通常具有較差的電荷傳輸特性。
因此,考慮到在可藉由高產量卷帶式生產來製造之便宜及大面積有機電子裝置中之可能應用,此項技術需要新穎的有機半導體材料,尤其係彼等具有所需特性(如空氣安定性、高電荷傳輸效率、及在常見溶劑中之良好可溶性)之有機半導體材料。
根據上述內容,本發明提供有機半導體及相關組合物、複合物、及/或裝置,其可解決當前技術發展水準之各種缺陷及不足(包括上述缺點)。
更特定而言,本發明提供自氮官能化芮雙(二甲醯亞胺)化合物之對映體富集混合物製備之有機半導體。特定而言,該化合物之兩個醯亞胺氮原子中之各者之取代基包含立體中心,且具有(R)-或(S)-組態。令人驚訝地發現,當與(R,R)-立體異構體及(S,S)-立體異構體之1:1(或外消旋)混合物相比時,其中(R,R)-立體異構體對(S,S)-立體異構體(或反之亦然)之比為約0.8:0.2至約0.98:0.02之對映體富集混合物可產生高度改良之電子特性。明確而言,當作為半導體併入薄膜電晶體中時,本發明之對映體富集混合物可顯示比相同化合物之外消旋混合物高至少兩倍(在某些情況下多達六倍)之遷移率。此外,令人驚訝地發現,與光學純異構體中之任一者相比,本發明之對映體富集混合物具有實質上類似且在某些情況下更佳之電子特性。
自以下附圖、描述、及申請專利範圍可更全面地理解本發明之上述及其他特徵及優點。
應瞭解以下所描繪之圖式係僅為說明之目的。因為通常著重於闡述本發明之原理,所以不一定按比例繪製該等圖式。該等圖式不意欲以任何方式限制本發明之範圍。
在本申請案中,當組合物被描述為具有、包含或含有特定組分時,或當方法被描述為具有、包含、或含有特定方法步驟時,預期本發明之組合物亦基本上由所列舉之組分組成或由其組成,且本發明之方法亦基本上由所列舉之步驟組成或由其組成。
在本申請案中,當元素或組分據稱係包含於及/或選自一列所列舉之元素或組分中時,應瞭解該元素或組分可係該等所列舉之元素或組分中之任一者,或者該元素或組分可選自由該等所列舉之元素或組分中之兩者或更多者組成之群。此外,無論在本文中明確指出或暗示,應瞭解在不脫離本發明之精神及範圍之情況下,本文所述之組合物、裝置、或方法之元素及/或特徵可以各種方式組合。
除非另有明確規定,否則術語「包含」或「具有」之用途通常應被理解為開放式及非限制性。
除非另有明確規定,否則本文中之單數形式之用途包括複數形式(且反之亦然)。此外,除非另有明確規定,否則當在數量值前使用術語「約」時,本發明亦包括該特定數量值本身。除非另有所指或推斷,否則文中所使用之術語「約」係指自標稱值之±10%之變化。
應瞭解,只要本發明保持可行,則步驟之順序或實施特定操作之順序係無關緊要。此外,可同時實施兩個或更多個步驟或操作。
如文中所使用,「p型半導體材料」或「供體」材料係指具有電洞作為多數電流或電荷載體之半導體材料,例如有機半導體材料。在某些實施例中,當在基板上沉積p型半導體材料時,其可提供超過約10-5 cm2/Vs之電洞遷移率。就場效裝置而言,p型半導體亦可顯示大於約10之開/關電流比。
如文中所使用,「n型半導體材料」或「受體」材料係指具有電子作為多數電流或電荷載體之半導體材料,例如有機半導體材料。在某些實施例中,當在基板上沉積n型半導體材料時,其可提供超過約10-5 cm2/Vs之電子遷移率。就場效裝置而言,n型半導體亦可顯示大於約10之開/關電流比。
如文中所使用,「遷移率」係指電荷載體(例如就p型半導體材料而言係電洞(或正電荷單位)及就n型半導體材料而言係電子(或負電荷單位))在電場影響下於材料中移動之速度之度量。可使用場效裝置或空間電荷限制電流測量法測量此取決於裝置架構之參數。
如文中所使用,當包含化合物作為其半導體材料之電晶體在該化合物暴露於周圍條件(例如空氣、周圍溫度、及濕度)下一段時間後顯示保持於約初始測量值之載體遷移率時,可認為該化合物係「周圍安定」或「在周圍條件下安定」。舉例而言,若包含化合物之電晶體在暴露於周圍條件(包括空氣、濕度及溫度)下3天、5天或10天時間之後顯示載體遷移率未自其初始值變化超過20%或超過10%,則可將該化合物描述為周圍安定。
如文中所使用,「溶液可加工」係指化合物(例如聚合物)、材料、或組合物可用於各種溶液相方法,其包括旋塗、印刷(例如噴墨印刷、凹版印刷、平版印刷等)、噴塗、電噴鍍、滴鑄、浸塗、及刮塗。
如文中所使用,「鹵」或「鹵素」係指氟、氯、溴、及碘。
如文中所使用,「側氧基」係指雙鍵氧(即=O)。
如文中所使用,「烷基」係指直鏈或分支鏈飽和烴基。烷基之實例包括甲基(Me)、乙基(Et)、丙基(例如正丙基及異丙基)、丁基(例如正丁基、異丁基、第二丁基、第三丁基)、戊基(例如正戊基、異戊基、新戊基)、己基、及類似物。在不同實施例中,烷基可具有1至40個碳原子(即C1-40烷基),例如1至20個碳原子(即C1-20烷基)。在某些實施例中,烷基可具有1至6個碳原子,且可稱為「低碳數烷基」。低碳數烷基之實例包括甲基、乙基、丙基(例如正丙基及異丙基)、及丁基(例如正丁基、異丁基、第二丁基、第三丁基)。在某些實施例中,烷基可如本文所述般經取代。烷基通常不經另一烷基、烯基、或炔基取代。
如文中所使用,「鹵代烷基」係指具有一或多鹵素取代基之烷基。在不同實施例中,鹵代烷基可具有1至40個碳原子(即C1-40鹵代烷基),例如1至20個碳原子(即C1-20鹵代烷基)。鹵代烷基之實例包括CF3、C2F5、CHF2、CH2F、CCl3、CHCl2、CH2Cl、C2Cl5等。全鹵代烷基(即其中所有氫原子被鹵原子置換之烷基(例如CF3及C2F5))係包含於「鹵代烷基」之定義範圍內。舉例而言,C1-40鹵代烷基可具有式-CsH2s+1-tX0 t,其中X0在每次出現時係F、Cl、Br或I,s係在1至40之範圍內之整數,且t係在1至81之範圍內之整數,限制條件為t係小於或等於2s+1。如本文所述,非全鹵代烷基之鹵代烷基可經取代。
如文中所使用,「烷氧基」係指-O-烷基。烷氧基之實例包括(但不限於)甲氧基、乙氧基、丙氧基(例如正丙氧基及異丙氧基)、第三丁氧基、戊氧基、己氧基等。如本文所述,-O-烷基中之烷基可經取代。
如文中所使用,「烷硫基」係指-S-烷基(其在某些情況下可表示為-S(O)w-烷基,其中w係0)。烷硫基之實施例包括(但不限於)甲硫基、乙硫基、丙硫基(例如正丙硫基及異丙硫基)、第三丁硫基、戊硫基、己硫基等。如本文所述,-S-烷基中之烷基可經取代。
如文中所使用,「烯基」係指具有一或多個碳-碳雙鍵之直鏈或分支鏈烷基。烯基之實例包括乙烯基、丙烯基、丁烯基、戊烯基、己烯基、丁二烯基、戊二烯基、己二烯基及類似物。該一或多個碳-碳雙鍵可在內部(如2-丁烯)或末端(如1-丁烯)。在不同實施例中,烯基可具有20至40個碳原子(即C2-40烯基),例如2至20個碳原子(即C2-20烯基)。在某些實施例中,烯基可如本文所述般經取代。烯基通常不經另一烯基、烷基、或炔基取代。
如文中所使用,「炔基」係指具有一或多個碳-碳三鍵之直鏈或分支鏈烷基。炔基之實例包括乙炔基、丙炔基、丁炔基、戊炔基、己炔基等。該一或多個碳-碳三鍵可在內部(如2-丁炔)或末端(如1-丁炔)。在各種實施例中,炔基可具有2至40個碳原子(即C2-40炔基),例如2至20個碳原子(即C2-20炔基)。在某些實施例中,炔基可如本文所述般經取代。炔基通常不經另一炔基、烷基、或烯基取代。
