TWI573137B - 7t dual port static random access memory - Google Patents
7t dual port static random access memory Download PDFInfo
- Publication number
- TWI573137B TWI573137B TW105105527A TW105105527A TWI573137B TW I573137 B TWI573137 B TW I573137B TW 105105527 A TW105105527 A TW 105105527A TW 105105527 A TW105105527 A TW 105105527A TW I573137 B TWI573137 B TW I573137B
- Authority
- TW
- Taiwan
- Prior art keywords
- nmos transistor
- voltage
- read
- control signal
- transistor
- Prior art date
Links
Landscapes
- Static Random-Access Memory (AREA)
Description
本發明係有關於一種7T雙埠(dual port)靜態隨機存取記憶體(Static Random Access Memory,簡稱SRAM),尤指一種有效提高7T雙埠SRAM之待機效能,並能有效提高讀取速度與有效降低漏電流(leakage current)且能解決習知具單一位元線之雙埠SRAM寫入邏輯1困難之7T雙埠SRAM。 The invention relates to a 7T dual port static random access memory (SRAM), in particular to an effective improvement of the standby performance of the 7T dual-SRAM SRAM, and can effectively improve the reading speed and It effectively reduces the leakage current and can solve the 7T dual-SRAM SRAM which is difficult to write to the logic 1 with a single bit line.
習知之單埠靜態隨機存取記憶體(SRAM)如第1a圖所示,其主要包括一記憶體陣列(memory array),該記憶體陣列係由複數個記憶體區塊(memory block,MB1、MB2等)所組成,每一記憶體區塊更由複數列記憶體晶胞(a plurality of rows of memory cells)與複數行記憶體晶胞(a plurality of columns of memory cells)所組成,每一列記憶體晶胞與每一行記憶體晶胞各包括有複數個記憶體晶胞;複數條字元線(word line,WL1、WL2等),每一字元線對應至複數列記憶體晶胞中之一列;以及複數位元線對(bit line pairs,BL1、BLB1...BLm、BLBm等),每一位元線對係對應至複數行記憶體晶胞中之一行,且每一位元線對係由一位元線(BL1...BLm)及一互補位元線(BLB1...BLBm)所組成。 As is shown in FIG. 1a, the static random access memory (SRAM) mainly includes a memory array, which is composed of a plurality of memory blocks (memory block, MB 1). , MB 2 , etc., each memory block is composed of a plurality of columns of memory cells and a plurality of columns of memory cells. Each column of memory cells and each row of memory cells each include a plurality of memory cells; a plurality of word lines (word line, WL 1 , WL 2 , etc.), each word line corresponding to a plurality of columns of memory One of the body cells; and a plurality of bit line pairs (BL 1 , BLB 1 ... BL m , BLB m , etc.), each bit line pair corresponding to a plurality of rows of memory cells One row, and each bit line pair is composed of one bit line (BL 1 ... BL m ) and one complementary bit line (BLB 1 ... BLB m ).
第1b圖所示即是6T單埠靜態隨機存取記憶體(SRAM)晶胞 之電路示意圖,其中,PMOS電晶體(P1)和(P2)稱為負載電晶體(load transistor),NMOS電晶體(M1)和(M2)稱為驅動電晶體(driving transistor),NMOS電晶體(M3)和(M4)稱為存取電晶體(access transistor),WL為字元線(word line),而BL及BLB分別為位元線(bit line)及互補位元線(complementary bit line),由於該單埠SRAM晶胞需要6個電晶體,且於讀取邏輯0時,為了避免讀取操作初始瞬間(initial instant)另一驅動電晶體導通,節點A之讀取初始瞬間電壓(VAR)必須滿足方程式(1):VAR=VDD×(RM1)/(RM1+RM3)<VTM2 (1)以防止讀取時之半選定晶胞干擾(half-selected cell disturbance),其中,VAR表示節點A之讀取初始瞬間電壓,RM1與RM3分別表示該NMOS電晶體(M1)與該NMOS電晶體(M3)之導通電阻,而VDD與VTM2分別表示電源供應電壓與該NMOS電晶體(M2)之臨界電壓,此導致驅動電晶體與存取電晶體之間的電流驅動能力比(即單元比率,cell ratio)通常設定在2.2至3.5之間(請參考98年10月20日第US76060B2號專利說明書第2欄第8-10行)。 Figure 1b is a schematic diagram of a 6T單埠 SRAM cell, in which PMOS transistors (P1) and (P2) are called load transistors, NMOS transistors. (M1) and (M2) are called driving transistors, NMOS transistors (M3) and (M4) are called access transistors, WL is word line, and BL And BLB are a bit line and a complementary bit line, respectively, since the 單埠SRAM cell requires 6 transistors, and when reading logic 0, in order to avoid the initial moment of the read operation (initial instant) Another driving transistor is turned on, and the initial instantaneous voltage (V AR ) of the node A must satisfy the equation (1): V AR = V DD × (R M1 ) / (R M1 + R M3 ) < V TM2 (1) to prevent half-selected cell disturbance when reading, wherein V AR represents the initial instantaneous voltage of the reading of node A, and R M1 and R M3 respectively represent the NMOS transistor (M1) And the on-resistance of the NMOS transistor (M3), and V DD and V TM2 respectively represent the power supply voltage and the threshold voltage of the NMOS transistor (M2), which results in driving the transistor The current drive capability ratio between the body and the access transistor (ie, the cell ratio) is usually set between 2.2 and 3.5 (refer to US Patent No. US76060B2, No. 2, No. 8-10, October 20, 1998). Row).
第1b圖所示6T單埠靜態隨機存取記憶體晶胞於寫入操作時之HSPICE暫態分析模擬結果,如第2圖所示,其係使用TSMC 90奈米CMOS製程參數加以模擬。 The HSPICE transient analysis results of the 6T單埠 SRAM cell shown in Figure 1b during the write operation, as shown in Figure 2, are simulated using the TSMC 90 nm CMOS process parameters.
用來減少6T靜態隨機存取記憶體(SRAM)晶胞之電晶體數之一種方式係揭露於第3圖中。第3圖顯示一種僅具單一位元線之5T單埠靜態隨機存取記憶體晶胞之電路示意圖,與第1b圖之6T單埠靜態隨機存取記憶體晶胞相比,此種5T靜態隨機存取記憶體晶胞比6T靜態隨機存取記憶體晶胞少一個電晶體及少一條位元線,惟該5T單埠靜態隨機存取記憶體晶胞 在不變更PMOS電晶體P1和P2以及NMOS電晶體M1、M2和M3的通道寬長比的情況下存在寫入邏輯1相當困難之問題。茲考慮記憶晶胞左側節點A原本儲存邏輯0的情況,由於節點A之電荷僅單獨自位元線(BL)傳送,因此在將節點A中先前寫入的邏輯0蓋寫成邏輯1之寫入初始瞬間電壓(VAW)等於方程式(2):VAW=VDD×(RM1)/(RM1+RM3) (2)其中,VAW表示節點A之寫入初始瞬間電壓,RM1與RM3分別表示NMOS電晶體(M1)與NMOS電晶體(M3)之導通電阻,比較方程式(1)與方程式(2)可知,寫入初始瞬間電壓(VAW)小於NMOS電晶體(M2)之臨界電壓(VTM2),因而無法完成寫入邏輯1之操作。第3圖所示5T靜態隨機存取記憶體晶胞,於寫入操作時之HSPICE暫態分析模擬結果,如第4圖所示,其係使用TSMC 90奈米CMOS製程參數加以模擬,由該模擬結果可証實,具單一位元線之5T靜態隨機存取記憶體晶胞存在寫入邏輯1相當困難之問題。 One way to reduce the number of transistors in a 6T static random access memory (SRAM) cell is disclosed in FIG. Figure 3 shows a circuit diagram of a 5T 單埠 SRAM cell with only a single bit line, compared to the 6T 單埠 SRAM cell of Figure 1b. The random access memory cell has one transistor and one less bit line than the 6T static random access memory cell, but the 5T單埠 SRAM cell does not change the PMOS transistors P1 and P2. In the case of the channel width to length ratio of the NMOS transistors M1, M2, and M3, there is a problem that writing logic 1 is quite difficult. Considering that the node A on the left side of the memory cell originally stores a logic 0, since the charge of the node A is transmitted only from the bit line (BL) alone, the logic 0 previously written in the node A is overwritten with a logic 1 write. The initial instantaneous voltage (V AW ) is equal to equation (2): V AW = V DD × (R M1 ) / (R M1 + R M3 ) (2) where V AW represents the initial instantaneous voltage of the write of node A, R M1 And R M3 respectively indicate the on-resistances of the NMOS transistor (M1) and the NMOS transistor (M3). Comparing Equation (1) with Equation (2), the initial transient voltage (V AW ) is smaller than the NMOS transistor (M2). The threshold voltage (V TM2 ), and thus the operation of writing logic 1 cannot be completed. Figure 5 shows the results of the HSPICE transient analysis simulation of the 5T SRAM cell during the write operation. As shown in Figure 4, it is simulated using the TSMC 90 nm CMOS process parameters. The simulation results confirm that it is quite difficult to write logic 1 in a 5T SRAM cell with a single bit line.
接下來討論靜態隨機存取記憶體(SRAM)之單埠及雙埠架構,第1b圖之6T靜態隨機存取記憶體(SRAM)晶胞即是單埠靜態隨機存取記憶體(SRAM)晶胞之一例,其係使用兩條位元線BL及BLB做讀寫的動作,也就是讀與寫均是經由同樣的一對位元線來達成,是以在同一時間內只能進行讀或寫的動作,因此,當欲設計具有同時讀寫能力之雙埠靜態隨機存取記憶體時,便需要多加入兩顆存取電晶體以及另一對位元線(請參考第5圖所示電路,其中WBL及WBLB為寫入用位元線對、RBL及RBLB為讀取用位元線對、WWL為寫入用字元線、RWL為讀取用字元線),這使得記憶晶胞的面積大大地增加,如果我們能夠簡化記憶晶胞的架構,使得一條位元 線負責讀取的動作,而另一條位元線負責寫入的動作,則在設計雙埠靜態隨機存取記憶體時,記憶晶胞便不需要多加入兩顆電晶體及一對位元線,這樣記憶晶胞的面積便會減小許多,傳統的雙埠靜態隨機存取記憶體晶胞之所以不採用這種方法,是因為如前所述存在寫入邏輯1相當困難之問題。 Next, we discuss the static random access memory (SRAM) and double-ended architecture. The 6T static random access memory (SRAM) cell in Figure 1b is the static random access memory (SRAM) crystal. One example of a cell, which uses two bit lines BL and BLB for reading and writing, that is, both reading and writing are achieved through the same pair of bit lines, so that only reading or reading can be performed at the same time. The action of writing, therefore, when designing a dual-static SRAM with simultaneous read and write capabilities, it is necessary to add two access transistors and another pair of bit lines (please refer to Figure 5). a circuit in which WBL and WBLB are write bit line pairs, RBL and RBLB are read bit line pairs, WWL is a write word line, and RWL is a read word line), which makes the memory crystal The area of the cell is greatly increased if we can simplify the structure of the memory cell, making a bit The line is responsible for the read action, and the other bit line is responsible for the write operation. When designing the dual-squat static random access memory, the memory cell does not need to add two transistors and a pair of bit lines. Thus, the area of the memory cell is much reduced. The conventional double-squeezing SRAM cell does not use this method because it is quite difficult to write logic 1 as described above.
迄今,有許多具單一位元線之7T雙埠靜態隨機存取記憶體晶胞之技術被提出,例如專利文獻1(103年6月11日第TWI441178號)所提出之「雙埠靜態隨機存取記憶體」、專利文獻2(103年6月11日第TWI441179號)所提出之「具放電路徑之雙埠SRAM」、專利文獻3(103年5月6日第US8717807 B2號)所提出之「Independently-controlled-gate SRAM」、專利文獻4(103年4月1日第TWI433152號)所提出之「7T雙埠SRAM」、專利文獻5(103年2月1日第TWI425509號)所提出之「具放電路徑之雙埠靜態隨機存取記憶體」、專利文獻6(103年1月11日第TWI423257號)所提出之「寫入操作時降低電源電壓之雙埠SRAM」、專利文獻7(103年1月11日第TWI423258號)所提出之「寫入操作時提高寫入用字元線電壓位準之雙埠靜態隨機存取記憶體」、專利文獻8(102年6月21日第TWI399748號)、專利文獻9(98年6月22日第US20090161410 A1號)所提出之「SEVEN TRANSISTOR SRAM CELL」、專利文獻10(97年6月10日第US7385840 B2號)所提出之「SRAM cell with independent static noise margin,trip voltage,and read current optimization」及專利文獻11(93年6月15日第US6751151 B2號)所提出之「Ultra high-speed DDP-SRAM cache」,該等專利雖可有效解決寫入邏輯1困難之問題,惟由於該等專利均未考慮到45奈米操作電壓將降為1.1±30%時所造成讀取速度降低之問題,因此仍有改進空間。 So far, many techniques have been proposed for a 7T double-squat static random access memory cell with a single bit line, for example, "Double-band static random memory" proposed in Patent Document 1 (TWI441178, June 11, 103) "Responsive memory", Patent Document 2 (TWI441179, June 11, 103), "Double-band SRAM with discharge path", and Patent Document 3 (No. 8717807 B2, May 6, 103) "Independently-controlled-gate SRAM", "7T Double SRAM" proposed in Patent Document 4 (TWI433152, April 1, 103), and Patent Document 5 (TWI425509, February 1, 103) "Double-band SRAM with discharge path", Patent Document 6 (TWI 423257, January 11, 103), "Double-埠 SRAM for reducing power supply voltage during write operation", Patent Document 7 ( "Tweed SRAM", which raises the voltage level of the write word line during the write operation, as proposed in TWI423258, January 11, 103, Patent Document 8 (June 21, 102) "SEVEN TRANSISTOR SRAM CELL" by TWI399748), Patent Document 9 (US20090161410 A1, June 22, 1998) "SRAM cell with independent static noise margin, trip voltage, and read current optimization" and Patent Document 11 (US Pat. No. 6,675, 151, June 5, 1997) "Ultra high-speed DDP-SRAM cache" proposed by B2), although these patents can effectively solve the problem of writing logic 1 difficult, but since these patents do not consider the operating voltage of 45 nm will be reduced to 1.1. At ±30%, the reading speed is reduced, so there is still room for improvement.
