TWI569310B - 用以於基材上形成層之方法 - Google Patents

用以於基材上形成層之方法 Download PDF

Info

Publication number
TWI569310B
TWI569310B TW100133991A TW100133991A TWI569310B TW I569310 B TWI569310 B TW I569310B TW 100133991 A TW100133991 A TW 100133991A TW 100133991 A TW100133991 A TW 100133991A TW I569310 B TWI569310 B TW I569310B
Authority
TW
Taiwan
Prior art keywords
seed layer
substrate
feature
layer
target
Prior art date
Application number
TW100133991A
Other languages
English (en)
Other versions
TW201220363A (en
Inventor
悠傑克M
陶龍
傅新宇
Original Assignee
應用材料股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 應用材料股份有限公司 filed Critical 應用材料股份有限公司
Publication of TW201220363A publication Critical patent/TW201220363A/zh
Application granted granted Critical
Publication of TWI569310B publication Critical patent/TWI569310B/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/285Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation
    • H01L21/28506Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers
    • H01L21/28512Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table
    • H01L21/2855Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table by physical means, e.g. sputtering, evaporation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/76841Barrier, adhesion or liner layers
    • H01L21/76843Barrier, adhesion or liner layers formed in openings in a dielectric
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/76841Barrier, adhesion or liner layers
    • H01L21/76853Barrier, adhesion or liner layers characterized by particular after-treatment steps
    • H01L21/76865Selective removal of parts of the layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/76841Barrier, adhesion or liner layers
    • H01L21/76868Forming or treating discontinuous thin films, e.g. repair, enhancement or reinforcement of discontinuous thin films
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/76841Barrier, adhesion or liner layers
    • H01L21/76871Layers specifically deposited to enhance or enable the nucleation of further layers, i.e. seed layers
    • H01L21/76873Layers specifically deposited to enhance or enable the nucleation of further layers, i.e. seed layers for electroplating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/76877Filling of holes, grooves or trenches, e.g. vias, with conductive material
    • H01L21/76879Filling of holes, grooves or trenches, e.g. vias, with conductive material by selective deposition of conductive material in the vias, e.g. selective C.V.D. on semiconductor material, plating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2221/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
    • H01L2221/10Applying interconnections to be used for carrying current between separate components within a device
    • H01L2221/1068Formation and after-treatment of conductors
    • H01L2221/1073Barrier, adhesion or liner layers
    • H01L2221/1084Layers specifically deposited to enhance or enable the nucleation of further layers, i.e. seed layers
    • H01L2221/1089Stacks of seed layers

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Physical Vapour Deposition (AREA)
  • Drying Of Semiconductors (AREA)

