TWI578346B - Capacitor structure and method of forming the same - Google Patents
Capacitor structure and method of forming the same Download PDFInfo
- Publication number
- TWI578346B TWI578346B TW101122787A TW101122787A TWI578346B TW I578346 B TWI578346 B TW I578346B TW 101122787 A TW101122787 A TW 101122787A TW 101122787 A TW101122787 A TW 101122787A TW I578346 B TWI578346 B TW I578346B
- Authority
- TW
- Taiwan
- Prior art keywords
- opening
- forming
- capacitor structure
- substrate
- electrode
- Prior art date
Links
Landscapes
- Semiconductor Integrated Circuits (AREA)
Description
本發明是關於一種電容結構,特別來說,是關於一種具有矽貫穿電極的電容結構。 The present invention relates to a capacitor structure, and more particularly to a capacitor structure having a 矽 through electrode.
在現代的資訊社會中,由積體電路(integrated circuit,IC)所構成的微處理系統早已被普遍運用在生活的各個層面,例如自動控制的家電用品、行動通訊設備、個人電腦等,都有積體電路的使用。而隨著科技的日益精進,以及人類社會對於電子產品的各種想像,使得具有積體電路的各種電子產品也往更多元、更精密、更小型的方向發展。 In the modern information society, micro-processing systems consisting of integrated circuits (ICs) have long been widely used in all aspects of life, such as automatic control of household appliances, mobile communication devices, personal computers, etc. The use of integrated circuits. With the increasing advancement of technology and the imagination of human society for electronic products, various electronic products with integrated circuits have also developed in the direction of more yuan, more precision and smaller.
在目前的電子產品中,是以各種半導體技術以在矽基底上形成電路元件,例如金氧半導體電晶體(metal oxide semiconductor transistor,MOS transistor)、電容(capacitor)或電阻(resistor)等。這些電路元件會彼此電性連接而形成複雜的電路系統。一般而言,電容結構會具有一上電極、一介電層以及一下電極。傳統的電容結構是設置在矽基底以上的金屬層間介電層(inter-metal dielectric layer,IMD layer)中,且具有「金屬-絕緣層-金屬(metal-insulator-metal,MIM)」的結構。然而,由於目前電子產品的體積縮小,能形成電容結構的空間也逐漸縮小,也限制了其電容值的大小,而無法應付更 積集化的產品元件。 In the current electronic products, various semiconductor technologies are used to form circuit elements on a germanium substrate, such as a metal oxide semiconductor transistor (MOS transistor), a capacitor, or a resistor. These circuit components are electrically connected to each other to form a complex circuit system. In general, the capacitor structure will have an upper electrode, a dielectric layer, and a lower electrode. The conventional capacitor structure is disposed in an inter-metal dielectric layer (IMD layer) above the germanium substrate, and has a structure of "metal-insulator-metal (MIM)". However, due to the current shrinkage of electronic products, the space for forming a capacitor structure is gradually reduced, and the size of the capacitance value is also limited, and it is impossible to cope with Accumulated product components.
本發明於是提供了一種電容結構與其形成方法,其特徵在於應用了傳統矽貫穿電極的製程與結構,可以有效增加電容結構的電容值。 The present invention thus provides a capacitor structure and a method of forming the same, which is characterized in that the process and structure of the conventional tantalum through electrode are applied, and the capacitance value of the capacitor structure can be effectively increased.
根據本發明的一個實施方式,本發明提供了一種電容結構,包含一基底、一矽貫穿電極、一介電層以及一摻雜區。基底具有一第一表面以及相對於第一表面的一第二表面。矽貫穿電極貫穿第一表面以及第二表面。介電層設置在基底中,並包圍矽貫穿電極。摻雜區設置在基底以及介電層之間。其中,矽貫穿電極是做為電容結構的一第一電極,而摻雜區是作為電容結構的一第二電極。 According to an embodiment of the present invention, the present invention provides a capacitor structure including a substrate, a through-electrode, a dielectric layer, and a doped region. The substrate has a first surface and a second surface opposite the first surface. The through electrode runs through the first surface and the second surface. A dielectric layer is disposed in the substrate and surrounds the 矽 through electrode. The doped region is disposed between the substrate and the dielectric layer. Wherein, the 矽through electrode is a first electrode of the capacitor structure, and the doped region is a second electrode of the capacitor structure.