有鑑於此,本發明之主要目的係提出一種7T雙埠靜態隨機存取記憶體,其能藉由控制電路與高電壓位準控制電路之雙重機制以有效提高讀取速度。 In view of this, the main object of the present invention is to provide a 7T double-pin static random access memory capable of effectively improving the reading speed by a dual mechanism of a control circuit and a high voltage level control circuit.
本發明之次要目的係提出一種7T雙埠靜態隨機存取記憶體,其能藉由二階段的讀取控制以於提高讀取速度的同時,亦能避免無謂的功率耗損。 A secondary object of the present invention is to provide a 7T double-pin static random access memory capable of improving read speed while avoiding unnecessary power consumption while maintaining read speed by two stages.
本發明之再一目的係提出一種7T雙埠靜態隨機存取記憶體,其能藉由待機啟動電路以有效促使SRAM快速進入待機模式,並因而有效提高SRAM之待機效能。 A further object of the present invention is to provide a 7T dual-chirpson static random access memory capable of effectively causing the SRAM to quickly enter the standby mode by the standby enable circuit, thereby effectively improving the standby performance of the SRAM.
本發明之又一目的係提出一種7T雙埠靜態隨機存取記憶體.,其能藉由控制電路以有效降低待機模式之漏電流。 Another object of the present invention is to provide a 7T double-pin static random access memory. The control circuit can effectively reduce the leakage current in the standby mode.
本發明提出一種7T雙埠靜態隨機存取記憶體,其主要包括一記憶體陣列(1)、複數個控制電路(2)、複數個預充電電路(3)、一待機啟動電路(4)以及複數個高電壓位準控制電路(5),該記憶體陣列係由複數列記憶體晶胞與複數行記憶體晶胞所組成,每一列記憶體晶胞設置一個控制電路,且每一記憶體晶胞(1)係包括一第一反相器(由一第一PMOS電晶體P11與一第一NMOS電晶體M11所組成)、一第二反相器(由一第二PMOS電晶體P12與一第二NMOS電晶體M12所組成)、一存取電晶體(由第三NMOS電晶體M13所組成)、一第一讀取用電晶體(M14)以及一第二讀取用電晶體(M15)。每一控制單元(2)係連接至對應列記憶體晶胞中之每一記憶體晶胞的該第一NMOS電晶體(M11)的源極以及該第二 NMOS電晶體(M12)的源極,以便因應不同操作模式而控制該第一NMOS電晶體(M11)的源極電壓以及該第二NMOS電晶體(M12)的源極電壓,藉此於寫入模式時,可有效防止寫入邏輯1困難之問題,於讀取模式時,可於提高讀取速度的同時,亦避免無謂的功率耗損,於待機模式時,可有效降低漏電流,而於保持模式時則可維持原有的電氣特性。再者,藉由該待機啟動電路(4)的設計,以有效促使7T雙埠靜態隨機存取記憶體快速進入待機模式,並因而有效提高7T雙埠靜態隨機存取記憶體之待機效能。此外,藉由該複數個高電壓位準控制電路(5)的設計,以在於讀取邏輯0時藉由增加第二讀取用電晶體(M15)之導通程度,以進一步提高讀取速度。 The present invention provides a 7T dual-static static random access memory, which mainly includes a memory array (1), a plurality of control circuits (2), a plurality of precharge circuits (3), a standby start circuit (4), and a plurality of high voltage level control circuits (5), the memory array is composed of a plurality of columns of memory cells and a plurality of rows of memory cells, each column of memory cells is provided with a control circuit, and each memory The unit cell (1) includes a first inverter (composed of a first PMOS transistor P11 and a first NMOS transistor M11) and a second inverter (by a second PMOS transistor P12 and a second NMOS transistor M12, an access transistor (composed of a third NMOS transistor M13), a first read transistor (M14), and a second read transistor (M15) ). Each control unit (2) is connected to a source of the first NMOS transistor (M11) of each memory cell of the corresponding column memory cell and the second a source of the NMOS transistor (M12) for controlling a source voltage of the first NMOS transistor (M11) and a source voltage of the second NMOS transistor (M12) in response to different operation modes, thereby writing In the mode, it can effectively prevent the problem of writing logic 1. In the read mode, the read speed can be increased while avoiding unnecessary power consumption. In the standby mode, the leakage current can be effectively reduced. In the mode, the original electrical characteristics can be maintained. Furthermore, the standby start circuit (4) is designed to effectively cause the 7T dual-static SRAM to quickly enter the standby mode, thereby effectively improving the standby performance of the 7T dual-static SRAM. In addition, the design of the plurality of high voltage level control circuits (5) is such that when the logic 0 is read, the degree of conduction of the second read transistor (M15) is increased to further increase the read speed.
BLB1 …BLBm‧‧‧互補位元線 BLB 1 ... BLB m ‧‧‧complementary bit line
BLB‧‧‧互補位元線 BLB‧‧‧complementary bit line
MB1 …MBk‧‧‧記憶體區塊 MB 1 ... MB k ‧‧‧ memory block
WL1 …WLn‧‧‧字元線 WL 1 ... WL n ‧‧‧ character line
BL1 …BLm‧‧‧位元線 BL 1 ... BL m ‧‧‧ bit line
I1、I2、I3‧‧‧漏電流 I 1 , I 2 , I 3 ‧‧‧ leakage current
1‧‧‧SRAM晶胞 1‧‧‧SRAM cell
2‧‧‧控制電路 2‧‧‧Control circuit
3‧‧‧預充電電路 3‧‧‧Precharge circuit
4‧‧‧待機啟動電路 4‧‧‧Standby start circuit
P11‧‧‧第一PMOS電晶體 P11‧‧‧First PMOS transistor
P12‧‧‧第二PMOS電晶體 P12‧‧‧Second PMOS transistor
M11‧‧‧第一NMOS電晶體 M11‧‧‧First NMOS transistor
M12‧‧‧第二NMOS電晶體 M12‧‧‧Second NMOS transistor
M13‧‧‧第三NMOS電晶體 M13‧‧‧ Third NMOS transistor
A‧‧‧儲存節點 A‧‧‧ storage node
B‧‧‧反相儲存節點 B‧‧‧ Inverting storage node
VDD‧‧‧電源供應電壓 V DD ‧‧‧Power supply voltage
M14‧‧‧第一讀取用電晶體 M14‧‧‧First read transistor
M15‧‧‧第二讀取用電晶體 M15‧‧‧Second reading transistor
S‧‧‧待機模式控制信號 S‧‧‧Standby mode control signal
/S‧‧‧反相待機模式控制信號 /S ‧‧‧Inverted standby mode control signal
VL1‧‧‧第一低電壓節點 VL1‧‧‧ first low voltage node
VL2‧‧‧第二低電壓節點 VL2‧‧‧ second low voltage node
M21‧‧‧第四NMOS電晶體 M21‧‧‧4th NMOS transistor
M22‧‧‧第五NMOS電晶體 M22‧‧‧ Fifth NMOS transistor
M23‧‧‧第六NMOS電晶體 M23‧‧‧ sixth NMOS transistor
M24‧‧‧第七NMOS電晶體 M24‧‧‧ seventh NMOS transistor
M25‧‧‧第八NMOS電晶體 M25‧‧‧8th NMOS transistor
M26‧‧‧第九NMOS電晶體 M26‧‧‧Ninth NMOS transistor
M27‧‧‧第十NMOS電晶體 M27‧‧‧ tenth NMOS transistor
P21‧‧‧第三PMOS電晶體 P21‧‧‧ Third PMOS transistor
RC‧‧‧讀取控制信號 RC‧‧‧ read control signal
RGND‧‧‧加速讀取電壓 RGND‧‧‧Accelerated reading voltage
WC‧‧‧寫入控制信號 WC‧‧‧ write control signal
C‧‧‧節點 C‧‧‧ node
INV‧‧‧第三反相器 INV‧‧‧ third inverter
D1‧‧‧第一延遲電路 D1‧‧‧First delay circuit
P31‧‧‧第四PMOS電晶體 P31‧‧‧4th PMOS transistor
P‧‧‧預充電信號 P‧‧‧Precharge signal
M41‧‧‧第十一NMOS電晶體 M41‧‧11 eleventh NMOS transistor
P41‧‧‧第五PMOS電晶體 P41‧‧‧ Fifth PMOS transistor
WBL‧‧‧寫入用位元線 WBL‧‧‧Write bit line
WWL‧‧‧寫入用字元線 WWL‧‧‧write word line
RBL‧‧‧讀取用位元線 RBL‧‧‧Reading bit line
RWL‧‧‧讀取用字元線 RWL‧‧‧Read word line
D2‧‧‧第二延遲電路 D2‧‧‧second delay circuit
5‧‧‧高電壓位準控制電路 5‧‧‧High voltage level control circuit
VDD‧‧‧電源供應電壓 V DD ‧‧‧Power supply voltage
HVDD‧‧‧高電源供應電壓 HV DD ‧‧‧High power supply voltage
P51‧‧‧第六PMOS電晶體 P51‧‧‧6th PMOS transistor
P52‧‧‧第七PMOS電晶體 P52‧‧‧ seventh PMOS transistor
I53‧‧‧第四反相器 I53‧‧‧4th inverter
VH‧‧‧高電壓節點 VH‧‧‧ high voltage node
第1a圖 係顯示習知之靜態隨機存取記憶體;第1b圖 係顯示習知6T靜態隨機存取記憶體晶胞之電路示意圖;第2圖 係顯示習知6T靜態隨機存取記憶體晶胞之寫入動作時序圖;第3圖 係顯示習知5T靜態隨機存取記憶體晶胞之電路示意圖;第4圖 係顯示習知5T靜態隨機存取記憶體晶胞之寫入動作時序圖;第5圖 係顯示習知8T雙埠靜態隨機存取記憶體晶胞之電路示意圖;第6圖 係顯示本發明較佳實施例所提出之電路示意圖;第7圖 係顯示第6圖之本發明較佳實施例於寫入邏輯1期間之簡化電路圖;第8圖 係顯示第6圖之本發明較佳實施例之寫入動作時序圖;第9圖 係顯示第6圖之本發明較佳實施例於讀取期間之簡化電路圖;第10圖 係顯示第6圖之本發明較佳實施例於待機期間之簡化電路圖。 Figure 1a shows a conventional static random access memory; Figure 1b shows a schematic circuit diagram of a conventional 6T static random access memory cell; and Fig. 2 shows a conventional 6T static random access memory cell. The write operation timing chart; the third figure shows the circuit diagram of the conventional 5T static random access memory unit cell; the fourth figure shows the write operation timing chart of the conventional 5T static random access memory unit cell; 5 is a circuit diagram showing a conventional 8T dual-static static random access memory cell; FIG. 6 is a schematic circuit diagram showing a preferred embodiment of the present invention; and FIG. 7 is a view showing the invention of FIG. The preferred embodiment is a simplified circuit diagram during the writing of logic 1; FIG. 8 is a timing chart showing the writing operation of the preferred embodiment of the present invention in FIG. 6; and FIG. 9 is a preferred embodiment of the present invention showing FIG. A simplified circuit diagram during the reading period; FIG. 10 is a simplified circuit diagram showing the preferred embodiment of the present invention in the sixth embodiment during standby.