Description

用以於基材上形成層之方法
本發明的實施例大致關於基材處理。
傳統積體電路製造通常需要在基材特徵結構中沉積多個材料層。舉例而言,如第4A圖說明性顯示,晶種層410可沉積在阻障層408上,阻障層408形成於基材400上,基材400具有一或多個(圖示一個)形成於基材400中的特徵結構412。舉例而言,傳統理論要求完美晶種層410沿著特徵結構412的側壁414與底部416具有均勻的厚度,如第4A圖所示。然而,實際上,本發明人已經發現傳統晶種層沉積處理並不會產生上述完美幾何形狀,反之,如第4B圖所示,傳統晶種層沉積處理通常產生鄰近特徵結構412的開口411的側壁414上的厚度比鄰近特徵結構412的底部416的側壁414上的厚度大的晶種層410。不幸的是,產生具有上述幾何形狀的晶種層410會使得晶種層410材料累積在特徵結構412的角落418上,這會造成部分或完全封閉特徵結構412的開口411,阻止材料在後續處理過程中填充特徵結構412。
因此,本發明人已經提供在具有一或多個形成於基材中的特徵結構的基材上形成層的改良方法。
本文提供在具有一或多個形成於基材中的特徵結構的基材上形成層的方法。在某些實施例中,在具有一或多個形成於基材中的特徵結構的基材上形成層的方法包括在一或多個特徵結構中沉積晶種層;及蝕刻晶種層以移除鄰近特徵結構的開口的晶種層的至少一部分,以致晶種層包括配置於特徵結構的側壁的下部上的第一厚度與配置於側壁的上部上的第二厚度,特徵結構的側壁的下部鄰近特徵結構的底部,而側壁的上部鄰近特徵結構的開口,且其中第一厚度大於第二厚度。
於下文描述本發明的其他與進一步實施例。
本文提供在具有一或多個形成於基材中的特徵結構的基材上形成層的方法。本發明方法的實施例可有利地提供一種晶種層,該晶種層配置於特徵結構的側壁的下部(鄰近特徵結構的底部)上的厚度比鄰近特徵結構的開口處的厚度大,藉此減少材料累積於特徵結構的上方角落上,因此避免在後續額外層與/或材料的沉積之前封閉特徵結構。此外,本發明方法藉由以上述方式提供晶種層可進一步有利地讓後續沉積的材料由特徵結構的底部至頂部填充特徵結構,藉此讓特徵結構被完全填充且不具有不樂見的空隙形成。
第1圖描繪根據本發明某些實施例處理基材的方法100。第2A-F圖為根據本發明某些實施例第1圖所描繪的方法的不同階段過程中的基材的說明性橫剖面圖。可在任何適合根據本發明實施例處理基材的設備中執行方法100,舉例而言,設備例如下方參照第3圖所討論的處理腔室300。
方法100開始於步驟102,步驟102中提供具有形成於基材200中的特徵結構(例如,開口212)的基材200(如第2A圖中所示)。基材200可為任何適當基材,諸如矽基材、III-V複合基材、矽鍺(SiGe)基材、磊晶矽-基材(epi-substrate)、絕緣層上矽(SOI)基材、顯示器基材(諸如,液晶顯示器(LCD)、電漿顯示器、電激發光(EL)燈顯示器)、發光二極體(LED)基材、太陽能電池陣列、太陽能面板等等。在某些實施例中,基材200可為半導體晶圓(諸如,200 mm、300 mm等等的矽晶圓)。
在某些實施例中,基材200可包括一或多個層,舉例而言,一或多個層例如形成於介電層202上的主體介電層206(如第2A圖所示)。可在介電層202的上方區域中形成傳導特徵結構204,以致可藉由形成在主體介電層206中的開口212來暴露傳導特徵結構204的上表面。舉例而言,可執行介層洞/溝槽蝕刻處理以在主體介電層206中界定開口212,藉此暴露傳導特徵結構204的上表面。可由任何適當導電材料來製造傳導特徵結構204。舉例而言,針對銅互連,傳導特徵結構204可為嵌於介電層202中的銅層。在某些實施例中,可由金屬製造傳導特徵結構204,金屬諸如銅、鋁、鎢等等、上述之合金或上述之組合。
可由相同或不同的介電材料來製造主體介電層206與介電層202。在某些實施例中,介電材料可包括氧化矽(SiO2)、氮化矽(SiN)、低介電常數(low-K)材料等等。低介電常數(low-K)材料可為摻雜碳的介電材料(諸如,摻雜碳的氧化矽(SiOC)、可自Applied Materials,Inc.(Santa Clara,California)取得的BLACK 介電材料等等)、有機聚合物(諸如,聚醯亞胺、派瑞林(parylene)等等)、摻雜有機物的矽玻璃(OSG)、摻雜氟的矽玻璃(FSG)等等。本文所用的低介電常數(low-K)材料為介電常數低於氧化矽的介電常數(約為3.9)的材料。
通常藉由一或多個側壁214、底表面216與上方角落(斜角)218來界定開口212。開口212可為任何適合用於基材製造的特徵結構,特徵結構諸如介層洞、溝槽、雙鑲嵌特徵結構等等,且可透過任何適當處理(例如,蝕刻處理)來形成該特徵結構。雖然僅圖示一個開口212,但根據本文所揭示的教示可同時處理多個特徵結構。開口212通常可具有任何尺寸。舉例而言,在某些實施例中,開口212的特徵結構高度與特徵結構寬度的比例至少約2:1。在某些實施例中,開口212可為高深寬比特徵結構。上述實施例中,開口212的特徵結構高度與特徵結構寬度的比例至少約4:1。在某些實施例中,開口212的寬度約5 nm至約50 nm。
雖然描繪的基材200具有形成於介電層202上的主體介電層206,但基材200亦可包括不同的材料層與/或額外的材料層。此外,可在不同的材料層與/或額外的材料層中形成其他特徵結構,特徵結構諸如溝槽、介層洞等等。
隨後,步驟104,可選擇性地在基材200上沉積阻障層208。當阻障層208存在時,阻障層208可作為基材與後續沉積於開口中的層之間的電性阻障與/或物理阻障,與/或阻障層208可在沉積處理(討論於下文)過程中作為比基材的原生表面較佳的附著表面。阻障層208可包括任何適於執行上方討論功能的材料。舉例而言,在某些實施例中,阻障層208可包括鈦(Ti)、鉭(Ta)、上述之氧化物或氮化物等等的其中之一。可將阻障層208沉積至任何適當厚度,舉例而言,適當厚度約0.5 nm至約10 nm。
可藉由任何適當方法來沉積阻障層208,舉例而言,適當方法諸如化學氣相沉積(CVD)、物理氣相沉積(PVD)等等。舉例而言,在某些實施例中,可在適當處理腔室中透過PVD處理來沉積阻障層208,適當處理腔室例如參照第3圖描述於下的處理腔室300。上述實施例中,處理腔室可具有配置於處理腔室中的靶材(例如,靶材342),靶材包括即將沉積於基材200上的來源材料。舉例而言,在阻障層包括氮化鉭(TaNx)的實施例中,靶材可包括鉭(Ta)。