根據本發明的另外一個實施方式,本發明還提供了一種形成電容結構的方法。首先提供一基底,其具有一第一表面以及相對於第一表面的一第二表面。然後於基底的第一表面上形成一第一開口以及一第二開口。之後於鄰近第二開口的基底中形成一摻雜區。於第一開口以及第二開口的表面形成一襯墊層。後續移除第二開口中的襯墊層。接著於第二開口中的摻雜區上形成一介電層。最後於基底的第一表面上形成一導電層,以填滿第一開口以及第二開口。 According to another embodiment of the present invention, the present invention also provides a method of forming a capacitor structure. A substrate is first provided having a first surface and a second surface relative to the first surface. A first opening and a second opening are then formed on the first surface of the substrate. A doped region is then formed in the substrate adjacent the second opening. A liner layer is formed on the surfaces of the first opening and the second opening. The liner layer in the second opening is subsequently removed. A dielectric layer is then formed over the doped regions in the second opening. Finally, a conductive layer is formed on the first surface of the substrate to fill the first opening and the second opening.
本發明的電容結構以及其形成方法,是從習知矽貫穿電極的結構 以及形成方法進行改良,以在形成矽貫穿電極的同時,也可以形成本發明的電容結構。利用矽貫穿電極作為上電極的好處在於,可以加大電極與介電層之間的面積,故可以有效加大電容值,而得到一品質較佳的電容結構。 The capacitor structure of the present invention and the method of forming the same are from the structure of the conventional 矽 through electrode And the formation method is modified to form the capacitor structure of the present invention while forming the tantalum penetration electrode. The advantage of using the 矽 through electrode as the upper electrode is that the area between the electrode and the dielectric layer can be increased, so that the capacitance value can be effectively increased to obtain a capacitor structure of better quality.
為使熟習本發明所屬技術領域之一般技藝者能更進一步了解本發明,下文特列舉本發明之數個較佳實施例,並配合所附圖式,詳細說明本發明的構成內容及所欲達成之功效。 The present invention will be further understood by those skilled in the art to which the present invention pertains. The effect.
請參考第1圖至第9圖,所示為根據本發明一種形成電容結構的方法之步驟示意圖。如第1圖所示,首先提供一基底300,例如是矽基底(silicon substrate)、磊晶矽基底(epitaxial silicon substrate)、矽鍺半導體基底(silicon germanium substrate)、碳化矽基底(silicon carbide substrate)或矽覆絕緣基底(silicon-on-insulator substrate,SOI substrate)。於一個實施例中,基底300具有一第一導電形態,例如基底300為含磷的矽基底(P- substrate)。基底300具有一第一表面302以及一第二表面304,兩者相對設置。在本發明的一個實施例中,第一表面302例如是基底300的主動面(active surface),而第二表面304例如是基底300的背面(backside surface)。基底300厚度大體上為700至1000微米(micro meter),但不以此為限。接著,在基底300的第一表面302上形成一第一開口306、一第二開口308以及一第三開口309。第一開口306、第二開口308與第三開口309的深度以 及孔徑可以依照產品設計而有不同的選擇。在本發明的一個實施例中,第一開口306與第二開口308的深度大體上相同,且第三開口309的深度小於第一開口306與第二開口308的深度,例如第一開口306與第二開口308的深度是50至100微米,而第三開口309的深度是5微米。在其他的實施例中,第一開口306的深度與第二開口308的深度可以不同,例如第一開口306的深度可以大於第二開口308的深度。另外,第一開口306、第二開口308以及第三開口309在不同情況下可以先後形成。於一個實施例中,若第一開口306與第二開口308的深度相同,兩者可以在同一道的微影暨蝕刻(photolithography-etching-process,PEP)步驟來形成,例如先形成第三開口309後,再形成第一開口306與第二開口308。或者,也可以先形成第一開口306與第二開口308,再形成第三開口309。在本發明的一個實施例中,形成第三開口309的光罩還可以進一步包含一零層圖形(zero mark),藉以在基底300中同時形成第三開口309以及一對準標記(第1圖未示)。此對準標記可以在形成第一開口306及/或第二開口308時作為對準用途,或是後續步驟中作為對準用途。如此一來,可以節省一道微影暨蝕刻製程。此外,於另外一個實施例中,第一開口306、第二開口308以及第三開口309也可以同時形成。例如藉由開口大小的不同,而於同一蝕刻製程中形成不同深度的第一開口306、第二開口308以及第三開口309。或者是藉由半調式光罩(half tone mask)等方式,來同時形成不同深度的第一開口306、第二開口308以及第三開口309。 Referring to Figures 1 through 9, there is shown a schematic diagram of the steps of a method of forming a capacitor structure in accordance with the present invention. As shown in FIG. 1, a substrate 300 is first provided, such as a silicon substrate, an epitaxial silicon substrate, a silicon germanium substrate, or a silicon carbide substrate. Or a silicon-on-insulator substrate (SOI substrate). In one embodiment, substrate 300 has a first conductive configuration, such as substrate 300 being a phosphorus-containing germanium substrate (P - substrate). The substrate 300 has a first surface 302 and a second surface 304 disposed opposite each other. In one embodiment of the invention, the first surface 302 is, for example, the active surface of the substrate 300, and the second surface 304 is, for example, the backside surface of the substrate 300. The thickness of the substrate 300 is generally 700 to 1000 micrometers, but not limited thereto. Next, a first opening 306, a second opening 308 and a third opening 309 are formed on the first surface 302 of the substrate 300. The depth of the first opening 306, the second opening 308 and the third opening 309, and the aperture may be selected differently