根據上述之主要目的,本發明提出一種7T雙埠靜態隨機存取記憶體,其主要包括一記憶體陣列,該記憶體陣列係由複數列記憶體晶胞與複數行記憶體晶胞所組成,每一列記憶體晶胞與每一行記憶體晶胞均包括有複數個記憶體晶胞(1);複數個控制電路(2),每一列記憶晶胞設置一個控制電路(2);複數個預充電電路(3),每一行記憶晶胞設置一個預充電電路(3);一待機啟動電路(4),該待機啟動電路(4)係促使7T雙埠SRAM快速進入待機模式,以有效提高7T雙埠SRAM之待機效能:以及複數個高電壓位準控制電路(5),每一列記憶晶胞設置一個高電壓位準控制電路(5),以在於讀取邏輯0時進一步提高讀取速度。 According to the above main object, the present invention provides a 7T binary anti-static random access memory, which mainly comprises a memory array, which is composed of a plurality of memory cells and a plurality of memory cells. Each column of memory cells and each row of memory cells includes a plurality of memory cells (1); a plurality of control circuits (2), each column of memory cells is provided with a control circuit (2); Charging circuit (3), each row of memory cells is provided with a pre-charging circuit (3); a standby starting circuit (4), the standby starting circuit (4) prompts the 7T dual-SRAM to quickly enter standby mode to effectively improve 7T The standby performance of the dual-SRAM SRAM: and a plurality of high-voltage level control circuits (5), each column of memory cells is provided with a high-voltage level control circuit (5) to further increase the reading speed when logic 0 is read.
為了便於說明起見,第6圖所示之7T雙埠靜態隨機存取記憶體僅以一個記憶體晶胞(1)、一條寫入用字元線(WWL)、一條寫入用位元線(WBL)、一條讀取用字元線(RWL)、一條讀取用位元線(RBL)、一控制電路(2)、一預充電電路(3)、一待機啟動電路(4)以及一高電壓位準控制電路(5)做為實施例來說明。該記憶體晶胞(1)係包括一第一反相器(由一第一PMOS電晶體P11與一第一NMOS電晶體M11所組成)、一第二反相器(由一第二PMOS電晶體P12與一第二NMOS電晶體M12所組成)、一第三NMOS電晶體(M13)、一第一讀取用電晶體(M14)以及一第二讀取用電晶體(M15),其中,該第一反相器及該第二反相器係呈交互耦合連接,亦即該第一反相器之輸出(即節點A)係連接該第二反相器之輸入,而該第二反相器之輸出(即節點B)則連接該第一反相器之輸入,並且該第一反相器之輸出(節點A)係用於儲存SRAM晶胞之資料,而該第二反 相器之輸出(節點B)則用於儲存SRAM晶胞之反相資料。 For convenience of explanation, the 7T double-chip static random access memory shown in FIG. 6 has only one memory cell (1), one write word line (WWL), and one write bit line. (WBL), a read word line (RWL), a read bit line (RBL), a control circuit (2), a precharge circuit (3), a standby start circuit (4), and a The high voltage level control circuit (5) is explained as an embodiment. The memory cell (1) includes a first inverter (composed of a first PMOS transistor P11 and a first NMOS transistor M11) and a second inverter (by a second PMOS) a crystal P12 and a second NMOS transistor M12, a third NMOS transistor (M13), a first read transistor (M14), and a second read transistor (M15), wherein The first inverter and the second inverter are connected in an alternating coupling manner, that is, the output of the first inverter (ie, node A) is connected to the input of the second inverter, and the second The output of the phase converter (ie, node B) is connected to the input of the first inverter, and the output of the first inverter (node A) is used to store the data of the SRAM cell, and the second The output of the phaser (node B) is used to store the inverted data of the SRAM cell.
該記憶體晶胞(1)之該第一反相器(由該第一PMOS電晶體P11與該第一NMOS電晶體M11所組成)係連接在一電源供應電壓(VDD)與一第一低電壓節點(VL1)之間,該第二反相器(由該第二PMOS電晶體P12與該第二NMOS電晶體M12所組成)係連接在一高電壓節點(VH)與一第二低電壓節點(VL2)之間,該第一讀取用電晶體(M14)之源極、閘極與汲極係分別連接至該第二讀取用電晶體(M15)之汲極、該讀取用字元線(RWL)與該讀取用位元線(RBL),而該第二讀取用電晶體(M15)之源極、閘極與汲極則分別連接至第二低電壓節點(VL2)、該第二反相器之輸出(節點B)與該第一讀取用電晶體(M14)之源極。 The first inverter of the memory cell (1) (composed of the first PMOS transistor P11 and the first NMOS transistor M11) is connected to a power supply voltage (V DD ) and a first Between the low voltage nodes (VL1), the second inverter (composed of the second PMOS transistor P12 and the second NMOS transistor M12) is connected to a high voltage node (VH) and a second low Between the voltage nodes (VL2), the source, the gate and the drain of the first read transistor (M14) are respectively connected to the drain of the second read transistor (M15), the reading A word line (RWL) and the read bit line (RBL) are used, and a source, a gate and a drain of the second read transistor (M15) are respectively connected to the second low voltage node ( VL2), the output of the second inverter (node B) and the source of the first read transistor (M14).
請再參考第6圖,該控制電路(2)係由一第四NMOS電晶體(M21)、一第五NMOS電晶體(M22)、一第六NMOS電晶體(M23)、一第七NMOS電晶體(M24)、一第八NMOS電晶體(M25)、一第九NMOS電晶體(M26)、一第十NMOS電晶體(M27)、一第三PMOS電晶體(P21)、一讀取控制信號(RC)、一第三反相器(INV)、一第一延遲電路(D1)、一加速讀取電壓(RGND)、一寫入控制信號(WC)、一待機模式控制信號(S)以及一反相待機模式控制信號(/S)所組成。該第四NMOS電晶體(M21)之源極、閘極與汲極係分別連接至接地電壓、該反相待機模式控制信號(/S)與該第二低電壓節點(VL2);該第五NMOS電晶體(M22)之源極、閘極與汲極係分別連接至該第一低電壓節點(VL1)、該待機模式控制信號(S)與該第二低電壓節點(VL2);該第六NMOS電晶體(M23)之源極係連接至接地電壓,而閘極與汲極連接在一起並連接至該第一低電 壓節點(VL1);該第七NMOS電晶體(M24)之源極、閘極與汲極係分別連接至該第八NMOS電晶體(M25)之汲極、該讀取控制信號(RC)與該第二低電壓節點(VL2);該第八NMOS電晶體(M25)之源極、閘極與汲極係分別連接至該加速讀取電壓(RGND)、該第一延遲電路(D1)之輸出與該第七NMOS電晶體(M24)之源極;該第一延遲電路(D1)係連接在該第三反相器(INV)之輸出與該第八NMOS電晶體(M25)之閘極之間;該第三反相器(INV)之輸入係供接收該讀取控制信號(RC),而輸出則連接至該第一延遲電路(D1)之輸入;該第九NMOS電晶體(M26)之源極、閘極與汲極係分別連接至接地電壓、該第十NMOS電晶體(M27)之汲極與該第一低電壓節點(VL1);該第十NMOS電晶體(M27)之源極、閘極與汲極係分別連接至該待機模式控制信號(S)、該寫入控制信號(WC)與該第九NMOS電晶體(M26)之閘極;而該第三PMOS電晶體(P21)之源極、閘極與汲極係分別連接至該反相待機模式控制信號(/S)、該寫入控制信號(WC)與該第十NMOS電晶體(M27)之汲極。在此值得注意的是,該反相待機模式控制信號(/S)係由該待機模式控制信號(S)經一反相器而獲得。 Referring again to FIG. 6, the control circuit (2) is composed of a fourth NMOS transistor (M21), a fifth NMOS transistor (M22), a sixth NMOS transistor (M23), and a seventh NMOS device. Crystal (M24), an eighth NMOS transistor (M25), a ninth NMOS transistor (M26), a tenth NMOS transistor (M27), a third PMOS transistor (P21), a read control signal (RC), a third inverter (INV), a first delay circuit (D1), an accelerated read voltage (RGND), a write control signal (WC), a standby mode control signal (S), and An inverted standby mode control signal (/S) is formed. a source, a gate and a drain of the fourth NMOS transistor (M21) are respectively connected to a ground voltage, the reverse standby mode control signal (/S) and the second low voltage node (VL2); a source, a gate and a drain of the NMOS transistor (M22) are respectively connected to the first low voltage node (VL1), the standby mode control signal (S) and the second low voltage node (VL2); The source of the six NMOS transistor (M23) is connected to the ground voltage, and the gate is connected to the drain and connected to the first low battery. a voltage node (VL1); a source, a gate and a drain of the seventh NMOS transistor (M24) are respectively connected to the drain of the eighth NMOS transistor (M25), the read control signal (RC) and The second low voltage node (VL2); the source, the gate and the drain of the eighth NMOS transistor (M25) are respectively connected to the accelerated read voltage (RGND) and the first delay circuit (D1) And outputting a source of the seventh NMOS transistor (M24); the first delay circuit (D1) is connected to an output of the third inverter (INV) and a gate of the eighth NMOS transistor (M25) The input of the third inverter (INV) is for receiving the read control signal (RC), and the output is connected to the input of the first delay circuit (D1); the ninth NMOS transistor (M26) a source, a gate and a drain are respectively connected to a ground voltage, a drain of the tenth NMOS transistor (M27) and the first low voltage node (VL1); and the tenth NMOS transistor (M27) a source, a gate and a drain are respectively connected to the standby mode control signal (S), the write control signal (WC) and a gate of the ninth NMOS transistor (M26); and the third PMOS transistor Source, gate and bungee of (P21) They are respectively connected to the inverted standby mode control signal (/S), the write control signal (WC) and the drain of the tenth NMOS transistor (M27). It is worth noting here that the inverted standby mode control signal (/S) is obtained by the standby mode control signal (S) via an inverter.
在此值得注意的是,該第三PMOS電晶體(P3)之汲極、該第十NMOS電晶體(M27)之汲極及該第九NMOS電晶體(M26)之閘極係連接在一起並形成一節點(C),當該寫入控制信號(WC)為邏輯低位準時,該節點(C)之電壓位準係為該反相待機模式控制信號(/S)之電壓位準,而當該寫入控制信號(WC)為邏輯高位準時,該節點(C)之電壓位準係為該待機模式控制信號(S)之電壓位準,藉此以有效地防止待機模式下因 非預期因素而發生的誤寫入。 It is worth noting here that the drain of the third PMOS transistor (P3), the drain of the tenth NMOS transistor (M27), and the gate of the ninth NMOS transistor (M26) are connected together. Forming a node (C), when the write control signal (WC) is a logic low level, the voltage level of the node (C) is the voltage level of the inverted standby mode control signal (/S), and When the write control signal (WC) is logic high, the voltage level of the node (C) is the voltage level of the standby mode control signal (S), thereby effectively preventing the standby mode. Incorrect writes that occur due to unexpected factors.
該控制電路(2)係設計成可因應不同操作模式而控制該第一低電壓節點(VL1)與該第二低電壓節點(VL2)之電壓位準,於寫入模式時,將選定晶胞中較接近該寫入用位元線(WBL)之驅動電晶體(即該第一NMOS電晶體M11)的源極電壓(即該第一低電壓節點VL1)設定成較接地電壓為高之一預定電壓(即該第六NMOS電晶體(M23)之閘源極電壓VGS(M23))且將選定晶胞中另一驅動電晶體(即該第二NMOS電晶體M12)的源極電壓(即該第二低電壓節點VL2)設定成接地電壓,以便防止寫入邏輯1困難之問題。 The control circuit (2) is designed to control the voltage level of the first low voltage node (VL1) and the second low voltage node (VL2) according to different operation modes, and select the unit cell in the write mode. The source voltage of the driving transistor (ie, the first NMOS transistor M11) closer to the writing bit line (WBL) is set to be higher than the ground voltage. Predetermining a voltage (ie, a gate-source voltage V GS (M23) of the sixth NMOS transistor (M23)) and selecting a source voltage of another driving transistor (ie, the second NMOS transistor M12) in the selected cell ( That is, the second low voltage node VL2) is set to the ground voltage in order to prevent the problem of writing logic 1 difficult.
於讀取模式之第一階段時,將選定晶胞中較接近讀取用位元線(RBL)之驅動電晶體(即該第二NMOS電晶體M12)的源極電壓(即該第二低電壓節點VL2)設定成呈較接地電壓為低之該加速讀取電壓(RGND),該較接地電壓為低之該加速讀取電壓(RGND)可有效提高讀取速度,而於讀取模式之第二階段時,將選定晶胞中較接近讀取用位元線(RBL)之驅動電晶體(即該第二NMOS電晶體M12)的源極電壓設定回接地電壓,以便減少無謂的功率消耗,其中該讀取模式之該第二階段與該第一階段相隔之時間,係等於該讀取控制信號(RC)由邏輯低位準轉變為邏輯高位準起算,並至該第八NMOS電晶體(M25)之閘極電壓足以關閉該第八NMOS電晶體(M25)為止之時間,其值可藉由該第三反相器(INV)之下降延遲時間與該第一延遲電路(D1)所提供之延遲時間來調整。 In the first phase of the read mode, the source voltage of the driving transistor (ie, the second NMOS transistor M12) that is closer to the read bit line (RBL) in the selected cell (ie, the second low) The voltage node VL2) is set to be the accelerated read voltage (RGND) which is lower than the ground voltage, and the accelerated read voltage (RGND) which is lower than the ground voltage can effectively improve the read speed, and in the read mode In the second stage, the source voltage of the driving transistor (ie, the second NMOS transistor M12) in the selected cell closer to the read bit line (RBL) is set back to the ground voltage to reduce unnecessary power consumption. The time between the second phase of the read mode and the first phase is equal to the read control signal (RC) transitioning from a logic low level to a logic high level, and to the eighth NMOS transistor ( The gate voltage of M25) is sufficient to turn off the eighth NMOS transistor (M25), and the value thereof can be provided by the first delay circuit (D1) by the falling delay time of the third inverter (INV) The delay time is adjusted.