在某些實施例中,沉積阻障層208可包括提供處理氣體至處理腔室以跟來自靶材的來源材料反應。反應造成靶材噴出靶材材料的原子,隨後靶材材料的原子被引導向基材200。在某些實施例中,處理氣體可包括惰性氣體,惰性氣體諸如氬(Ar)、氦(He)、氪(Kr)、氖(Ne)、氙(Xe)等等。可在約2sccm至約200sccm之間的流率下提供沉積氣體。在某些實施例中,可自處理氣體形成電漿以促進自靶材濺射來源材料。在上述實施例中,可對靶材施加約5kW至約40kW的DC功率以激發處理氣體並維持電漿。
在某些實施例中,為了促進引導來自靶材的噴出原子朝向基材200,可對支撐基材200的基材支撐基座(例如,上方討論的基材支撐基座352)施加RF功率形式的偏壓功率。在上述實施例中,可在2MHz至約60MHz之間或約13.56MHz的頻率下供應約50W至約2000W的RF功率。
除了上述以外,可利用額外的處理參數來促進沉積阻障層208。舉例而言,在某些實施例中,可將處理腔室維持在約0.2mTorr至約50mTorr的壓力下。此外,在某些實施例中,可將處理腔室維持在約20℃至約200℃的溫度下。
隨後,步驟106如第2C圖所描繪般,將晶種層210沉積於開口212中。晶種層210提供較佳的附著表面且可作為後續沉積材料的模板,舉例而言,後續沉積材料例如下方討論的傳導材料。晶種層210可包括任何適合提供上述功能的材料。舉例而言,在某些實施例中,晶種層可包括銅(Cu)、釕(Ru)、鈷(Co)等等與上述之合金的其中之一,銅(Cu)、釕(Ru)、鈷(Co)之合金諸如銅-鋁(Cu-Al)、銅-錳(Cu-Mn)、銅-鎂(Cu-Mg)等等。
為了形成晶種層210,首先在步驟108如第2C圖所描繪般,將晶種層210沉積於開口212中(且沉積於基材200上)。可透過任何適於形成具有樂見輪廓的晶種層的沉積處理來沉積晶種層210,舉例而言,沉積處理諸如PVD、CVD等等。舉例而言,在某些實施例中,可在適當處理腔室中透過PVD處理沉積晶種層210,適當處理腔室例如參照第3圖描述於下的處理腔室300。在上述實施例中,處理腔室可具有配置於處理腔室中的靶材(例如,靶材342),靶材包括即將沉積於基材200上的來源材料。舉例而言,在晶種層210包括銅(Cu)的實施例中,靶材可包括銅(Cu)來源材料。
在某些實施例中,沉積晶種層210可包括提供處理氣體至處理腔室以自靶材物理濺射來源材料,例如造成靶材噴出靶材材料的原子,接著靶材材料的原子被引導向基材200。在某些實施例中,處理氣體可包括惰性氣體,惰性氣體諸如氬(Ar)、氦(He)、氪(Kr)、氖(Ne)、氙(Xe)等等。可在約4 sccm至約300 sccm之間的流率下提供處理氣體,或者在某些實施例中,可在約4 sccm的流率下提供處理氣體。在某些實施例中,可自處理氣體形成電漿以促進自靶材濺射來源材料。在上述實施例中,可對靶材施加約5 kW至約40 kW的DC功率以激發處理氣體並維持電漿,或者在某些實施例中,可對靶材施加約30 kW的DC功率以激發處理氣體並維持電漿。
在某些實施例中,為了促進引導來自靶材的噴出原子朝向基材200,可對支撐基材200的基材支撐基座(例如,基材支撐基座352)施加RF功率形式的偏壓功率。在上述實施例中,可在2 MHz至約60 MHz之間或約13.56 MHz的頻率下供應約50 W至約2000 W的RF功率,或者在某些實施例中,可在2 MHz至約60 MHz之間或約13.56 MHz的頻率下供應約120 W的RF功率。
除了上述以外,可利用額外的處理參數來促進沉積晶種層210。舉例而言,在某些實施例中,可將處理腔室維持在約0.1 mTorr至約50 mTorr的壓力下。此外,在某些實施例中,可將處理腔室維持在約20℃至約200℃的溫度下。
在某些實施例中,本發明人已經發現當如上所述透過PVD處理沉積晶種層210時,晶種層材料聚集在開口212的上方角落218附近。傳統處理中,晶種層材料的累積可能會部分或完全地封閉開口212並產生空隙。因此,隨後步驟110如第2D圖所描繪般蝕刻晶種層210以移除鄰近開口212的上方角落218的晶種層210的至少一部分(例如,用以提供經蝕刻的晶種層)。藉由蝕刻晶種層210的至少一部分,可在沿著側壁214與鄰近開口212的上方角落218的樂見位置處控制晶種層210的厚度,以提供例如第2D圖所描繪的向內傾斜的晶種層輪廓(例如,平均晶種層厚度自開口212的上部226、228朝向開口212的底部216增加)。舉例而言,在某些實施例中,鄰近開口212的底部216的側壁214上形成的晶種層210的厚度可為約2 nm至約10 nm,而鄰近開口212的上部的側壁214上形成的晶種層210的厚度可為約1 nm至約5 nm。在某些實施例中,晶種層210可能非連續層。舉例而言,在某些實施例中,可能沒有晶種層210材料配置於鄰近開口212的上部226、228的側壁214部分或開口212的上方角落218。晶種層的厚度取決於特徵結構尺寸而有所改變。在某些實施例中,側壁的下部處的晶種層厚度可超過側壁的上部處的晶種層厚度兩倍。
可在相同處理腔室中執行晶種層210蝕刻,或者在某些實施例中,可在與上述用於沉積晶種層210的處理腔室不同的處理腔室中執行晶種層210蝕刻。在某些實施例中,蝕刻晶種層210可包括自處理氣體形成電漿及用來自電漿的帶電離子轟擊基材200。可如同上述般分別地完成晶種層210的蝕刻,或者藉由提高施加至基材支撐件的RF功率在沉積的第二步驟過程中完成晶種層210的蝕刻。舉例而言,下述的處理是同時發生的沉積處理與蝕刻處理。供應至基材的RF偏壓功率的強度可用來控制沉積於基材上的材料的蝕刻。
處理氣體可包括任何適於形成電漿以蝕刻晶種層210的氣體,舉例而言,處理氣體例如惰性氣體,惰性氣體諸如氬(Ar)、氦(He)、氪(Kr)、氖(Ne)、氙(Xe)等等。可在約10 sccm至約300 sccm之間的流率下提供處理氣體,或者在某些實施例中,可在約100 sccm的流率下提供處理氣體。在用以建立與維持電漿的適當條件下,藉由耦接電源至處理腔室中的處理氣體將處理氣體形成電漿。舉例而言,在某些實施例中,可提供約5 kW至約40 kW的DC功率來激發處理氣體且維持電漿,或者在某些實施例中,可提供約20 kW的DC功率來激發處理氣體且維持電漿。在某些實施例中,可將偏壓功率施加至基材以促進自電漿引導離子朝向基材,藉此促進蝕刻處理。舉例而言,在某些實施例中,約2 MHz至約60 MHz或約13.56 MHz的頻率下的偏壓功率可為約50 W至約2000 W,或者在某些實施例中,約2 MHz至約60 MHz或約13.56 MHz的頻率下的偏壓功率可為約600 W。
除了上述以外,可利用額外的處理參數來促進蝕刻晶種層210。舉例而言,在某些實施例中,可將處理腔室維持在約1 mTorr至約50 mTorr的壓力下。此外,在某些實施例中,可將處理腔室維持在約20℃至約200℃的溫度下。