如文中所使用,「環狀基團」可包含一或多個(如1至6個)碳環或雜環。該環狀基團可係環烷基、雜環烷基、芳基、或雜芳基(即可僅包含飽和鍵,或可不考慮芳香性而包含一或多個不飽和鍵),其各包含(例如)3至24個環原子且可視需要如本文所述般經取代。在其中該環狀基團係「單環基團」之實施例中,該「單環基團」可包含3至14員芳族或非芳族碳環或雜環。單環基團可包括(例如)苯基或5-或6-員雜芳基,其等各可視需要如本文所述般經取代。在其中該環狀基團係「多環基團」之實施例中,該「多環基團」可包含相互稠合(即分享共用鍵)及/或經由螺原子或一或多個橋接原子相互連接之兩個或更多個環。多環基團可包含8至24員芳族或非芳族碳環或雜環,如C8-24芳基或8至24員雜芳基,其等各可視需要如本文所述般經取代。
如文中所使用,「環烷基」係指非芳族碳環基團,包括環化烷基、烯基、及炔基。在不同實施例中,環烷基可具有3至24個碳原子,例如3至20個碳原子(例如C3-14環烷基)。環烷基可係單環(例如環己基)或多環(例如含有稠合、橋接、及/或螺環系統),其中碳原子係位於該環系統之內部或外部。該環烷基之任何適宜之環位置可共價結合至確定之化學結構。環烷基之實例包括環丙基、環丁基、環戊基、環己基、環庚基、環戊烯基、環己烯基、環己二烯基、環庚三烯基、降冰片基、降蒎基、降蒈基、金剛烷基、及螺[4.5]癸基、及其同系物、異構體等。在某些實施例中,環烷基可如本文所述般經取代。
如文中所使用,「雜原子」係指除碳或氫以外之任何元素之原子,且包括(例如)氮、氧、矽、硫、磷、及硒。
如文中所使用,「環雜烷基」係指含有至少一個選自O、S、Se、N、P及Si(例如O、S、及N)之環雜原子,且視需要含有一或多個雙鍵或三鍵之非芳族環烷基。環雜烷基可具有3至24個環原子,例如,3至20個環原子(例如,3至14員環雜烷基)。可使環雜烷基環中之一或多個N、P、S或Se原子(例如N或S)氧化(例如嗎啉N-氧化物、硫嗎啉S-氧化物、硫嗎啉S,S-二氧化物)。在某些實施例中,環雜烷基之氮或磷原子可帶有取代基,例如氫原子、烷基、或如本文所述之其他取代基。環雜烷基亦可含有一或多個側氧基,如側氧基哌啶基、側氧基噁唑啶基、二側氧基-(1H,3H)-嘧啶基、側氧基-2(1H)-吡啶基等。環雜烷基之實例尤其包括嗎啉基、硫嗎啉基、哌喃基、咪唑啶基、咪唑啉基、噁唑啶基、吡唑啶基、吡唑啉基、吡咯啶基、吡咯啉基、四氫呋喃基、四氫噻吩基、哌啶基、哌嗪基、及類似物。在某些實施例中,環雜烷基可如本文所述般經取代。
如文中所使用,「芳基」係指芳族單環烴環系統或多環系統,其中兩個或更多個芳族烴環共同稠合(即具有共用鍵),或至少一個芳族單環烴環稠合至一或多個環烷基及/或環雜烷基環。芳基在其環系統(例如C6-20芳基)(其可包含多個稠合環)中可具有6至24個碳原子。在某些實施例中,多環芳基可具有8至24個碳原子。芳基之任何適宜之環位置可共價鍵接至確定之化學結構。僅具有芳族碳環之芳基之實例包括苯基、1-萘基(雙環)、2-萘基(雙環)、蒽基(三環)、菲基(三環)、并五苯基(五環)、及類似基團。其中至少一個芳族碳環稠合至一或多個環烷基及/或環雜烷基環之多環系統之實例尤其包括環戊烷之苯并衍生物(即5,6-雙環環烷基/芳族環系統之茚滿基)、環己烷之苯并衍生物(即6,6-雙環環烷基/芳族環系統之四氫萘基)、咪唑啉之苯并衍生物(即5,6-雙環環雜烷基/芳族環系統之苯并咪唑啉基)、及哌喃之苯并衍生物(即6,6-雙環環雜烷基/芳族環系統之烯基)。芳基之其他實例包括苯并二噁烷基、苯并間二氧雜環戊烯基、基、吲哚啉基等。在某些實施例中,芳基可如本文所述般經取代。在某些實施例中,芳基可具有一或多個鹵素取代基,且可被稱為「鹵代芳基」。全鹵代芳基(即其中所有氫原子經鹵原子置換之芳基(例如-C6F5))係包含於「鹵代芳基」之定義範圍內。在某些實施例中,芳基係經另一芳基取代,且可被稱為聯芳基。該聯芳基中之各芳基可如本文所揭示般經取代。
如文中所使用,「雜芳基」係指含有選自氧(O)、氮(N)、硫(S)、矽(Si)、及硒(Se)之至少一個環雜原子之芳族單環系統、或其中存在於環系統中之至少一個環係芳族且含有至少一個環雜原子之多環系統。多環雜芳基包括具有兩個或更多個共同稠合之雜芳基環之雜芳基,及彼等具有至少一個稠合至一或多個芳族碳環、非芳族碳環、及/或非芳族環雜烷基環之單環雜芳基環之雜芳基。雜芳基總體上可具有(例如)5至24個環原子,且含有1至5個環雜原子(即5至20員雜芳基)。該雜芳基之形成安定結構之任何雜原子或碳原子可鍵接至確定之化學結構。通常,雜芳基環不含有O-O、S-S、及S-O鍵。然而,可使雜芳基中之一或多個N或S原子氧化(例如吡啶N-氧化物、噻吩S-氧化物、噻吩S,S-二氧化物)。雜芳基之實例包括(例如)以下所示之5-或6-員單環及5-6雙環系統:
其中T係O、S、NH、N-烷基、N-芳基、N-(芳烷基)(例如N-苄基)、SiH2、SiH(烷基)、Si(烷基)2、SiH(芳烷基)、Si(芳烷基)2、或Si(烷基)(芳烷基)。該等雜芳基環之實例包括吡咯基、呋喃基、噻吩基、吡啶基、嘧啶基、噠嗪基、吡嗪基、三唑基、四唑基、吡唑基、咪唑基、異噻唑基、噻唑基、噻二唑基、異噁唑基、噁唑基、噁二唑基、吲哚基、異吲哚基、苯并呋喃基、苯并噻吩基、喹啉基、2-甲基喹啉基、異喹啉基、喹噁啉基、喹唑啉基、苯并三唑基、苯并咪唑基、苯并噻唑基、苯并異噻唑基、苯并異噁唑基、苯并噁二唑基、苯并噁唑基、啉基、1H-吲唑基、2H-吲唑基、吲嗪基、異苯并呋喃基、萘啶基、呔嗪基、喋啶基、嘌呤基、噁唑并吡啶基、噻唑并吡啶基、咪唑并吡啶基、呋喃并吡啶基、噻吩并吡啶基、吡啶并嘧啶基、吡啶并吡嗪基、吡啶并噠嗪基、噻吩并噻唑基、噻吩并噁唑基、噻吩并咪唑基、及類似物。雜芳基之其他實例包括4,5,6,7-四氫吲哚基、四氫喹啉基、苯并噻吩并吡啶基、苯并呋喃并吡啶基、及類似物。在某些實施例中,雜芳基可如本文所述般經取代。
如文中所使用,「芳烷基」係指-烷基-芳基,其中該芳烷基係經由烷基共價鍵接至確定之化學結構。芳烷基係在-Y-C6-14芳基之定義範圍內,其中Y係如本文所定義。芳烷基之實例係苄基(-CH2-C6H5)。芳烷基可視需要經取代,即該芳基及/或該烷基可如本文所揭示般經取代。
本發明化合物可包含本文中定義為可與其他兩個基團形成共價鍵之鍵聯基團之「二價基團」。舉例而言,本發明化合物可包含二價C1-20烷基(例如亞甲基)、二價C2-20烯基(例如伸乙烯基)、二價C2-20炔基(例如伸乙炔基)、二價C6-14芳基(例如伸苯基)、二價3至14員環雜烷基(例如伸吡咯啶基)、及/或二價5至14員雜芳基(例如伸噻吩基)。通常,化學基團(例如-Ar-)係藉由包含在該基團之前及之後之兩個鍵而被理解為二價。
如文中所使用,「增溶基」表示若其佔據分子中之相同位置,則比氫原子更能使所得之分子可溶於至少一種常見有機溶劑之官能基(就相同的分子-溶劑組合而言)。增溶基之實例包括烷基(例如甲基、乙基、異丙基、正丙基、異丁基、第二丁基、正丁基、第三丁基、正戊基、異戊基、新戊基、己基、2-甲基己基、辛基、3,7-二甲基辛基、癸基、十二烷基、十四烷基、十六烷基)、烷氧基(例如甲氧基、乙氧基、異丙氧基、正丙氧基、異丁氧基、第二丁氧基、正丁氧基、己氧基、2-甲基己氧基、辛氧基、3,7-二甲基辛氧基、癸氧基、十二烷氧基、十四烷氧基、十六烷氧基)、硫烷基(例如硫辛基)、烷基醚、及硫醚。
