TWI544627B - Insulated gate bipolar transistor and method of manufacturing the same - Google Patents

Insulated gate bipolar transistor and method of manufacturing the same Download PDF

Info

Publication number
TWI544627B
TWI544627B TW103119994A TW103119994A TWI544627B TW I544627 B TWI544627 B TW I544627B TW 103119994 A TW103119994 A TW 103119994A TW 103119994 A TW103119994 A TW 103119994A TW I544627 B TWI544627 B TW I544627B
Authority
TW
Taiwan
Prior art keywords
region
substrate
collector
emitter
emitter region
Prior art date
Application number
TW103119994A
Other languages
Chinese (zh)
Other versions
TW201547020A (en
Inventor
牧 伊
陳柏安
魯夫 陳
Original Assignee
新唐科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新唐科技股份有限公司 filed Critical 新唐科技股份有限公司
Priority to TW103119994A priority Critical patent/TWI544627B/en
Priority to CN201410383362.3A priority patent/CN105280692A/en
Publication of TW201547020A publication Critical patent/TW201547020A/en
Application granted granted Critical
Publication of TWI544627B publication Critical patent/TWI544627B/en

Links

Landscapes

  • Electrodes Of Semiconductors (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Description

絕緣閘極雙極性電晶體及其製造方法 Insulated gate bipolar transistor and manufacturing method thereof

本發明實施例係有關於半導體技術,且特別係有關於絕緣閘極雙極性電晶體及其製造方法。 Embodiments of the present invention relate to semiconductor technology, and in particular to insulated gate bipolar transistors and methods of fabricating the same.

功率元件係廣泛地使用在用於驅動及控制高功率之家電製品及車載應用等。此功率元件包括實行開關操作之大輸出的功率電晶體。此種功率電晶體,除了功率金氧半場效電晶體(MOSFET)、功率雙極性電晶體外,更包括絕緣閘極雙極性電晶體(insulated gate bipolar transistor,IGBT)。絕緣閘極雙極性電晶體兼具金氧半場效電晶體之高輸入阻抗與雙極性電晶體之低導通電阻。 Power components are widely used in home appliances and automotive applications for driving and controlling high power. This power component includes a power transistor that performs a large output of the switching operation. The power transistor includes an insulated gate bipolar transistor (IGBT) in addition to a power MOS field-effect transistor (MOSFET) and a power bipolar transistor. The insulated gate bipolar transistor has both the high input impedance of the gold oxide half field effect transistor and the low on resistance of the bipolar transistor.

本發明實施例提供一種絕緣閘極雙極性電晶體,包括:基板,具有第一導電型,且具有上表面及下表面;第一導電型集極區及相鄰之第二導電型集極區,自基板之下表面延伸入基板中,其中第二導電型與第一導電型不同;集極電極,電性連結第二導電型集極區,且藉由集極絕緣層與第一導電型集極區電性絕緣;第一射極區,具有第二導電型,自基板之上表面延伸入基板中;第二射極區,具有第一導電型,且自基板之上表面延伸入第一射極區中,其中基板未形成有第一射極區、 第二射極區、第一導電型集極區及第二導電型集極區之部分係作為第一導電型基極區;射極電極,與第一射極區及第二射極區電性連結;閘極介電層,設於第一射極區、第二射極區與基板上;及閘極電極,設於閘極介電層上。 An embodiment of the present invention provides an insulated gate bipolar transistor, comprising: a substrate having a first conductivity type and having an upper surface and a lower surface; a first conductive type collector region and an adjacent second conductive type collector region And extending from the lower surface of the substrate into the substrate, wherein the second conductive type is different from the first conductive type; the collector electrode is electrically connected to the second conductive type collector region, and is formed by the collector insulating layer and the first conductive type The collector region is electrically insulated; the first emitter region has a second conductivity type extending from the upper surface of the substrate into the substrate; and the second emitter region has a first conductivity type and extends from the upper surface of the substrate In an emitter region, wherein the substrate is not formed with a first emitter region, a portion of the second emitter region, the first conductive type collector region and the second conductive type collector region is used as the first conductive type base region; the emitter electrode is electrically connected to the first emitter region and the second emitter region The gate electrode layer is disposed on the first emitter region, the second emitter region and the substrate; and the gate electrode is disposed on the gate dielectric layer.

本發明實施例更提供一種絕緣閘極雙極性電晶體, 包括:基板,具有第一導電型,且具有上表面及下表面;第一導電型集極區及相鄰之第二導電型集極區,自基板之下表面延伸入基板中,其中第二導電型與第一導電型不同;集極電極,電性連結第二導電型集極區,且藉由集極絕緣層與第一導電型集極區電性絕緣;第一射極區,具有第二導電型,且自基板之上表面延伸入基板中;第二射極區,具有第一導電型,且自基板之上表面延伸入第一射極區中,其中基板未形成有第一射極區、第二射極區、第一導電型集極區及第二導電型集極區之部分係作為第一導電型基極區;射極電極,與第一射極區及第二射極區電性連結;溝槽(trench),自基板之上表面延伸穿越第一射極區與第二射極區並進入基板中;閘極介電層,內襯於溝槽之側壁與底部;閘極電極,設於閘極介電層上且填入溝槽;及電極間介電層,設於閘極電極與射極電極之間。 The embodiment of the invention further provides an insulated gate bipolar transistor, The method includes: a substrate having a first conductivity type and having an upper surface and a lower surface; the first conductive type collector region and the adjacent second conductive type collector region extending from the lower surface of the substrate into the substrate, wherein the second The conductive type is different from the first conductive type; the collector electrode is electrically connected to the second conductive type collector region, and is electrically insulated from the first conductive type collector region by the collector insulating layer; the first emitter region has a second conductivity type extending from the upper surface of the substrate into the substrate; the second emitter region having the first conductivity type and extending from the upper surface of the substrate into the first emitter region, wherein the substrate is not formed with the first The emitter region, the second emitter region, the first conductive type collector region and the second conductive type collector region are used as the first conductive type base region; the emitter electrode, and the first emitter region and the second portion The emitter region is electrically connected; a trench extends from the upper surface of the substrate through the first emitter region and the second emitter region and enters the substrate; the gate dielectric layer is lined with the sidewall of the trench and a bottom electrode; a gate electrode disposed on the gate dielectric layer and filled with a trench; and an inter-electrode dielectric layer disposed on Between the electrode and the emitter electrode.

本發明實施例又提供一種絕緣閘極雙極性電晶體 之製造方法,包括:提供基板,具有第一導電型,且具有上表面及下表面;形成第一射極區,具有第二導電型,自基板之上表面延伸入基板中,且第二導電型與第一導電型不同;形成閘極介電層於第一射極區與基板上;形成閘極電極於閘極介電層上;形成第二射極區,第二射極區具有第一導電型,且自基板 之上表面延伸入第一射極區中;形成射極電極,射極電極與第一射極區及第二射極區電性連結;形成第一導電型集極區,自基板之下表面延伸入基板中;形成集極絕緣層於第一導電型集極區上;形成第二導電型集極區相鄰於第一導電型集極區,其中基板未形成有第一射極區、第二射極區、第一導電型集極區及第二導電型集極區之部分係作為第一導電型基極區;以及形成集極電極,集極電極電性連結第二導電型集極區,且藉由集極絕緣層與第一導電型集極區電性絕緣。 The embodiment of the invention further provides an insulated gate bipolar transistor The manufacturing method includes: providing a substrate having a first conductivity type and having an upper surface and a lower surface; forming a first emitter region having a second conductivity type extending from the upper surface of the substrate into the substrate, and the second conductive The type is different from the first conductivity type; forming a gate dielectric layer on the first emitter region and the substrate; forming a gate electrode on the gate dielectric layer; forming a second emitter region, the second emitter region having the first One conductivity type and from the substrate The upper surface extends into the first emitter region; the emitter electrode is formed, and the emitter electrode is electrically connected to the first emitter region and the second emitter region; forming a first conductive type collector region from the lower surface of the substrate Extending into the substrate; forming a collector insulating layer on the first conductive type collector region; forming a second conductive type collector region adjacent to the first conductive type collector region, wherein the substrate is not formed with the first emitter region, a portion of the second emitter region, the first conductive type collector region and the second conductive type collector region is used as a first conductive type base region; and a collector electrode is formed, and the collector electrode is electrically connected to the second conductive type set The polar region is electrically insulated from the first conductive type collector region by the collector insulating layer.

本發明實施例再提供一種絕緣閘極雙極性電晶體 之製造方法,包括:提供基板,具有第一導電型,且具有上表面及下表面;形成第一射極區,具有第二導電型,且自基板之上表面延伸入基板中,且第二導電型與第一導電型不同;形成溝槽(trench),自基板之上表面延伸穿越第一射極區至基板中;順應性形成閘極介電層於溝槽之側壁與底部上;形成閘極電極於閘極介電層上且填入溝槽;形成第二射極區,第二射極區具有第一導電型,且自基板之上表面延伸入第一射極區中;形成電極間介電層於閘極電極上;形成射極電極,射極電極與第一射極區及第二射極區電性連結,且電極間介電層設於閘極電極與射極電極之間;形成第一導電型集極區,自基板之下表面延伸入基板中;形成集極絕緣層於第一導電型集極區上;形成第二導電型集極區相鄰於第一導電型集極區,其中基板未形成有第一射極區、第二射極區、第一導電型集極區及第二導電型集極區之部分係作為第一導電型基極區;以及形成集極電極,集極電極電性連結第二導電型集極區,且藉由集極絕緣層與第一 導電型集極區電性絕緣。 An embodiment of the invention further provides an insulated gate bipolar transistor The manufacturing method includes: providing a substrate having a first conductivity type and having an upper surface and a lower surface; forming a first emitter region having a second conductivity type, extending from the upper surface of the substrate into the substrate, and second The conductive type is different from the first conductive type; forming a trench extending from the upper surface of the substrate through the first emitter region to the substrate; compliant forming a gate dielectric layer on the sidewall and the bottom of the trench; forming a gate electrode is formed on the gate dielectric layer and filled with a trench; a second emitter region is formed, the second emitter region has a first conductivity type, and extends from the upper surface of the substrate into the first emitter region; The inter-electrode dielectric layer is on the gate electrode; the emitter electrode is formed, the emitter electrode is electrically connected to the first emitter region and the second emitter region, and the inter-electrode dielectric layer is disposed on the gate electrode and the emitter electrode Forming a first conductive type collector region extending from the lower surface of the substrate into the substrate; forming a collector insulating layer on the first conductive type collector region; forming a second conductive type collector region adjacent to the first a conductive collector region in which the substrate is not formed with a first emitter region and a second shot a portion of the first conductive type collector region and the second conductive type collector region is used as a first conductive type base region; and a collector electrode is formed, and the collector electrode is electrically connected to the second conductive type collector region, and By collector insulating layer and first The conductive collector region is electrically insulated.

為讓本發明之特徵、和優點能更明顯易懂,下文特舉出較佳實施例,並配合所附圖式,作詳細說明如下。 In order to make the features and advantages of the present invention more comprehensible, the preferred embodiments of the present invention are described in detail below.