於待機模式時,將所有記憶晶胞中之驅動電晶體的源極電壓設定成較接地電壓為高之該預定電壓,以便降低漏電流;而於保持模式時則將記憶晶胞中之驅動電晶體的源極電壓設定成接地電壓,以便維持原來之保持特性,其詳細工作電壓位準如上述表1所示。 In the standby mode, the source voltage of the driving transistor in all the memory cells is set to the predetermined voltage higher than the ground voltage to reduce the leakage current; and in the hold mode, the driving power in the memory cell is The source voltage of the crystal is set to the ground voltage in order to maintain the original retention characteristics, and the detailed operating voltage level is as shown in Table 1 above.
表1中之該寫入控制信號(WC)係為一寫入致能(Write Enable,簡稱WE)信號與對應之寫入用字元線(WWL)信號的及閘(AND gate)運算結果,此時僅於該寫入致能(WE)信號與該對應之寫入用字元線(WWL)信號均為邏輯高位準時,該寫入控制信號(WC)方為邏輯高位準;該讀取控制信號(RC)為一讀取致能(Read Enable,簡稱RE)信號與對應之讀取用字元線(RWL)信號的及閘運算結果。在此值得注意的是,對於非選定字元線及非選定位元線係設定為浮接(floating)狀態,而對於非讀取模式期間之該讀取控制信號(RC)係設定為該加速讀取電壓(RGND)之位準,以防止該第七NMOS電晶體(M24)之漏電流。 The write control signal (WC) in Table 1 is an AND gate operation result of a Write Enable (WE) signal and a corresponding write word line (WWL) signal. At this time, when the write enable (WE) signal and the corresponding write word line (WWL) signal are both at a logic high level, the write control signal (WC) is a logic high level; the read The control signal (RC) is the result of the AND operation of a Read Enable (RE) signal and a corresponding Read Word Line (RWL) signal. It is worth noting here that the unselected word line and the unselected positioning element line are set to a floating state, and the read control signal (RC) is set to the acceleration during the non-read mode. The level of the read voltage (RGND) is read to prevent leakage current of the seventh NMOS transistor (M24).
請參考第6圖,該預充電電路(3)係由一第四PMOS電晶體(P31)以及一預充電信號(P)所組成,該第四PMOS電晶體(P31)之源 極、閘極與汲極係分別連接至該電源供應電壓(VDD)、該預充電信號(P)與相對應之讀取用位元線(RBL),以便於預充電期間,藉由邏輯低位準之該預充電信號(P),以將相對應之讀取用位元線(RBL)預充電至該電源供應電壓(VDD)之位準。 Referring to FIG. 6, the precharge circuit (3) is composed of a fourth PMOS transistor (P31) and a precharge signal (P), and the source and gate of the fourth PMOS transistor (P31). And the drain system are respectively connected to the power supply voltage (V DD ), the precharge signal (P) and the corresponding read bit line (RBL), so as to be in a logic low level during precharge Precharge signal (P) to precharge the corresponding read bit line (RBL) to the level of the power supply voltage (V DD ).
請再參考第6圖,該待機啟動電路(4)係由一第五PMOS電晶體(P41)、一第十一NMOS電晶體(M41)、一第二延遲電路(D2)以及該反相待機模式控制信號(/S)所組成。該第五PMOS電晶體(P41)之源極、閘極與汲極係分別連接至該電源供應電壓(VDD)、該反相待機模式控制信號(/S)與該第十一NMOS電晶體(M41)之汲極;該第十一NMOS電晶體(M41)之源極、閘極與汲極係分別連接至該第一低電壓節點(VL1)、該第二延遲電路(D2)之輸出與該第五PMOS電晶體(P41)之汲極;該第二延遲電路(D2)之輸入連接至該反相待機模式控制信號(/S),而該第二延遲電路(D2)之輸出則連接至該第十一NMOS電晶體(M41)之閘極。 Referring again to FIG. 6, the standby starting circuit (4) is composed of a fifth PMOS transistor (P41), an eleventh NMOS transistor (M41), a second delay circuit (D2), and the reverse standby. The mode control signal (/S) is composed of. a source, a gate and a drain of the fifth PMOS transistor (P41) are respectively connected to the power supply voltage (V DD ), the inverted standby mode control signal (/S) and the eleventh NMOS transistor a drain of (M41); a source, a gate and a drain of the eleventh NMOS transistor (M41) are respectively connected to the output of the first low voltage node (VL1) and the second delay circuit (D2) And a drain of the fifth PMOS transistor (P41); an input of the second delay circuit (D2) is connected to the inverted standby mode control signal (/S), and an output of the second delay circuit (D2) is Connected to the gate of the eleventh NMOS transistor (M41).
請再參考第6圖,該高電壓位準控制電路(5)係由一第六PMOS電晶體(P51)、一第七PMOS電晶體(P52)以及一第四反相器(I53)所組成,其中該第六PMOS電晶體(P51)之源極、閘極與汲極係分別連接至該電源供應電壓(VDD)、該讀取控制信號(RC)與該高電壓節點(VH),該第七PMOS電晶體(P52)之源極、閘極與汲極係分別連接至一高電源供應電壓(HVDD)、該第四反相器(I53)之輸出與該高電壓節點(VH),而該第四反相器(I53)之輸入係供接收該讀取控制信號(RC),而輸出則連接至該第七PMOS電晶體(P52)之汲極。在此值得注意的是,該第一反相器係連接在該電源供應電壓(VDD)與該第一低電壓節點(VL1)之間, 而該第二反相器則連接在該高電壓節點(VH)與該第二低電壓節點(VL2)之間。 Referring again to FIG. 6, the high voltage level control circuit (5) is composed of a sixth PMOS transistor (P51), a seventh PMOS transistor (P52), and a fourth inverter (I53). The source, the gate and the drain of the sixth PMOS transistor (P51) are respectively connected to the power supply voltage (V DD ), the read control signal (RC) and the high voltage node (VH), The source, the gate and the drain of the seventh PMOS transistor (P52) are respectively connected to a high power supply voltage (HV DD ), the output of the fourth inverter (I53) and the high voltage node (VH) And the input of the fourth inverter (I53) is for receiving the read control signal (RC), and the output is connected to the drain of the seventh PMOS transistor (P52). It is worth noting here that the first inverter is connected between the power supply voltage (V DD ) and the first low voltage node (VL1), and the second inverter is connected to the high voltage. Between the node (VH) and the second low voltage node (VL2).
茲說明第6圖之本發明較佳實施例的工作原理如下: The working principle of the preferred embodiment of the invention illustrated in Figure 6 is as follows:
(I)寫入模式(write mode) (I) write mode
於寫入操作開始前,該寫入控制信號(WC)為邏輯低位準,使得該第三PMOS電晶體(P21)導通(ON),並使得該第十NMOS電晶體(M27)截止(OFF),於是該第三PMOS電晶體(P21)之汲極呈邏輯高位準,該邏輯高位準之該第三PMOS電晶體(P21)之汲極會導通該第九NMOS電晶體(M26),並使得該第一低電壓節點(VL1)呈接地電壓。 Before the start of the write operation, the write control signal (WC) is at a logic low level, such that the third PMOS transistor (P21) is turned "ON", and the tenth NMOS transistor (M27) is turned off (OFF). Therefore, the drain of the third PMOS transistor (P21) is at a logic high level, and the drain of the third PMOS transistor (P21) of the logic high level turns on the ninth NMOS transistor (M26), and The first low voltage node (VL1) is at a ground voltage.
而於寫入操作期間內,該寫入控制信號(WC)為邏輯高位準,使得該第三PMOS電晶體(P21)截止,該第十NMOS電晶體(M27)導通,並使得該第三PMOS電晶體(P21)之汲極呈邏輯低位準,該邏輯低位準之該第三PMOS電晶體(P21)之汲極會使得該第九NMOS電晶體(M26)截止,並使得該第一低電壓節點(VL1)等於該第六NMOS電晶體(M23)之閘源極電壓VGS(M26),藉此得以有效防止寫入邏輯1困難之問題。第7圖所示為第6圖之本發明較佳實施例於寫入期間之簡化電路圖。 During the write operation, the write control signal (WC) is at a logic high level, such that the third PMOS transistor (P21) is turned off, the tenth NMOS transistor (M27) is turned on, and the third PMOS is turned on. The drain of the transistor (P21) is at a logic low level, and the logic low level of the drain of the third PMOS transistor (P21) causes the ninth NMOS transistor (M26) to be turned off, and the first low voltage is made The node (VL1) is equal to the gate-source voltage V GS (M26 ) of the sixth NMOS transistor (M23 ) , whereby the problem of difficulty in writing the logic 1 is effectively prevented. Figure 7 is a simplified circuit diagram of the preferred embodiment of the invention of Figure 6 during writing.
接下來依4種寫入狀態來說明第7圖之本發明較佳實施例如何完成寫入動作。 Next, how the write operation of the preferred embodiment of the present invention in FIG. 7 is completed in accordance with four write states.
(一)節點A原本儲存邏輯0,而現在欲寫入邏輯0:在寫入動作發生前(該寫入用字元線WWL為接地電壓),該第一NMOS電晶體(M11)為導通(ON)。因為該第一NMOS電晶體(M11)為ON, 所以當寫入動作開始時,該寫入用字元線(WWL)由Low(接地電壓)轉High(電源供應電壓VDD)。當該寫入用字元線(WWL)的電壓大於該第三NMOS電晶體(M13)(即存取電晶體)的臨界電壓時,該第三NMOS電晶體(M13)由截止(OFF)轉變為導通(ON),此時因為寫入用位元線(WBL)是接地電壓,所以會將該節點A放電,而完成邏輯0的寫入動作,直到寫入週期結束。 (1) Node A originally stores a logic 0, and now wants to write a logic 0: before the write operation occurs (the write word line WWL is a ground voltage), the first NMOS transistor (M11) is turned on ( ON). Since the first NMOS transistor (M11) is ON, the write word line (WWL) is turned from Low (ground voltage) to High (power supply voltage V DD ) when the write operation starts. When the voltage of the write word line (WWL) is greater than the threshold voltage of the third NMOS transistor (M13) (ie, the access transistor), the third NMOS transistor (M13) is turned off (OFF) To be ON, at this time, since the write bit line (WBL) is the ground voltage, the node A is discharged, and the logic 0 write operation is completed until the end of the write cycle.
(二)節點A原本儲存邏輯0,而現在欲寫入邏輯1:在寫入動作發生前(該寫入用字元線WWL為接地電壓),該第一NMOS電晶體(M11)為導通(ON)。在此值得注意的是,因為該第一NMOS電晶體(M11)為ON,所以當寫入動作開始時,該寫入用字元線(WWL)由Low(接地電壓)轉High(該電源供應電壓VDD),該節點A的電壓會由於寄生電容耦合效應而跟隨該寫入用字元線(WWL)的電壓呈現些微上升。 (2) Node A originally stores a logic 0, and now wants to write a logic 1: before the write operation occurs (the write word line WWL is a ground voltage), the first NMOS transistor (M11) is turned on ( ON). It is worth noting here that since the first NMOS transistor (M11) is ON, when the write operation starts, the write word line (WWL) is turned from Low (ground voltage) to High (the power supply) Voltage V DD ), the voltage of this node A will slightly increase with the voltage following the write word line (WWL) due to the parasitic capacitance coupling effect.