depending on the product design. In one embodiment of the present invention, the depth of the first opening 306 and the second opening 308 are substantially the same, and the depth of the third opening 309 is smaller than the depth of the first opening 306 and the second opening 308, such as the first opening 306 and The depth of the second opening 308 is 50 to 100 microns, and the depth of the third opening 309 is 5 microns. In other embodiments, the depth of the first opening 306 and the depth of the second opening 308 may be different, for example, the depth of the first opening 306 may be greater than the depth of the second opening 308. In addition, the first opening 306, the second opening 308, and the third opening 309 may be formed in different cases in different cases. In one embodiment, if the first opening 306 and the second opening 308 have the same depth, the two openings may be formed in the same photolithography-etching-process (PEP) step, for example, forming a third opening. After 309, the first opening 306 and the second opening 308 are formed. Alternatively, the first opening 306 and the second opening 308 may be formed first, and then the third opening 309 is formed. In an embodiment of the present invention, the photomask forming the third opening 309 may further include a zero mark, thereby forming a third opening 309 and an alignment mark simultaneously in the substrate 300 (FIG. 1) Not shown). This alignment mark can be used for alignment when forming the first opening 306 and/or the second opening 308, or as an alignment for use in subsequent steps. In this way, a lithography and etching process can be saved. In addition, in another embodiment, the first opening 306, the second opening 308, and the third opening 309 may also be formed at the same time. The first opening 306, the second opening 308, and the third opening 309 of different depths are formed in the same etching process, for example, by different opening sizes. Alternatively, the first opening 306, the second opening 308, and the third opening 309 of different depths are simultaneously formed by a half tone mask or the like.
如第2圖所示,在基底300之特定區域,例如鄰近(adjacent)第二開口308以及第三開口309的表面上形成一摻雜區310。於一個實施例中,摻雜區310僅會形成在第二開口308以及第三開口309的表面,而沒有形成在第一開口306的表面。形成摻雜區310的方法例如是透過一氣相摻雜(gas phase doping,GPD)製程。舉例來說,可先在基底300的第一表面302的一側上形成一圖案化光阻層(圖未示)等之遮罩覆蓋第一開口306,然後提供一摻雜氣體使第二開口308與第三開口309暴露在摻雜氣體中,後續進行一退火製程。於一實施例中,摻雜區310具有第二導電形態,第二導電形態不同於基底300的第一導電形態,例如當基底300為含磷矽基底時,摻雜區310為含砷的區域。值得注意的是,第二開口308與第三開口309之間的摻雜區310(第2圖A處)較佳會彼此相連,也就是摻雜區310會連續地(contiguously)形成在第二開口308以及第三開口309之間。但於一個實施例中,此時A處的摻雜區310也可能還沒有相連。此外,於本發明另外實施例中,摻雜區310亦可能全面地形成在基底300上,例如也會形成在第一開口306的表面。 As shown in FIG. 2, a doped region 310 is formed on a specific region of the substrate 300, for example, a surface of the second opening 308 and the third opening 309. In one embodiment, the doped regions 310 are formed only on the surfaces of the second opening 308 and the third opening 309 without being formed on the surface of the first opening 306. The method of forming the doping region 310 is, for example, a gas phase doping (GPD) process. For example, a mask such as a patterned photoresist layer (not shown) may be formed on one side of the first surface 302 of the substrate 300 to cover the first opening 306, and then a doping gas is provided to make the second opening. The 308 and the third opening 309 are exposed to the doping gas, followed by an annealing process. In one embodiment, the doped region 310 has a second conductive form, and the second conductive form is different from the first conductive form of the substrate 300. For example, when the substrate 300 is a phosphorous-containing germanium substrate, the doped region 310 is an arsenic-containing region. . It should be noted that the doping regions 310 (at FIG. 2A) between the second opening 308 and the third opening 309 are preferably connected to each other, that is, the doping region 310 is contiguously formed in the second Between the opening 308 and the third opening 309. However, in one embodiment, the doped regions 310 at A may not be connected at this time. In addition, in another embodiment of the present invention, the doping region 310 may also be formed entirely on the substrate 300, for example, also on the surface of the first opening 306.