100‧‧‧絕緣閘極雙極性電晶體 100‧‧‧Insulated gate bipolar transistor

110‧‧‧基板 110‧‧‧Substrate

110A‧‧‧上表面 110A‧‧‧Upper surface

110B‧‧‧下表面 110B‧‧‧ lower surface

120‧‧‧第一射極區 120‧‧‧first emitter area

130a‧‧‧閘極介電層 130a‧‧‧gate dielectric layer

130b‧‧‧電極間介電層 130b‧‧‧Interelectrode dielectric layer

140‧‧‧閘極電極 140‧‧‧gate electrode

150‧‧‧第二射極區 150‧‧‧second emitter area

160‧‧‧第三射極區 160‧‧‧third emitter area

170‧‧‧射極電極 170‧‧ ‧ emitter electrode

180‧‧‧集極預定區 180‧‧‧Positive reservation area

190‧‧‧基極預定區 190‧‧‧base reservation area

190’‧‧‧第一導電型基極區 190'‧‧‧First Conductive Base Region

200‧‧‧重摻雜緩衝層 200‧‧‧ heavily doped buffer layer

210‧‧‧圖案化罩幕層 210‧‧‧ patterned mask layer

220‧‧‧開口 220‧‧‧ openings

230‧‧‧第一導電型集極區 230‧‧‧First Conductive Collector Region

240‧‧‧絕緣材料層 240‧‧‧Insulation layer

250‧‧‧圖案化罩幕層 250‧‧‧ patterned mask layer

260‧‧‧第二導電型集極區 260‧‧‧Second Conductive Collector Region

270‧‧‧集極絕緣層 270‧‧‧ collector insulation

280‧‧‧集極電極 280‧‧ ‧ collector electrode

300‧‧‧絕緣閘極雙極性電晶體 300‧‧‧Insulated gate bipolar transistor

310‧‧‧基板 310‧‧‧Substrate

310A‧‧‧上表面 310A‧‧‧ upper surface

310B‧‧‧下表面 310B‧‧‧ lower surface

320‧‧‧第一射極區 320‧‧‧First Polar Region

330‧‧‧溝槽 330‧‧‧ trench

340‧‧‧閘極介電層 340‧‧‧gate dielectric layer

350‧‧‧閘極電極 350‧‧‧gate electrode

360‧‧‧第二射極區 360‧‧‧second emitter area

370‧‧‧電極間介電層 370‧‧‧Interelectrode dielectric layer

380‧‧‧開口 380‧‧‧ openings

390‧‧‧第三射極區 390‧‧‧The third emitter area

400‧‧‧射極電極 400‧‧ ‧ emitter electrode

410‧‧‧集極預定區 410‧‧‧Positive reservation area

420‧‧‧基極預定區 420‧‧‧base reservation area

420’‧‧‧第一導電型基極區 420'‧‧‧First Conductive Base Region

430‧‧‧重摻雜緩衝層 430‧‧‧ heavily doped buffer layer

440‧‧‧圖案化罩幕層 440‧‧‧ patterned mask layer

450‧‧‧開口 450‧‧‧ openings

460‧‧‧第一導電型集極區 460‧‧‧First Conductive Collector Region

470‧‧‧絕緣材料層 470‧‧‧Insulation layer

480‧‧‧圖案化罩幕層 480‧‧‧ patterned mask layer

490‧‧‧第二導電型集極區 490‧‧‧Second Conductive Collector Region

500‧‧‧集極絕緣層 500‧‧‧ collector insulation

510‧‧‧集極電極 510‧‧‧ Collector electrode

T1-T6‧‧‧厚度 T1-T6‧‧‧ thickness

W1-W8‧‧‧寬度 W1-W8‧‧‧Width

第1-7圖係本發明實施例之絕緣閘極雙極性電晶體在其製造方法中各階段的剖面圖;第8-17圖係本發明另一實施例之絕緣閘極雙極性電晶體在其製造方法中各階段的剖面圖;第18圖係絕緣閘極雙極性電晶體之開關性能分析圖;及第19圖係絕緣閘極雙極性電晶體之崩潰電壓分析圖。 1-7 are cross-sectional views showing stages of an insulating gate bipolar transistor of an embodiment of the present invention in a method of manufacturing the same; and FIGS. 8-17 are diagrams showing an insulating gate bipolar transistor according to another embodiment of the present invention. A cross-sectional view of each stage of the manufacturing method; Fig. 18 is a graph showing the switching performance of the insulated gate bipolar transistor; and Fig. 19 is a graph of the breakdown voltage of the insulated gate bipolar transistor.

以下針對本發明實施例之絕緣閘極雙極性電晶體作詳細說明。應了解的是,以下之敘述提供許多不同的實施例或例子,用以實施本發明之不同樣態。以下所述特定的元件及排列方式儘為簡單描述本發明。當然,這些僅用以舉例而非本發明之限定。此外,在不同實施例中可能使用重複的標號或標示。這些重複僅為了簡單清楚地敘述本發明,不代表所討論之不同實施例及/或結構之間具有任何關連性。再者,當述及一第一材料層位於一第二材料層上或之上時,包括第一材料層與第二材料層直接接觸之情形。或者,亦可能間隔有一或更多其它材料層之情形,在此情形中,第一材料層與第二材料層之間可能不直接接觸。 The insulated gate bipolar transistor of the embodiment of the present invention will be described in detail below. It will be appreciated that the following description provides many different embodiments or examples for implementing the invention. The specific elements and arrangements described below are intended to provide a brief description of the invention. Of course, these are by way of example only and not as a limitation of the invention. Moreover, repeated numbers or labels may be used in different embodiments. These repetitions are merely for the purpose of simplicity and clarity of the invention and are not to be construed as a limitation of the various embodiments and/or structures discussed. Furthermore, when a first material layer is on or above a second material layer, the first material layer is in direct contact with the second material layer. Alternatively, it is also possible to have one or more layers of other materials interposed, in which case there may be no direct contact between the first layer of material and the second layer of material.

必需了解的是,為特別描述或圖示之元件可以此 技術人士所熟知之各種形式存在。此外,當某層在其它層或基板「上」時,有可能是指「直接」在其它層或基板上,或指某層在其它層或基板上,或指其它層或基板之間夾設其它層。 It must be understood that components that are specifically described or illustrated may be Various forms are known to the skilled person. In addition, when a layer is "on" another layer or substrate, it may mean "directly" on another layer or substrate, or a layer on another layer or substrate, or between other layers or substrates. Other layers.

此外,實施例中可能使用相對性的用語,例如「較低」或「底部」及「較高」或「頂部」,以描述圖示的一個元件對於另一元件的相對關係。能理解的是,如果將圖示的裝置翻轉使其上下顛倒,則所敘述在「較低」側的元件將會成為在「較高」側的元件。 In addition, relative terms such as "lower" or "bottom" and "higher" or "top" may be used in the embodiments to describe the relative relationship of one element to another. It will be understood that if the illustrated device is flipped upside down, the component described on the "lower" side will be the component on the "higher" side.

在此,「約」、「大約」之用語通常表示在一給定值或範圍的20%或其它數值之內,較佳是10%之內,且更佳是5%之內。在此給定的數量為大約的數量,意即在沒有特定說明的情況下,仍可隱含「約」、「大約」之含義。 Here, the terms "about" and "about" are usually expressed within 20% or other values of a given value or range, preferably within 10%, and more preferably within 5%. The quantity given here is an approximate quantity, meaning that the meaning of "about" or "about" may be implied without specific explanation.

本發明實施例係利用一第一導電型集極區及形成於其上之集極絕緣層以降低此絕緣閘極雙極性電晶體的關閉損失(turn-off loss)且同時維持其導通電壓(on voltage)。 Embodiments of the present invention utilize a first conductive type collector region and a collector insulating layer formed thereon to reduce turn-off loss of the insulated gate bipolar transistor while maintaining its turn-on voltage ( On voltage).

參見第1圖,首先提供一基板110。此基板110可包括:結晶結構、多晶結構或非晶結構的矽或鍺之元素半導體;氮化鎵(GaN)、碳化矽(silicon carbide)、砷化鎵(gallium arsenic)、磷化鎵(gallium phosphide)、磷化銦(indium phosphide)、砷化銦(indium arsenide)或銻化銦(indium antimonide)等化合物半導體;SiGe、GaAsP、AlInAs、AlGaAs、GaInAs、GaInP或GaInAsP等合金半導體或其它適合的材料及/或上述組合。在一實施例中,此基板110具有第一導電型。例如,當第一導電型為N型時,此基板110可為輕摻雜N型基板。此外,基板110具有上表面110A 及下表面110B。 Referring to Figure 1, a substrate 110 is first provided. The substrate 110 may include: a crystalline structure, a polycrystalline structure or an amorphous structure of germanium or germanium elemental semiconductor; gallium nitride (GaN), silicon carbide, gallium arsenic, gallium phosphide ( Alloy semiconductor such as gallium phosphide, indium phosphide, indium arsenide or indium antimonide; alloy semiconductor such as SiGe, GaAsP, AlInAs, AlGaAs, GaInAs, GaInP or GaInAsP or other suitable Materials and / or combinations of the above. In an embodiment, the substrate 110 has a first conductivity type. For example, when the first conductivity type is an N-type, the substrate 110 may be a lightly doped N-type substrate. In addition, the substrate 110 has an upper surface 110A And lower surface 110B.

接著,於基板110中形成第一射極區120。此第一射極區120自基板110之部分上表面110A延伸入基板110中,如第1圖所示,第一射極區120之寬度W2小於基板110之寬度W1。在本發明實施例中,第一射極區120僅延伸入基板110之部分深度,亦即,此第一射極區120之厚度T2小於基板110之厚度T1。此第一射極區120具有第二導電型,且此第二導電型與第一導電型不同。例如,此第一射極區120可藉由離子佈植步驟形成。在一實施例中,當此第二導電型為P型時,可於預定形成此第一射極區120之區域佈植硼離子、銦離子或二氟化硼離子(BF2 +)。 Next, a first emitter region 120 is formed in the substrate 110. The first emitter region 120 extends from the upper surface 110A of the substrate 110 into the substrate 110. As shown in FIG. 1, the width W2 of the first emitter region 120 is smaller than the width W1 of the substrate 110. In the embodiment of the present invention, the first emitter region 120 extends only a portion of the depth of the substrate 110, that is, the thickness T2 of the first emitter region 120 is smaller than the thickness T1 of the substrate 110. The first emitter region 120 has a second conductivity type, and the second conductivity type is different from the first conductivity type. For example, the first emitter region 120 can be formed by an ion implantation step. In one embodiment, when the second conductivity type is a P-type, boron ions, indium ions, or boron difluoride ions (BF 2 + ) may be implanted in a region where the first emitter region 120 is predetermined to be formed.

接著,參見第2圖,形成閘極介電層130a於第一射極區120與基板110上,並形成閘極電極140於閘極介電層130a上。在一實施例中,可先依序毯覆性沈積一介電材料層(未繪示)及位於其上之導電材料層(未繪示)於基板110之上表面110A上,再將此介電材料層及導電材料層經微影與蝕刻製程分別圖案化以形成閘極介電層130a及閘極電極140。 Next, referring to FIG. 2, a gate dielectric layer 130a is formed on the first emitter region 120 and the substrate 110, and a gate electrode 140 is formed on the gate dielectric layer 130a. In an embodiment, a dielectric material layer (not shown) and a conductive material layer (not shown) on the upper surface 110A of the substrate 110 may be sequentially deposited on the substrate 110. The electrical material layer and the conductive material layer are respectively patterned by a lithography and etching process to form a gate dielectric layer 130a and a gate electrode 140.

上述介電材料層(用以形成閘極介電層130a)可為氧化矽、氮化矽、氮氧化矽、高介電常數(high-k)介電材料、或其它任何適合之介電材料、或上述之組合。此高介電常數(high-k)介電材料可為金屬氧化物、金屬氮化物、金屬矽化物、過渡金屬氧化物、過渡金屬氮化物、過渡金屬矽化物、金屬的氮氧化物、金屬鋁酸鹽、鋯矽酸鹽、鋯鋁酸鹽。例如,此高介電常數(high-k)介電材料可為LaO、AlO、ZrO、TiO、Ta2O5、 Y2O3、SrTiO3(STO)、BaTiO3(BTO)、BaZrO、HfO2、HfO3、HfZrO、HfLaO、HfSiO、HfSiON、LaSiO、AlSiO、HfTaO、HfTiO、HfTaTiO、HfAlON、(Ba,Sr)TiO3(BST)、Al2O3、其它適當材料之其它高介電常數介電材料、或上述組合。此介電材料層可藉由化學氣相沉積法(CVD)或旋轉塗佈法形成,此化學氣相沉積法例如可為低壓化學氣相沉積法(low pressure chemical vapor deposition,LPCVD)、低溫化學氣相沉積法(low temperature chemical vapor deposition,LTCVD)、快速升溫化學氣相沉積法(rapid thermal chemical vapor deposition,RTCVD)、電漿輔助化學氣相沉積法(plasma enhanced chemical vapor deposition,PECVD)、原子層化學氣相沉積法之原子層沉積法(atomic layer deposition,ALD)或其它常用的方法。 The dielectric material layer (to form the gate dielectric layer 130a) may be tantalum oxide, tantalum nitride, hafnium oxynitride, high-k dielectric material, or any other suitable dielectric material. Or a combination of the above. The high-k dielectric material can be a metal oxide, a metal nitride, a metal halide, a transition metal oxide, a transition metal nitride, a transition metal halide, a metal oxynitride, or a metal aluminum. Acid salt, zirconium silicate, zirconium aluminate. For example, the high-k dielectric material may be LaO, AlO, ZrO, TiO, Ta 2 O 5 , Y 2 O 3 , SrTiO 3 (STO), BaTiO 3 (BTO), BaZrO, HfO. 2 , HfO 3 , HfZrO, HfLaO, HfSiO, HfSiON, LaSiO, AlSiO, HfTaO, HfTiO, HfTaTiO, HfAlON, (Ba, Sr)TiO 3 (BST), Al 2 O 3 , other high dielectric constants of other suitable materials Dielectric material, or a combination of the above. The dielectric material layer can be formed by chemical vapor deposition (CVD) or spin coating. The chemical vapor deposition method can be, for example, low pressure chemical vapor deposition (LPCVD), low temperature chemistry. Low temperature chemical vapor deposition (LTCVD), rapid thermal chemical vapor deposition (RTCVD), plasma enhanced chemical vapor deposition (PECVD), atom Atomic layer deposition (ALD) or other commonly used methods of layer chemical vapor deposition.