在某些實施例中,蝕刻晶種層210可移除晶種層210的數個部分(例如,第5A圖中所示的部分230)中的所有或實質所有的材料。因此,在蝕刻晶種層210之後,選擇性的步驟112可如第5B圖所示般將第二晶種層232沉積於基材上(例如,經蝕刻的晶種層210上)。第二晶種層232可與晶種層210包括相同材料,或者在某些實施例中,第二晶種層232可與晶種層210包括不同材料。舉例而言,在晶種層210包括銅合金的實施例中,第二晶種層232可包括銅(Cu)。
在某些實施例中,可將第二晶種層232沉積至一厚度,該第二晶種層232的沉積厚度低於或等於步驟108的晶種層210的沉積材料厚度一半。因此,沉積第二晶種層232可促進至少部分地補充自晶種層210移除的材料,以促進晶種層210完全覆蓋於基材200上。晶種層210更完全的覆蓋可促進如下所述的後續處理過程中的更完全沉積。一旦完成第二晶種層232的選擇性沉積,方法100可如同第1圖所示般繼續至步驟114與第2E圖(若未執行第二晶種層232的選擇性沉積,方法100可如同參照第1圖所述般直接進行至步驟114與第2E圖)。
隨後,步驟114如同第2E圖所示般將導電材料222沉積於晶種層210上以填充開口212。在晶種層210未形成連續層(如上所述)的實施例中,可將導電材料222的數個部分直接沉積於阻障層208上。可以任何方式沉積導電材料222,任何方式諸如電化學沉積或電化學電鍍(ECP)等等。導電材料222可為任何適當導電材料,任何適當導電材料諸如鋁(Al)、銅(Cu)等等。
在某些實施例中,本發明人已經發現沉積過程中的導電材料222的生長速率會隨著晶種層210厚度提高而提高。舉例而言,在某些實施例中,相較於當導電材料222沉積在具有較小厚度的晶種層210部分(諸如,配置於鄰近開口212的頂部的側壁上的晶種層210部分以及沉積於上方角落218上的晶種層部分)的導電材料222的生長速率,當導電材料222沉積在具有較大厚度的晶種層210部分(諸如,配置於鄰近開口212的底部216的側壁上的晶種層210部分以及沉積於底部本身上的晶種層部分)上時,導電材料222的生長速率較高。因此,藉由提供具有傾斜輪廓(如上所述)的晶種層210,鄰近開口212的底部216的導電材料222的生長速率會較大,藉此可讓開口212由底部216至頂部地填充。由底部216至頂部地填充特徵結構可避免過量的導電材料222形成在特徵結構的上方角落218附近,藉此避免在用導電材料222完全填充開口212之前封閉開口212。
在用導電材料222填充開口212之後,如第2F圖所示般可應用化學機械研磨(CMP)或其他適當技術來移除開口212(與任何其他特徵結構,諸如其他介層洞、溝槽、雙鑲嵌結構等等)外的過量導電材料222。
在沉積導電材料222以填充開口212之後,方法大致結束,而基材200可進行進一步的處理(諸如,沉積、蝕刻、退火等等)。舉例而言,在某些實施例中,可沉積額外的層,舉例而言,可在經填充的開口212上形成額外的介電層與/或金屬結構。
可在下文所述的處理腔室中執行本文所述的本發明方法。第3圖描繪適於根據本發明某些實施例處理基材的處理腔室。適當處理腔室的實例包括ENDURA® EXTENSA TTN與ENDURA® ENCORE處理腔室,這兩腔室均可自Applied Materials,Inc.(Santa Clara,California)購買。可預期亦可應用其他處理腔室(包括來自其他製造商的那些處理腔室)來執行本發明。
在某些實施例中,處理腔室300包含基材支撐基座352與濺射源,基材支撐基座352用以接收基材200於基材支撐基座352上,濺射源例如靶材342。基材支撐基座352可位於接地封圍壁350中,接地封圍壁350可為腔室壁(如圖所示)或接地擋板(未圖示)。基材支撐基座352可包括任何提供熱至基材200的適當構件(未圖示),舉例而言,構件諸如電阻式加熱元件、輻射腔與光源等等。
靶材342可透過介電絕緣體346支撐於接地傳導鋁轉接體344上。靶材342包括即將在濺射過程中沉積於基材200上的材料,例如當根據本發明實施例沉積氮化鈦物膜時,材料為鈦。
基材支撐基座352具有面向靶材342的主要表面的材料接收表面,且基材支撐基座352在與靶材342的主要表面相對的平面位置處支撐即將被濺射塗覆的基材200。基材支撐基座352可支撐基材200於處理腔室300的中央區域340中。中央區域340被界定成處理過程中基材支撐基座352上方的區域(舉例而言,靶材342與處理位置時的基材支撐基座352之間的區域)。
基材支撐基座352垂直移動經由波紋管358以讓基材200經由處理腔室300的下部中的裝載鎖定閥(未圖示)被傳送至基材支撐基座352上,且之後基材支撐基座352提升至如第3圖中所示的沉積或處理位置,波紋管358連接至底部腔室壁360。可自氣體源362經由質流控制器364供應一或多個處理氣體進入腔室300的下部。可提供排氣口368並讓排氣口368透過閥366耦接至幫浦(未圖示),以排出處理腔室300的內部並促進維持處理腔室300內的樂見壓力。
可控制的DC功率源348可耦接至腔室300,以對靶材342施加負電壓或偏壓。RF功率供應器356可耦接至基材支撐基座352,以引發基材200上的負DC偏壓。此外,在某些實施例中,負DC自偏壓可在處理過程中形成於基材200上。其他應用中,基材支撐基座352可接地或為電浮動(electrically floating)。
可旋轉的磁控管370可設置在靶材342的背面附近。磁控管370包括基部平板374所支撐的複數個磁鐵372。基部平板374連接至旋轉軸376,旋轉軸376與腔室300與基材200的中央軸一致。磁鐵372在腔室300中產生磁場,磁場通常平行且靠近靶材342的表面以捕獲電子並提高局部電漿密度,而這會提高濺射速率。磁鐵372在腔室300頂部周圍產生電磁場,且旋轉磁鐵372以旋轉影響處理的電漿密度的電磁場以更均勻地濺射靶材342。
腔室300更包括連接至轉接體344的突出部384的接地底部擋板380。暗區擋板386是支撐於底部擋板380上,且暗區擋板386藉由螺栓或其他適當方式固定至擋板380。底部擋板380與暗區擋板386之間的金屬螺紋連接可讓兩個擋板380、386接地至轉接體344。接著將轉接體344密封並接地至鋁腔室側壁350。兩個擋板380、386通常由硬、非磁性的不銹鋼所形成。