如文中所使用,「離去基」(「LG」)係指可由於(例如)取代反應或消去反應而被置換為安定種類之帶電或不帶電原子(或原子團)。離去基之實例包括(但不限於)鹵素(例如Cl、Br、I)、疊氮基(N3)、硫氰酸根(SCN)、硝基(NO2)、氰酸根(CN)、水(H2O)、氨(NH3)、及磺酸根基團(例如OSO2-R、其中R可係各視需要經1至4個獨立地選自C1-10烷基及拉電子基之基團取代之C1-10烷基或C6-14芳基),如甲苯磺酸根(OTs)、甲磺酸根(OMs)、對溴苯磺酸根(OBs)、硝基苯磺酸根(4-硝基苯磺酸根,ONs)、及三氟甲磺酸根(OTf)。
如文中所使用,「氰化劑」可係LiCN、NaCN、KCN、CuCN、AgCN、三甲基矽烷基氰化物(TMSCN)、或熟習此項技術者已知之任何其他氰化劑。
已確定、量化並公開反映所有常見取代基類別之數百種最常見取代基之供電子及拉電子特性。供電子及拉電子特性之最常見量化係以Hammett σ值表示。氫具有零的Hammett σ值,而其他取代基具有與其拉電子或供電子特性相關成正比或反比增加之Hammett σ值。具有負Hammett σ值之取代基被認為係供電子性,而彼等具有正Hammett σ值之取代基被認為係拉電子性。參見Lange's Handbook of Chemistry(第十二版,McGraw Hill,1979,表3-12,第3-134至3-138頁),其列舉大量常見取代基之Hammett σ值,且以引用的方式併入本文中。
應瞭解術語「受電子基」在本文中可與「電子受體」及「拉電子基」同義使用。特定而言,「拉電子基」(EWG)或「受電子基」或「電子受體」係指若其在分子中佔據相同位置,則比氫原子更多地吸引電子至其本身之官能基。拉電子基之實例包括(但不限於)鹵素或鹵基(例如F、Cl、Br、I)、-NO2、-CN、-NC、-S(R0)2 +、-N(R0)3 +、-SO3H、-SO2R0、-SO3R0、-SO2NHR0、-SO2N(R0)2、-COOH、-COR0、-COOR0、-CONHR0、-CON(R0)2、C1-40鹵代烷基、C6-14芳基、及5至14員缺電子雜芳基,其中R0係C1-20烷基、C2-20烯基、C2-20炔基、C1-20鹵代烷基、C1-20烷氧基、C6-14芳基、C3-14環烷基、3至14員環雜烷基、及5至14員雜芳基,其等各可視需要如本文所述般經取代。舉例而言,C1-20烷基、C2-20烯基、C2-20炔基、C1-20鹵代烷基、C1-20烷氧基、C6-14芳基、C3-14環烷基、3至14員環雜烷基、及5至14員雜芳基各可視需要經1至5個小型拉電子基(如F、Cl、Br、-NO2、-CN、-NC、-S(R0)2 +、-N(R0)3 +、-SO3H、-SO2R0、-SO3R0、-SO2NHR0、-SO2N(R0)2、-COOH、-COR0、-COOR0、-CONHR0、及-CON(R0)2)取代。
應瞭解術語「供電子基」在本文中可與「電子供體」同義使用。特定而言,「供電子基」或「電子供體」係指若其在分子中佔據相同位置,則比氫原子更多地遞送電子至相鄰原子之官能基。「供電子基」之實例包括-OH、-OR0、-NH2、-NHR0、-N(R0)2、及5至14員富電子型雜芳基,其中R0係C1-20烷基、C2-20烯基、C2-20炔基、C6-14芳基、或C3-14環烷基。
可將各種未經取代之雜芳基描述為富電子型(或π-過度型)或缺電子型(或π-缺乏型)。與苯中碳原子之分類相比,該分類係基於各環原子上之平均電子密度。富電子系統之實例包括具有一個雜原子之5-員雜芳基(如呋喃、吡咯、及噻吩),及其苯并稠合對應物(如苯并呋喃、苯并吡咯、及苯并噻吩)。缺電子系統之實例包括具有一或多個雜原子之6-員雜芳基(如吡啶、吡嗪、噠嗪、及嘧啶),及其苯并稠合對應物(如喹啉、異喹啉、喹噁啉、啉、呔嗪、萘啶、喹唑啉、啡啶、吖啶、及嘌呤)。混合雜芳環可根據該環中之一或多個雜原子之類型、數目及位置而屬於任一類別。參見Katritzky,A.R及Lagowski,J.M.之Heterocyclic Chemistry(John Wiley & Sons,New York,1960)。
在本發明說明書中之多處,以群或範圍之方式揭示取代基。明確希望該描述包含該等群及範圍之成員之每個個別子組合。舉例而言,明確希望術語「C1-6烷基」個別地揭示C1、C2、C3、C4、C5、C6、C1-C6、C1-C5、C1-C4、C1-C3、C1-C2、C2-C6、C2-C5、C2-C4、C2-C3、C3-C6、C3-C5、C3-C4、C4-C6、C4-C5、及C5-C6烷基。關於其他實例,明確希望在0至40之範圍內之整數個別地揭示0、1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、20、21、22、23、24、25、26、27、28、29、30、31、32、33、34、35、36、37、38、39及40,且明確希望在1至20之範圍內之整數個別地揭示1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、及20。其他實例包括明確希望短語「視需要經1至5個取代基取代」個別地揭示可包含0、1、2、3、4、5、0至5、0至4、0至3、0至2、0至1、1至5、1至4、1至3、1至2、2至5、2至4、2至3、3至5、3至4、及4至5個取代基之化學基團。
在整篇說明書中,結構可具有或不具有化學名稱。當命名法出現任何問題時,以結構為準。
通常,本發明係關於一種含有以下式I化合物之對映體富集混合物之薄膜半導體:
其中R1及R2係組成上相同或實質上相同之含有立體中心之分支鏈有機基團。雖然式I意欲包含各種可能存在之區位異構體,但式I意欲包括至少以下異構體:
已知其等在各種可能之式I區位異構體中具有最高的動力學安定性。
更特定而言,在某些實施例中,R1及R2可係相同且選自分支鏈C4-40烷基、分支鏈C4-40烯基及分支鏈C4-40鹵代烷基,其中該分支鏈C4-40烷基、分支鏈C4-40烯基、或分支鏈C4-40鹵代烷基可具有選自以下之式:
其中R'係C1-20烷基或鹵代烷基,且R"係不同於R'且選自C1-20烷基、C2-20烯基、及C1-20鹵代烷基。星號*表示立體中心,以使R1及R2具有(R)-或(S)-組態。混合物係對映體富集型,即該混合物包含過量(R,R)-立體異構體(其中R1及R2皆具有(R)-組態)或(S,S)-立體異構體(其中R1及R2皆具有(S)-組態)。更特定而言,在該對映體富集混合物中,(R,R)-立體異構體:(S,S)-立體異構體之比或(S,S)-立體異構體:(R,R)-立體異構體之比係在約0.8:0.2與約0.98:0.02之間。
在某些實施例中,R1及R2可係實質上相同之分支鏈基團,其包含相同之立體中心,且可獨立地係分支鏈C4-40烷基、分支鏈C4-40烯基、或分支鏈C4-40鹵代烷基。在其中將R1及R2描述為「實質上相同」之實施例中,意欲指雖然R1及R2皆具有包含如下式中之一者所示之立體中心之相同分支鏈形式:
但R'及R"中之一者可係不同,例如,就碳原子數(例如不超過兩個碳原子之差異)、飽和程度、或鹵基之取代作用而言。舉例而言,當R1及R2皆係下式之分支鏈基團時,可認為R1及R2係實質上相同:
其中R'在R1及R2中係相同,但R1中之R"係不同於R2中之R"。舉例而言,R1中之R"可係正己基,而R2中之R"可係正戊基、正庚基、己烯基、或經氟取代之己基(例如(CH2)5CF3)。
在某些實施例中,該對映體富集混合物可包含一對選自以下之對映體:
其中R'及R"係如本文所述,且各對中之兩個對映體之相對比係約0.8:0.2至約0.98:0.02。在特定實施例中,各對中之兩個對映體之相對比係約0.90:0.10至0.95:0.05。
在特定實施例中,R'可係具有1至6個碳原子之低碳數烷基或鹵代烷基(例如CH3、CF3、C2H5、C2F5、CH2CF3、C3H7、C3F7、及CH2CH2CF3),而R"係不同於R'且具有至少3個碳原子。舉例而言,R"可選自C3-20烷基、C3-20烯基、及C3-20鹵代烷基。在不同實施例中,R'及R"皆可係直鏈基團。
為進一步說明,本發明之對映體富集混合物可包含一對選自以下之對映體:
其中各對中之兩個對映體之相對比係約0.8:0.2至約0.98:0.02。在特定實施例中,各對中之兩個對映體之相對比可係約0.90:0.10至約0.95:0.05。
本發明之對映體富集混合物可藉由不同方法獲得。通常可藉由使一級胺與以下式II二酐反應:
然後使所得之雙(二甲醯亞胺)與氰化劑反應以將離去基(LG)置換為氰基來合成式I化合物。該一級胺可具有選自以下之式:
(其中R'及R"係如本文所述),且可根據以下流程圖1中所述之步驟製得。
流程圖1
參考流程圖1,可藉由在回流溫度下將酮1與鹽酸羥胺在甲醇中混合,然後添加乙酸鈉來製備酮肟2。為將酮肟還原成胺3,可在0℃下將酮肟2之乙醚溶液滴加至含於無水乙醚中之氫化鋁鋰的懸浮液中,然後加熱至回流達16小時,以獲得胺3之外消旋混合物。
可使用各種步驟以單離胺3之光學純態對映體。舉例而言,可使用對掌性分離法、非對映異構體鹽形成法、或動力學拆分法。特定而言,藉由酶催化醯基轉移反應之外消旋體之動力學拆分可產生極高之對映體過量(>99.0%)。已研究各種酶(包括綠膿桿菌脂肪酶、枯草桿菌蛋白酶、及南極假絲酵母脂肪酶)在對掌性胺之動力學拆分中之效率。參見(例如)Davis等人(2001),Syn. Comm.,31(4):569-578。
因此,在某些實施例中,可藉由使用立體有擇一級胺獲得本發明之對映體富集混合物。舉例而言,可藉由使(R)-胺與式II二酐反應獲得式I之(R,R)-立體異構體,然後使其與以類似方法獲得之(S,S)-立體異構體以適當比例組合,以提供式I化合物之對映體富集混合物。
在某些實施例中,本發明之對映體富集混合物可自一級胺之對映體富集混合物製得。雖然使式II二酐與該一級胺之對映體富集混合物反應(與立體特異性一級胺相反)將產生一些式I化合物之內消旋異構體,但發現該等內消旋異構體之存在幾乎不影響該對映體富集混合物整體之半導體特性。
在其他實施例中,可使該式II二酐與該一級胺之外消旋混合物反應,其產生(R,R)-立體異構體、(S,S)-立體異構體、及非對掌性內消旋(R,S)-立體異構體之混合物。可使用標準分離步驟單離該(R,R)-立體異構體及類似地單離該(S,S)-立體異構體,且隨後使其與另一對映體以特定比例組合,以提供本發明之對映體富集混合物。熟習此項技術者已知之標準分離步驟包括(例如)視需要具有對掌性靜止相之管柱層析法、薄層層析法、模擬移動床層析法、及高效液相層析法。
本發明之對映體富集混合物可用於製備半導體材料(例如組合物或複合物),該等半導體材料繼而可用於製造各種製造物件、結構、及裝置。在某些實施例中,併入本發明之對映體富集混合物之半導體材料可顯示n型半導體活性。令人驚訝地發現,本發明式I化合物之對映體富集混合物在與外消旋體相比時可顯示高度改良之電子特性。明確而言,當本發明之對映體富集混合物作為半導體併入薄膜電晶體中時,其顯示可比該外消旋體高至少兩倍(在某些情況下高達六倍)之遷移率。此外,令人驚訝地發現,與實質上純形式(即99%或更高之光學純度)之(R,R)-立體異構體或(S,S)-立體異構體相比,本發明之對映體富集混合物具有實質上類似且在某些情況下更佳之電子特性。
因此,本發明提供包含本文所述之對映體富集混合物之電子裝置、光學裝置、及光電裝置。該等電子裝置、光學裝置、及光電裝置之實例包括薄膜半導體、薄膜電晶體(例如場效電晶體)、光伏打裝置、光偵測器、有機發光裝置(如有機發光二極體(OLED)及有機發光電晶體(OLET))、互補金屬氧化物半導體(CMOS)、互補反相器、二極體、電容器、感應器、D型正反器、整流器、及環形振盪器。在某些實施例中,本發明提供一種包含本文所述之對映體富集混合物之薄膜半導體及包含該薄膜半導體之場效電晶體裝置。特定而言,該場效電晶體裝置具有選自頂部閘極底部接觸型結構、底部閘極頂部接觸型結構、頂部閘極頂部接觸型結構、及底部閘極底部接觸型結構之結構。在某些實施例中,該場效電晶體裝置包含介電材料,其中該介電材料包括有機介電材料、無機介電材料、或混合有機/無機介電材料。在其他實施例中,本發明提供光伏打裝置及有機發光裝置,其等併入含有本文所述之對映體富集混合物之薄膜半導體。
式I化合物在各種常見溶劑中通常具有良好的溶解度。因此,可藉由廉價的溶液相技術將本發明之對映體富集混合物加工成各種電子裝置、光學裝置、及光電裝置。如文中所使用,當可使至少1 mg化合物溶解於1 mL溶劑中時,可將該化合物視為可溶於該溶劑中。常見有機溶劑之實例包括:石油醚、乙腈、芳族烴(如苯、甲苯、二甲苯、及1,3,5-三甲苯)、酮(如丙酮及甲基乙基酮)、醚(如四氫呋喃、二噁烷、雙(2-甲氧基乙基)醚、乙醚、二異丙醚、及第三丁基甲基醚)、醇(如甲醇、乙醇、丁醇、及異丙醇)、脂族烴(如己烷)、乙酸酯(如乙酸甲酯、乙酸乙酯、甲酸甲酯、甲酸乙酯、乙酸異丙酯、及乙酸丁酯)、醯胺(如二甲基甲醯胺及二甲基乙醯胺)、亞碸(如二甲基亞碸)、鹵化脂族及芳族烴(如二氯甲烷、氯仿、二氯乙烷、氯苯、二氯苯、及三氯苯)、及環狀溶劑(如環戊酮、環己酮、及2-甲基吡咯啶酮)。常見無機溶劑之實例包括水及離子液體。
因此,本發明另外提供包含本文所揭示之對映體富集混合物之組合物,該對映體富集混合物係溶解或分散於液體介質(例如有機溶劑、無機溶劑、或其組合(例如有機溶劑、無機溶劑、或有機及無機溶劑之混合物))中。在某些實施例中,該組合物可另外包含一或多種添加劑,其(等)係獨立地選自洗滌劑、分散劑、黏合劑、相容劑、固化劑、引發劑、保濕劑、消泡劑、潤濕劑、pH調節劑、殺生物劑、及抑菌劑。舉例而言,可包含界面活性劑及/或其他聚合物(例如聚苯乙烯、聚乙烯、聚α-甲基苯乙烯、聚異丁烯、聚丙烯、聚甲基丙烯酸甲酯、及類似物)作為分散劑、黏合劑、相容劑、及/或消泡劑。
已將各種沉積技術(包括各種溶液處理技術)用於有機電子裝置。舉例而言,印刷電子技術已在很大程度上關注噴墨印刷,主要因為此技術更佳地控制特徵位置及多層配準。噴墨印刷係非接觸方法,其具有無需預成形母版(與接觸印刷方法相比)及數位控制噴墨之益處,由此提供按需噴墨印刷。然而,接觸印刷技術具有適於極快速卷軸式處理之主要優點。示例性接觸印刷技術包括絲網印刷、凹版印刷、平版印刷、柔性凸版印刷及微接觸印刷。其他溶液處理技術包括(例如)旋塗、滴鑄、區域澆鑄、浸塗、及刮塗。
本發明之對映體富集混合物可在其處理中顯示多用性。可藉由不同類型之印刷技術(包括凹版印刷、柔性凸版印刷、及噴墨印刷)印刷包含本發明對映體富集混合物之調配物,以提供允許(例如)在其上形成無針孔介電薄膜且因此允許製造全印刷裝置之光滑均勻薄膜。