前述導電材料層之材料(亦即閘極電極140之材料) 可為非晶矽、複晶矽、一或多種金屬、金屬氮化物、導電金屬氧化物、或上述之組合。上述金屬可包括但不限於鉬(molybdenum)、鎢(tungsten)、鈦(titanium)、鉭(tantalum)、鉑(platinum)或鉿(hafnium)。上述金屬氮化物可包括但不限於氮化鉬(molybdenum nitride)、氮化鎢(tungsten nitride)、氮化鈦(titanium nitride)以及氮化鉭(tantalum nitride)。上述導電金屬氧化物可包括但不限於釕金屬氧化物(ruthenium oxide)以及銦錫金屬氧化物(indium tin oxide)。此導電材料層之材料可藉由前述之化學氣相沉積法(CVD)、濺鍍法、電阻加熱蒸鍍法、電子束蒸鍍法、或其它任何適合的沈積方式形成,例如,在一實施例中,可用低壓化學氣相沈積法(LPCVD)在525~650℃之間 沈積而製得非晶矽導電材料層或複晶矽導電材料層,其厚度範圍可為約1000Å至約10000Å。 The material of the foregoing conductive material layer (that is, the material of the gate electrode 140) It may be an amorphous germanium, a germanium germanium, one or more metals, a metal nitride, a conductive metal oxide, or a combination thereof. The above metals may include, but are not limited to, molybdenum, tungsten, titanium, tantalum, platinum or hafnium. The above metal nitrides may include, but are not limited to, molybdenum nitride, tungsten nitride, titanium nitride, and tantalum nitride. The above conductive metal oxide may include, but is not limited to, ruthenium oxide and indium tin oxide. The material of the conductive material layer can be formed by the aforementioned chemical vapor deposition (CVD), sputtering, resistance heating evaporation, electron beam evaporation, or any other suitable deposition method, for example, in an implementation. In the case, low pressure chemical vapor deposition (LPCVD) can be used between 525 and 650 °C. A layer of amorphous germanium conductive material or a layer of polycrystalline germanium conductive material is deposited to a thickness ranging from about 1000 Å to about 10000 Å.

此外,閘極電極140之頂部可更包括一金屬矽化物層,此金屬矽化物可包括但不限於矽化鎳(nickel silicide)、矽化鈷(cobalt silicide)、矽化鎢(tungsten silicide)、矽化鈦(titanium silicide)、矽化鉭(tantalum silicide)、矽化鉑(platinum silicide)以及矽化鉺(erbium silicide)。 In addition, the top of the gate electrode 140 may further include a metal telluride layer, which may include, but is not limited to, nickel silicide, cobalt silicide, tungsten tungsten, titanium telluride (titanium telluride). Titanium silicide, tantalum silicide, platinum silicide, and erbium silicide.

如第2圖所示,閘極電極140係設於閘極介電層130a上。詳細而言,閘極介電層130a與閘極電極140皆設於第一射極區120與基板110上,且閘極介電層130a使閘極電極140與第一射極區120及基板110電性絕緣。 As shown in FIG. 2, the gate electrode 140 is provided on the gate dielectric layer 130a. In detail, the gate dielectric layer 130a and the gate electrode 140 are disposed on the first emitter region 120 and the substrate 110, and the gate dielectric layer 130a causes the gate electrode 140 and the first emitter region 120 and the substrate. 110 electrical insulation.

接著,繼續參見第2圖,於第一射極區120中形成具有第一導電型之第二射極區150。例如,在一實施例中,此第二射極區150為重摻雜第一導電型,此外,此第二射極區150自基板110之部分上表面110A延伸入第一射極區120中,如第2圖所示。在本發明實施例中,第二射極區150僅延伸入第一射極區120之部分深度,亦即,此第二射極區150之厚度T3小於第一射極區120之厚度T2。此第二射極區150可藉由離子佈植步驟形成。例如,當此第一導電型為N型時,可於預定形成此第二射極區150之區域佈植磷離子或砷離子。 Next, referring to FIG. 2, a second emitter region 150 having a first conductivity type is formed in the first emitter region 120. For example, in an embodiment, the second emitter region 150 is heavily doped with a first conductivity type. Further, the second emitter region 150 extends from a portion of the upper surface 110A of the substrate 110 into the first emitter region 120. As shown in Figure 2. In the embodiment of the present invention, the second emitter region 150 extends only a portion of the depth of the first emitter region 120, that is, the thickness T3 of the second emitter region 150 is smaller than the thickness T2 of the first emitter region 120. This second emitter region 150 can be formed by an ion implantation step. For example, when the first conductivity type is an N-type, phosphorus ions or arsenic ions may be implanted in a region where the second emitter region 150 is predetermined to be formed.

接著,可選擇性(optionally)進行一離子佈植步驟以形成一第三射極區160於第二射極區150中。此第三射極區160亦自基板110之部分上表面110A延伸入第一射極區120中,且厚度可等於或不等於T3。一般來說,第三射極區160之厚度 深於T3。第三射極區160鄰接第二射極區150。此第三射極區160可為重摻雜第二導電型。第二射極區150與第三射極區160之總寬度W3小於第一射極區120之寬度W2。接著,在上表面110A形成電極間介電層130b其覆蓋閘極電極140之頂部及側壁以及第二射極區150(圖未繪示)。 Next, an ion implantation step can be performed selectively to form a third emitter region 160 in the second emitter region 150. The third emitter region 160 also extends from a portion of the upper surface 110A of the substrate 110 into the first emitter region 120 and may have a thickness equal to or not equal to T3. Generally, the thickness of the third emitter region 160 Deeper than T3. The third emitter region 160 is adjacent to the second emitter region 150. The third emitter region 160 can be heavily doped second conductivity type. The total width W3 of the second emitter region 150 and the third emitter region 160 is smaller than the width W2 of the first emitter region 120. Next, an inter-electrode dielectric layer 130b is formed on the upper surface 110A to cover the top and sidewalls of the gate electrode 140 and the second emitter region 150 (not shown).

接著,蝕刻覆蓋在部分的第二射極區150之電極間介電層130b(圖未繪示)。參見第3圖,最後形成電極間介電層130b覆蓋閘極電極140之頂部及側壁。此電極間介電層130b係用以將閘極電極140與後續形成之射極電極電性絕緣。電極間介電層130b可為氧化矽、氮化矽、氮氧化矽、硼磷矽玻璃(BPSG)、磷矽玻璃(PSG)、旋塗式玻璃(SOG)、高密度之電漿(high density plasma,HDP)沉積或其它任何適合之介電材料、或上述之組合。電極間介電層130b可藉由前述之化學氣相沉積法(CVD)或旋轉塗佈法以及圖案化步驟形成。 Next, the inter-electrode dielectric layer 130b (not shown) covering a portion of the second emitter region 150 is etched. Referring to FIG. 3, the inter-electrode dielectric layer 130b is formed to cover the top and sidewalls of the gate electrode 140. The inter-electrode dielectric layer 130b is used to electrically insulate the gate electrode 140 from the subsequently formed emitter electrode. The interelectrode dielectric layer 130b may be yttrium oxide, tantalum nitride, hafnium oxynitride, borophosphoquinone glass (BPSG), phosphorous bismuth glass (PSG), spin-on glass (SOG), high density plasma (high density). Plasma, HDP) deposition or any other suitable dielectric material, or a combination of the above. The interelectrode dielectric layer 130b can be formed by the aforementioned chemical vapor deposition (CVD) or spin coating method and a patterning step.

接著,形成射極電極170。此射極電極170與第二射極區150及第三射極區160電性連結。此射極電極170又透過第三射極區160耦接至第一射極區120。射極電極170可為單層或多層之金、鉻、鎳、鉑、鈦、鋁、銥、銠、銅、上述之組合或其它導電性佳的金屬材料(例如鋁銅合金(AlCu)、鋁矽銅合金(AlSiCu))。此射極電極170可藉由例如為濺鍍法、電鍍法、電阻加熱蒸鍍法、電子束蒸鍍法、或其它任何適合的沈積製程形成。 Next, the emitter electrode 170 is formed. The emitter electrode 170 is electrically connected to the second emitter region 150 and the third emitter region 160. The emitter electrode 170 is coupled to the first emitter region 120 through the third emitter region 160. The emitter electrode 170 may be a single layer or a plurality of layers of gold, chromium, nickel, platinum, titanium, aluminum, tantalum, niobium, copper, a combination of the above or other conductive metal materials (for example, aluminum-copper alloy (AlCu), aluminum. Beryllium copper alloy (AlSiCu)). The emitter electrode 170 can be formed by, for example, sputtering, electroplating, resistance heating evaporation, electron beam evaporation, or any other suitable deposition process.

接著,於射極電極170後,可選擇性(optionally)薄化基板110(圖式並未繪示此薄化後之基板)。此薄化後之基板 110之厚度會依操作電壓及元件結構而有所不同。 Next, after the emitter electrode 170, the substrate 110 can be selectively thinned (the thinned substrate is not shown in the drawings). Thinned substrate The thickness of 110 will vary depending on the operating voltage and component structure.

如第3圖所示,基板110之底部為集極預定區180, 而基板110中除第一射極區120、第二射極區150、第三射極區160以及集極預定區180以外之區域係作為基極預定區190。而於薄化基板110之後,可選擇性(optionally)形成重摻雜緩衝層200於基極預定區190中(亦即形成於後續之第一導電型基極區中)。此重摻雜緩衝層200具有第一導電型,且可用以進一步縮小最終形成之絕緣閘極雙極性電晶體的尺寸。此重摻雜緩衝層200可藉由離子佈植步驟形成。例如,當此第一導電型為N型時,可於預定形成此重摻雜緩衝層200之區域佈植磷離子或砷離子。 As shown in FIG. 3, the bottom of the substrate 110 is a collector predetermined area 180. The region of the substrate 110 other than the first emitter region 120, the second emitter region 150, the third emitter region 160, and the collector predetermined region 180 serves as a base predetermined region 190. After thinning the substrate 110, the heavily doped buffer layer 200 may be selectively formed in the base predetermined region 190 (ie, formed in the subsequent first conductive type base region). The heavily doped buffer layer 200 has a first conductivity type and can be used to further reduce the size of the finally formed insulating gate bipolar transistor. The heavily doped buffer layer 200 can be formed by an ion implantation step. For example, when the first conductivity type is N-type, phosphorus ions or arsenic ions may be implanted in a region where the heavily doped buffer layer 200 is to be formed.

接著,參見第4圖,形成圖案化罩幕層210於基板 110之下表面110B上。此圖案化罩幕層210可為圖案化光阻或例如為二氧化矽、氮化矽或氮氧化矽的圖案化硬罩幕層。此圖案化罩幕層210具有開口220露出預定形成第一導電型集極區之基板110。 Next, referring to FIG. 4, a patterned mask layer 210 is formed on the substrate. 110 is below the surface 110B. The patterned mask layer 210 can be a patterned photoresist or a patterned hard mask layer such as hafnium oxide, tantalum nitride or hafnium oxynitride. The patterned mask layer 210 has an opening 220 exposing the substrate 110 that is intended to form a first conductive type collector region.

接著,經由開口220進行一離子佈植步驟以形成第 一導電型集極區230於基板110之中,此第一導電型集極區230自基板110之下表面110B延伸入基板110中。此第一導電型集極區230可降低基板110中的與第二導電型對應之載子數量。例如,當第二導電型為P型時,可降低基板110中電洞之數量。因此,此第一導電型集極區230可降低關閉損失(turn-off loss),且同時不影響導通電壓(on voltage)、崩潰電壓及閂鎖電流密度(latch up current density)。此外,由於關閉損失的降低,當裝 置關閉後,流動之載子可快速減少,因此可更進一步縮短裝置的開關時間(switching time),大幅增進裝置之性能。 Next, an ion implantation step is performed through the opening 220 to form the first A conductive type collector region 230 is embedded in the substrate 110. The first conductive type collector region 230 extends from the lower surface 110B of the substrate 110 into the substrate 110. The first conductive type collector region 230 can reduce the number of carriers in the substrate 110 corresponding to the second conductivity type. For example, when the second conductivity type is a P type, the number of holes in the substrate 110 can be reduced. Therefore, the first conductive type collector region 230 can reduce the turn-off loss without affecting the on voltage, the breakdown voltage, and the latch up current density. In addition, due to the reduction in closing loss, when installed When the switch is turned off, the flow carrier can be quickly reduced, thereby further shortening the switching time of the device and greatly improving the performance of the device.