底部擋板380向下延伸成第一直徑的上管狀部分394與第二直徑的下管狀部分396。底部擋板380沿著轉接體344的壁與腔室壁350向下延伸至低於基材支撐基座352的頂表面,並向上返回直到達到基材支撐基座352的頂表面(例如,在底部形成U形部分398)。當基材支撐基座352位於基材支撐基座352的下裝載位置時,蓋環302坐落在底部擋板380的向上延伸內部分的頂部上,當基材支撐基座352位於基材支撐基座352的上沉積位置時,蓋環302坐落在基材支撐基座352的外邊緣上以保護基材支撐基座352免於濺射沉積。可應用額外的沉積環(未圖示)來遮擋基材200的邊緣免於沉積。
RF線圈304可正好配置於基材200的邊緣外,在靶材342與基材支撐基座352之間空間的下面一半或下面三分之一中。底部擋板380中的多個絕緣支撐件(未圖示)支撐RF線圈304且亦供應RF功率與接地至RF線圈304。線圈304可為單回轉、接近管狀的銅製線圈,且線圈304在緊密間隔的電線之間具有小間隙以用於供能與接地。可提供RF功率供應器308以供應RF功率至RF線圈304,以在自靶材342移開的區域中產生氬電漿。一般而言,靶材342可為DC供能以濺射沉積而RF線圈304可用於濺射蝕刻基材200。然而,在某些實施例中,RF供應器可提供靶材濺射處理功率。
腔室300亦可適於提供更具方向性的材料濺射至基材上。在某些實施例中,可藉由在靶材342與基材支撐基座352之間配置選擇性的準直器310來達成方向性濺射,以提供更均勻與對稱的沉積材料流動至基材200。
當準直器310存在時,準直器310可坐落於底部擋板380的突出部部分上,藉此接地準直器310。準直器310可為金屬環,且準直器310可包括外管狀部分與至少一內同心管狀部分,舉例而言,管狀部分為三個藉由橫支杆320、318連接的同心管狀部分312、314、316。外管狀部分316坐落在底部擋板380的突出部部分306上。使用底部擋板380來支撐準直器310可簡化腔室300的設計與維修。至少兩個內管狀部分312、314是足夠高以界定高深寬比的孔,高深寬比的孔部分地準直濺射微粒。再者,準直器310的上表面作為與偏壓靶材342相對的接地平面,這有助於保持電漿電子離開基材200。
在某些實施例中,可圍繞腔室300配置磁鐵354以在基材支撐基座352與靶材342之間選擇性提供磁場。舉例而言,如第3圖所示,可圍繞腔室壁350的外側正好高於處理位置中的基材支撐基座352的區域配置磁鐵354。磁鐵354可為電磁鐵且可耦接至功率源(未圖示)以控制電磁鐵產生的磁場強度。
控制器330耦接至處理腔室300的多個部件以控制多個部件的操作,多個部件包括中央處理器(CPU)332、記憶體334與CPU 332的支援電路336。控制器330可直接控制基材處理設備,或者控制器330可透過與特定處理腔室與/或支援系統部件相連的電腦(或控制器)來控制基材處理設備。控制器330可為任何形式的通用電腦處理器之一,通用電腦處理器可用於工業設定以控制多個腔室與子處理器。CPU 332的記憶體或電腦可讀媒介334可為一或多個本機或遠端的容易取得的記憶體,容易取得的記憶體諸如隨機存取記憶體(RAM)、唯讀記憶體(ROM)、軟碟、硬碟、快閃記憶體或任何其他形式的數位儲存器。支援電路336耦接至CPU 332以用傳統方式支援處理器。該等電路包括快取、電源、時脈電路、輸入/輸出電路與子系統等等。本文所述的本發明方法可儲存於記憶體334中作為軟體常式,可執行或調用軟體常式以用本文所述方式控制處理腔室300的運轉,舉例而言,本文所述方式例如參照方法100描述於上的方式。軟體常式亦可由第二CPU(未圖示)儲存與/或執行,第二CPU位於受到CPU 332控制的硬體的遠端。
因此,本文提供在具有一或多個形成於基材中的特徵結構的基材上形成層的方法。本發明方法的實施例可有利地提供一種晶種層,該晶種層配置於特徵結構的側壁的下部(鄰近特徵結構的底部)上的厚度比鄰近特徵結構的開口處的厚度大,藉此減少材料累積於特徵結構的上方角落上,因此避免在用材料填充特徵結構之前封閉特徵結構。此外,本發明方法藉由以上述方式提供晶種層可進一步有利地讓後續沉積的材料由特徵結構的底部至頂部填充特徵結構,藉此讓特徵結構被完全填充且不具有空隙形成。
雖然上述係針對本發明之實施例,但可在不悖離本發明之基本範圍下設計出本發明之其他與更多實施例。
100...方法
102、104、106、108、110、112、114...步驟
200、400...基材
202...介電層
204...傳導特徵結構
206...主體介電層
208、408...阻障層
210、410...晶種層
212、411...開口
214、414...側壁
216...底表面
218...上方角落
222...導電材料
226、228...上部
230...部分
232...第二晶種層
300...處理腔室
302...蓋環
304...RF線圈
306...突出部部分
308...RF功率供應器
310...準直器
312、314、316...同心管狀部分
318、320...橫支杆
330...控制器
332...中央處理器
334...記憶體
336...支援電路
340...中央區域
342...靶材
344...接地傳導鋁轉接體
346...介電絕緣體
348...可控制的DC功率源
350...接地封圍壁
352...基材支撐基座
354、372...磁鐵
356...RF功率供應器
358...波紋管
360...底部腔室壁
362...氣體源
364...質流控制器
366...閥
368...排氣口
370...可旋轉的磁控管
374...基部平板
376...旋轉軸
380...底部擋板
384...突出部
386...暗區擋板
394...上管狀部分
396...下管狀部分
398...U形部分
412...特徵結構
416...底部
418...角落
可參照描繪於附圖中的本發明說明性實施例來理解簡短概述於【發明說明】中與詳細描述於【實施方式】之本發明實施例。然而,需注意附圖僅描繪本發明之典型實施例而因此不被視為本發明之範圍的限制因素,因為本發明可允許其他等效實施例。
第1圖是根據本發明某些實施例在基材上形成層的方法的流程圖。
第2A-F圖描繪根據本發明某些實施例的處理的不同階段過程中的基材的說明性橫剖面圖。
第3圖描繪適合根據本發明某些實施例處理基材的處理腔室。
第4A-B圖分別描繪根據理論上理想處理與傳統處理的基材的說明性橫剖面圖,基材具有沉積於特徵結構中的晶種層,特徵結構形成於基材中。
第5A-B圖描繪根據本發明某些實施例的處理的不同階段過程中的基材的說明性橫剖面圖。
為了促進理解,可盡可能應用相同的元件符號來標示圖式中相同的元件。圖式非按比例繪製且可能為了清晰之故而有所簡化。預期一個實施例中的元件與特徵結構可有利地併入其他實施例而不需特別詳述。
100...方法
102、104、106、108、110、112、114...步驟