當該寫入用字元線(WWL)的電壓大於該第三NMOS電晶體(M13)的臨界電壓時,該第三NMOS電晶體(M13)由截止(OFF)轉變為導通(ON),此時因為該寫入用位元線(WBL)是High(該電源供應電壓VDD),並且因為該第一NMOS電晶體(M11)仍為ON且該節點B仍處於電壓位準為接近於該電源供應電壓(VDD)之電壓位準的初始狀態,所以該第一PMOS電晶體(P11)仍為截止(OFF),而該節點A之寫入初始瞬間電壓(VAW)滿足方程式(3):VAW=VDD×(RM11+RM23)/(RM13+RM11+RM23)>VTN12 (3) 其中,VAW表示節點A之寫入初始瞬間電壓,RM13表示該第三NMOS電晶體(M13)之導通電阻,RM11表示該第一NMOS電晶體(M11)之導通電阻,RM23表示該第六NMOS電晶體(M23)之導通電阻,而VDD與VTN12分別表示該電源供應電壓與該第二NMOS電晶體(M12)之臨界電壓,此時因為第三NMOS電晶體(M13)仍工作於飽和區(saturation region)且該第一NMOS電晶體(M11)仍工作於線性區(triode region),雖然該第三NMOS電晶體(M13)之導通等效電阻(RM13)會遠大於該第一NMOS電晶體(M11)之導通等效電阻(RM11),但由於該第六NMOS電晶體(M23)係呈二極體連接,因此可於該第一低電壓節點(VL1)處提供一等於該第六NMOS電晶體(M23)之閘-源極電壓VGS(M23)之電壓位準,結果節點A所呈現的該寫入初始瞬間電壓(VAW)會比第4圖之習知5T靜態隨機存取記憶體晶胞之該節點A之電壓位準還要高許多。該還要高許多之分壓電壓位準係足以使該第二NMOS電晶體(M12)導通,於是使得節點B放電至一較低電壓位準,該節點B之較低電壓位準會使得該第一NMOS電晶體(M11)之導通等效電阻(RM11)呈現較高的電阻值,該第一NMOS電晶體(M11)之該較高的電阻值會於該節點A獲得較高電壓位準,該節點A之較高電壓位準又會經由該第二反相器(由第二PMOS電晶體P12與第二NMOS電晶體M12所組成),而使得該節點B呈現更低電壓位準,該節點B之更低電壓位準又會經由該第一反相器(由第一PMOS電晶體P11與第一NMOS電晶體M11所組成),而使得該節點A獲得更高電壓位準,依此循環,即可將該節點A充電至該電源供應電壓(VDD),而完成邏輯1的寫入動作。 When the voltage of the write word line (WWL) is greater than the threshold voltage of the third NMOS transistor (M13), the third NMOS transistor (M13) is turned from OFF to ON. Because the write bit line (WBL) is High (the power supply voltage V DD ), and because the first NMOS transistor (M11) is still ON and the node B is still at a voltage level close to the The initial state of the voltage level of the power supply voltage (V DD ), so the first PMOS transistor (P11) is still OFF (OFF), and the initial transient voltage (V AW ) of the node A satisfies the equation (3) ): V AW = V DD × (R M11 + R M23 ) / (R M13 + R M11 + R M23 ) > V TN12 (3) where V AW represents the initial instantaneous voltage of the write of the node A, and R M13 represents the The on-resistance of the third NMOS transistor (M13), R M11 represents the on-resistance of the first NMOS transistor (M11), R M23 represents the on-resistance of the sixth NMOS transistor (M23), and V DD and V TN12 Representing the power supply voltage and the threshold voltage of the second NMOS transistor (M12), respectively, because the third NMOS transistor (M13) is still operating in the saturation region and the first NMOS transistor (M11) still For the linear region (triode region), while guiding the third NMOS transistor (M13) through the equivalent resistance (R M13) is considerably greater than the first NMOS transistor (M11) is turned the equivalent resistance (R M11), However, since the sixth NMOS transistor (M23) is diode-connected, a gate-source voltage V equal to the sixth NMOS transistor (M23) can be provided at the first low voltage node (VL1). The voltage level of GS (M23) , the resulting initial write voltage (V AW ) of node A will be higher than the voltage level of the node A of the conventional 5T static random access memory cell of FIG. It is much higher. The much higher voltage division level is sufficient to turn on the second NMOS transistor (M12), thereby causing the node B to discharge to a lower voltage level, and the lower voltage level of the node B causes the The on-resistance equivalent (R M11 ) of the first NMOS transistor (M11) exhibits a higher resistance value, and the higher resistance value of the first NMOS transistor (M11) obtains a higher voltage level at the node A. The higher voltage level of the node A will pass through the second inverter (composed of the second PMOS transistor P12 and the second NMOS transistor M12), so that the node B exhibits a lower voltage level. The lower voltage level of the node B is again caused by the first inverter (composed of the first PMOS transistor P11 and the first NMOS transistor M11), so that the node A obtains a higher voltage level. According to this cycle, the node A can be charged to the power supply voltage (V DD ), and the logic 1 write operation is completed.
在此值得注意的是,該第一低電壓節點VL1於節點A原本儲 存邏輯O,而在寫入邏輯1之期間,係具有等於該第六NMOS電晶體(M23)之閘源極電壓VGS(M23)的電壓位準,而於寫入邏輯1後,又會因經由該第九NMOS電晶體(M26)放電而具有接地電壓之位準。 It should be noted here that the first low voltage node VL1 originally stores a logic O at the node A, and has a gate-source voltage V GS equal to the sixth NMOS transistor (M23) during the writing of the logic 1. The voltage level of (M23) , after writing logic 1, will have the level of the ground voltage due to discharge through the ninth NMOS transistor (M26).
(三)節點A原本儲存邏輯1,而現在欲寫入邏輯1:在寫入動作發生前(該寫入用字元線WWL為接地電壓),該第一PMOS電晶體(P11)為導通(ON)。當該寫入用字元線(WWL)由Low(接地電壓)轉High(該電源供應電壓VDD),且該寫入用字元線(WWL)的電壓大於該第三NMOS電晶體(M13)的臨界電壓時,該第三NMOS電晶體(M13)由截止(OFF)轉變為導通(ON);此時因為該寫入用位元線(WBL)是High(該電源供應電壓VDD),並且因為該第一PMOS電晶體(P11)仍為ON,所以該節點A的電壓會維持於該電源供應電壓(VDD)之電壓位準,直到寫入週期結束。 (3) Node A originally stores logic 1, and now wants to write logic 1: Before the write operation occurs (the write word line WWL is the ground voltage), the first PMOS transistor (P11) is turned on ( ON). When the write word line (WWL) is turned from Low (ground voltage) to High (the power supply voltage V DD ), and the voltage of the write word line (WWL) is greater than the third NMOS transistor (M13) When the threshold voltage is applied, the third NMOS transistor (M13) is turned from OFF to ON; at this time, since the write bit line (WBL) is High (the power supply voltage V DD ) And because the first PMOS transistor (P11) is still ON, the voltage of the node A is maintained at the voltage level of the power supply voltage (V DD ) until the end of the write cycle.
(四)節點A原本儲存邏輯1,而現在欲寫入邏輯0:在寫入動作發生前(該寫入用字元線WWL為接地電壓),該第一PMOS電晶體(P11)為導通(ON)。當該寫入用字元線(WWL)由Low(接地電壓)轉High(該電源供應電壓VDD),且該寫入用字元線(WWL)的電壓大於該第三NMOS電晶體(M13)的臨界電壓時,該第三NMOS電晶體(M13)由截止(OFF)轉變為導通(ON),此時因為該寫入用位元線(WBL)是Low(接地電壓),所以會將該節點A以及該第一低電壓節點(VL1)放電而完成邏輯0的寫入動作,直到寫入週期結束。 (4) Node A originally stores logic 1, and now wants to write logic 0: before the write operation occurs (the write word line WWL is the ground voltage), the first PMOS transistor (P11) is turned on ( ON). When the write word line (WWL) is turned from Low (ground voltage) to High (the power supply voltage V DD ), and the voltage of the write word line (WWL) is greater than the third NMOS transistor (M13) When the threshold voltage is applied, the third NMOS transistor (M13) is turned from OFF to ON. At this time, since the write bit line (WBL) is Low (ground voltage), The node A and the first low voltage node (VL1) are discharged to complete the logic 0 write operation until the end of the write cycle.
第7圖所示之本發明較佳實施例,於寫入操作時之HSPICE暫態分析模擬結果,如第8圖所示,其係使用TSMC 90奈米CMOS製程參數加以模擬,由該模擬結果可証實,本發明所提出之7T雙埠靜態隨機存取記憶體,能藉由寫入期間提高該第一低電壓節點(VL1)之電壓位準,以有效避免習知具單一位元線之雙埠靜態隨機存取記憶體晶胞存在寫入邏輯1相當困難之問題。 In the preferred embodiment of the present invention shown in FIG. 7, the HSPICE transient analysis simulation result at the time of the write operation is as shown in FIG. 8, which is simulated using the TSMC 90 nm CMOS process parameters, from which the simulation result is obtained. It can be confirmed that the 7T double-chip static random access memory proposed by the present invention can improve the voltage level of the first low voltage node (VL1) during the writing period, thereby effectively avoiding the conventional single bit line. It is quite difficult to write a logic 1 in a double-埠 static random access memory cell.
(II)讀取模式(read mode) (II) Read mode (read mode)
於讀取操作開始前,該讀取控制信號(RC)、寫入控制信號(WC)及該待機模式控制信號(S)均為邏輯低位準,使得該第三PMOS電晶體(P21)導通,並使得該第十NMOS電晶體(M27)截止,於是該第三PMOS電晶體(P21)之汲極呈邏輯高位準,邏輯高位準之該第三PMOS電晶體(P21)之汲極會導通第九NMOS電晶體(M26),並使得該第一低電壓節點(VL1)呈接地電壓。另一方面,由於該讀取控制信號(RC)為邏輯低位準,使得該第七NMOS電晶體(M24)截止(OFF),並使得該第八NMOS電晶體(M25)導通(ON)。 Before the reading operation starts, the read control signal (RC), the write control signal (WC), and the standby mode control signal (S) are both logic low levels, so that the third PMOS transistor (P21) is turned on. And the tenth NMOS transistor (M27) is turned off, so that the drain of the third PMOS transistor (P21) is at a logic high level, and the logic of the third PMOS transistor (P21) is turned on. Nine NMOS transistors (M26) and the first low voltage node (VL1) is grounded. On the other hand, since the read control signal (RC) is at a logic low level, the seventh NMOS transistor (M24) is turned off (OFF), and the eighth NMOS transistor (M25) is turned "ON".
在此值得注意的是,於讀取操作開始前之預充電期間,該預充電信號(P)係為邏輯低位準,藉此以將相對應之讀取用位元線(RBL)預充電至該電源供應電壓(VDD)之位準,惟由於例如45奈米以下製程技術之操作電壓將降為1.1±30%以下,此時將造成讀取速度降低而無法滿足規範之問題,因此,本發明提出二階段的讀取控制以於提高讀取速度並滿足規範的同時,亦避免無謂的功率耗損。 It is worth noting here that during pre-charging before the start of the read operation, the pre-charge signal (P) is at a logic low level, thereby pre-charging the corresponding read bit line (RBL) to The power supply voltage (V DD ) is level, but the operating voltage of the process technology such as 45 nm or less will be reduced to 1.1 ± 30% or less, which will cause the reading speed to be lowered to meet the specification problem. The present invention proposes a two-stage read control to improve read speed and meet specifications while avoiding unnecessary power consumption.
第6圖所示之本發明較佳實施例係藉由二階段的讀取控制以 於提高讀取速度的同時,亦避免無謂的功率耗損,於讀取操作之第一階段,該讀取控制信號(RC)為邏輯高位準,使得該第七NMOS電晶體(M24)導通,由於此時該第八NMOS電晶體(M25)仍導通,於是該第二低電壓節點(VL2)呈較接地電壓為低之該加速讀取電壓(RGND),該較接地電壓為低之該加速讀取電壓(RGND)可有效提高讀取速度。 The preferred embodiment of the invention illustrated in Figure 6 is controlled by two stages of read control. In order to improve the reading speed, the unnecessary power consumption is also avoided. In the first stage of the reading operation, the read control signal (RC) is at a logic high level, so that the seventh NMOS transistor (M24) is turned on due to At this time, the eighth NMOS transistor (M25) is still turned on, and then the second low voltage node (VL2) is at an accelerated read voltage (RGND) lower than the ground voltage, and the accelerated read voltage is lower than the ground voltage. Taking the voltage (RGND) can effectively improve the reading speed.