在一實施例中,當此第一導電型為N型時,可於預 定形成第一導電型集極區之基板110佈植磷離子或砷離子以形成第一導電型集極區230。此第一導電型集極區230之寬度W4可為基板110寬度W1之約0.2-0.8倍,例如為約0.3-0.6倍。在此實施例中,若此第一導電型集極區230之寬度W4過寬,例如寬於基板110寬度W1之0.8倍,則基板110中與第二導電型對應之載子數量會過低,使導通電壓增加。然而,若此第一導電型集極區230之寬度W4過窄,例如窄於基板110寬度W1之0.2倍,則其無法有效降低基板110中與第二導電型對應之載子數量,導致其無法有效降低裝置之關閉損失。 In an embodiment, when the first conductivity type is N-type, The substrate 110 forming the first conductive type collector region is implanted with phosphorus ions or arsenic ions to form the first conductive type collector region 230. The width W4 of the first conductive type collector region 230 may be about 0.2-0.8 times the width W1 of the substrate 110, for example, about 0.3-0.6 times. In this embodiment, if the width W4 of the first conductive type collector region 230 is too wide, for example, 0.8 times wider than the width W1 of the substrate 110, the number of carriers corresponding to the second conductivity type in the substrate 110 may be too low. To increase the turn-on voltage. However, if the width W4 of the first conductive type collector region 230 is too narrow, for example, 0.2 times wider than the width W1 of the substrate 110, it cannot effectively reduce the number of carriers corresponding to the second conductivity type in the substrate 110, resulting in It is not possible to effectively reduce the shutdown loss of the device.

參見第5圖,於移除圖案化罩幕層210後,毯覆性 形成絕緣材料層240於基板110之下表面110B上。此絕緣材料層240可為氧化矽、氮化矽、氮氧化矽、硼磷矽玻璃(BPSG)、磷矽玻璃(PSG)、旋塗式玻璃(SOG)、或其它任何適合之介電材料、或上述之組合。絕緣材料層240可藉由前述之化學氣相沉積法(CVD)或旋轉塗佈法以及前述之圖案化步驟形成。在一實施例中,可使用四乙氧基矽烷(TEOS,tetraethyl-ortho-silicate)為反應氣體,以電漿增強(plasma enhanced)之方式沉積法並配合圖案化步驟以形成絕緣材料層240。在另一實施例中,絕緣材料層240可藉由熱氧化法直接毯覆性形成於基板110之下表面110B上。 Referring to Figure 5, after removing the patterned mask layer 210, the blanket is A layer of insulating material 240 is formed on the lower surface 110B of the substrate 110. The insulating material layer 240 may be tantalum oxide, tantalum nitride, hafnium oxynitride, borophosphoquinone glass (BPSG), phosphoric bismuth glass (PSG), spin-on glass (SOG), or any other suitable dielectric material, Or a combination of the above. The insulating material layer 240 can be formed by the aforementioned chemical vapor deposition (CVD) or spin coating method and the aforementioned patterning step. In one embodiment, tetraethoxy-ortho-silicate (TEOS) can be used as a reactive gas, deposited in a plasma enhanced manner, and patterned to form an insulating material layer 240. In another embodiment, the insulating material layer 240 can be directly formed on the lower surface 110B of the substrate 110 by thermal oxidation.

接著,形成圖案化罩幕層250於基板110之下表面 110B上以遮蔽第一導電型集極區230並露出預定形成第二導電型集極區之基板110。此圖案化罩幕層250可為圖案化光阻或例如為二氧化矽、氮化矽或氮氧化矽的圖案化硬罩幕層。 Next, a patterned mask layer 250 is formed on the lower surface of the substrate 110. The first conductive type collector region 230 is shielded on the 110B to expose the substrate 110 which is intended to form the second conductive type collector region. The patterned mask layer 250 can be a patterned photoresist or a patterned hard mask layer such as hafnium oxide, tantalum nitride or hafnium oxynitride.

接著,如第6圖所示,以圖案化罩幕層250作為罩 幕進行另一離子佈植步驟以形成第二導電型集極區260於基板110之中。此第二導電型集極區260亦自基板110之下表面110B延伸入基板110中。此第二導電型集極區260相鄰於第一導電型集極區230。在一實施例中,當此第二導電型為P型時,可於預定形成此第二導電型集極區260之區域佈植硼離子、銦離子或二氟化硼離子(BF2 +)。而基板110未形成有第一射極區120、第二射極區150、第三射極區160、第一導電型集極區230及第二導電型集極區260之部分係作為第一導電型基極區190’。 Next, as shown in FIG. 6, another ion implantation step is performed with the patterned mask layer 250 as a mask to form a second conductive type collector region 260 in the substrate 110. The second conductive type collector region 260 also extends into the substrate 110 from the lower surface 110B of the substrate 110. The second conductive type collector region 260 is adjacent to the first conductive type collector region 230. In an embodiment, when the second conductivity type is P-type, boron ions, indium ions or boron difluoride ions (BF 2 + ) may be implanted in a region where the second conductivity type collector region 260 is to be formed. . The portion of the substrate 110 that is not formed with the first emitter region 120, the second emitter region 150, the third emitter region 160, the first conductive type collector region 230, and the second conductive type collector region 260 is first. Conductive base region 190'.

接著,移除未被圖案化罩幕層250遮蔽之部分絕緣 材料層240,剩餘之絕緣材料層240係作為集極絕緣層270,此集極絕緣層270係設於第一導電型集極區230上。 Next, the partial insulation that is not masked by the patterned mask layer 250 is removed. The material layer 240, the remaining insulating material layer 240 is used as the collector insulating layer 270, and the collector insulating layer 270 is disposed on the first conductive type collector region 230.

應注意的是,雖然前述步驟為先形成第二導電型 集極區260,再形成集極絕緣層270。然而上述步驟亦可前後互換,亦即可先移除未被圖案化罩幕層250遮蔽之部分絕緣材料層240以形成集極絕緣層270,再進行離子佈植步驟以形成第二導電型集極區260於基板110之中。 It should be noted that although the foregoing steps are to form the second conductivity type first The collector region 260 is further formed with a collector insulating layer 270. However, the above steps may also be interchanged before and after, or a portion of the insulating material layer 240 that is not shielded by the patterned mask layer 250 may be removed to form the collector insulating layer 270, and then an ion implantation step is performed to form a second conductive type set. The polar region 260 is in the substrate 110.

此集極絕緣層270之厚度只要能讓集極電極280與第一導電型集極區230之間電性絕緣即可,例如厚度大於10nm。另外,集極絕緣層270之寬度W5可為基板110寬度W1之約0.2-0.8倍,例如為約0.3-0.6倍。在一實施例中,集極絕緣層270 之寬度W5可與第一導電型集極區230之寬度W4相同。在另一實施例中,集極絕緣層270之寬度W5可大於第一導電型集極區230之寬度W4。應注意的是,此集極絕緣層270之寬度W5應不小於第一導電型集極區230之寬度W4,否則其無法將第一導電型集極區230及後續形成之集極電極電性絕緣。 The thickness of the collector insulating layer 270 may be such that the collector electrode 280 and the first conductive type collector region 230 are electrically insulated from each other, for example, having a thickness greater than 10 nm. In addition, the width W5 of the collector insulating layer 270 may be about 0.2-0.8 times the width W1 of the substrate 110, for example, about 0.3-0.6 times. In an embodiment, the collector insulating layer 270 The width W5 may be the same as the width W4 of the first conductive type collector region 230. In another embodiment, the width W5 of the collector insulating layer 270 may be greater than the width W4 of the first conductive type collector region 230. It should be noted that the width W5 of the collector insulating layer 270 should be not less than the width W4 of the first conductive type collector region 230, otherwise the first conductive type collector region 230 and the subsequent collector electrode electrical properties cannot be formed. insulation.

接著,參見第7圖,移除圖案化罩幕層250,接著 形成集極電極280以完成絕緣閘極雙極性電晶體100的製作。此集極電極280電性連結第二導電型集極區260,且藉由集極絕緣層270與第一導電型集極區230電性絕緣。集極電極280可為單層或多層之金、鉻、鎳、鉑、鈦、鋁、銥、銠、銅、上述之組合或其它導電性佳的金屬材料(例如鋁銅合金(AlCu)、鋁矽銅合金(AlSiCu))。此集極電極280可藉由例如為濺鍍法、電鍍法、電阻加熱蒸鍍法、電子束蒸鍍法、或其它任何適合的沈積製程形成。 Next, referring to Figure 7, the patterned mask layer 250 is removed, followed by Collector electrode 280 is formed to complete the fabrication of insulated gate bipolar transistor 100. The collector electrode 280 is electrically connected to the second conductive type collector region 260 and electrically insulated from the first conductive type collector region 230 by the collector insulating layer 270. The collector electrode 280 can be a single layer or a plurality of layers of gold, chromium, nickel, platinum, titanium, aluminum, tantalum, niobium, copper, combinations of the above or other conductive metal materials (such as aluminum-copper alloy (AlCu), aluminum. Beryllium copper alloy (AlSiCu)). The collector electrode 280 can be formed by, for example, sputtering, electroplating, resistance heating evaporation, electron beam evaporation, or any other suitable deposition process.

本發明實施例之絕緣閘極雙極性電晶體100包括 基板110,具有第一導電型,且具有上表面110A及下表面110B。 第一導電型集極區230及相鄰之第二導電型集極區260,自基板110之下表面110B延伸入基板110中,此第二導電型與第一導電型不同。集極電極280,電性連結第二導電型集極區260,且藉由集極絕緣層270與第一導電型集極區230電性絕緣。第一射極區120,具有第二導電型,自基板110之上表面110A延伸入基板110中。第二射極區150,具有第一導電型,且自基板110之上表面110A延伸入第一射極區120中。基板110未形成有第一射極區120、第二射極區150、第一導電型集極區230及第二導電型 集極區260之部分係作為第一導電型基極區190’。射極電極170,與第一射極區120及第二射極區150電性連結。閘極介電層130a,設於第一射極區120、第二射極區150與基板110上。閘極電極140,設於閘極介電層130a上。絕緣閘極雙極性電晶體100可更包括重摻雜緩衝層200,具有第一導電型且設於第一導電型基極區190’中。 The insulated gate bipolar transistor 100 of the embodiment of the present invention includes The substrate 110 has a first conductivity type and has an upper surface 110A and a lower surface 110B. The first conductive type collector region 230 and the adjacent second conductive type collector region 260 extend from the lower surface 110B of the substrate 110 into the substrate 110. The second conductive type is different from the first conductive type. The collector electrode 280 is electrically connected to the second conductive type collector region 260 and electrically insulated from the first conductive type collector region 230 by the collector insulating layer 270. The first emitter region 120, having a second conductivity type, extends into the substrate 110 from the upper surface 110A of the substrate 110. The second emitter region 150 has a first conductivity type and extends into the first emitter region 120 from the upper surface 110A of the substrate 110. The substrate 110 is not formed with the first emitter region 120, the second emitter region 150, the first conductive type collector region 230, and the second conductivity type. A portion of the collector region 260 serves as a first conductive type base region 190'. The emitter electrode 170 is electrically connected to the first emitter region 120 and the second emitter region 150. The gate dielectric layer 130a is disposed on the first emitter region 120, the second emitter region 150, and the substrate 110. The gate electrode 140 is disposed on the gate dielectric layer 130a. The insulated gate bipolar transistor 100 may further include a heavily doped buffer layer 200 having a first conductivity type and disposed in the first conductivity type base region 190'.

第8-17圖顯示本發明另一實施例之絕緣閘極雙極 性電晶體300之製造步驟。有別於第1-7圖所示閘極介電層與閘極電極形成於第二射極區、第一射極區與基板上,本實施例中閘極介電層與閘極電極係形成於基板之溝槽(trench)中。應注意的是,後文中與前述相同或相似的元件或膜層將以相同或相似之標號表示,其材料、製造方法與功能皆與前述所述相同或相似,故此部分在後文中將不再贅述。 8-17 show an insulated gate bipolar according to another embodiment of the present invention Manufacturing steps of the transistor 300. Different from the gate dielectric layer and the gate electrode shown in FIG. 1-7, the gate electrode layer and the gate electrode are formed on the second emitter region, the first emitter region and the substrate. In this embodiment, the gate dielectric layer and the gate electrode system are different. Formed in a trench of the substrate. It should be noted that the same or similar elements or layers as those described above will be denoted by the same or similar reference numerals, and the materials, manufacturing methods and functions thereof are the same as or similar to those described above, and therefore will not be described later. Narration.