Claims (18)

  1. 一種在一基材上形成數個層的方法,該基材具有一或多個特徵結構,該方法包括以下步驟:在該一或多個特徵結構中沉積一晶種層;及電漿蝕刻該晶種層以移除鄰近該特徵結構之一開口的所有該晶種層,以致該晶種層包括配置於該特徵結構之一側壁的一下部上的一第一厚度,且沒有晶種層配置在該開口的上方角落及該側壁之一上部上,該側壁的該下部鄰近該特徵結構的一底部,而該側壁的該上部鄰近該特徵結構的該開口。
  2. 如請求項1所述之方法,其中該晶種層包括銅(Cu)、釕(Ru)、鈷(Co)、銅合金、釕合金或鈷合金的其中之一。
  3. 如請求項1所述之方法,其中該第一厚度係約2nm至約10nm。
  4. 如請求項1所述之方法,其中至少實質所有的該晶種層被自該一或多個特徵結構的一上方斜角移除。
  5. 如請求項1所述之方法,其中該晶種層係透過一物理沉積(PVD)處理加以沉積,該物理沉積處理包括以下步驟: 在自一處理氣體形成的一電漿存在下,自一靶材濺射一來源材料,該處理氣體包括氬(Ar)、氦(He)、氪(Kr)、氖(Ne)或氙(Xe)的其中之一。
  6. 如請求項5所述之方法,其中形成該電漿的步驟包括以下步驟:對該靶材施加約5kW至約40kW的DC功率以激發該處理氣體。
  7. 如請求項6所述之方法,進一步包括以下步驟:提供約2MHz至約60MHz的頻率下之高達約2kW的一基材偏壓RF功率,以在該阻障層上沉積包括該來源材料的一層。
  8. 如請求項1所述之方法,其中蝕刻該晶種層的步驟進一步包括以下步驟:在蝕刻該晶種層的同時沉積晶種層材料。
  9. 如請求項1所述之方法,其中蝕刻該晶種層的步驟包括以下步驟:提供一處理氣體,該處理氣體包括氬(Ar)、氦(He)、氪(Kr)、氖(Ne)或氙(Xe)的其中之一;及自該處理氣體形成一電漿以蝕刻該晶種層。
  10. 如請求項9所述之方法,其中形成該電漿的步驟包括 以下步驟:對該靶材施加約5kW至約40kW的DC功率以激發該處理氣體。
  11. 如請求項10所述之方法,進一步包括以下步驟:提供約2MHz至約60MHz的頻率下之至少50W的一基材偏壓RF功率以蝕刻該晶種層。
  12. 如請求項1所述之方法,其中該一或多個特徵結構包括大於2:1的高度對寬度的比例。
  13. 如請求項1所述之方法,其中該晶種層並未在該特徵結構的該等側壁上形成一連續層。
  14. 如請求項1所述之方法,進一步包括以下步驟:在沉積該晶種層之前,在該基材上沉積一阻障層。
  15. 如請求項14所述之方法,其中該阻障層包括鈦(Ti)、鉭(Ta)、氮化鈦(TiN)或氮化鉭(TaN)的其中之一。
  16. 如請求項1所述之方法,進一步包括以下步驟:在該晶種層上沉積一導電材料以填充該特徵結構。
  17. 如請求項1所述之方法,進一步包括以下步驟:在蝕刻該晶種層之後,在該基材上沉積一第二晶種 層。
  18. 一種電腦可讀媒介,該電腦可讀媒介上儲存有數個指令,執行該數個指令時可導致在一處理腔室中執行一種在具有一或多個特徵結構的一基材上形成數個層的方法,該方法包括請求項1至17中任一項所述之任何方法。
TW100133991A 2010-09-21 2011-09-21 用以於基材上形成層之方法 TWI569310B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US38493810P 2010-09-21 2010-09-21
US13/226,612 US8993434B2 (en) 2010-09-21 2011-09-07 Methods for forming layers on a substrate