而於讀取操作之第二階段,雖然該讀取控制信號(RC)仍為邏輯高位準,使得該第七NMOS電晶體(M24)仍為導通,惟由於此時該第八NMOS電晶體(M25)截止,於是該第二低電壓節點(VL2)會經由導通的該第四NMOS電晶體(M21)而呈接地電壓(由於讀取操作期間該反相待機模式控制信號(/S)為邏輯高位準),藉此可有效減少無謂的功率消耗。在此值得注意的是,該讀取操作之該第二階段與該第一階段相隔之時間,係等於該讀取控制信號(RC)由邏輯低位準轉變為邏輯高位準起算,並至該第八NMOS電晶體(M25)之閘極電壓足以關閉該第八NMOS電晶體(M25)為止之時間,其值可藉由該第三反相器(INV)之下降延遲時間與該第一延遲電路(D1)所提供之延遲時間來調整。再者,無論於讀取操作之第一階段抑是第二階段,該第四NMOS電晶體(M21)均呈導通狀態(由於讀取操作期間該反相待機模式控制信號(/S)為邏輯高位準)。第9圖所示為第6圖之本發明較佳實施例於讀取期間之簡化電路圖。 In the second stage of the read operation, although the read control signal (RC) is still at a logic high level, the seventh NMOS transistor (M24) is still turned on, but since the eighth NMOS transistor (at this time) M25) is turned off, and then the second low voltage node (VL2) is grounded via the turned-on fourth NMOS transistor (M21) (due to the inverted standby mode control signal (/S) during the read operation is logic High level), which can effectively reduce unnecessary power consumption. It is worth noting here that the second phase of the read operation is separated from the first phase by a time equal to the read control signal (RC) transitioning from a logic low level to a logic high level, and to the The gate voltage of the eight NMOS transistor (M25) is sufficient to turn off the eighth NMOS transistor (M25), and the value thereof can be decreased by the delay time of the third inverter (INV) and the first delay circuit. (D1) The delay time provided is adjusted. Furthermore, the fourth NMOS transistor (M21) is in an on state regardless of the first phase of the read operation or the second phase (due to the inverted standby mode control signal (/S) being logic during the read operation High level). Figure 9 is a simplified circuit diagram of the preferred embodiment of the invention of Figure 6 during reading.
接下來依2種讀取狀態來說明第9圖之本發明較佳實施例如何設定該加速讀取電壓(RGND)與如何提高讀取速度。 Next, how to set the accelerated read voltage (RGND) and how to increase the read speed in the preferred embodiment of the present invention in FIG. 9 will be described in terms of two read states.
(一)讀取邏輯1(節點A儲存邏輯1):在讀取動作發生前,該第一NMOS電晶體(M11)為截止(OFF)且該 第二NMOS電晶體(M12)為導通(ON),該節點A與該節點B分別為該電源供應電壓(VDD)與接地電壓,而該讀取用位元線(RBL)則因該預充電電路(3)而等於該電源供應電壓(VDD)。於讀取期間,由於節點B為接地電壓,因此該第二讀取用電晶體(M15)截止(OFF),藉此可有效保持該讀取用位元線(RBL)為該電源供應電壓(VDD)直到讀取週期結束而順利完成讀取邏輯1之操作。在此值得注意的是,由於此時該第二低電壓節點(VL2)為該加速讀取電壓(RGND),為了有效降低讀取時之半選定晶胞干擾與有效降低漏電流,必須將該加速讀取電壓(RGND)設定為低於該第二NMOS電晶體(M12)之臨界電壓(VTN12),亦即|RGND|<VTN12 (4)其中,|RGND|與VTN11分別表示該加速讀取電壓之絕對值與該第二NMOS電晶體(M12)之臨界電壓。 (1) Read logic 1 (node A storage logic 1): before the read operation occurs, the first NMOS transistor (M11) is off (OFF) and the second NMOS transistor (M12) is on (ON) The node A and the node B are respectively the power supply voltage (V DD ) and the ground voltage, and the read bit line (RBL) is equal to the power supply voltage due to the precharge circuit (3) V DD ). During the reading, since the node B is a ground voltage, the second read transistor (M15) is turned off (OFF), thereby effectively maintaining the read bit line (RBL) as the power supply voltage ( V DD ) The operation of reading logic 1 is successfully completed until the end of the read cycle. It is worth noting here that since the second low voltage node (VL2) is the accelerated read voltage (RGND) at this time, in order to effectively reduce the half-selected cell interference during reading and effectively reduce the leakage current, it is necessary to The accelerated read voltage (RGND) is set lower than the threshold voltage (V TN12 ) of the second NMOS transistor (M12), that is, |RGND|<V TN12 (4), where |RGND| and V TN11 respectively indicate Accelerating the absolute value of the read voltage and the threshold voltage of the second NMOS transistor (M12).
(二)讀取邏輯0(節點A儲存邏輯0):在讀取動作發生前,該第一NMOS電晶體(M11)為導通(ON)且該第二NMOS電晶體(M12)為截止(OFF),該節點A與該節點B分別為接地電壓與該電源供應電壓(VDD),而該讀取用位元線(RBL)則因該預充電電路(3)而等於該電源供應電壓(VDD)。於讀取期間,由於節點B為該高電源供應電壓(HVDD),且該第二低電壓節點(VL2)呈較接地電壓為低之該加速讀取電壓(RGND),由於該高電源供應電壓(HVDD)係設定為高於該電源供應電壓(VDD),因此,可藉由增加該第二讀取用電晶體(M15)之導通程度,以提高讀取速度,同時配合該較接地電壓為低之該加速讀取電壓(RGND)以進一步提高讀取速度。在此值得注意的是,該高電源供應電 壓(HVDD)係設定為高於該電源供應電壓(VDD)但低於該電源供應電壓(VDD)與該第二PMOS電晶體(P12)臨界電壓之絕對值|VTP12|的總和,亦即VDD<HVDD<VDD+|VTP12| (5)其中,|VTP12|表示該第二PMOS電晶體(P12)臨界電壓之絕對值。 (2) Reading logic 0 (node A stores logic 0): before the read operation occurs, the first NMOS transistor (M11) is turned on (ON) and the second NMOS transistor (M12) is turned off (OFF) The node A and the node B are respectively a ground voltage and the power supply voltage (V DD ), and the read bit line (RBL) is equal to the power supply voltage due to the precharge circuit (3) V DD ). During the reading, since the node B is the high power supply voltage (HV DD ), and the second low voltage node (VL2) is at the accelerated read voltage (RGND) which is lower than the ground voltage, due to the high power supply The voltage (HV DD ) is set higher than the power supply voltage (V DD ), so that the read speed of the second read transistor (M15) can be increased to increase the read speed while matching the comparison. The grounding voltage is low for the accelerated read voltage (RGND) to further increase the read speed. It is worth noting here that the high power supply voltage (HV DD ) is set higher than the power supply voltage (V DD ) but lower than the power supply voltage (V DD ) and the second PMOS transistor (P12) The sum of the absolute value of the threshold voltage |V TP12 |, that is, V DD <HV DD <V DD +|V TP12 | (5) where |V TP12 | represents the absolute value of the threshold voltage of the second PMOS transistor (P12) value.
(III)待機模式(standby mode) (III) Standby mode
首先,說明第6圖之待機啟動電路(4)如何促使單埠SRAM快速進入待機模式,以有效提高SRAM之待機效能:首先,於進入待機模式之前,該反相待機模式控制信號(/S)為邏輯High,該邏輯High之反相待機模式控制信號(/S)使得該第五PMOS電晶體(P41)截止(OFF),並使得該第十一NMOS電晶體(M41)導通(ON);接著於進入待機模式後,該反相待機模式控制信號(/S)為邏輯Low,該邏輯Low之反相待機模式控制信號(/S)使得該第五PMOS電晶體(P41)導通(ON),惟於待機模式之初始期間內(該初始期間係等於該反相待機模式控制信號(/S)由邏輯High轉變為邏輯Low起算,至該第十一NMOS電晶體(M41)之閘極電壓足以關閉該第十一NMOS電晶體(M41)為止之時間,其可藉由該第二延遲電路(D2)所提供之一延遲時間來調整),該第十一NMOS電晶體(M41)仍導通(ON),於是可對該第一低電壓節點(VL1)快速充電到達該第六NMOS電晶體(M23)之臨界電壓(VTM23)的電壓位準,亦即7T雙埠SRAM可快速進入待機模式。在此值得注意的是,於待機模式之初始期間後,該第十一NMOS電晶體(M41)關閉並停止供應電流。 First, how the standby start circuit (4) of Fig. 6 causes the 單埠SRAM to quickly enter the standby mode to effectively improve the standby performance of the SRAM: First, the reverse standby mode control signal (/S) before entering the standby mode. Is logic High, the logic high inversion standby mode control signal (/S) causes the fifth PMOS transistor (P41) to be turned off (OFF), and the eleventh NMOS transistor (M41) is turned on (ON); Then, after entering the standby mode, the inverted standby mode control signal (/S) is logic Low, and the inverted standby mode control signal (/S) of the logic Low causes the fifth PMOS transistor (P41) to be turned on (ON). However, during the initial period of the standby mode (the initial period is equal to the inverted standby mode control signal (/S) from the logic High to the logic Low, to the gate voltage of the eleventh NMOS transistor (M41) The time until the eleventh NMOS transistor (M41) is turned off, which can be adjusted by a delay time provided by the second delay circuit (D2), and the eleventh NMOS transistor (M41) is still turned on. (ON), then the first low voltage node (VL1) can be quickly charged to reach the sixth NMOS transistor The voltage level of the threshold voltage (V TM23 ) of the body (M23), that is, the 7T double-turn SRAM can quickly enter the standby mode. It is worth noting here that after the initial period of the standby mode, the eleventh NMOS transistor (M41) is turned off and the supply current is stopped.
請參考第6圖,於待機模式時,該待機模式控制信號(S)為邏輯高位準,而該反相待機模式控制信號(/S)為邏輯低位準,該邏輯低位準之該反相待機模式控制信號(/S)可使得該控制電路(2)中之該第四NMOS電晶體(M21)截止(OFF),而該邏輯高位準之該待機模式控制信號(S)則使得該第五NMOS電晶體(M22)導通(ON),此時該第五NMOS電晶體(M22)係作為等化器(equalizer)使用,因此可藉由呈導通狀態之該第五NMOS電晶體(M22),以使得該第一低電壓節點(VL1)之電壓位準相等於該第二低電壓節點(VL2)之電壓位準,且該等電壓位準均會等於該第六NMOS電晶體(M23)之臨界電壓(VTM23)的電壓位準。第10圖所示為第6圖之本發明較佳實施例於待機期間之簡化電路圖。 Please refer to FIG. 6 . In the standby mode, the standby mode control signal (S) is a logic high level, and the inverted standby mode control signal (/S) is a logic low level, and the logic low level is the reverse standby. The mode control signal (/S) may cause the fourth NMOS transistor (M21) in the control circuit (2) to be turned off (OFF), and the logic high level of the standby mode control signal (S) causes the fifth The NMOS transistor (M22) is turned on (ON), and the fifth NMOS transistor (M22) is used as an equalizer, so that the fifth NMOS transistor (M22) in an on state can be used. So that the voltage level of the first low voltage node (VL1) is equal to the voltage level of the second low voltage node (VL2), and the voltage levels are equal to the sixth NMOS transistor (M23) The voltage level of the threshold voltage (V TM23 ). Figure 10 is a simplified circuit diagram of the preferred embodiment of the present invention in Figure 6 during standby.