參見第8圖,首先提供一基板310。此基板310之材料可與前述基板110之材料相同。在一實施例中,此基板310可具有第一導電型。在一實施例中,此基板310具有第一導電型。例如,當第一導電型為N型時,此基板310可為輕摻雜N型基板。此外,基板310具有上表面310A及下表面310B。 Referring to Figure 8, a substrate 310 is first provided. The material of the substrate 310 may be the same as the material of the substrate 110 described above. In an embodiment, the substrate 310 can have a first conductivity type. In an embodiment, the substrate 310 has a first conductivity type. For example, when the first conductivity type is an N-type, the substrate 310 may be a lightly doped N-type substrate. Further, the substrate 310 has an upper surface 310A and a lower surface 310B.

接著,於基板310中形成第一射極區320。此第一射極區320具有第二導電型,且此第二導電型與第一導電型不同。此第一射極區320自基板310之上表面310A延伸入基板310中,如第8圖所示。在本發明實施例中,第一射極區320僅延伸入基板310之部分深度,亦即,此第一射極區320之厚度T5小於基板310之厚度T4。此第一射極區320可藉由離子佈植步驟形成。 例如,當此第二導電型為P型時,可於預定形成此第一射極區320之區域佈植硼離子、銦離子或二氟化硼離子(BF2 +)。 Next, a first emitter region 320 is formed in the substrate 310. The first emitter region 320 has a second conductivity type, and the second conductivity type is different from the first conductivity type. The first emitter region 320 extends from the upper surface 310A of the substrate 310 into the substrate 310 as shown in FIG. In the embodiment of the present invention, the first emitter region 320 extends only a portion of the depth of the substrate 310, that is, the thickness T5 of the first emitter region 320 is less than the thickness T4 of the substrate 310. This first emitter region 320 can be formed by an ion implantation step. For example, when the second conductivity type is a P-type, boron ions, indium ions, or boron difluoride ions (BF 2 + ) may be implanted in a region where the first emitter region 320 is to be formed.

參見第9圖,形成溝槽(trench)330。此溝槽330自基板310之上表面310A延伸穿越第一射極區320至基板310中。 Referring to Figure 9, a trench 330 is formed. This trench 330 extends from the upper surface 310A of the substrate 310 through the first emitter region 320 into the substrate 310.

參見第10圖,順應性形成閘極介電層340於溝槽330之側壁與底部上,並形成閘極電極350於閘極介電層340上且填入溝槽330。在一實施例中,可先順應性沈積一介電材料層於溝槽330之側壁與底部上以及基板310之上表面310A上,接著毯覆性沈積一導電材料層於基板310之上表面310A上且填入溝槽330。接著,移除溝槽330外之介電材料層與導電材料層以分別形成閘極介電層340及閘極電極350。例如,可藉由回蝕刻步驟或化學機械研磨步驟來移除溝槽330外之介電材料層與導電材料層。 Referring to FIG. 10, the gate dielectric layer 340 is formed on the sidewalls and the bottom of the trench 330, and the gate electrode 350 is formed on the gate dielectric layer 340 and filled in the trench 330. In one embodiment, a dielectric material layer may be deposited on the sidewalls and the bottom of the trench 330 and the upper surface 310A of the substrate 310, and then a conductive material layer is blanket deposited on the upper surface 310A of the substrate 310. The trench 330 is filled in and filled. Next, the dielectric material layer and the conductive material layer outside the trench 330 are removed to form the gate dielectric layer 340 and the gate electrode 350, respectively. For example, the dielectric material layer and the conductive material layer outside the trench 330 may be removed by an etch back step or a chemical mechanical polishing step.

上述介電材料層(用以形成閘極介電層340)可為氧化矽、氮化矽、氮氧化矽、高介電常數(high-k)介電材料、或其它任何適合之介電材料、或上述之組合。此介電材料層可藉由化學氣相沉積法(CVD)或旋轉塗佈法形成。 The dielectric material layer (to form the gate dielectric layer 340) may be tantalum oxide, tantalum nitride, hafnium oxynitride, high-k dielectric material, or any other suitable dielectric material. Or a combination of the above. This dielectric material layer can be formed by chemical vapor deposition (CVD) or spin coating.

前述導電材料層之材料(亦即閘極電極350之材料)可為非晶矽、複晶矽或上述之組合。且可藉由化學氣相沉積法(CVD)、濺鍍法、電阻加熱蒸鍍法、電子束蒸鍍法、或其它任何適合的沈積方式形成。 The material of the foregoing conductive material layer (that is, the material of the gate electrode 350) may be amorphous germanium, polycrystalline germanium or a combination thereof. And it can be formed by chemical vapor deposition (CVD), sputtering, resistance heating evaporation, electron beam evaporation, or any other suitable deposition method.

如第10圖所示,閘極介電層340直接接觸第一射極區320與基板310,而閘極電極350於閘極介電層340上且填入溝槽330。此閘極介電層340使閘極電極350與第一射極區320、基 板310及後續形成之第二射極區電性絕緣。 As shown in FIG. 10, the gate dielectric layer 340 directly contacts the first emitter region 320 and the substrate 310, and the gate electrode 350 is on the gate dielectric layer 340 and fills the trench 330. The gate dielectric layer 340 causes the gate electrode 350 and the first emitter region 320, the base The board 310 and the subsequently formed second emitter region are electrically insulated.

接著,如第11圖所示,於第一射極區320中形成第 二射極區360。此第二射極區360具有第一導電型,例如,在一實施例中,此第二射極區360為重摻雜第一導電型。此外,此第二射極區360自基板310之上表面310A延伸入第一射極區320中。在本發明實施例中,第二射極區360僅延伸入第一射極區320之部分深度,亦即,此第二射極區360之厚度T6小於第一射極區320之厚度T5。在一實施例中,此第二射極區360可藉由離子佈植步驟形成。例如,當此第一導電型為N型時,可於預定形成此第二射極區360之區域佈植磷離子或砷離子。 Next, as shown in FIG. 11, the first emitter region 320 is formed The second emitter region 360. The second emitter region 360 has a first conductivity type. For example, in one embodiment, the second emitter region 360 is heavily doped with a first conductivity type. In addition, the second emitter region 360 extends from the upper surface 310A of the substrate 310 into the first emitter region 320. In the embodiment of the present invention, the second emitter region 360 extends only a portion of the depth of the first emitter region 320, that is, the thickness T6 of the second emitter region 360 is smaller than the thickness T5 of the first emitter region 320. In an embodiment, the second emitter region 360 can be formed by an ion implantation step. For example, when the first conductivity type is an N-type, phosphorus ions or arsenic ions may be implanted in a region where the second emitter region 360 is predetermined to be formed.

接著,形成電極間介電層370於閘極電極350上, 此電極間介電層370係用以將閘極電極350與後續形成之射極電極電性絕緣。電極間介電層370可為氧化矽、氮化矽、氮氧化矽、硼磷矽玻璃(BPSG)、磷矽玻璃(PSG)、旋塗式玻璃(SOG)、高密度之電漿(high density plasma,HDP)沉積或其它任何適合之介電材料、或上述之組合。閘極介電層340可藉由前述之化學氣相沉積法(CVD)或旋轉塗佈法形成。 Next, an inter-electrode dielectric layer 370 is formed on the gate electrode 350. The inter-electrode dielectric layer 370 is used to electrically insulate the gate electrode 350 from the subsequently formed emitter electrode. The interelectrode dielectric layer 370 may be yttrium oxide, tantalum nitride, hafnium oxynitride, borophosphorus bismuth (BPSG), phosphorous bismuth (PSG), spin-on glass (SOG), high density plasma (high density). Plasma, HDP) deposition or any other suitable dielectric material, or a combination of the above. The gate dielectric layer 340 can be formed by the aforementioned chemical vapor deposition (CVD) or spin coating method.

接著,參見第12圖,進行一接點蝕刻步驟蝕穿電 極間介電層370及第二射極區360以形成接點開口380。此蝕刻步驟可包括反應離子蝕刻(reactive ion etch,RIE)、電漿蝕刻或其它合適的蝕刻步驟。接著,可選擇性(optionally)進行一離子佈植步驟以形成一第三射極區390於第一射極區320中。第三射極區390可為重摻雜第二導電型。此外,本發明實施例中形成第三射極區390之步驟並未使用額外之罩幕,因此可降低生 產成本。 Next, referring to Figure 12, a contact etching step is performed to etch through the electricity. The inter-electrode dielectric layer 370 and the second emitter region 360 form a contact opening 380. This etching step can include reactive ion etch (RIE), plasma etching, or other suitable etching steps. Next, an ion implantation step can be selectively performed to form a third emitter region 390 in the first emitter region 320. The third emitter region 390 can be heavily doped second conductivity type. In addition, the step of forming the third emitter region 390 in the embodiment of the present invention does not use an additional mask, thereby reducing the Production cost.

接著,參見第13圖,形成射極電極400。此射極電 極400與第二射極區360及第三射極區390電性連結,此射極電極400又透過第三射極區390耦接至第一射極區320。且電極間介電層370設於閘極電極350與射極電極400之間。電極間介電層370使閘極電極350與射極電極400電性絕緣。射極電極400可為單層或多層之金、鉻、鎳、鉑、鈦、鋁、銥、銠、銅、上述之組合或其它導電性佳的金屬材料(例如鋁銅合金(AlCu)、鋁矽銅合金(AlSiCu))。此射極電極400可藉由例如為濺鍍法、電鍍法、電阻加熱蒸鍍法、電子束蒸鍍法、或其它任何適合的沈積製程形成。 Next, referring to Fig. 13, an emitter electrode 400 is formed. This shot The pole 400 is electrically coupled to the second emitter region 360 and the third emitter region 390. The emitter electrode 400 is coupled to the first emitter region 320 through the third emitter region 390. The inter-electrode dielectric layer 370 is disposed between the gate electrode 350 and the emitter electrode 400. The inter-electrode dielectric layer 370 electrically insulates the gate electrode 350 from the emitter electrode 400. The emitter electrode 400 can be a single layer or a plurality of layers of gold, chromium, nickel, platinum, titanium, aluminum, tantalum, niobium, copper, combinations of the above or other conductive metal materials (such as aluminum-copper alloy (AlCu), aluminum. Beryllium copper alloy (AlSiCu)). The emitter electrode 400 can be formed by, for example, sputtering, electroplating, resistance heating evaporation, electron beam evaporation, or any other suitable deposition process.

接著,於射極電極400後,可選擇性(optionally)薄 化基板310(圖式並未繪示薄化後之基板)。此薄化後之基板310之厚度會依操作電壓及元件結構而有所不同。 Then, after the emitter electrode 400, it is selectively thin The substrate 310 is not shown (the thinned substrate is not shown). The thickness of the thinned substrate 310 will vary depending on the operating voltage and component structure.

如第13圖所示,基板310之底部為集極預定區410, 而基板310中除第一射極區320、第二射極區360、第三射極區390以及集極預定區410以外之區域係作為基極預定區420。而於薄化基板310之後,可選擇性(optionally)形成重摻雜緩衝層430於基極預定區420中(亦即形成於後續之第一導電型基極區中)。此重摻雜緩衝層430具有第一導電型,且可用以進一步縮小最終形成之絕緣閘極雙極性電晶體的尺寸。此重摻雜緩衝層430可藉由離子佈植步驟形成。例如,當此第一導電型為N型時,可於預定形成此重摻雜緩衝層430之區域佈植磷離子或砷離子。 As shown in FIG. 13, the bottom of the substrate 310 is a collector predetermined area 410. The area of the substrate 310 other than the first emitter region 320, the second emitter region 360, the third emitter region 390, and the collector predetermined region 410 serves as the base predetermined region 420. After thinning the substrate 310, the heavily doped buffer layer 430 may be selectively formed in the base predetermined region 420 (ie, formed in the subsequent first conductive type base region). The heavily doped buffer layer 430 has a first conductivity type and can be used to further reduce the size of the finally formed insulating gate bipolar transistor. This heavily doped buffer layer 430 can be formed by an ion implantation step. For example, when the first conductivity type is an N-type, phosphorus ions or arsenic ions may be implanted in a region where the heavily doped buffer layer 430 is to be formed.

接著,參見第14圖,形成圖案化罩幕層440於基板 310之下表面310B上。此圖案化罩幕層440可為圖案化光阻或例如為二氧化矽、氮化矽或氮氧化矽的圖案化硬罩幕層。此圖案化罩幕層440具有開口450露出預定形成第一導電型集極區之基板310。 Next, referring to FIG. 14, a patterned mask layer 440 is formed on the substrate. 310 is below surface 310B. The patterned mask layer 440 can be a patterned photoresist or a patterned hard mask layer such as hafnium oxide, tantalum nitride or hafnium oxynitride. The patterned mask layer 440 has an opening 450 to expose the substrate 310 that is intended to form the first conductive type collector region.