Publications (2)

Publication Number Publication Date
TW201220363A TW201220363A (en) 2012-05-16
TWI569310B true TWI569310B (zh) 2017-02-01

Family

ID=45818128

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100133991A TWI569310B (zh) 2010-09-21 2011-09-21 用以於基材上形成層之方法

Country Status (3)

Country Link
US (1) US8993434B2 (zh)
TW (1) TWI569310B (zh)
WO (1) WO2012039932A2 (zh)

Families Citing this family (98)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8476162B2 (en) * 2010-10-27 2013-07-02 Applied Materials, Inc. Methods of forming layers on substrates
US10283321B2 (en) 2011-01-18 2019-05-07 Applied Materials, Inc. Semiconductor processing system and methods using capacitively coupled plasma
US8487410B2 (en) 2011-04-13 2013-07-16 Taiwan Semiconductor Manufacturing Company, Ltd. Through-silicon vias for semicondcutor substrate and method of manufacture
US20140374907A1 (en) * 2012-06-21 2014-12-25 Applied Materials, Inc. Ultra-thin copper seed layer for electroplating into small features
US9373517B2 (en) 2012-08-02 2016-06-21 Applied Materials, Inc. Semiconductor processing with DC assisted RF power for improved control
US20140046475A1 (en) * 2012-08-09 2014-02-13 Applied Materials, Inc. Method and apparatus deposition process synchronization
US9132436B2 (en) 2012-09-21 2015-09-15 Applied Materials, Inc. Chemical control features in wafer process equipment
US10256079B2 (en) 2013-02-08 2019-04-09 Applied Materials, Inc. Semiconductor processing systems having multiple plasma configurations
US9362130B2 (en) 2013-03-01 2016-06-07 Applied Materials, Inc. Enhanced etching processes using remote plasma sources
US9245797B2 (en) 2013-08-19 2016-01-26 Taiwan Semiconductor Manufacturing Company, Ltd. Opening fill process and structure formed thereby
US9054163B2 (en) * 2013-11-06 2015-06-09 Taiwan Semiconductor Manufacturing Company, Ltd. Method for via plating with seed layer
US9624576B2 (en) * 2013-12-17 2017-04-18 Taiwan Semiconductor Manufacturing Company Limited Systems and methods for gap filling improvement
US9704798B2 (en) * 2013-12-20 2017-07-11 Intel Corporation Using materials with different etch rates to fill trenches in semiconductor devices
US9309598B2 (en) 2014-05-28 2016-04-12 Applied Materials, Inc. Oxide and metal removal
US9355922B2 (en) 2014-10-14 2016-05-31 Applied Materials, Inc. Systems and methods for internal surface conditioning in plasma processing equipment
US9966240B2 (en) 2014-10-14 2018-05-08 Applied Materials, Inc. Systems and methods for internal surface conditioning assessment in plasma processing equipment
US11637002B2 (en) 2014-11-26 2023-04-25 Applied Materials, Inc. Methods and systems to enhance process uniformity
US10224210B2 (en) 2014-12-09 2019-03-05 Applied Materials, Inc. Plasma processing system with direct outlet toroidal plasma source
US10573496B2 (en) 2014-12-09 2020-02-25 Applied Materials, Inc. Direct outlet toroidal plasma source
US11257693B2 (en) 2015-01-09 2022-02-22 Applied Materials, Inc. Methods and systems to improve pedestal temperature control
US9728437B2 (en) 2015-02-03 2017-08-08 Applied Materials, Inc. High temperature chuck for plasma processing systems
US20160225652A1 (en) 2015-02-03 2016-08-04 Applied Materials, Inc. Low temperature chuck for plasma processing systems
US10014179B2 (en) 2015-02-13 2018-07-03 Applied Materials, Inc. Methods for forming cobalt-copper selective fill for an interconnect
US9691645B2 (en) 2015-08-06 2017-06-27 Applied Materials, Inc. Bolted wafer chuck thermal management systems and methods for wafer processing systems
US9741593B2 (en) 2015-08-06 2017-08-22 Applied Materials, Inc. Thermal management systems and methods for wafer processing systems
US9349605B1 (en) 2015-08-07 2016-05-24 Applied Materials, Inc. Oxide etch selectivity systems and methods
US10504700B2 (en) 2015-08-27 2019-12-10 Applied Materials, Inc. Plasma etching systems and methods with secondary plasma injection
US10522371B2 (en) 2016-05-19 2019-12-31 Applied Materials, Inc. Systems and methods for improved semiconductor etching and component protection
US10504754B2 (en) 2016-05-19 2019-12-10 Applied Materials, Inc. Systems and methods for improved semiconductor etching and component protection
US9865484B1 (en) 2016-06-29 2018-01-09 Applied Materials, Inc. Selective etch using material modification and RF pulsing
US10629473B2 (en) 2016-09-09 2020-04-21 Applied Materials, Inc. Footing removal for nitride spacer
US10062575B2 (en) 2016-09-09 2018-08-28 Applied Materials, Inc. Poly directional etch by oxidation
US9899258B1 (en) * 2016-09-30 2018-02-20 Taiwan Semiconductor Manufacturing Company, Ltd. Metal liner overhang reduction and manufacturing method thereof
US10062585B2 (en) 2016-10-04 2018-08-28 Applied Materials, Inc. Oxygen compatible plasma source
US10546729B2 (en) 2016-10-04 2020-01-28 Applied Materials, Inc. Dual-channel showerhead with improved profile
US9934942B1 (en) 2016-10-04 2018-04-03 Applied Materials, Inc. Chamber with flow-through source
US10062579B2 (en) 2016-10-07 2018-08-28 Applied Materials, Inc. Selective SiN lateral recess
US9947549B1 (en) 2016-10-10 2018-04-17 Applied Materials, Inc. Cobalt-containing material removal
US9768034B1 (en) 2016-11-11 2017-09-19 Applied Materials, Inc. Removal methods for high aspect ratio structures
US10163696B2 (en) * 2016-11-11 2018-12-25 Applied Materials, Inc. Selective cobalt removal for bottom up gapfill
US10026621B2 (en) 2016-11-14 2018-07-17 Applied Materials, Inc. SiN spacer profile patterning
US10242908B2 (en) 2016-11-14 2019-03-26 Applied Materials, Inc. Airgap formation with damage-free copper
US10566206B2 (en) 2016-12-27 2020-02-18 Applied Materials, Inc. Systems and methods for anisotropic material breakthrough
US10431429B2 (en) 2017-02-03 2019-10-01 Applied Materials, Inc. Systems and methods for radial and azimuthal control of plasma uniformity
US10403507B2 (en) 2017-02-03 2019-09-03 Applied Materials, Inc. Shaped etch profile with oxidation
US10043684B1 (en) 2017-02-06 2018-08-07 Applied Materials, Inc. Self-limiting atomic thermal etching systems and methods
US10319739B2 (en) 2017-02-08 2019-06-11 Applied Materials, Inc. Accommodating imperfectly aligned memory holes
US10943834B2 (en) 2017-03-13 2021-03-09 Applied Materials, Inc. Replacement contact process
US10319649B2 (en) 2017-04-11 2019-06-11 Applied Materials, Inc. Optical emission spectroscopy (OES) for remote plasma monitoring
US10950500B2 (en) * 2017-05-05 2021-03-16 Applied Materials, Inc. Methods and apparatus for filling a feature disposed in a substrate
US11276590B2 (en) 2017-05-17 2022-03-15 Applied Materials, Inc. Multi-zone semiconductor substrate supports
US11276559B2 (en) 2017-05-17 2022-03-15 Applied Materials, Inc. Semiconductor processing chamber for multiple precursor flow
US10497579B2 (en) 2017-05-31 2019-12-03 Applied Materials, Inc. Water-free etching methods
US10049891B1 (en) 2017-05-31 2018-08-14 Applied Materials, Inc. Selective in situ cobalt residue removal
US10920320B2 (en) 2017-06-16 2021-02-16 Applied Materials, Inc. Plasma health determination in semiconductor substrate processing reactors
US10541246B2 (en) 2017-06-26 2020-01-21 Applied Materials, Inc. 3D flash memory cells which discourage cross-cell electrical tunneling
US10727080B2 (en) 2017-07-07 2020-07-28 Applied Materials, Inc. Tantalum-containing material removal
US10541184B2 (en) 2017-07-11 2020-01-21 Applied Materials, Inc. Optical emission spectroscopic techniques for monitoring etching
US10354889B2 (en) 2017-07-17 2019-07-16 Applied Materials, Inc. Non-halogen etching of silicon-containing materials
US10043674B1 (en) 2017-08-04 2018-08-07 Applied Materials, Inc. Germanium etching systems and methods
US10170336B1 (en) 2017-08-04 2019-01-01 Applied Materials, Inc. Methods for anisotropic control of selective silicon removal
US10297458B2 (en) 2017-08-07 2019-05-21 Applied Materials, Inc. Process window widening using coated parts in plasma etch processes
US10128086B1 (en) 2017-10-24 2018-11-13 Applied Materials, Inc. Silicon pretreatment for nitride removal
US10424487B2 (en) 2017-10-24 2019-09-24 Applied Materials, Inc. Atomic layer etching processes
US10283324B1 (en) 2017-10-24 2019-05-07 Applied Materials, Inc. Oxygen treatment for nitride etching
US11011413B2 (en) 2017-11-30 2021-05-18 Taiwan Semiconductor Manufacturing Company, Ltd. Interconnect structures and methods of forming the same
US10867905B2 (en) 2017-11-30 2020-12-15 Taiwan Semiconductor Manufacturing Company, Ltd. Interconnect structures and methods of forming the same
US10256112B1 (en) 2017-12-08 2019-04-09 Applied Materials, Inc. Selective tungsten removal
US10903054B2 (en) 2017-12-19 2021-01-26 Applied Materials, Inc. Multi-zone gas distribution systems and methods
US11328909B2 (en) 2017-12-22 2022-05-10 Applied Materials, Inc. Chamber conditioning and removal processes
US10854426B2 (en) 2018-01-08 2020-12-01 Applied Materials, Inc. Metal recess for semiconductor structures
US10964512B2 (en) 2018-02-15 2021-03-30 Applied Materials, Inc. Semiconductor processing chamber multistage mixing apparatus and methods
US10679870B2 (en) 2018-02-15 2020-06-09 Applied Materials, Inc. Semiconductor processing chamber multistage mixing apparatus
TWI716818B (zh) 2018-02-28 2021-01-21 美商應用材料股份有限公司 形成氣隙的系統及方法
US10593560B2 (en) 2018-03-01 2020-03-17 Applied Materials, Inc. Magnetic induction plasma source for semiconductor processes and equipment
US10319600B1 (en) 2018-03-12 2019-06-11 Applied Materials, Inc. Thermal silicon etch
US10497573B2 (en) 2018-03-13 2019-12-03 Applied Materials, Inc. Selective atomic layer etching of semiconductor materials
JP7009615B2 (ja) * 2018-03-26 2022-01-25 株式会社Kokusai Electric 半導体装置の製造方法、基板処理方法、基板処理装置、およびプログラム
US10573527B2 (en) 2018-04-06 2020-02-25 Applied Materials, Inc. Gas-phase selective etching systems and methods
US10490406B2 (en) 2018-04-10 2019-11-26 Appled Materials, Inc. Systems and methods for material breakthrough
US10699879B2 (en) 2018-04-17 2020-06-30 Applied Materials, Inc. Two piece electrode assembly with gap for plasma control
US10886137B2 (en) 2018-04-30 2021-01-05 Applied Materials, Inc. Selective nitride removal
US10755941B2 (en) 2018-07-06 2020-08-25 Applied Materials, Inc. Self-limiting selective etching systems and methods
US10872778B2 (en) 2018-07-06 2020-12-22 Applied Materials, Inc. Systems and methods utilizing solid-phase etchants
US10672642B2 (en) 2018-07-24 2020-06-02 Applied Materials, Inc. Systems and methods for pedestal configuration
US10892198B2 (en) 2018-09-14 2021-01-12 Applied Materials, Inc. Systems and methods for improved performance in semiconductor processing
US11049755B2 (en) 2018-09-14 2021-06-29 Applied Materials, Inc. Semiconductor substrate supports with embedded RF shield
US11062887B2 (en) 2018-09-17 2021-07-13 Applied Materials, Inc. High temperature RF heater pedestals
US11417534B2 (en) 2018-09-21 2022-08-16 Applied Materials, Inc. Selective material removal
US11682560B2 (en) 2018-10-11 2023-06-20 Applied Materials, Inc. Systems and methods for hafnium-containing film removal
US11121002B2 (en) 2018-10-24 2021-09-14 Applied Materials, Inc. Systems and methods for etching metals and metal derivatives
US11437242B2 (en) 2018-11-27 2022-09-06 Applied Materials, Inc. Selective removal of silicon-containing materials
US11721527B2 (en) 2019-01-07 2023-08-08 Applied Materials, Inc. Processing chamber mixing systems
US10920319B2 (en) 2019-01-11 2021-02-16 Applied Materials, Inc. Ceramic showerheads with conductive electrodes
CN112103242A (zh) * 2019-06-18 2020-12-18 中芯国际集成电路制造(上海)有限公司 半导体结构及其形成方法
CN110484884A (zh) * 2019-09-06 2019-11-22 北京北方华创微电子装备有限公司 磁控溅射控制系统及其控制方法
US20230317458A1 (en) * 2022-04-05 2023-10-05 Applied Materials, Inc. Gap fill enhancement with thermal etch
TWI847524B (zh) * 2022-06-10 2024-07-01 南亞科技股份有限公司 半導體元件的無孔隙導電特徵的製造方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6169036B1 (en) * 1999-03-25 2001-01-02 Lucent Technologies Inc. Method for cleaning via openings in integrated circuit manufacturing
TW200403732A (en) * 2002-07-25 2004-03-01 Matsushita Electric Ind Co Ltd Method for manufacturing semiconductor device
TW200539345A (en) * 2004-03-17 2005-12-01 Lam Res Corp Dual doped polysilicon and silicon germanium etch
US20060030151A1 (en) * 2004-08-09 2006-02-09 Applied Materials, Inc. Sputter deposition and etching of metallization seed layer for overhang and sidewall improvement
US7585760B2 (en) * 2006-06-23 2009-09-08 Intel Corporation Method for forming planarizing copper in a low-k dielectric