接下來說明本發明於待機模式(standby mode)時如何減少漏電流,請參考第10圖,第10圖描述有本發明實施例處於待機模式時所產生之各漏電流(subthreshold leakage current)I1、I2、I3、I4,其中假設SRAM晶胞中之該第一反相器之輸出(即節點A)為邏輯Low(在此值得注意的是,由於待機模式時該第二低電壓節點(VL2)之電壓位準係維持在該第六NMOS電晶體(M23)之臨界電壓(VTM23)的電壓位準,因此節點A為邏輯Low之電壓位準亦維持在該VTM23的電壓位準),而該第二反相器之輸出(即節點B)為邏輯High(電源供應電壓VDD)。請參考第5圖之傳統8T雙埠SRAM與第10圖之本發明實施例,來說明本發明所提出之7T雙埠靜態隨機存取記憶體與第5圖之傳統8T雙埠SRAM於漏電流方面之比較,首先關於流經該第三NMOS電晶體(M13)之漏電流I1,由於本發明於待機模式時節點A之電壓位準係維持在該VTM23的電壓位準,且假設該寫入用字元線(WWL)於 待機模式時係設定成接地電壓,而該寫入用位元線(WBL)於待機模式時則設定為該電源供應電壓(VDD),因此本發明之第三NMOS電晶體(M13)的閘源極電壓(VGS)為負值,反觀於待機模式時第5圖之傳統8T雙埠SRAM之NMOS電晶體(M3)的閘源極電壓(VGS)等於0,根據閘極引發汲極洩漏(Gate Induced Drain Leakage,簡稱GIDL)效應或2005年3月8日第US6865119號專利案第3(A)及3(B)圖之結果可知,對於NMOS電晶體而言,閘源極電壓為-0.1伏特時之次臨界電流約為閘源極電壓為0伏特時之次臨界電流的1%,因此導因於GIDL效應所引發之流經本發明之該第三NMOS電晶體(M13)之漏電流I1遠小於第5圖之傳統8T雙埠SRAM之NMOS電晶體(M3)者;再者,本發明該第三NMOS電晶體(M13)之汲源極電壓(VDS)為該電源供應電壓(VDD)扣減該VTM23的電壓位準,反觀於第5圖之傳統8T雙埠SRAM之NMOS電晶體(M3)之汲源極電壓(VDS)係等於該電源供應電壓(VDD),根據汲極引發能障下跌(Drain-Induced Barrier Lowering,簡稱DIBL)效應,由於DIBL效應所引發之流經本發明之該第三NMOS電晶體(M13)之漏電流I1亦小於第5圖之傳統8T雙埠SRAM之NMOS電晶體(M3)者;結果,流經本發明之該第三NMOS電晶體(M13)之漏電流I1遠小於第5圖之傳統8T雙埠SRAM之NMOS電晶體(M3)者。 Next, how to reduce leakage current in the standby mode of the present invention is described. Referring to FIG. 10, FIG. 10 depicts a leakage current I 1 generated when the embodiment of the present invention is in the standby mode. I 2 , I 3 , I 4 , wherein it is assumed that the output of the first inverter (ie, node A) in the SRAM cell is a logic Low (it is worth noting here that the second low voltage is due to the standby mode) The voltage level of the node (VL2) is maintained at the voltage level of the threshold voltage (V TM23 ) of the sixth NMOS transistor (M23), so the voltage level of the node A is the logic Low and the voltage of the V TM23 is also maintained. The level of the output of the second inverter (ie, node B) is a logic high (power supply voltage V DD ). Please refer to the conventional 8T dual-SRAM SRAM of FIG. 5 and the embodiment of the present invention of FIG. 10 to illustrate the leakage current of the 7T dual-static static random access memory proposed by the present invention and the conventional 8T dual-turn SRAM of FIG. In comparison, firstly, regarding the leakage current I 1 flowing through the third NMOS transistor (M13), since the voltage level of the node A in the standby mode is maintained at the voltage level of the V TM23 , and the The write word line (WWL) is set to the ground voltage in the standby mode, and the write bit line (WBL) is set to the power supply voltage (V DD ) in the standby mode, so the present invention The gate-source voltage (V GS ) of the third NMOS transistor (M13) is a negative value, and the gate-source voltage of the NMOS transistor (M3) of the conventional 8T dual-SRAM SRAM of FIG. 5 in the standby mode (V GS) ) is equal to 0, according to the Gate Induced Drain Leakage (GIDL) effect or the results of Figures 3 (A) and 3 (B) of US Pat. No. 6,865,119, March 8, 2005, for NMOS In the case of a transistor, the subcritical current when the gate source voltage is -0.1 volt is about 1% of the subcritical current when the gate source voltage is 0 volts. Therefore, the leakage current I 1 of the third NMOS transistor (M13) flowing through the present invention caused by the GIDL effect is much smaller than that of the conventional 8T double-SRAM NMOS transistor (M3) of FIG. 5; The 汲 source voltage (V DS ) of the third NMOS transistor (M13) of the present invention deducts the voltage level of the V TM23 from the power supply voltage (V DD ), and the conventional 8T double 第 in FIG. 5 The 汲 source voltage (V DS ) of the SRAM NMOS transistor (M3) is equal to the power supply voltage (V DD ), which is based on the Drain-Induced Barrier Lowering (DIBL) effect due to the DIBL effect. The induced leakage current I 1 flowing through the third NMOS transistor (M13) of the present invention is also smaller than the NMOS transistor (M3) of the conventional 8T double-turn SRAM of FIG. 5; as a result, the third of the present invention flows through The leakage current I 1 of the NMOS transistor (M13) is much smaller than that of the conventional 8T double-SRAM NMOS transistor (M3) of FIG.
接著關於流經該第一PMOS電晶體(P11)之漏電流I2,由於待機模式時該第一PMOS電晶體(P11)之源極係為該電源供應電壓(VDD),而該第一PMOS電晶體(P11)之汲極係維持在該VTM23的電壓位準,因此本發明之該第一PMOS電晶體(P11)之源汲極電壓(VSD)為該電源供應電壓(VDD)扣減該VTM23的電壓位準,反觀於第5圖之傳統8T雙埠SRAM之 PMOS電晶體(P1)之源汲極電壓(VSD)係等於該電源供應電壓(VDD),根據DIBL效應,因此流經本發明之該第一PMOS電晶體(P11)之漏電流I2會小於第1b圖先前技藝之PMOS電晶體(P1)者。 Next, regarding the leakage current I 2 flowing through the first PMOS transistor (P11), the source of the first PMOS transistor (P11) is the power supply voltage (V DD ) due to the standby mode, and the first The drain of the PMOS transistor (P11) is maintained at the voltage level of the VTM23 , so the source drain voltage (V SD ) of the first PMOS transistor (P11) of the present invention is the power supply voltage (V DD ) Deducting the voltage level of the V TM23 , the source drain voltage (V SD ) of the PMOS transistor (P1) of the conventional 8T dual-SRAM SRAM of FIG. 5 is equal to the power supply voltage (V DD ), according to The DIBL effect, therefore, the leakage current I 2 flowing through the first PMOS transistor (P11) of the present invention will be smaller than that of the prior art PMOS transistor (P1) of Figure 1b.
然後,關於流經該第二NMOS電晶體(M12)之漏電流I3,由於待機模式時該第二低電壓節點(VL2)之電壓位準係維持在該VTM23的電壓位準,節點A之電壓位準亦維持在該VTM23的電壓位準,而節點B之電壓位準係等於該電源供應電壓(VDD)且該第二NMOS電晶體(M12)之基底為接地電壓,因此本發明之該第二NMOS電晶體(M12)的基源極電壓(VBS)為負值,且該第二NMOS電晶體(M12)之汲源極電壓(VDS)為該電源供應電壓(VDD)扣減該VTM23的電壓位準,反觀於第5圖之傳統8T雙埠SRAM之NMOS電晶體(M2)的基源極電壓(VBS)等於0,且NMOS電晶體(M2)之汲源極電壓(VDS)等於該電源供應電壓(VDD),根據本體效應(body effect)及DIBL效應可知,流經本發明之該第二NMOS電晶體(M12)之漏電流I3遠小於第5圖之傳統8T雙埠SRAM之NMOS電晶體(M2)者。 Then, regarding the leakage current I 3 flowing through the second NMOS transistor (M12), since the voltage level of the second low voltage node (VL2) is maintained at the voltage level of the V TM23 in the standby mode, the node A The voltage level is also maintained at the voltage level of the V TM23 , and the voltage level of the node B is equal to the power supply voltage (V DD ) and the base of the second NMOS transistor (M12) is the ground voltage, so The base-source voltage (V BS ) of the second NMOS transistor (M12) of the invention is a negative value, and the 汲 source voltage (V DS ) of the second NMOS transistor (M12) is the power supply voltage (V) DD ) deducting the voltage level of the V TM23 , and the base-source voltage (V BS ) of the NMOS transistor (M2) of the conventional 8T double-turn SRAM of FIG. 5 is equal to 0, and the NMOS transistor (M2) The source voltage (V DS ) is equal to the power supply voltage (V DD ). According to the body effect and the DIBL effect, the leakage current I 3 flowing through the second NMOS transistor (M12) of the present invention is much smaller than Figure 5 is a conventional 8T dual-SRAM NMOS transistor (M2).
最後,關於流經該第一讀取用電晶體(M14)之漏電流I4,由於本發明與第5圖之傳統8T雙埠SRAM之讀取方式不同,且本發明待機模式下之讀取用位元線(RBL)可設定成接地電壓,而第5圖之傳統8T雙埠SRAM為了防止節點B之電壓位準下降,待機模式下之讀取用位元線對(RBL、RBLB)係設定成電源供應電壓,因此無從比較流經該第一讀取用電晶體(M14)之漏電流I4。綜合以上分析可知,本發明所提出之7T雙埠靜態隨機存取記憶體與第5圖之傳統8T雙埠SRAM相較具有較低之漏電流。 Finally, regarding the leakage current I 4 flowing through the first read transistor (M14), since the present invention is different from the conventional 8T dual-turn SRAM of FIG. 5, and the reading is performed in the standby mode of the present invention. The bit line (RBL) can be set to the ground voltage, and the conventional 8T double-turn SRAM of FIG. 5 is used to prevent the voltage level of the node B from falling. The read bit line pair (RBL, RBLB) in the standby mode is Since the power supply voltage is set, it is not possible to compare the leakage current I 4 flowing through the first read transistor (M14). Based on the above analysis, the 7T dual-static SRAM of the present invention has a lower leakage current than the conventional 8T dual-SRAM SRAM of FIG.
(IV)保持模式(hold mode) (IV) hold mode
保持模式時,由於該第一低電壓節點(VL1)與該第二低電壓節點(VL2)均設定成接地電壓,其工作原理相同於傳統具單一位元線之雙埠SRAM晶胞,於此不再累述。 In the hold mode, since the first low voltage node (VL1) and the second low voltage node (VL2) are both set to ground voltage, the working principle is the same as that of the conventional double-bit SRAM cell with a single bit line. No longer said.
本發明所提出之7T雙埠靜態隨機存取記憶體,具有如下功效: The 7T double-click static random access memory proposed by the invention has the following effects:
(1)高讀取速度並避免無謂的功率消耗:本發明所提出之7T雙埠靜態隨機存取記憶體係採用二階段讀取操作,於讀取邏輯0之第一階段藉由將該第二低電壓節點(VL2)設定成較接地電壓為低之該加速讀取電壓(RGND),並將該節點B設定為高於該電源供應電壓(VDD)之該高電源供應電壓(HVDD),因此可藉此雙重機制以有效提高讀取速度,而於讀取邏輯0之第二階段則藉由將該第二低電壓節點(VL2)設定回接地電壓,以便減少無謂的功率消耗; (1) High read speed and avoiding unnecessary power consumption: The 7T dual-station static random access memory system proposed by the present invention employs a two-stage read operation, in the first stage of reading logic 0 by the second The low voltage node (VL2) is set to the accelerated read voltage (RGND) lower than the ground voltage, and the node B is set to be higher than the power supply voltage (V DD ) of the high power supply voltage (HV DD ) Therefore, the dual mechanism can be used to effectively increase the reading speed, and in the second phase of the read logic 0, the second low voltage node (VL2) is set back to the ground voltage to reduce unnecessary power consumption;
(2)快速進入待機模式:由於本發明所提出之7T雙埠靜態隨機存取記憶體設置有待機啟動電路(4)以促使SRAM快速進入待機模式,並藉此以謀求提高7T雙埠SRAM之待機效能; (2) Quick entry standby mode: Since the 7T dual-static SRAM (s) proposed by the present invention is provided with a standby start circuit (4) to prompt the SRAM to quickly enter the standby mode, and thereby seek to improve the 7T dual-SRAM Standby performance
(3)避免寫入邏輯1困難之問題:本發明所提出之7T雙埠靜態隨機存取記憶體於寫入操作時,可藉由提高該第一低電壓節點(VL1)之電壓位準以有效避免習知具單一位元線之雙埠SRAM存在寫入邏輯1相當困難之問題; (3) The problem of avoiding the difficulty of writing logic 1: The 7T dual-static static random access memory proposed by the present invention can improve the voltage level of the first low voltage node (VL1) during the write operation. Effectively avoiding the problem that it is quite difficult to write a logic 1 with a double-bit SRAM with a single bit line;
(4)低待機電流:由於本發明所提出之7T雙埠靜態隨機存取記憶體於待機模式時,可藉由呈導通狀態之該第五NMOS電晶體(M22),以使得該第一低電壓節點(VL1)之電壓位準相等於該第二低電壓節點(VL2)之電壓位準,並使得該等電壓位準均等於該第六NMOS電晶體(M23)之臨界電壓的位準,因此本發明所提出之7T雙埠靜態隨機存取記憶體亦具備低待機電流之功效; (4) Low standby current: Since the 7T dual-static SRAM in the standby mode of the present invention is in the standby mode, the fifth NMOS transistor (M22) in an on state can be used to make the first low The voltage level of the voltage node (VL1) is equal to the voltage level of the second low voltage node (VL2), and the voltage levels are equal to the level of the threshold voltage of the sixth NMOS transistor (M23). Therefore, the 7T dual-static static random access memory proposed by the present invention also has the effect of low standby current;
(5)有效降低半選定晶胞干擾:本發明所提出之7T雙埠靜態隨機存取記憶體由於使用分離的讀/寫路徑,且該讀取路徑係設計成將該第一和第二讀取用電晶體(M14和M15)串聯連接在該讀取用位元線(RBL)與該第二低電壓節點(VL2)之間,並將該反相儲存節點(B)連接至該第二讀取用電晶體(M15)的閘極,因此可有效降低半選定晶胞干擾(half-selected cell disturbance),其中半選定晶胞係指被該讀取用字元線(RWL)選定但未被該讀取用位元線(RBL)選定之晶胞。 (5) Effectively reducing the half-selected cell interference: the 7T double-chip static random access memory proposed by the present invention uses a separate read/write path, and the read path is designed to be the first and second read A transistor (M14 and M15) is connected in series between the read bit line (RBL) and the second low voltage node (VL2), and the inverting storage node (B) is connected to the second Reading the gate of the transistor (M15), thus effectively reducing the half-selected cell disturbance, wherein the half-selected cell means is selected by the read word line (RWL) but not A unit cell selected by the read bit line (RBL).