因此,本發明另外提供製備半導體材料之方法。該等方法可包括:製備包含溶解或分散於液體介質(諸如溶劑或溶劑混合物)中之本發明對映體富集混合物的組合物;在基材上沉積該組合物以提供半導體材料前驅物;及處理(例如,加熱)該半導體前驅物以提供包含本文所揭示之對映體富集混合物之半導體材料(例如薄膜半導體)。在某些實施例中,可藉由印刷(包括噴墨印刷及各種接觸印刷技術(例如絲網印刷、凹版印刷、平版印刷、移動印刷、石版印刷、柔性凸版印刷、及微接觸印刷))來實施該沉積步驟。在其他實施例中,可藉由旋塗、滴鑄、區域澆鑄、浸塗、刮塗、或噴塗實施該沉積步驟。亦可使用更昂貴的方法,如氣相沉積。
本發明另外提供製造物件,例如包含本發明薄膜半導體及基板組分及/或介電組分之複合物。該基板組分可選自摻雜矽、氧化銦錫(ITO)、經ITO塗佈之玻璃、經ITO塗佈之聚醯亞胺或其他塑料、單獨或塗佈在聚合物或其他基板上之鋁或其他金屬、摻雜聚噻吩、及類似物。該介電組分可自以下材料製成:無機介電材料,如各種氧化物(例如SiO2、Al2O3、HfO2);有機介電材料,如各種聚合材料(例如聚碳酸酯、聚酯、聚苯乙烯、聚鹵乙烯、聚丙烯酸酯);自組裝超晶格/自組裝奈米介電(SAS/SAND)材料(例如,如Yoon,M-H.等人,PNAS,102(13): 4678-4682(2005)中所述,其整體揭示內容以引用的方式併入本文中);及混合有機/無機介電材料(例如,如美國專利案第7,678,463號中所述,該案之整體揭示內容係以引用的方式併入本文中)。在某些實施例中,該介電組分可包含美國專利案第7,605,394號(該案之整體揭示內容係以引用的方式併入本文中)中所述之交聯聚合物摻合物。該複合物亦可包含一或多個電接點。適用於源極、汲極、及閘極之材料包括金屬(例如Au、Al、Ni、Cu)、透明導電氧化物(例如ITO、IZO、ZITO、GZO、GIO、GITO)、及導電聚合物(例如聚(3,4-伸乙二氧基噻吩)聚(苯乙烯磺酸酯)(PEDOT:PSS)、聚苯胺(PANI)、聚吡咯(PPy))。可將本文所述之一或多種複合物包含於各種有機介電、光學及光電裝置內,如有機薄膜電晶體(OTFT)(特定而言為有機場效電晶體(OFET))、及感應器、電容器、單極電路、互補電路(例如倒相電路)、及類似物。
因此,本發明之一態樣係關於製造併入本發明半導體材料之有機場效電晶體之方法。本發明半導體材料可用於製造各種類型之有機場效電晶體,其包括頂部閘極頂部接觸型電容器結構、頂部閘極底部接觸型電容器結構、底部閘極頂部接觸型電容器結構、及底部閘極底部接觸型電容器結構。
圖1顯示四種常見類型之OFET結構:(左上)底部閘極頂部接觸型結構、(右上)底部閘極底部接觸型結構、(左下)頂部閘極底部接觸型結構、及(右下)頂部閘極頂部接觸型結構。如圖1中所示,OFET可包含閘極介電組分(例如8、8'、8"、及8'''所示)、半導體組分或半導體層(例如6、6'、6"、及6'''所示)、閘極或接點(例如10、10'、10"、及10'''所示)、基板(例如12、12'、12"、及12'''所示)、及源極或汲極或接點(例如2、2'、2"、2'''、4、4'、4"、及4'''所示)。如各組態中所示,該半導體組分係與該源極及汲極接觸,且該閘極介電組分之一側與該半導體組分接觸,及對側與該閘極接觸。
在某些實施例中,可在摻雜矽基板上(使用SiO2作為介電質)使用本發明對映體富集混合物製造呈頂部接觸型幾何結構之OTFT裝置。在特定實施例中,可在室溫或高溫下沉積併入本發明對映體富集混合物之活性半導體層。在其他實施例中,可藉由如本文所述之旋塗或印刷方法來塗覆該併入本發明對映體富集混合物之活性半導體層。就頂部接觸型裝置而言,可使用遮蔽罩使金屬接點在薄膜頂部圖案化。
在某些實施例中,可在塑料薄片上(使用聚合物作為介電質)使用本發明對映體富集混合物製造呈頂部閘極底部接觸型幾何結構之OTFT裝置。在特定實施例中,可在室溫或高溫下沉積併入本發明對映體富集混合物之活性半導體層。在其他實施例中,可藉由如本文所述之旋塗或印刷方法來塗覆該併入本發明對映體富集混合物之活性半導體層。閘極及源極/汲極接點可自Au、其他金屬或導電聚合物製成,並藉由氣相沉積及/或印刷來沉積。
在不同實施例中,併入本發明對映體富集混合物之半導體組分可顯示n型半導體活性,例如10-4 cm2/V-sec或更高之電子遷移率及/或103或更大之開/關電流比(I/I)。
其中可使用本發明對映體富集混合物之其他製造物件係光伏打電池或太陽能電池。本發明對映體富集混合物可顯示寬幅光學吸收及/或經調整之氧化還原特性及主體載子遷移率。因此,本文所述之本發明對映體富集混合物可用作(例如)光伏打設計中之n型半導體,該光伏打設計包含相鄰p型半導體,以形成p-n接面。本發明對映體富集混合物可呈薄膜半導體形式,或包含沉積於基板上之該薄膜半導體之複合物形式。
提供以下實例以另外說明及利於理解本發明,且不意欲以任何方式限制本發明。
除非另有所指,否則所有試劑係購自商業來源且在不另外純化之情況下使用。某些試劑係根據已知步驟合成。無水四氫呋喃(THF)係自鈉/二苯甲酮蒸餾獲得。除非另有所指,否則在氮氣中進行反應。在Cary 1型UV可見光分光光度計上記錄UV可見光光譜。在Varian Unity Plus 500光譜儀(1H,500 MHz;13C,125 MHz)上記錄NMR光譜。在Thermo Finnegan LCQ Advantage型質譜儀上實施電噴霧質譜法。
實例1:N,N'-雙((R)-取代)-1,7-(或1,6)-二氰基苝-3,4:9,10-雙(二甲醯亞胺)((R)-PDI-CN2)之製法
在165℃下,於密封燒瓶內,將含於1,4-二噁烷(30 mL)中之PDA-Br2(1.83 g,3.33 mmol)與(R)-(-)-胺(式IIIa、IIIb、或IIIc)(1.05 g,10.4 mmol)之混合物攪拌兩小時。當冷卻至室溫時,在真空中濃縮該反應混合物。使用氯仿作為洗脫劑,在矽膠上對殘留物進行管柱層析,以獲得N,N'-雙((R)-取代)-1,7-(或1,6)-二溴苝-3,4:9,10-雙(二甲醯亞胺)((R)-PDI-Br2)(1.55 g,65.1%)。
在150℃下,將含於DMF(7 mL)中之(R)-PDI-Br2(0.35 g,0.49 mmol)及CuCN(0.26 g,2.9 mmol)之混合物攪拌1小時。當冷卻至室溫時,過濾該反應混合物以收集不溶性物質,且使用甲醇充分清洗該等不溶性物質。使用氯仿(緩慢增加至氯仿:乙酸乙酯=100:1,100:4,按體積比計)作為洗脫劑,藉由在矽膠上進行管柱層析來純化此物質,以獲得(R)-PDI-CN2(0.18 g,61%)。
實例2:N,N'-雙((S)-取代)-1,7-(或1,6)-二氰基苝-3,4:9,10-雙(二甲醯亞胺)((S)-PDI-CN2)之製法
在165℃下,於密封燒瓶內,將含於1,4-二噁烷(180 mL)中之PDA-Br2(12.0 g,21.8 mmol)與(S)-(+)-胺(式IIIa、IIIb、或IIIc)(6.2 mL,45.8 mmol)之混合物攪拌一小時。在冷卻至室溫後,在真空中移除溶劑。使用氯仿作為洗脫劑,藉由管柱層析法純化固體殘留物,以獲得N,N'-雙((S)-取代)-1,7-(或1,6)-二溴苝-3,4:9,10-雙(二甲醯亞胺)((S)-PDI-Br2))(9.52 g,61.0%)。