如第3圖所示,在基底300第一表面302上形成一襯墊層312,例如是單一氧化層、單一氮化層、或氧化層加氮化層等之複合結構。於一個實施例中,襯墊層312是以熱氧化的方式形成,因此會共形地(conformally)沿著第一開口306、第二開口308以及第三開口309的表面形成,且其厚度大體上為2000埃(angstrom)至1微米。在一個實施例中,熱氧化製程可以和前述氣相摻雜製程中的退火製程結 合在一起,亦即在進行了熱氧化製程後,可以同時形成襯墊層312以及摻雜區310。在另外一個實施例中,若適當的調整熱氧化製程的參數,也可以使摻雜區310的範圍加大,使得A處摻雜區310可以更確定地相連且連續。而於另外的實施例中,襯墊層312也可以依照其他的方式形成,例如是原子層沉積(atomic layer deposition,ALD)製程。 As shown in FIG. 3, a liner layer 312 is formed on the first surface 302 of the substrate 300, for example, a composite structure of a single oxide layer, a single nitride layer, or an oxide layer plus a nitride layer. In one embodiment, the liner layer 312 is formed by thermal oxidation, and thus conformally formed along the surfaces of the first opening 306, the second opening 308, and the third opening 309, and has a thickness substantially The upper is 2000 angstroms to 1 micron. In one embodiment, the thermal oxidation process can be combined with the annealing process in the gas phase doping process described above. Together, that is, after the thermal oxidation process is performed, the liner layer 312 and the doped region 310 can be simultaneously formed. In another embodiment, if the parameters of the thermal oxidation process are appropriately adjusted, the range of the doping regions 310 may be increased, so that the doping regions 310 at A may be more surely connected and continuous. In other embodiments, the liner layer 312 can also be formed in other ways, such as an atomic layer deposition (ALD) process.
如第4圖所示,移除第二開口308以及第三開口309表面的襯墊層312。於本發明的一個實施例中,例如是配合對準標記(圖未示)以形成一圖案化光阻層(圖未示)覆蓋在第二開口308與第三開口309以外的區域,然後再進行一溼蝕刻製程及/或一乾蝕刻製程,以移除此處的襯墊層312,並暴露出第二開口308與第三開口309底部的摻雜區310,最後移除圖案化光阻層。此外,前文的實施方式是先形成摻雜區310與襯墊層312後(第3圖),再移除第二開口308與第三開口309中的襯墊層312(第4圖)。而於本發明的另外一個實施例中,亦可先形成襯墊層312後,接著移除第二開口308與第三開口309中的襯墊層312,然後再形成摻雜區310。 As shown in FIG. 4, the second opening 308 and the backing layer 312 on the surface of the third opening 309 are removed. In an embodiment of the present invention, for example, an alignment mark (not shown) is formed to form a patterned photoresist layer (not shown) covering a region other than the second opening 308 and the third opening 309, and then Performing a wet etching process and/or a dry etching process to remove the pad layer 312 here, and exposing the doping region 310 at the bottom of the second opening 308 and the third opening 309, and finally removing the patterned photoresist layer. . In addition, in the foregoing embodiment, after the doping region 310 and the pad layer 312 are formed (FIG. 3), the pad layer 312 in the second opening 308 and the third opening 309 is removed (FIG. 4). In another embodiment of the present invention, the pad layer 312 may be formed first, then the pad layer 312 in the second opening 308 and the third opening 309 may be removed, and then the doping region 310 may be formed.