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10119741A (ja) * 1996-10-24 1998-05-12 Mitsubishi Motors Corp リターダ搭載車用ブレーキシステムの制御方法
US6228754B1 (en) 1999-01-05 2001-05-08 Advanced Micro Devices, Inc. Method for forming semiconductor seed layers by inert gas sputter etching
US6303214B1 (en) * 1999-04-14 2001-10-16 Seagate Technology Llc Magnetic recording medium with high density thin dual carbon overcoats
US6610151B1 (en) * 1999-10-02 2003-08-26 Uri Cohen Seed layers for interconnects and methods and apparatus for their fabrication
US6827870B1 (en) * 1999-10-12 2004-12-07 Wisconsin Alumni Research Foundation Method and apparatus for etching and deposition using micro-plasmas
US6403466B1 (en) * 2001-03-13 2002-06-11 Advanced Micro Devices, Inc. Post-CMP-Cu deposition and CMP to eliminate surface voids
JP3504940B2 (ja) * 2002-05-17 2004-03-08 沖電気工業株式会社 半導体装置の製造方法
US20060014378A1 (en) 2004-07-14 2006-01-19 Sanjeev Aggarwal System and method to form improved seed layer
US7344896B2 (en) * 2004-07-26 2008-03-18 Infineon Technologies Ag Ferromagnetic liner for conductive lines of magnetic memory cells and methods of manufacturing thereof
US7361872B2 (en) * 2005-08-16 2008-04-22 Graphic Packaging International, Inc. Variable serving size insulated packaging
JP5023505B2 (ja) * 2006-02-09 2012-09-12 東京エレクトロン株式会社 成膜方法、プラズマ成膜装置及び記憶媒体
US7700479B2 (en) * 2006-11-06 2010-04-20 Taiwan Semiconductor Manufacturing Company, Ltd. Cleaning processes in the formation of integrated circuit interconnect structures
US20080190760A1 (en) * 2007-02-08 2008-08-14 Applied Materials, Inc. Resputtered copper seed layer
US20090090708A1 (en) * 2007-10-03 2009-04-09 Emili Requena Microwave Heating Sleeve
US8119525B2 (en) 2008-02-26 2012-02-21 Applied Materials, Inc. Process for selective growth of films during ECP plating
JP5324139B2 (ja) * 2008-06-19 2013-10-23 雪印メグミルク株式会社 加熱調理用容器
US8841211B2 (en) 2010-06-09 2014-09-23 Applied Materials, Inc. Methods for forming interconnect structures

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6169036B1 (en) * 1999-03-25 2001-01-02 Lucent Technologies Inc. Method for cleaning via openings in integrated circuit manufacturing
TW200403732A (en) * 2002-07-25 2004-03-01 Matsushita Electric Ind Co Ltd Method for manufacturing semiconductor device
TW200539345A (en) * 2004-03-17 2005-12-01 Lam Res Corp Dual doped polysilicon and silicon germanium etch
US20060030151A1 (en) * 2004-08-09 2006-02-09 Applied Materials, Inc. Sputter deposition and etching of metallization seed layer for overhang and sidewall improvement
US7585760B2 (en) * 2006-06-23 2009-09-08 Intel Corporation Method for forming planarizing copper in a low-k dielectric

Also Published As

Publication number Publication date
WO2012039932A2 (en) 2012-03-29
US8993434B2 (en) 2015-03-31
US20120070982A1 (en) 2012-03-22
WO2012039932A3 (en) 2012-06-07
TW201220363A (en) 2012-05-16

Similar Documents

Publication Publication Date Title
TWI569310B (zh) 用以於基材上形成層之方法
TWI517299B (zh) 在高深寬比特徵結構中沉積金屬的方法
US8476162B2 (en) Methods of forming layers on substrates
US9399812B2 (en) Methods of preventing plasma induced damage during substrate processing
US20080190760A1 (en) Resputtered copper seed layer
KR101600995B1 (ko) 상호연결 구조물들을 형성하기 위한 방법들
TWI600785B (zh) 沉積製程同步化之方法及設備
TWI491748B (zh) 用於在高深寬比的特徵結構中沉積金屬的方法
JP7155388B2 (ja) ニッケルシリサイド材料を生成する方法
US7807568B2 (en) Methods for reducing damage to substrate layers in deposition processes
US7829456B2 (en) Method to modulate coverage of barrier and seed layer using titanium nitride
US20230017383A1 (en) Methods and apparatus for processing a substrate
US11670485B2 (en) Methods and apparatus for depositing aluminum by physical vapor deposition (PVD)