在150℃下,將含於DMF(160 mL)中之(S)-PDI-Br2(9.86 g,13.76 mmol)與CuCN(7.26 g,81.06 mmol)之混合物攪拌一小時。在冷卻至室溫後,過濾該反應混合物以收集不溶性物質,且使用甲醇充分清洗該等不溶性物質。使用氯仿(緩慢至氯仿:乙酸乙酯=100:4,按體積比計)作為洗脫劑,在矽膠上對此粗產物進行管柱層析,以獲得(S)-PDI-CN2(6.34 g,75.7%)。
實例3:外消旋N,N'-雙取代-1,7-(或1,6)-二氰基苝-3,4:9,10-雙(二甲醯亞胺)(PDI-CN2)之製法
將鹽酸羥胺(23.2 g,0.33 mol)添加至酮1(16.3 g,0.16 mol)與甲醇(250 ml)之混合物中,隨後添加醋酸鈉(34.2 g,0.42 mol)。強力攪拌此懸浮液且回流2小時。在冷卻至室溫後,於真空中移除大部份溶劑,且將殘留物倒入水(400 mL)中。使用Et2O(300 mL×2)萃取此混合物。使用水、飽和NaHCO3及鹽水清洗組合有機層,在Na2SO4上乾燥,並在旋轉蒸發器上濃縮,以獲得無需另外純化而直接用於下一步驟之酮肟2(17.6 g,94%)。
在0℃下,將含於無水Et2O(70 mL)中之粗製酮肟2(17.6 g,0.15 mol)之溶液滴加至含於無水Et2O(110 mL)中之LiAlH4(11.0 g,0.28 mol)之溶液中。添加後,使該混合物回流16小時,然後藉由冰/水浴將該混合物冷卻至0℃。緩慢添加水(15 mL)至該反應.混合物中,隨後依序添加NaOH水溶液(15%,15 mL)及水(15 mL)。過濾該反應混合物,且在Na2SO4上乾燥濾液,並在旋轉蒸發器上濃縮。蒸餾殘留物,以提供呈外消旋體之胺3(8.3 g,54.2%)。
在165℃下,於密封燒瓶內,將含於1,4-二噁烷(30 mL)中之PDA-Br2(1.80 g,3.27 mmol)與胺3(外消旋)(1.0 g,9.9 mmol)之混合物攪拌1.5小時。當冷卻至室溫後,在真空中濃縮該反應混合物。使用氯仿作為洗脫劑,在矽膠上對殘留物進行管柱層析,以獲得N,N'-雙取代-1,7-(或1,6)-二溴苝-3,4:9,10-雙(二甲醯亞胺)(PDI-Br2)之外消旋混合物(1.70 g,72.6%)。
在150℃下,將含於DMF(20 mL)中之外消旋PDI-Br2(0.99 g,1.39 mmol)與CuCN(0.75 g,8.37 mmol)之混合物攪拌1小時。當冷卻至室溫時,過濾該反應混合物以收集不溶性物質,並使用甲醇充分清洗該等不溶性物質。使用氯仿(緩慢增加至氯仿:乙酸乙酯=100:1,100:4,按體積比計)作為洗脫劑,藉由在矽膠上進行管柱層析來純化此物質,以獲得N,N'-雙取代-1,7-(或1,6)-二氰基苝-3,4:9,10-雙(二甲醯亞胺)(PDI-CN2)之外消旋混合物(0.74 g,87.5%)。
實例4:裝置製法及測量
使用併入式I化合物之立體異構體之不同混合物作為半導體薄膜之頂部閘極底部接觸型組態,製造薄膜電晶體(TFT)裝置(50-100 μm之通道長度(L)及1.0-4.0 mm之通道寬度(W))。將半導體薄膜自氯化溶劑之溶液(2-10 mg/mL)旋塗至Au電極/玻璃基板上。然後,旋塗閘極介電層。閘極介電質之實例係PMMA、PS、PVA、PTBS,且具有300至1500 nm之厚度。藉由沉積閘極接點完成該裝置。所有電氣測量係在周圍氣氛中進行。以下記錄數據係自在半導體薄膜上之不同位置經測試之至少三個裝置測定的平均值。
為允許與其他有機FET相比,藉由標準場效電晶體方程式計算遷移率(μ)。在傳統的金屬-絕緣體-半導體FET(MISFET)中,於不同之VG下,在IDS對VDS曲線(其中IDS係源極-汲極飽和電流,VDS係源極與汲極之間之電位,且VG係閘極電壓)中通常存在線性飽和區。在較大VDS下,電流飽和且由以下表示:
(IDS)sat=(WCi/2L)μ(VG-Vt)2 (1)
其中L及W分別係裝置通道長度及寬度,Ci係閘極介電質之電容,且Vt係臨限電壓。
在飽和區中藉由再排列方程式(1)計算遷移率(μ):
μsat=(2IDSL)/[WCi(VG-Vt)2] (2)
臨限電壓(Vt)可估計為VG對(IDS)1/2曲線圖之線性部份之x截距。
表1描述式I化合物之不同立體異構體混合物,其等係藉由以如下所示之莫耳比混合式I之(S,S)-對映體及(R,R)-對映體獲得:
圖2比較併入表1中之不同半導體混合物之TFT的遷移率。
表2描述式I化合物之不同立體異構體混合物,其等係藉由以S-胺及R-胺之如下所示之莫耳比混合物使式II酐氰化所製成:
圖3比較併入表2中之不同半導體混合物之TFT的遷移率。
參考圖2及圖3,可發現本發明之對映體富集混合物(其中(R,R)-立體異構體:(S,S)-立體異構體(或反之亦然)係在約0.8:0.2至約0.98:0.02之間(例如CZH-V-154A、CZH-V-154B、或CZH-V-141A))顯示比外消旋體(例如CZH-V-154E或CZH-V-93M)高至少兩倍之遷移率。此外,與使用光學純態對映體(例如CZH-V-107或JB1.18)製造之裝置相比,自此等對映體富集混合物測得之遷移率並無統計差異。
本發明在不脫離其精神或基本特徵之情況下包含呈其他特定形式之實施例。因此,上述實施例在所有態樣中將被視為說明性,而非限制本文所述之本發明。因此,本發明之範圍係由隨附申請專利範圍,而非以上描述內容所指示,且在該等申請專利範圍之等效物之定義及範圍內之所有變化係意欲包含於其中。
1a...底部閘極頂部接觸型結構
1b...底部閘極底部接觸型結構
1c...頂部閘極底部接觸型結構
1d...頂部閘極頂部接觸型結構
2、2'、2"、2'''...源極或接點
4、4'、4"、4'''...汲極或接點
6、6'、6"、6'''...半導體組分或半導體層
8、8'、8"、8'''...閘極介電組分
10、10'、10"、10'''...閘極或接點
12、12'、12"、12'''...基板
圖1顯示四種不同組態之薄膜電晶體:底部閘極頂部接觸型(左上)、底部閘極底部接觸型(右上)、頂部閘極底部接觸型(左下)、及頂部閘極頂部接觸型(右下),該等組態各可用於併入本發明聚合物。
圖2比較藉由本發明對映體富集之雙(二甲醯亞胺)混合物獲得之薄膜電晶體與彼等藉由該雙(二甲醯亞胺)之外消旋混合物及光學純態對映體獲得之薄膜電晶體的遷移率。該等對映體富集之雙(二甲醯亞胺)混合物係自立體有擇胺製得。
圖3比較藉由本發明對映體富集之雙(二甲醯亞胺)混合物獲得之薄膜電晶體與彼等藉由該雙(二甲醯亞胺)之外消旋混合物及光學純態對映體獲得之薄膜電晶體的遷移率。該等對映體富集之雙(二甲醯亞胺)混合物係自對映體富集之胺混合物製得。
1a...底部閘極頂部接觸型結構
1b...底部閘極底部接觸型結構
1c...頂部閘極底部接觸型結構
1d...頂部閘極頂部接觸型結構
2、2'、2"、2'''...源極或接點
4、4'、4"、4'''...汲極或接點
6、6'、6"、6'''...半導體組分或半導體層
8、8'、8"、8'''...閘極介電組分
10、10'、10"、10'''...閘極或接點
12、12'、12"、12'''...基板