接著,經由開口450進行一離子佈植步驟以形成第 一導電型集極區460於基板310之中,此第一導電型集極區460自基板310之下表面310B延伸入基板310中。此第一導電型集極區460可降低基板310中的與第二導電型對應之載子數量。例如,當第二導電型為P型時,可降低基板310中電洞之數量。 Next, an ion implantation step is performed through the opening 450 to form a A conductive collector region 460 is embedded in the substrate 310. The first conductive type collector region 460 extends from the lower surface 310B of the substrate 310 into the substrate 310. The first conductive type collector region 460 can reduce the number of carriers in the substrate 310 corresponding to the second conductivity type. For example, when the second conductivity type is a P type, the number of holes in the substrate 310 can be reduced.

在一實施例中,當此第一導電型為N型時,可於預 定形成第一導電型集極區之基板310佈植磷離子或砷離子以形成第一導電型集極區460。此第一導電型集極區460之寬度W6可為基板310寬度W7之約0.2-0.8倍,例如為約0.3-0.6倍。應注意的是,若此第一導電型集極區460之寬度W6過寬,例如寬於基板310寬度W7之0.8倍,則基板310中與第二導電型對應之載子數量會過低,使導通電壓增加。然而,若此第一導電型集極區460之寬度W6過窄,例如窄於基板310寬度W7之0.2倍,則其無法有效降低基板310中與第二導電型對應之載子數量,導致其無法有效降低裝置之關閉損失。 In an embodiment, when the first conductivity type is N-type, The substrate 310 forming the first conductive type collector region is implanted with phosphorus ions or arsenic ions to form a first conductive type collector region 460. The width W6 of the first conductive type collector region 460 may be about 0.2-0.8 times the width W7 of the substrate 310, for example, about 0.3-0.6 times. It should be noted that if the width W6 of the first conductive type collector region 460 is too wide, for example, 0.8 times wider than the width W7 of the substrate 310, the number of carriers corresponding to the second conductivity type in the substrate 310 may be too low. Increase the turn-on voltage. However, if the width W6 of the first conductive type collector region 460 is too narrow, for example, 0.2 times wider than the width W7 of the substrate 310, it cannot effectively reduce the number of carriers corresponding to the second conductivity type in the substrate 310, resulting in It is not possible to effectively reduce the shutdown loss of the device.

參見第15圖,於移除圖案化罩幕層440後,毯覆性 形成絕緣材料層470於基板310之下表面310B上。此絕緣材料層470可為氧化矽、氮化矽、氮氧化矽、硼磷矽玻璃(BPSG)、磷矽玻璃(PSG)、旋塗式玻璃(SOG)、或其它任何適合之介電材料、 或上述之組合。絕緣材料層470可藉由前述之化學氣相沉積法(CVD)或旋轉塗佈法以及前述之圖案化步驟形成。在一實施例中,可使用四乙氧基矽烷(TEOS,tetraethyl-ortho-silicate)為反應氣體,以電漿增強(plasma enhanced)之方式沉積法並配合圖案化步驟以形成絕緣材料層470。在另一實施例中,絕緣材料層470可藉由熱氧化法直接毯覆性形成於基板310之下表面310B上。 Referring to Figure 15, after removing the patterned mask layer 440, the blanket is A layer of insulating material 470 is formed on the lower surface 310B of the substrate 310. The insulating material layer 470 can be tantalum oxide, tantalum nitride, hafnium oxynitride, borophosphoquinone glass (BPSG), phosphoric bismuth glass (PSG), spin-on glass (SOG), or any other suitable dielectric material, Or a combination of the above. The insulating material layer 470 can be formed by the aforementioned chemical vapor deposition (CVD) or spin coating method and the aforementioned patterning step. In one embodiment, tetraethoxy-ortho-silicate (TEOS) can be used as a reactive gas, deposited in a plasma enhanced manner, and patterned to form an insulating material layer 470. In another embodiment, the insulating material layer 470 can be directly blanket formed on the lower surface 310B of the substrate 310 by thermal oxidation.

接著,形成圖案化罩幕層480於基板310之下表面 310B上以遮蔽第一導電型集極區460並露出預定形成第二導電型集極區之基板310。此圖案化罩幕層480可為圖案化光阻或例如為二氧化矽、氮化矽或氮氧化矽的圖案化硬罩幕層。 Next, a patterned mask layer 480 is formed on the lower surface of the substrate 310. The substrate 310 is shielded from the first conductive type collector region 460 and exposed to form a substrate 310 of a second conductive type collector region. The patterned mask layer 480 can be a patterned photoresist or a patterned hard mask layer such as hafnium oxide, tantalum nitride or hafnium oxynitride.

接著,如第16圖所示,以圖案化罩幕層480作為罩 幕進行另一離子佈植步驟以形成第二導電型集極區490於基板310之中。此第二導電型集極區490亦自基板310之下表面310B延伸入基板310中。此第二導電型集極區490相鄰於第一導電型集極區460。在一實施例中,當此第二導電型為P型時,可於預定形成此第二導電型集極區490之區域佈植硼離子、銦離子或二氟化硼離子(BF2 +)。而基板310未形成有第一射極區320、第二射極區360、第三射極區390、第一導電型集極區460及第二導電型集極區490之部分係作為第一導電型基極區420’。 Next, as shown in FIG. 16, another ion implantation step is performed with the patterned mask layer 480 as a mask to form a second conductive type collector region 490 in the substrate 310. The second conductive type collector region 490 also extends into the substrate 310 from the lower surface 310B of the substrate 310. The second conductive type collector region 490 is adjacent to the first conductive type collector region 460. In an embodiment, when the second conductivity type is P-type, boron ions, indium ions or boron difluoride ions (BF 2 + ) may be implanted in a region where the second conductive type collector region 490 is to be formed. . The substrate 310 is not formed with the first emitter region 320, the second emitter region 360, the third emitter region 390, the first conductive type collector region 460, and the second conductive type collector region 490 as the first portion. Conductive base region 420'.

接著,移除未被圖案化罩幕層480遮蔽之部分絕緣 材料層470,剩餘之絕緣材料層470係作為集極絕緣層500,此集極絕緣層500係設於第一導電型集極區460上。 Next, the partial insulation that is not masked by the patterned mask layer 480 is removed. The material layer 470, the remaining insulating material layer 470 is used as the collector insulating layer 500, and the collector insulating layer 500 is disposed on the first conductive type collector region 460.

應注意的是,雖然前述步驟為先形成第二導電型 集極區490,再形成集極絕緣層500。然而上述步驟亦可前後互換,亦即可先移除未被圖案化罩幕層480遮蔽之部分絕緣材料層470以形成集極絕緣層500,再進行離子佈植步驟以形成第二導電型集極區490於基板310之中。 It should be noted that although the foregoing steps are to form the second conductivity type first The collector region 490 is further formed with a collector insulating layer 500. However, the above steps may also be interchanged before and after, or a portion of the insulating material layer 470 not shielded by the patterned mask layer 480 may be removed to form the collector insulating layer 500, and then an ion implantation step is performed to form a second conductive type set. The polar region 490 is in the substrate 310.

此集極絕緣層500之厚度只要能讓集極電極510與第一導電型集極區420’之間電性絕緣即可,例如厚度大於10nm。另外,集極絕緣層500之寬度W8可為基板310寬度W7之約0.2-0.8倍,例如為約0.3-0.6倍。在一實施例中,集極絕緣層500之寬度W8可與第一導電型集極區460之寬度W6相同。在另一實施例中,集極絕緣層500之寬度W8可大於第一導電型集極區460之寬度W6。在此實施例中,此集極絕緣層500之寬度W8應不小於第一導電型集極區460之寬度W6,否則其無法將第一導電型集極區460及後續形成之集極電極電性絕緣。 The thickness of the collector insulating layer 500 may be such that the collector electrode 510 and the first conductive type collector region 420' are electrically insulated from each other, for example, having a thickness greater than 10 nm. In addition, the width W8 of the collector insulating layer 500 may be about 0.2-0.8 times the width W7 of the substrate 310, for example, about 0.3-0.6 times. In an embodiment, the width W8 of the collector insulating layer 500 may be the same as the width W6 of the first conductive type collector region 460. In another embodiment, the width W8 of the collector insulating layer 500 may be greater than the width W6 of the first conductive type collector region 460. In this embodiment, the width W8 of the collector insulating layer 500 should be not less than the width W6 of the first conductive type collector region 460. Otherwise, the first conductive type collector region 460 and the subsequently formed collector electrode cannot be electrically charged. Sexual insulation.

接著,參見第17圖,移除圖案化罩幕層480,接著形成集極電極510以完成絕緣閘極雙極性電晶體300的製作。此集極電極510電性連結第二導電型集極區490,且藉由集極絕緣層500與第一導電型集極區460電性絕緣。集極電極510可為單層或多層之金、鉻、鎳、鉑、鈦、鋁、銥、銠、銅、上述之組合或其它導電性佳的金屬材料(例如鋁銅合金(AlCu)、鋁矽銅合金(AlSiCu))。此集極電極510可藉由例如為濺鍍法、電鍍法、電阻加熱蒸鍍法、電子束蒸鍍法、或其它任何適合的沈積製程形成。 Next, referring to FIG. 17, the patterned mask layer 480 is removed, and then the collector electrode 510 is formed to complete the fabrication of the insulated gate bipolar transistor 300. The collector electrode 510 is electrically connected to the second conductive type collector region 490 and electrically insulated from the first conductive type collector region 460 by the collector insulating layer 500. The collector electrode 510 may be a single layer or a plurality of layers of gold, chromium, nickel, platinum, titanium, aluminum, tantalum, niobium, copper, a combination of the above or other conductive metal materials (for example, aluminum-copper alloy (AlCu), aluminum. Beryllium copper alloy (AlSiCu)). The collector electrode 510 can be formed by, for example, sputtering, electroplating, resistance heating evaporation, electron beam evaporation, or any other suitable deposition process.

本發明實施例之絕緣閘極雙極性電晶體300包括基板310,具有第一導電型,且具有上表面310A及下表面310B。 第一導電型集極區460及相鄰之第二導電型集極區490,自基板310之下表面310B延伸入基板310中,此第二導電型與第一導電型不同。集極電極510,電性連結第二導電型集極區490,且藉由集極絕緣層與第一導電型集極區460電性絕緣。第一射極區320,具有第二導電型,且自基板310之上表面310A延伸入基板310中。第二射極區360,具有第一導電型,且自基板310之上表面310A延伸入第一射極區320中。而基板310未形成有第一射極區320、第二射極區360、第一導電型集極區460及第二導電型集極區490之部分係作為第一導電型基極區420’。射極電極400,與第一射極區320及第二射極區360電性連結。溝槽330,自基板310之上表面310A延伸穿越第一射極區320與第二射極區360並進入基板310中。閘極介電層340,內襯於溝槽330之側壁與底部。閘極電極350,設於閘極介電層340上且填入溝槽330。 電極間介電層370,設於閘極電極350與射極電極400之間。絕緣閘極雙極性電晶體300可更包括重摻雜緩衝層430,具有第一導電型且設於第一導電型基極區420’中。 The insulated gate bipolar transistor 300 of the embodiment of the present invention includes a substrate 310 having a first conductivity type and having an upper surface 310A and a lower surface 310B. The first conductive type collector region 460 and the adjacent second conductive type collector region 490 extend from the lower surface 310B of the substrate 310 into the substrate 310. The second conductive type is different from the first conductive type. The collector electrode 510 electrically connects the second conductive type collector region 490 and is electrically insulated from the first conductive type collector region 460 by the collector insulating layer. The first emitter region 320 has a second conductivity type and extends into the substrate 310 from the upper surface 310A of the substrate 310. The second emitter region 360 has a first conductivity type and extends into the first emitter region 320 from the upper surface 310A of the substrate 310. The portion of the substrate 310 that is not formed with the first emitter region 320, the second emitter region 360, the first conductive type collector region 460, and the second conductive type collector region 490 is used as the first conductive type base region 420'. . The emitter electrode 400 is electrically connected to the first emitter region 320 and the second emitter region 360. The trench 330 extends from the upper surface 310A of the substrate 310 through the first emitter region 320 and the second emitter region 360 and into the substrate 310. The gate dielectric layer 340 is lined with the sidewalls and the bottom of the trench 330. The gate electrode 350 is disposed on the gate dielectric layer 340 and filled in the trench 330. The inter-electrode dielectric layer 370 is disposed between the gate electrode 350 and the emitter electrode 400. The insulated gate bipolar transistor 300 may further include a heavily doped buffer layer 430 having a first conductivity type and disposed in the first conductivity type base region 420'.

應注意的是,雖然在以上之實施例中,皆以第一 導電型為N型,第二導電型為P型說明,然而,任何所屬技術領域中具有通常知識者可知此第一導電型亦可為P型,而第二導電型可為N型。 It should be noted that although in the above embodiments, the first The conductivity type is N type, and the second conductivity type is P type description. However, any one of ordinary skill in the art may know that the first conductivity type may also be a P type, and the second conductivity type may be an N type.