後續,如第5圖所示,在第二開口308以及第三開口309的表面上形成極薄的一介電層314,例如是單一氧化層、單一氮化層、或氧化層加氮化層等之複合結構。形成介電層314的方法例如是熱氧化製程,且介電層314的厚度較佳會小於襯墊層312的厚度,例如是40至100埃。由於介電層314是以熱氧化的方式形成,因此介電 層314較佳僅形成在第二開口308與第三開口309的表面。於本發明的一個實施例中,形成介電層314後還可以選擇性地在基底300的第一表面302上形成一蓋層(cap layer)(圖未示)以至少覆蓋在第二開口308與第三開口309的表面。蓋層的厚度較佳也會小於介電層314的厚度,且材質例如是氮化矽(silicon nitride),或者是與介電層314共構成氧化層-氮化層-氧化層(ONO)。 Subsequently, as shown in FIG. 5, a very thin dielectric layer 314 is formed on the surface of the second opening 308 and the third opening 309, such as a single oxide layer, a single nitride layer, or an oxide layer plus a nitride layer. And other composite structures. The method of forming the dielectric layer 314 is, for example, a thermal oxidation process, and the thickness of the dielectric layer 314 is preferably less than the thickness of the liner layer 312, for example, 40 to 100 angstroms. Since the dielectric layer 314 is formed by thermal oxidation, the dielectric Layer 314 is preferably formed only on the surface of second opening 308 and third opening 309. In an embodiment of the present invention, after forming the dielectric layer 314, a cap layer (not shown) may be selectively formed on the first surface 302 of the substrate 300 to cover at least the second opening 308. And the surface of the third opening 309. The thickness of the cap layer is also preferably smaller than the thickness of the dielectric layer 314, and the material is, for example, silicon nitride, or forms an oxide layer-nitride layer-oxide layer (ONO) together with the dielectric layer 314.
如第6圖所示,移除第三開口309表面的介電層314(以及蓋層)。於本發明的一個實施例中,例如是形成一圖案化光阻層(圖未示)覆蓋在第三開口309以外的區域,然後再進行一溼蝕刻製程及/或一乾蝕刻製程,以移除此處的介電層314(以及蓋層),並暴露出下方的摻雜區310,最後移除圖案化光阻層。 As shown in FIG. 6, the dielectric layer 314 (and the cap layer) on the surface of the third opening 309 is removed. In one embodiment of the present invention, for example, a patterned photoresist layer (not shown) is formed to cover a region other than the third opening 309, and then a wet etching process and/or a dry etching process is performed to remove The dielectric layer 314 (and the cap layer) is here, and the underlying doped region 310 is exposed, and finally the patterned photoresist layer is removed.
如第7圖所示,在第一開口306、第二開口308以及第三開口309的表面上填入一選擇性的阻障層(barrier layer)316以及一導電層(conductive layer)318,其中導電層318會完全填滿第一開口306、第二開口308以及第三開口309。於本發明的一個實施例中,阻障層316是以物理氣相沉積(physical vapor deposition,PVD)的方式形成,其材質例如是氮化鈦(TiN)。導電層318則是以電鍍的方式形成,其材質例如是銅(copper),因此較佳可於形成阻障層316後,先形成一銅之晶種層(圖未示),再進行電鍍銅的步驟。最後,進行一平坦化製程,例如是化學機械研磨(chemical mechanical polish,CMP)製程或回蝕刻(etching back)製程或是兩者的結合,以移除襯墊層312上 方的導電層318以及阻障層316。或者於另一實施例中,可以進一步移除基底300上的襯墊層312。 As shown in FIG. 7, a surface of the first opening 306, the second opening 308, and the third opening 309 is filled with a selective barrier layer 316 and a conductive layer 318. The conductive layer 318 will completely fill the first opening 306, the second opening 308, and the third opening 309. In one embodiment of the present invention, the barrier layer 316 is formed by physical vapor deposition (PVD), and the material thereof is, for example, titanium nitride (TiN). The conductive layer 318 is formed by electroplating, and the material thereof is, for example, copper. Therefore, after forming the barrier layer 316, a copper seed layer (not shown) is formed, and then copper plating is performed. A step of. Finally, a planarization process, such as a chemical mechanical polish (CMP) process or an etching back process or a combination of the two, is performed to remove the liner layer 312. A conductive layer 318 and a barrier layer 316. Or in another embodiment, the liner layer 312 on the substrate 300 can be further removed.
如第8圖所示,在基底300第一表面302的一側上形成一金屬內連線系統320。金屬內連線系統320例如包含多層的金屬層以及多層的介電層。於一個實施例中,金屬內連線系統320中會各自電性連接第一開口306、第二開口308以及第三開口309中的導電層318,以分別提供其電子訊號的輸入/輸出。 As shown in FIG. 8, a metal interconnect system 320 is formed on one side of the first surface 302 of the substrate 300. Metal interconnect system 320 includes, for example, a plurality of metal layers and a plurality of dielectric layers. In one embodiment, the metal interconnect system 320 electrically connects the first opening 306, the second opening 308, and the conductive layer 318 in the third opening 309 to provide input/output of their electronic signals, respectively.