Claims (18)

  1. 一種薄膜半導體,其包含式I化合物之對映體富集混合物: 其中:R1及R2係相同或實質上相同,且選自分支鏈C4-40烷基、分支鏈C4-40烯基、及分支鏈C4-40鹵代烷基,該等分支鏈C4-40烷基、分支鏈C4-40烯基、或分支鏈C4-40鹵代烷基具有選自以下之式: 其中R'係C1-20烷基或C1-20鹵代烷基,R"係不同於R'且選自C1-20烷基、C2-20烯基、及C1-20鹵代烷基,且星號(*)表示立體中心,以使R1及R2具有R-或S-組態;且其中該對映體富集混合物中之式I化合物之(R,R)-立體異構體:(S,S)-立體異構體之比或(S,S)-立體異構體:(R,R)-立體異構體之比係在約0.8:0.2與約0.98:0.02之間。
  2. 如請求項1之薄膜半導體,其中該對映體富集混合物包含以下立體異構體: 其中R'係C1-6烷基或C1-6鹵代烷基,且R"係不同於R'並係選自C3-20烷基、C3-20烯基、及C3-20鹵代烷基,且該兩種立體異構體之相對比係在約0.8:0.2與約0.98:0.02之間。
  3. 如請求項1之薄膜半導體,其中該對映體富集混合物包含以下立體異構體: 其中R'係C1-6烷基或C1-6鹵代烷基,且R"係不同於R'並係選自C3-20烷基、C3-20烯基、及C3-20鹵代烷基,且該兩種立體異構體之相對比係在約0.8:0.2與約0.98:0.02之間。
  4. 如請求項1之薄膜半導體,其中該對映體富集混合物包含以下立體異構體: 其中R'係C1-6烷基或C1-6鹵代烷基,且R"係不同於R'並係選自C3-20烷基、C3-20烯基、及C3-20鹵代烷基,且該兩種立體異構體之相對比係在約0.8:0.2與約0.98:0.02之間。
  5. 如請求項2至4中任一項之薄膜半導體,其中R'係選自CH3、CF3、C2H5、CH2CF3、及C2F5
  6. 如請求項1之薄膜半導體,其中該對映體富集混合物包含以下立體異構體: 其中該兩種立體異構體之相對比係在約0.8:0.2與約0.98:0.02之間。
  7. 如請求項1之薄膜半導體,其中該對映體富集混合物包含以下立體異構體: 其中該兩種立體異構體之相對比係在約0.8:0.2與約0.98:0.02之間。
  8. 如請求項1之薄膜半導體,其中該對映體富集混合物包含以下立體異構體: 其中該兩種立體異構體之相對比係在約0.8:0.2與約0.98:0.02之間。
  9. 如請求項1之薄膜半導體,其中該對映體富集混合物包 含以下立體異構體: 其中該兩種立體異構體之相對比係在約0.8:0.2與約0.98:0.02之間。
  10. 如請求項1之薄膜半導體,其中該對映體富集混合物包含以下立體異構體: 其中該兩種立體異構體之相對比係在約0.8:0.2與約0.98:0.02之間。
  11. 如請求項1至4及6至10中任一項之薄膜半導體,其中該混合物中(R,R)-立體異構體:(S,S)-立體異構體之比或(S,S)-立體異構體:(R,R)-立體異構體之比係在約0.90:0.10與約0.95:0.05之間。
  12. 一種複合物,其包含基板及沉積在該基板上之如請求項至11中任一項之薄膜半導體。
  13. 一種電子裝置、光學裝置、或光電裝置,其包含如請求項1至11中任一項之薄膜半導體。
  14. 一種電子裝置、光學裝置、或光電裝置,其包含如請求項12之複合物。
  15. 一種場效電晶體裝置,其包含源極、汲極、閘極、及與介電材料接觸之如請求項1至11中任一項之薄膜半導體。
  16. 如請求項15之場效電晶體裝置,其中該場效電晶體具有選自頂部閘極底部接觸型結構、底部閘極頂部接觸型結構、頂部閘極頂部接觸型結構、及底部閘極底部接觸型結構之結構。
  17. 如請求項15或16之場效電晶體裝置,其中該介電材料包括有機介電材料、無機介電材料、或混合有機/無機介電材料。
  18. 如請求項15或16之場效電晶體裝置,其中該場效電晶體裝置所顯示之場效遷移率係包括含有式I化合物之(R,R)-立體異構體與(S,S)-立體異構體之1:1混合物之薄膜半導體之在其他方面相同的場效電晶體裝置之至少兩倍。
TW100149618A 2010-12-30 2011-12-29 以苝為基質之半導體及其製備方法與用途 TWI580020B (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US201061428668P 2010-12-30 2010-12-30