表1顯示本發明實施例與比較例之絕緣閘極雙極 性電晶體之性能比較,而第18圖係本發明一實施例與比較例之絕緣閘極雙極性電晶體之開關性能分析圖。此分析係由電腦軟體(Technology Computer Aided Design,TCAD)模擬所得。比較例1之絕緣閘極雙極性電晶體(比較例1之IGBT)與本發明實施例之絕緣閘極雙極性電晶體之差異在於其不具有第一導電型集極區及集極絕緣層,而比較例2之反向導通絕緣閘極雙極性電晶體(reverse conducting IGBT,RC-IGBT)與本發明實施例之絕緣閘極雙極性電晶體之差異在於其不具有集極絕緣層。第18圖顯示將本發明一實施例之絕緣閘極雙極性電晶體(本發明一實施例之IGBT)、比較例1之絕緣閘極雙極性電晶體(比較例1之IGBT)及比較例2之反向導通絕緣閘極雙極性電晶體(reverse conducting IGBT,RC-IGBT)施予相同電壓,並同時關閉電壓時,本發明實施例之絕緣閘極雙極性電晶體的電流之關閉時間為180ns,而比較例2之反向導通絕緣閘極雙極性電晶體(比較 例2之RC-IGBT)之關閉時間為370ns,比較例1之絕緣閘極雙極性電晶體(比較例1之IGBT)之關閉時間為435ns。由此可知,本發明一實施例之絕緣閘極雙極性電晶體的集極結構可大幅降低裝置之關閉時間。 Table 1 shows the insulated gate bipolar of the embodiment and the comparative example of the present invention. The performance comparison of the transistor is shown in Fig. 18, and the switching performance analysis diagram of the insulated gate bipolar transistor of an embodiment and a comparative example of the present invention is shown. This analysis was simulated by Computer Computer Aided Design (TCAD). The insulated gate bipolar transistor of Comparative Example 1 (the IGBT of Comparative Example 1) differs from the insulated gate bipolar transistor of the embodiment of the present invention in that it does not have the first conductive type collector region and the collector insulating layer. The reverse conducting IGBT (RC-IGBT) of Comparative Example 2 differs from the insulated gate bipolar transistor of the embodiment of the present invention in that it does not have a collector insulating layer. Fig. 18 is a view showing an insulating gate bipolar transistor (an IGBT according to an embodiment of the present invention) according to an embodiment of the present invention, an insulated gate bipolar transistor of Comparative Example 1 (an IGBT of Comparative Example 1), and Comparative Example 2; When the reverse conducting IGBT (RC-IGBT) is applied with the same voltage and the voltage is turned off at the same time, the closing time of the current of the insulated gate bipolar transistor of the embodiment of the present invention is 180 ns. And the reverse conducting insulated gate bipolar transistor of Comparative Example 2 (comparison The turn-off time of the RC-IGBT of Example 2 was 370 ns, and the turn-off time of the insulated gate bipolar transistor of Comparative Example 1 (IGBT of Comparative Example 1) was 435 ns. It can be seen that the collector structure of the insulated gate bipolar transistor according to an embodiment of the present invention can greatly reduce the off time of the device.

第19圖係本發明實施例與比較例之絕緣閘極雙極 性電晶體在關閉狀態下之崩潰電壓分析圖。此分析係由電腦軟體(Technology Computer Aided Design,TCAD)模擬所得。第19圖顯示本發明實施例之絕緣閘極雙極性電晶體的電流之崩潰電壓為1375V,而比較例2之反向導通絕緣閘極雙極性電晶體(比較例2之RC-IGBT)之崩潰電壓為1375V,比較例1之絕緣閘極雙極性電晶體(比較例1之IGBT)之崩潰電壓為1250V。由此可知,本發明一實施例之絕緣閘極雙極性電晶體在降低裝置之關閉時間的同時不會影響其崩潰電壓。 Figure 19 is an insulated gate bipolar of an embodiment of the present invention and a comparative example. A breakdown voltage analysis diagram of a transistor in a closed state. This analysis was simulated by Computer Computer Aided Design (TCAD). Fig. 19 is a view showing that the breakdown voltage of the current of the insulated gate bipolar transistor of the embodiment of the present invention is 1375 V, and the breakdown of the reverse conducting insulated gate bipolar transistor of Comparative Example 2 (RC-IGBT of Comparative Example 2) The voltage was 1375 V, and the breakdown voltage of the insulated gate bipolar transistor of Comparative Example 1 (IGBT of Comparative Example 1) was 1250V. It can be seen that the insulated gate bipolar transistor of one embodiment of the present invention does not affect the breakdown voltage of the device while reducing the turn-off time of the device.

再者,由表1可知,本發明實施例之絕緣閘極雙極 性電晶體的電流之導通電壓為2.5V,而比較例2之反向導通絕緣閘極雙極性電晶體(比較例2之RC-IGBT)之導通電壓為2.5V,比較例1之絕緣閘極雙極性電晶體(比較例1之IGBT)之導通電壓為2.65V。此外,本發明實施例之絕緣閘極雙極性電晶體的電流之閂鎖電流密度(latch up current density)為1600A/cm2,而比較例2之反向導通絕緣閘極雙極性電晶體(比較例2之RC-IGBT)之閂鎖電流密度為1600A/cm2,比較例1之絕緣閘極雙極性電晶體(比較例1之IGBT)之閂鎖電流密度為1500A/cm2。 由此可知,本發明一實施例之絕緣閘極雙極性電晶體在降低裝置之關閉時間的同時不會影響其導通電壓(on voltage)與閂鎖 電流密度(latch up current density)。 Furthermore, as shown in Table 1, the on-state voltage of the insulated gate bipolar transistor of the embodiment of the present invention is 2.5 V, and the reverse conducting insulated gate bipolar transistor of Comparative Example 2 (RC of Comparative Example 2) The on-voltage of -IGBT) was 2.5 V, and the on-voltage of the insulated gate bipolar transistor of Comparative Example 1 (IGBT of Comparative Example 1) was 2.65 V. In addition, the latch-up current density of the current of the insulated gate bipolar transistor of the embodiment of the present invention is 1600 A/cm 2 , and the reverse conducting insulated gate bipolar transistor of Comparative Example 2 (Comparative) The latch current density of the RC-IGBT of Example 2 was 1600 A/cm 2 , and the latching current density of the insulated gate bipolar transistor of Comparative Example 1 (IGBT of Comparative Example 1) was 1500 A/cm 2 . It can be seen that the insulated gate bipolar transistor of one embodiment of the present invention does not affect its on voltage and latch up current density while reducing the turn-off time of the device.

綜上所述,本發明實施例之絕緣閘極雙極性電晶 體可降低關閉損失(turn-off loss),且同時不影響導通電壓(on voltage)、崩潰電壓及閂鎖電流密度(latch up current density)。 此外,由於關閉損失的降低,當裝置關閉後,流動之載子可快速減少,因此可更進一步縮短裝置的開關時間(switching time),大幅增進裝置之性能。 In summary, the insulated gate bipolar electric crystal of the embodiment of the invention The body can reduce the turn-off loss without affecting the on voltage, the breakdown voltage, and the latch up current density. In addition, due to the reduction in the closing loss, the flow carrier can be quickly reduced when the device is turned off, so that the switching time of the device can be further shortened, and the performance of the device is greatly improved.

雖然本發明的實施例及其優點已揭露如上,但應該瞭解的是,任何所屬技術領域中具有通常知識者,在不脫離本發明之精神和範圍內,當可作更動、替代與潤飾。此外,本發明之保護範圍並未侷限於說明書內所述特定實施例中的製程、機器、製造、物質組成、裝置、方法及步驟,任何所屬技術領域中具有通常知識者可從本發明揭示內容中理解現行或未來所發展出的製程、機器、製造、物質組成、裝置、方法及步驟,只要可以在此處所述實施例中實施大抵相同功能或獲得大抵相同結果皆可根據本發明使用。因此,本發明之保護範圍包括上述製程、機器、製造、物質組成、裝置、方法及步驟。另外,每一申請專利範圍構成個別的實施例,且本發明之保護範圍也包括各個申請專利範圍及實施例的組合。 Although the embodiments of the present invention and its advantages are disclosed above, it should be understood that those skilled in the art can make modifications, substitutions, and refinements without departing from the spirit and scope of the invention. In addition, the scope of the present invention is not limited to the processes, machines, manufacture, compositions, devices, methods, and steps in the specific embodiments described in the specification. Any one of ordinary skill in the art can. The processes, machines, fabrications, compositions, devices, methods, and procedures that are presently or in the future are understood to be used in accordance with the present invention as long as they can perform substantially the same function or achieve substantially the same results in the embodiments described herein. Accordingly, the scope of the invention includes the above-described processes, machines, manufactures, compositions, devices, methods, and steps. In addition, the scope of each of the claims constitutes an individual embodiment, and the scope of the invention also includes the combination of the scope of the application and the embodiments.

100‧‧‧絕緣閘極雙極性電晶體 100‧‧‧Insulated gate bipolar transistor

110‧‧‧基板 110‧‧‧Substrate

120‧‧‧第一射極區 120‧‧‧first emitter area

130a‧‧‧閘極介電層 130a‧‧‧gate dielectric layer

130b‧‧‧電極間介電層 130b‧‧‧Interelectrode dielectric layer

140‧‧‧閘極電極 140‧‧‧gate electrode

150‧‧‧第二射極區 150‧‧‧second emitter area

160‧‧‧第三射極區 160‧‧‧third emitter area

170‧‧‧射極電極 170‧‧ ‧ emitter electrode

190’‧‧‧第一導電型基極區 190'‧‧‧First Conductive Base Region

200‧‧‧重摻雜緩衝層 200‧‧‧ heavily doped buffer layer

230‧‧‧第一導電型集極區 230‧‧‧First Conductive Collector Region

260‧‧‧第二導電型集極區 260‧‧‧Second Conductive Collector Region

270‧‧‧集極絕緣層 270‧‧‧ collector insulation

280‧‧‧集極電極 280‧‧ ‧ collector electrode

Claims (14)