如第9圖所示,最後從基底300第二表面304的一側進行一薄化製程。薄化製程會進行至第一開口306與第二開口308中的導電層318(或是阻障層316)暴露出來。此時,基底300的第二表面304即形成了第三表面305。如此一來,在第9圖左側即形成矽貫穿電極322a,而中間與右側則形成了本發明的電容結構324,其中第二開口308中的導電層318形成了矽貫穿電極322b,而第三開口309中的導電層318則形成了電路接點(pick up)323。 As shown in FIG. 9, a thinning process is finally performed from one side of the second surface 304 of the substrate 300. The thinning process is performed to expose the conductive layer 318 (or the barrier layer 316) in the first opening 306 and the second opening 308. At this time, the second surface 304 of the substrate 300 forms the third surface 305. In this way, the 矽 through electrode 322a is formed on the left side of the ninth figure, and the capacitor structure 324 of the present invention is formed in the middle and the right side, wherein the conductive layer 318 in the second opening 308 forms the 矽 through electrode 322b, and the third Conductive layer 318 in opening 309 then forms a circuit pick 323.
值得注意的是,若第一開口306與第二開口308的深度一開始就不同時,以能暴露出第一開口306中的導電層318為原則。請參考第10圖,所示為本發明另一種形成電容結構的方法之步驟示意圖。若第一開口306的深度大於第二開口308的深度時,薄化製程會至少進行到第一開口306中的導電層318暴露出來,此時第二開口308中導電層318尚未暴露出來。同樣地,在第10圖左側即形成矽貫穿 電極322a,而中間與右側則形成了本發明的電容結構324,其中第二開口308中的導電層318形成了電容結構324的一個電極,而第三開口309中的導電層318則形成了電路接點323。 It should be noted that if the depths of the first opening 306 and the second opening 308 are different from the beginning, the principle is that the conductive layer 318 in the first opening 306 can be exposed. Please refer to FIG. 10, which is a schematic diagram showing the steps of another method for forming a capacitor structure according to the present invention. If the depth of the first opening 306 is greater than the depth of the second opening 308, the thinning process will at least expose the conductive layer 318 in the first opening 306, and the conductive layer 318 in the second opening 308 is not exposed. Similarly, on the left side of the 10th figure, a 矽through is formed. The electrode 322a, while the middle and the right side, form the capacitor structure 324 of the present invention, wherein the conductive layer 318 in the second opening 308 forms one electrode of the capacitor structure 324, and the conductive layer 318 in the third opening 309 forms the circuit. Contact 323.
如第9圖所示,本發明的電容結構324包含基底300、矽貫穿電極322b、介電層314以及摻雜區310。基底300具有第一表面302以及第三表面305。矽貫穿電極322b貫穿第一表面302以及第三表面305。介電層314設置在基底300以及矽貫穿電極322b之間,較佳會包圍在矽貫穿電極322b側壁上。摻雜區310會連續地設置在電路接點323以及矽貫穿電極322b之間的基底300中,且較佳會包圍介電層314。若從金屬內連線系統320中施以適當的電子訊號,則矽貫穿電極322b是作為電容結構324的第一電極,而摻雜區310則作為電容結構324的第二電極,兩者中間隔著極薄的介電層314,而形成一「金屬-絕緣層-金屬」結構。此外,基底300中還設置有矽貫穿電極322a,其貫穿第一表面302以及第三表面305,以及襯墊層312包圍矽貫穿電極322a。較佳來說,襯墊層312不會包圍電容結構324中的矽貫穿電極322b,且摻雜區310也不會包圍矽貫穿電極322a。 As shown in FIG. 9, the capacitor structure 324 of the present invention includes a substrate 300, a germanium through electrode 322b, a dielectric layer 314, and a doped region 310. The substrate 300 has a first surface 302 and a third surface 305. The through electrode 322b extends through the first surface 302 and the third surface 305. The dielectric layer 314 is disposed between the substrate 300 and the tantalum through electrode 322b, preferably surrounding the sidewall of the tantalum through electrode 322b. The doped region 310 is continuously disposed in the substrate 300 between the circuit contacts 323 and the 矽 through electrodes 322b, and preferably surrounds the dielectric layer 314. If an appropriate electronic signal is applied from the metal interconnect system 320, the through electrode 322b is the first electrode of the capacitor structure 324, and the doped region 310 serves as the second electrode of the capacitor structure 324. A very thin dielectric layer 314 is formed to form a "metal-insulator-metal" structure. In addition, a tantalum penetration electrode 322a is disposed in the substrate 300, which penetrates the first surface 302 and the third surface 305, and the liner layer 312 surrounds the crucible through electrode 322a. Preferably, the pad layer 312 does not surround the germanium through electrode 322b in the capacitor structure 324, and the doped region 310 does not surround the via electrode 322a.