Publications (2)

Publication Number Publication Date
TW201234579A TW201234579A (en) 2012-08-16
TWI580020B true TWI580020B (zh) 2017-04-21

Family

ID=46382378

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100149618A TWI580020B (zh) 2010-12-30 2011-12-29 以苝為基質之半導體及其製備方法與用途

Country Status (7)

Country Link
US (1) US9147850B2 (zh)
EP (1) EP2659528B1 (zh)
JP (1) JP5734456B2 (zh)
KR (1) KR101430945B1 (zh)
CN (1) CN103283053B (zh)
TW (1) TWI580020B (zh)
WO (1) WO2012090110A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016027217A1 (en) * 2014-08-18 2016-02-25 Basf Se Organic semiconductor composition comprising liquid medium
CN107207492A (zh) * 2014-08-28 2017-09-26 巴斯夫欧洲公司 含有小分子半导体化合物和非导电聚合物的薄膜半导体
US10026553B2 (en) * 2015-10-21 2018-07-17 Capacitor Sciences Incorporated Organic compound, crystal dielectric layer and capacitor
CN106410028B (zh) * 2016-10-25 2019-02-19 苏州大学 一种基于外消旋体的有机薄膜电子器件及其制备方法
EP3664171B1 (en) * 2018-12-06 2021-05-12 Flexterra, Inc. A thin-film transistor comprising organic semiconductor materials
CN114981269A (zh) * 2019-11-27 2022-08-30 立方光伏股份有限公司 非富勒烯受主(nfas)作为钙钛矿半导体器件中的界面层

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200951160A (en) * 2008-02-05 2009-12-16 Basf Se Perylene-imide semiconductor polymers
CN101622253A (zh) * 2007-01-08 2010-01-06 破立纪元有限公司 用于制备基于芳烃-双(二羧酰亚胺)的半导体材料的方法和用于制备它们的相关中间体
TW201002706A (en) * 2008-05-30 2010-01-16 Basf Se Rylene-based semiconductor materials and methods of preparation and use thereof
TW201006840A (en) * 2008-02-05 2010-02-16 Basf Se Perylene semiconductors and methods of preparation and use thereof

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1839339A2 (en) 2004-12-23 2007-10-03 Northwestern University Siloxane-polymer dielectric compositions and related organic field-effect transistors
US7678463B2 (en) 2005-12-20 2010-03-16 Northwestern University Intercalated superlattice compositions and related methods for modulating dielectric property
EP2086974B1 (en) 2006-11-17 2013-07-24 Polyera Corporation Diimide-based semiconductor materials and methods of preparing and using the same
CN103003972A (zh) 2010-07-30 2013-03-27 巴斯夫欧洲公司 印刷电子器件中的两亲性蛋白质

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101622253A (zh) * 2007-01-08 2010-01-06 破立纪元有限公司 用于制备基于芳烃-双(二羧酰亚胺)的半导体材料的方法和用于制备它们的相关中间体
TW200951160A (en) * 2008-02-05 2009-12-16 Basf Se Perylene-imide semiconductor polymers
TW201006840A (en) * 2008-02-05 2010-02-16 Basf Se Perylene semiconductors and methods of preparation and use thereof
TW201002706A (en) * 2008-05-30 2010-01-16 Basf Se Rylene-based semiconductor materials and methods of preparation and use thereof
TW201012819A (en) * 2008-05-30 2010-04-01 Basf Se Semiconductor materials and methods of preparation and use thereof

Also Published As

Publication number Publication date
US9147850B2 (en) 2015-09-29
TW201234579A (en) 2012-08-16
JP5734456B2 (ja) 2015-06-17
EP2659528A1 (en) 2013-11-06
KR101430945B1 (ko) 2014-08-18
EP2659528A4 (en) 2017-12-27
CN103283053B (zh) 2016-01-20
US20130270543A1 (en) 2013-10-17
JP2014504022A (ja) 2014-02-13
WO2012090110A1 (en) 2012-07-05
CN103283053A (zh) 2013-09-04
KR20130108654A (ko) 2013-10-04
EP2659528B1 (en) 2018-12-12

Similar Documents

Publication Publication Date Title
JP5591229B2 (ja) 半導体材料並びにその製造方法およびその使用
JP5523351B2 (ja) ペリレン半導体並びにその製造方法及び使用
KR101844106B1 (ko) 티오시아네이토 또는 이소티오시아네이토 치환된 나프탈렌 디이미드 및 릴렌 디이미드 화합물 및 n형 반도체로서의 그의 용도
KR20100115773A (ko) 페릴렌-이미드 반도체 중합체
TWI580020B (zh) 以苝為基質之半導體及其製備方法與用途
KR101607421B1 (ko) 유기 반도체 장치의 제조 방법
US9067886B2 (en) Compounds having semiconducting properties and related compositions and devices
US8598575B2 (en) Semiconducting compounds and related compositions and devices
US8513445B2 (en) Polycyclic aromatic molecular semiconductors and related compositions and devices
TWI542591B (zh) 四氮雜靴二蒽化合物及其作為n-型半導體之用途
TW201333156A (zh) 用於製備有機半導體裝置之方法