一種絕緣閘極雙極性電晶體,包括:一基板,具有一第一導電型,且具有一上表面及一下表面;一第一導電型集極區及相鄰之一第二導電型集極區,自該基板之下表面延伸入該基板中,其中該第二導電型與該第一導電型不同;一集極電極,電性連結該第二導電型集極區,且藉由一集極絕緣層與該第一導電型集極區電性絕緣;一第一射極區,具有該第二導電型,自該基板之上表面延伸入該基板中;一第二射極區,具有該第一導電型,且自該基板之上表面延伸入該第一射極區中,其中該基板未形成有該第一射極區、該第二射極區、該第一導電型集極區及該第二導電型集極區之部分係作為一第一導電型基極區;一射極電極,與該第一射極區及該第二射極區電性連結;一閘極介電層,設於該第一射極區、該第二射極區與該基板上;及一閘極電極,設於該閘極介電層上。 An insulated gate bipolar transistor comprises: a substrate having a first conductivity type and having an upper surface and a lower surface; a first conductivity type collector region and an adjacent one of the second conductivity type collector regions Extending from the lower surface of the substrate into the substrate, wherein the second conductivity type is different from the first conductivity type; a collector electrode electrically connecting the second conductivity type collector region and having a collector The insulating layer is electrically insulated from the first conductive type collector region; a first emitter region having the second conductivity type extending from the upper surface of the substrate into the substrate; and a second emitter region having the a first conductivity type extending from the upper surface of the substrate into the first emitter region, wherein the substrate is not formed with the first emitter region, the second emitter region, and the first conductive type collector region And a portion of the second conductive type collector region is a first conductive type base region; an emitter electrode electrically connected to the first emitter region and the second emitter region; and a gate dielectric a layer disposed on the first emitter region, the second emitter region and the substrate; and a gate electrode disposed on the gate Dielectric layer. 如申請專利範圍第1項所述之絕緣閘極雙極性電晶體,其中該集極絕緣層之材料包括氧化矽、氮化矽或氮氧化矽。 The insulated gate bipolar transistor according to claim 1, wherein the material of the collector insulating layer comprises cerium oxide, cerium nitride or cerium oxynitride. 如申請專利範圍第1項所述之絕緣閘極雙極性電晶體,其中該集極絕緣層之厚度大於10nm。 The insulated gate bipolar transistor of claim 1, wherein the collector insulating layer has a thickness greater than 10 nm. 如申請專利範圍第1項所述之絕緣閘極雙極性電晶體,其中該集極絕緣層之寬度為該基板寬度之0.2-0.8倍。 The insulated gate bipolar transistor according to claim 1, wherein the collector insulating layer has a width of 0.2-0.8 times the width of the substrate. 如申請專利範圍第1項所述之絕緣閘極雙極性電晶體,更包括一重摻雜緩衝層,具有第一導電型且設於該第一導電型基極區中。 The insulated gate bipolar transistor according to claim 1, further comprising a heavily doped buffer layer having a first conductivity type and disposed in the first conductivity type base region. 一種絕緣閘極雙極性電晶體,包括:一基板,具有一第一導電型,且具有一上表面及一下表面;一第一導電型集極區及相鄰之一第二導電型集極區,自該基板之下表面延伸入該基板中,其中該第二導電型與該第一導電型不同;一集極電極,電性連結該第二導電型集極區,且藉由一集極絕緣層與該第一導電型集極區電性絕緣;一第一射極區,具有該第二導電型,且自該基板之上表面延伸入該基板中;一第二射極區,具有該第一導電型,且自該基板之上表面延伸入該第一射極區中,其中該基板未形成有該第一射極區、該第二射極區、該第一導電型集極區及該第二導電型集極區之部分係作為一第一導電型基極區;一射極電極,與該第一射極區及該第二射極區電性連結;一溝槽(trench),自該基板之上表面延伸穿越該第一射極區與該第二射極區並進入該基板中;一閘極介電層,內襯於該溝槽之側壁與底部;一閘極電極,設於該閘極介電層上且填入該溝槽;及一電極間介電層,設於該閘極電極與該射極電極之間。 An insulated gate bipolar transistor comprises: a substrate having a first conductivity type and having an upper surface and a lower surface; a first conductivity type collector region and an adjacent one of the second conductivity type collector regions Extending from the lower surface of the substrate into the substrate, wherein the second conductivity type is different from the first conductivity type; a collector electrode electrically connecting the second conductivity type collector region and having a collector The insulating layer is electrically insulated from the first conductive type collector region; a first emitter region having the second conductivity type and extending from the upper surface of the substrate into the substrate; and a second emitter region having The first conductivity type extends from the upper surface of the substrate into the first emitter region, wherein the substrate is not formed with the first emitter region, the second emitter region, and the first conductive collector And a portion of the second conductive type collector region serves as a first conductive type base region; an emitter electrode electrically connected to the first emitter region and the second emitter region; and a trench a trench extending from the upper surface of the substrate through the first emitter region and the second emitter region and into the substrate a gate dielectric layer lining the sidewalls and the bottom of the trench; a gate electrode disposed on the gate dielectric layer and filling the trench; and an inter-electrode dielectric layer disposed on the gate The gate electrode is between the emitter electrode and the emitter electrode. 如申請專利範圍第6項所述之絕緣閘極雙極性電晶體,更包括一重摻雜緩衝層,具有第一導電型且設於該第一導電 型基極區中。 The insulated gate bipolar transistor according to claim 6, further comprising a heavily doped buffer layer having a first conductivity type and disposed on the first conductive In the base region. 一種絕緣閘極雙極性電晶體之製造方法,包括:提供一基板,具有一第一導電型,且具有一上表面及一下表面;形成一第一射極區,具有一第二導電型,自該基板之上表面延伸入該基板中,且該第二導電型與該第一導電型不同;形成一閘極介電層於該第一射極區與該基板上;形成一閘極電極於該閘極介電層上;形成一第二射極區,該第二射極區具有該第一導電型,且自該基板之上表面延伸入該第一射極區中;形成一射極電極,該射極電極與該第一射極區及該第二射極區電性連結;形成一第一導電型集極區,自該基板之下表面延伸入該基板中;形成一集極絕緣層於該第一導電型集極區上;形成一第二導電型集極區相鄰於該第一導電型集極區,其中該基板未形成有該第一射極區、該第二射極區、該第一導電型集極區及該第二導電型集極區之部分係作為一第一導電型基極區;以及形成一集極電極,該集極電極電性連結該第二導電型集極區,且藉由該集極絕緣層與該第一導電型集極區電性絕緣。 A method for manufacturing an insulated gate bipolar transistor includes: providing a substrate having a first conductivity type and having an upper surface and a lower surface; forming a first emitter region having a second conductivity type The upper surface of the substrate extends into the substrate, and the second conductivity type is different from the first conductivity type; forming a gate dielectric layer on the first emitter region and the substrate; forming a gate electrode Forming a second emitter region, the second emitter region having the first conductivity type, and extending from the upper surface of the substrate into the first emitter region; forming an emitter An electrode, the emitter electrode is electrically connected to the first emitter region and the second emitter region; forming a first conductive type collector region extending from the lower surface of the substrate into the substrate; forming a collector An insulating layer is disposed on the first conductive type collector region; a second conductive type collector region is formed adjacent to the first conductive type collector region, wherein the substrate is not formed with the first emitter region, the second portion The emitter region, the first conductive type collector region, and the portion of the second conductive type collector region are a first conductive type base region; and a collector electrode electrically connected to the second conductive type collector region, and the collector conductive layer and the first conductive type collector region are electrically connected insulation. 如申請專利範圍第8項所述之絕緣閘極雙極性電晶體之製 造方法,其中該集極絕緣層之材料包括氧化矽、氮化矽或氮氧化矽。 The system for insulating gate bipolar transistors as described in claim 8 The method, wherein the material of the collector insulating layer comprises cerium oxide, cerium nitride or cerium oxynitride. 如申請專利範圍第8項所述之絕緣閘極雙極性電晶體之製造方法,其中該集極絕緣層之厚度大於10nm。 The method for manufacturing an insulated gate bipolar transistor according to claim 8, wherein the collector insulating layer has a thickness greater than 10 nm. 如申請專利範圍第8項所述之絕緣閘極雙極性電晶體之製造方法,其中該集極絕緣層之寬度為該基板寬度之0.2-0.8倍。 The method for manufacturing an insulated gate bipolar transistor according to claim 8, wherein the collector insulating layer has a width of 0.2 to 0.8 times the width of the substrate. 如申請專利範圍第8項所述之絕緣閘極雙極性電晶體之製造方法,更包括形成一重摻雜緩衝層於該第一導電型基極區中,其中該重摻雜緩衝層具有第一導電型。 The method for manufacturing an insulated gate bipolar transistor according to claim 8 , further comprising forming a heavily doped buffer layer in the first conductive type base region, wherein the heavily doped buffer layer has a first Conductive type. 一種絕緣閘極雙極性電晶體之製造方法,包括:提供一基板,具有一第一導電型,且具有一上表面及一下表面;形成一第一射極區,具有一第二導電型,且自該基板之上表面延伸入該基板中,且該第二導電型與該第一導電型不同;形成一溝槽(trench),自該基板之上表面延伸穿越該第一射極區至該基板中;順應性形成一閘極介電層於該溝槽之側壁與底部上;形成一閘極電極於該閘極介電層上且填入該溝槽;形成一第二射極區,該第二射極區具有該第一導電型,且自該基板之上表面延伸入該第一射極區中;形成一電極間介電層於該閘極電極上;形成一射極電極,該射極電極與該第一射極區及該第二射 極區電性連結,且該電極間介電層設於該閘極電極與該射極電極之間;形成一第一導電型集極區,自該基板之下表面延伸入該基板中;形成一集極絕緣層於該第一導電型集極區上;形成一第二導電型集極區相鄰於該第一導電型集極區,其中該基板未形成有該第一射極區、該第二射極區、該第一導電型集極區及該第二導電型集極區之部分係作為一第一導電型基極區;以及形成一集極電極,該集極電極電性連結該第二導電型集極區,且藉由該集極絕緣層與該第一導電型集極區電性絕緣。 A method for manufacturing an insulated gate bipolar transistor, comprising: providing a substrate having a first conductivity type and having an upper surface and a lower surface; forming a first emitter region having a second conductivity type, and Extending from the upper surface of the substrate into the substrate, and the second conductivity type is different from the first conductivity type; forming a trench extending from the upper surface of the substrate through the first emitter region to the In the substrate, a gate dielectric layer is formed on the sidewalls and the bottom of the trench; a gate electrode is formed on the gate dielectric layer and fills the trench; and a second emitter region is formed. The second emitter region has the first conductivity type and extends from the upper surface of the substrate into the first emitter region; an inter-electrode dielectric layer is formed on the gate electrode; and an emitter electrode is formed. The emitter electrode and the first emitter region and the second shot The pole region is electrically connected, and the inter-electrode dielectric layer is disposed between the gate electrode and the emitter electrode; forming a first conductive type collector region extending from the lower surface of the substrate into the substrate; forming a collector insulating layer is disposed on the first conductive type collector region; a second conductive type collector region is formed adjacent to the first conductive type collector region, wherein the substrate is not formed with the first emitter region, The second emitter region, the first conductive type collector region and a portion of the second conductive type collector region are used as a first conductive type base region; and a collector electrode is formed, the collector electrode electrical The second conductive type collector region is connected, and is electrically insulated from the first conductive type collector region by the collector insulating layer. 如申請專利範圍第13項所述之絕緣閘極雙極性電晶體之製造方法,更包括於形成一重摻雜緩衝層於該第一導電型基極區中,其中該重摻雜緩衝層具有第一導電型。 The method for manufacturing an insulated gate bipolar transistor according to claim 13 , further comprising forming a heavily doped buffer layer in the first conductive type base region, wherein the heavily doped buffer layer has a first A conductive type.
TW103119994A 2014-06-10 2014-06-10 Insulated gate bipolar transistor and method of manufacturing the same TWI544627B (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW103119994A TWI544627B (en) 2014-06-10 2014-06-10 Insulated gate bipolar transistor and method of manufacturing the same
CN201410383362.3A CN105280692A (en) 2014-06-10 2014-08-06 Insulated gate bipolar transistor and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW103119994A TWI544627B (en) 2014-06-10 2014-06-10 Insulated gate bipolar transistor and method of manufacturing the same

Publications (2)

Publication Number Publication Date
TW201547020A TW201547020A (en) 2015-12-16
TWI544627B true TWI544627B (en) 2016-08-01

Family

ID=55149398

Family Applications (1)

Application Number Title Priority Date Filing Date
TW103119994A TWI544627B (en) 2014-06-10 2014-06-10 Insulated gate bipolar transistor and method of manufacturing the same

Country Status (2)

Country Link
CN (1) CN105280692A (en)
TW (1) TWI544627B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111640763B (en) * 2016-06-14 2023-08-29 群创光电股份有限公司 Display device and method for manufacturing display device
CN108010964B (en) * 2017-11-29 2020-09-08 吉林华微电子股份有限公司 IGBT device and manufacturing method thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005333055A (en) * 2004-05-21 2005-12-02 Toyota Central Res & Dev Lab Inc Semiconductor apparatus
JP2012069579A (en) * 2010-09-21 2012-04-05 Toshiba Corp Insulated gate type bipolar transistor of reverse conducting type
JP2013197122A (en) * 2012-03-15 2013-09-30 Toshiba Corp Semiconductor device

Also Published As

Publication number Publication date
CN105280692A (en) 2016-01-27
TW201547020A (en) 2015-12-16

Similar Documents

Publication Publication Date Title
CN103022102B (en) Multilayer for ultra-thin interface dielectric layer removes metal gate stacks part
TWI500151B (en) Trench shielding structure for semiconductor device and method
CN103578954B (en) There is the semiconductor integrated circuit of metal gates
US8999790B2 (en) Method of forming a trench gate MOSFET having a thick bottom oxide
TWI697965B (en) Lateral diffusion metal oxide semiconductor (LDMOS) transistor and manufacturing method thereof
CN108269842B (en) High voltage semiconductor device
US10128368B2 (en) Double gate trench power transistor and manufacturing method thereof
CN107910269B (en) Power semiconductor device and method of manufacturing the same
JP2016004847A (en) Semiconductor device and method of manufacturing the same
CN107910268B (en) Power semiconductor device and method of manufacturing the same
TWI544627B (en) Insulated gate bipolar transistor and method of manufacturing the same
KR20190064382A (en) Fin diode structure and methods thereof
CN104008974A (en) Semiconductor device and manufacturing method
CN107910270B (en) Power semiconductor device and method of manufacturing the same
US11929420B2 (en) Power semiconductor devices having multilayer gate dielectric layers that include an etch stop/field control layer and methods of forming such devices
TW202032790A (en) Semiconductor devices and methods for forming the same
CN112736138B (en) Structure of shielding grid-groove type MOSFET and manufacturing method thereof
TWI458022B (en) Fabrication method of trenched power semiconductor structure with low gate charge
CN114171453A (en) Semiconductor structure and forming method thereof
CN107799595B (en) High voltage semiconductor device
CN112928025A (en) Semiconductor structure and forming method thereof
TWI805524B (en) Semiconductor device and the method for forming the same
TWI559531B (en) Insulated gate bipolar transistor and method of manufacturing the same
JP2004193281A (en) Semiconductor device and its manufacturing method
TWI804234B (en) Semiconductor structure and method of forming the same