此外,如第10圖所示,於本發明之另一實施態樣,第一開口306的深度會大於第二開口308的深度,即矽貫穿電極322a的深度會大於電容結構324中一個電極的深度。如此,本發明的電容結構324還可多得到第二開口308內的導電層318與第二開口308底部的摻 雜區310之對應面積的電容值。 In addition, as shown in FIG. 10, in another embodiment of the present invention, the depth of the first opening 306 may be greater than the depth of the second opening 308, that is, the depth of the through-electrode 322a may be greater than that of one of the capacitor structures 324. depth. As such, the capacitor structure 324 of the present invention can further obtain the doping of the conductive layer 318 in the second opening 308 and the bottom of the second opening 308. The capacitance value of the corresponding area of the impurity region 310.
本發明其中一個特點在於,利用矽貫穿電極作為上電極,故可以加大電極與介電層之間的面積,並有效加大電容值。舉例而言,在一個實施例中,若第二開口308的深度為100微米,介電層314的厚度為100埃,則電容結構324的電容值可以大於50fF/μm2,遠大於習知技術中在金屬層間介電層(metal inter-dielectric layer,MID)中形成的電容結構之電容值2fF/μm2。 One of the features of the present invention is that the use of a tantalum through electrode as the upper electrode allows the area between the electrode and the dielectric layer to be increased and the capacitance value to be effectively increased. For example, in one embodiment, if the depth of the second opening 308 is 100 micrometers and the thickness of the dielectric layer 314 is 100 angstroms, the capacitance value of the capacitor structure 324 may be greater than 50 fF/μm 2 , which is much larger than the conventional technology. The capacitance value of the capacitor structure formed in the metal inter-dielectric layer (MID) is 2fF/μm 2 .
本發明的電容結構以及其形成方法,是從習知矽貫穿電極的結構以及形成方法進行改良,以在形成矽貫穿電極的同時,也可以形成本發明的電容結構。且根據金屬內連線系統形成的時間點,本發明的方法可以應用於如「矽貫穿電極先(TSV first)」或「矽貫穿電極後(TSV last)」甚至是「矽貫穿電極中(TSV middle)」製程。 The capacitor structure of the present invention and the method of forming the same are improved from the conventional structure and the formation method of the through electrode, and the capacitor structure of the present invention can be formed while forming the tantalum penetration electrode. And according to the time point of formation of the metal interconnect system, the method of the present invention can be applied to, for example, "TSV first" or "TSV last" or even "Through through electrode" (TSV) Middle)" process.
以上所述僅為本發明之較佳實施例,凡依本發明申請專利範圍所做之均等變化與修飾,皆應屬本發明之涵蓋範圍。 The above are only the preferred embodiments of the present invention, and all changes and modifications made to the scope of the present invention should be within the scope of the present invention.
300‧‧‧基底 300‧‧‧Base
302‧‧‧第一表面 302‧‧‧ first surface
304‧‧‧第二表面 304‧‧‧ second surface
305‧‧‧第三表面 305‧‧‧ third surface
306‧‧‧第一開口 306‧‧‧ first opening
308‧‧‧第二開口 308‧‧‧ second opening
309‧‧‧第三開口 309‧‧‧ third opening
310‧‧‧摻雜區 310‧‧‧Doped area
312‧‧‧襯墊層 312‧‧‧ liner
314‧‧‧介電層 314‧‧‧ dielectric layer
316‧‧‧阻障層 316‧‧‧ barrier layer
318‧‧‧導電層 318‧‧‧ Conductive layer
320‧‧‧金屬內連線系統 320‧‧‧Metal interconnection system
322a‧‧‧矽貫穿電極 322a‧‧‧矽through electrode
322b‧‧‧矽貫穿電極 322b‧‧‧矽through electrode
323‧‧‧電路接點 323‧‧‧circuit contacts
324‧‧‧電容結構 324‧‧‧Capacitor structure
第1圖至第9圖,所示為根據本發明一種形成電容結構的方法之步驟示意圖。 1 to 9 are schematic views showing the steps of a method of forming a capacitor structure in accordance with the present invention.
第10圖,所示為根據本發明另一種形成電容結構的方法之步驟示意圖。 Figure 10 is a schematic illustration of the steps of another method of forming a capacitor structure in accordance with the present invention.