(6)低電晶體數:對於具有1024列1024行之SRAM陣列而言,傳統第5圖之8T雙埠SRAM陣列共需1024×1024×8=8,388,608顆電晶體,而本發明所提出之7T雙埠靜態隨機存取記憶體僅至少需1024×1024×7+1024×20+6=7,360,518顆電晶體,其減少12.3%之電晶體數。 (6) Low number of transistors: For an SRAM array having 1024 columns and 1024 rows, the 8T dual-SRAM array of the conventional FIG. 5 requires a total of 1024×1024×8=8,388,608 transistors, and the 7T proposed by the present invention The double-埠 static random access memory requires only at least 1024 × 1024 × 7 + 1024 × 20 + 6 = 7,360,518 transistors, which reduces the number of transistors by 12.3%.
雖然本發明特別揭露並描述了所選之較佳實施例,但舉凡熟悉本技術之人士可明瞭任何形式或是細節上可能的變化均未脫離本發明的精神與範圍。因此,所有相關技術範疇內之改變都包括在本發明之申請專利範圍內。 While the invention has been particularly shown and described, the embodiments of the invention may Therefore, all changes in the relevant technical scope are included in the scope of the patent application of the present invention.
1‧‧‧SRAM晶胞 1‧‧‧SRAM cell
2‧‧‧控制電路 2‧‧‧Control circuit
3‧‧‧預充電電路 3‧‧‧Precharge circuit
4‧‧‧待機啟動電路 4‧‧‧Standby start circuit
P11‧‧‧第一PMOS電晶體 P11‧‧‧First PMOS transistor
P12‧‧‧第二PMOS電晶體 P12‧‧‧Second PMOS transistor
M11‧‧‧第一NMOS電晶體 M11‧‧‧First NMOS transistor
M12‧‧‧第二NMOS電晶體 M12‧‧‧Second NMOS transistor
M13‧‧‧第三NMOS電晶體 M13‧‧‧ Third NMOS transistor
A‧‧‧儲存節點 A‧‧‧ storage node
B‧‧‧反相儲存節點 B‧‧‧ Inverting storage node
VDD‧‧‧電源供應電壓 V DD ‧‧‧Power supply voltage
M14‧‧‧第一讀取用電晶體 M14‧‧‧First read transistor
M15‧‧‧第二讀取用電晶體 M15‧‧‧Second reading transistor
WBL‧‧‧寫入用位元線 WBL‧‧‧Write bit line
WWL‧‧‧寫入用字元線 WWL‧‧‧write word line
RBL‧‧‧讀取用位元線 RBL‧‧‧Reading bit line
RWL‧‧‧讀取用字元線 RWL‧‧‧Read word line
S‧‧‧待機模式控制信號 S‧‧‧Standby mode control signal
/S‧‧‧反相待機模式控制信號 /S ‧‧‧Inverted standby mode control signal
VL1‧‧‧第一低電壓節點 VL1‧‧‧ first low voltage node
VL2‧‧‧第二低電壓節點 VL2‧‧‧ second low voltage node
M21‧‧‧第四NMOS電晶體 M21‧‧‧4th NMOS transistor
M22‧‧‧第五NMOS電晶體 M22‧‧‧ Fifth NMOS transistor
M23‧‧‧第六NMOS電晶體 M23‧‧‧ sixth NMOS transistor
M24‧‧‧第七NMOS電晶體 M24‧‧‧ seventh NMOS transistor
M25‧‧‧第八NMOS電晶體 M25‧‧‧8th NMOS transistor
M26‧‧‧第九NMOS電晶體 M26‧‧‧Ninth NMOS transistor
M27‧‧‧第十NMOS電晶體 M27‧‧‧ tenth NMOS transistor
P21‧‧‧第三PMOS電晶體 P21‧‧‧ Third PMOS transistor
RC‧‧‧讀取控制信號 RC‧‧‧ read control signal
RGND‧‧‧加速讀取電壓 RGND‧‧‧Accelerated reading voltage
WC‧‧‧寫入控制信號 WC‧‧‧ write control signal
C‧‧‧節點 C‧‧‧ node
INV‧‧‧第三反相器 INV‧‧‧ third inverter
D1‧‧‧第一延遲電路 D1‧‧‧First delay circuit
P31‧‧‧第四PMOS電晶體 P31‧‧‧4th PMOS transistor
P‧‧‧預充電信號 P‧‧‧Precharge signal
M41‧‧‧第十一NMOS電晶體 M41‧‧11 eleventh NMOS transistor
P41‧‧‧第五PMOS電晶體 P41‧‧‧ Fifth PMOS transistor
D2‧‧‧第二延遲電路 D2‧‧‧second delay circuit
5‧‧‧高電壓位準控制電路 5‧‧‧High voltage level control circuit
VDD‧‧‧電源供應電壓 V DD ‧‧‧Power supply voltage
HVDD‧‧‧高電源供應電壓 HV DD ‧‧‧High power supply voltage
P51‧‧‧第六PMOS電晶體 P51‧‧‧6th PMOS transistor
P52‧‧‧第七PMOS電晶體 P52‧‧‧ seventh PMOS transistor
153‧‧‧第四反相器 153‧‧‧fourth inverter
VH‧‧‧高電壓節點 VH‧‧‧ high voltage node
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW105105527A TWI573137B (en) | 2016-02-24 | 2016-02-24 | 7t dual port static random access memory |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW105105527A TWI573137B (en) | 2016-02-24 | 2016-02-24 | 7t dual port static random access memory |
Publications (2)
Publication Number | Publication Date |
---|---|
TWI573137B true TWI573137B (en) | 2017-03-01 |
TW201730884A TW201730884A (en) | 2017-09-01 |
Family
ID=58766243
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW105105527A TWI573137B (en) | 2016-02-24 | 2016-02-24 | 7t dual port static random access memory |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI573137B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI660348B (en) * | 2018-07-18 | 2019-05-21 | Hsiuping University Of Science And Technology | Dual port static random access memory |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI660364B (en) * | 2017-11-10 | 2019-05-21 | Hsiuping University Of Science And Technology | Seven transistor dual port static random access memory |
TWI673712B (en) * | 2018-07-18 | 2019-10-01 | Hsiuping University Of Science And Technology | Seven-transistor dual port static random access memory with improved access speed |
Citations (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5986923A (en) * | 1998-05-06 | 1999-11-16 | Hewlett-Packard Company | Method and apparatus for improving read/write stability of a single-port SRAM cell |
US6172901B1 (en) * | 1999-12-30 | 2001-01-09 | Stmicroelectronics, S.R.L. | Low power static random access memory and method for writing to same |
US20040090820A1 (en) * | 2002-11-08 | 2004-05-13 | Saroj Pathak | Low standby power SRAM |
US20060002223A1 (en) * | 2004-07-02 | 2006-01-05 | Samsung Electronics Co., Ltd. | SRAM employing virtual rail scheme stable against various process-voltage-temperature variations |
TWI260631B (en) * | 2004-12-03 | 2006-08-21 | Univ Nat Chiao Tung | Random access memory array structure |
US7606061B2 (en) * | 2007-08-07 | 2009-10-20 | Taiwan Semiconductor Manufacturing Co., Ltd. | SRAM device with a power saving module controlled by word line signals |
US7760575B2 (en) * | 2007-12-31 | 2010-07-20 | Virage Logic Corp. | Memory leakage control circuit and method |
US7773407B2 (en) * | 2008-06-26 | 2010-08-10 | Taiwan Semiconductor Manufacturing Co., Ltd. | 8T low leakage SRAM cell |
US7835217B1 (en) * | 2006-12-04 | 2010-11-16 | Marvell International Ltd. | Write-assist and power-down circuit for low power SRAM applications |
US8406039B2 (en) * | 2009-07-13 | 2013-03-26 | Taiwan Semiconductor Manufacturing Company, Ltd. | Low-leakage power supply architecture for an SRAM array |
US20140112072A1 (en) * | 2012-10-19 | 2014-04-24 | Aplus Flash Technology, Inc | 10t nvsram cell and cell operations |
TW201426753A (en) * | 2012-12-27 | 2014-07-01 | Univ Hsiuping Sci & Tech | Static random access memory with five transistors |
US9230637B1 (en) * | 2014-09-09 | 2016-01-05 | Globalfoundries Inc. | SRAM circuit with increased write margin |
TWI556238B (en) * | 2014-12-01 | 2016-11-01 | 修平學校財團法人修平科技大學 | 7t dual port static random access memory (2) |
TWI556241B (en) * | 2015-05-08 | 2016-11-01 | 修平學校財團法人修平科技大學 | 7t dual port static random access memory |
-
2016
- 2016-02-24 TW TW105105527A patent/TWI573137B/en not_active IP Right Cessation
Patent Citations (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5986923A (en) * | 1998-05-06 | 1999-11-16 | Hewlett-Packard Company | Method and apparatus for improving read/write stability of a single-port SRAM cell |
US6172901B1 (en) * | 1999-12-30 | 2001-01-09 | Stmicroelectronics, S.R.L. | Low power static random access memory and method for writing to same |
US20040090820A1 (en) * | 2002-11-08 | 2004-05-13 | Saroj Pathak | Low standby power SRAM |
US20060002223A1 (en) * | 2004-07-02 | 2006-01-05 | Samsung Electronics Co., Ltd. | SRAM employing virtual rail scheme stable against various process-voltage-temperature variations |
TWI260631B (en) * | 2004-12-03 | 2006-08-21 | Univ Nat Chiao Tung | Random access memory array structure |
US7835217B1 (en) * | 2006-12-04 | 2010-11-16 | Marvell International Ltd. | Write-assist and power-down circuit for low power SRAM applications |
US7606061B2 (en) * | 2007-08-07 | 2009-10-20 | Taiwan Semiconductor Manufacturing Co., Ltd. | SRAM device with a power saving module controlled by word line signals |
US7760575B2 (en) * | 2007-12-31 | 2010-07-20 | Virage Logic Corp. | Memory leakage control circuit and method |
US7773407B2 (en) * | 2008-06-26 | 2010-08-10 | Taiwan Semiconductor Manufacturing Co., Ltd. | 8T low leakage SRAM cell |
US8406039B2 (en) * | 2009-07-13 | 2013-03-26 | Taiwan Semiconductor Manufacturing Company, Ltd. | Low-leakage power supply architecture for an SRAM array |
US20140112072A1 (en) * | 2012-10-19 | 2014-04-24 | Aplus Flash Technology, Inc | 10t nvsram cell and cell operations |
TW201426753A (en) * | 2012-12-27 | 2014-07-01 | Univ Hsiuping Sci & Tech | Static random access memory with five transistors |
US9230637B1 (en) * | 2014-09-09 | 2016-01-05 | Globalfoundries Inc. | SRAM circuit with increased write margin |
TWI556238B (en) * | 2014-12-01 | 2016-11-01 | 修平學校財團法人修平科技大學 | 7t dual port static random access memory (2) |
TWI556241B (en) * | 2015-05-08 | 2016-11-01 | 修平學校財團法人修平科技大學 | 7t dual port static random access memory |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI660348B (en) * | 2018-07-18 | 2019-05-21 | Hsiuping University Of Science And Technology | Dual port static random access memory |
Also Published As
Publication number | Publication date |
---|---|
TW201730884A (en) | 2017-09-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI660348B (en) | Dual port static random access memory | |
TWI655630B (en) | 7T dual-static static random access memory with high read/write speed | |
TWI618091B (en) | Dual port static random access memory | |
TWI660364B (en) | Seven transistor dual port static random access memory | |
TWI638361B (en) | Seven transistor static random access memory with fast write speed | |
TWI618083B (en) | Seven transistor static random access memory | |
TWI579847B (en) | Seven transistor dual port static random access memory | |
TWI556238B (en) | 7t dual port static random access memory (2) | |
TWI573137B (en) | 7t dual port static random access memory | |
TWI556241B (en) | 7t dual port static random access memory | |
TWI579863B (en) | 7t dual port static random access memory | |
TWI579846B (en) | 7t dual port static random access memory | |
TWI556239B (en) | 7t dual port static random access memory (3) | |
TWI605551B (en) | Dual port static random access memory | |
TWI633561B (en) | Seven-transistor dual port static random access memory with fast write speed | |
TWI556410B (en) | 7t dual port static random access memory (8) | |
TWI541802B (en) | 7t dual port static random access memory (1) | |
TWI609373B (en) | Dual port static random access memory | |
TWI579861B (en) | Dual port static random access memory | |
TWI591629B (en) | Dual port static random access memory | |
TW201926343A (en) | Seven-transistor static random access memory with fast write speed comprising a plurality of control circuits, a plurality of pre-charging circuits, a standby activation circuit, a plurality of high-voltage-level control circuits, and a plurality of write driver circuits | |
TWI573138B (en) | 7t dual port static random access memory (7) | |
TWI676172B (en) | Dual port static random access memory with improved access speed | |
TWI556240B (en) | 7t dual port static random access memory (4) | |
TWI678705B (en) | Seven-transistor static random access memory with improved access speed |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | Annulment or lapse of patent due to non-payment of fees |