300‧‧‧基底 300‧‧‧Base
302‧‧‧第一表面 302‧‧‧ first surface
305‧‧‧第三表面 305‧‧‧ third surface
310‧‧‧摻雜區 310‧‧‧Doped area
312‧‧‧襯墊層 312‧‧‧ liner
314‧‧‧介電層 314‧‧‧ dielectric layer
316‧‧‧阻障層 316‧‧‧ barrier layer
318‧‧‧導電層 318‧‧‧ Conductive layer
320‧‧‧金屬內連線系統 320‧‧‧Metal interconnection system
322a‧‧‧矽貫穿電極 322a‧‧‧矽through electrode
322b‧‧‧矽貫穿電極 322b‧‧‧矽through electrode
323‧‧‧電路接點 323‧‧‧circuit contacts
324‧‧‧電容結構 324‧‧‧Capacitor structure
Claims (20)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW101122787A TWI578346B (en) | 2012-06-26 | 2012-06-26 | Capacitor structure and method of forming the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW101122787A TWI578346B (en) | 2012-06-26 | 2012-06-26 | Capacitor structure and method of forming the same |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201401310A TW201401310A (en) | 2014-01-01 |
TWI578346B true TWI578346B (en) | 2017-04-11 |
Family
ID=50345120
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW101122787A TWI578346B (en) | 2012-06-26 | 2012-06-26 | Capacitor structure and method of forming the same |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI578346B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105206421B (en) * | 2015-10-15 | 2017-12-12 | 西安电子科技大学 | A kind of three-dimensional integrated capacitance device formed using silicon hole and its manufacture method |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW591792B (en) * | 2003-05-30 | 2004-06-11 | Nanya Technology Corp | Manufacturing method of trench type capacitor with increasing capacitance value |
TWI270179B (en) * | 2005-07-14 | 2007-01-01 | United Microelectronics Corp | Method of fabricating a trench capacitor DRAM device |
TW201023323A (en) * | 2008-12-08 | 2010-06-16 | United Microelectronics Corp | Semiconductor device |
-
2012
- 2012-06-26 TW TW101122787A patent/TWI578346B/en active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW591792B (en) * | 2003-05-30 | 2004-06-11 | Nanya Technology Corp | Manufacturing method of trench type capacitor with increasing capacitance value |
TWI270179B (en) * | 2005-07-14 | 2007-01-01 | United Microelectronics Corp | Method of fabricating a trench capacitor DRAM device |
TW201023323A (en) * | 2008-12-08 | 2010-06-16 | United Microelectronics Corp | Semiconductor device |
Also Published As
Publication number | Publication date |
---|---|
TW201401310A (en) | 2014-01-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8525296B1 (en) | Capacitor structure and method of forming the same | |
KR100902581B1 (en) | Stack capacitor in semiconductor device and the Method for forming the same | |
US7560795B2 (en) | Semiconductor device with a capacitor | |
JP2005340818A (en) | Large capacitance mim capacitor and manufacturing method therefor | |
JP2007165461A (en) | Semiconductor device and manufacturing method thereof | |
TWI524505B (en) | Capacitor for interposers and methods of manufacturing | |
JP2011139092A (en) | Integrated circuit capacitor structure | |
US10141394B2 (en) | Integrated circuit comprising a metal-insulator-metal capacitor and fabrication method thereof | |
TWI469257B (en) | Methods of forming semiconductor devices having capacitor and via contacts | |
KR100806034B1 (en) | Semiconductor device having metal-insulator-metal capacitor and fabrication method for the same | |
US10256183B2 (en) | MIMCAP structure in a semiconductor device package | |
KR100869749B1 (en) | Metal insulator metal capacitor and method for manufacture thereof | |
KR100881488B1 (en) | Semiconductor device having mim capacitor and method of manufacturing the same | |
TWI578346B (en) | Capacitor structure and method of forming the same | |
TWI705527B (en) | Method of forming integrated circuit structure, integrated circuit device, and integrated circuit structure | |
KR20060054690A (en) | Semiconductor device having backside input output terminal and method of manufacturing the same | |
KR100965215B1 (en) | Method of manufacturing Metal- Insulator-Metal capacitor of a semiconductor device | |
KR100808558B1 (en) | Method for forming mim capacitor | |
US10224392B1 (en) | Method of fabricating a semiconductor capacitor | |
KR100800823B1 (en) | Method for forming via hole of semiconductor device with mim type capacitor | |
TWI518861B (en) | Tsv structure and method for forming the same | |
KR20100071206A (en) | Mim capacitor of semiconductor device and manufacturing method thereof | |
JP2008277434A (en) | Semiconductor device, and manufacturing method thereof | |
JP2006253268A (en) | Semiconductor device and its manufacturing method | |
TWI555122B (en) | Interconnection of semiconductor device and fabrication method thereof |