TWI541058B - 工業工廠排放氣的封存 - Google Patents

工業工廠排放氣的封存 Download PDF

Info

Publication number
TWI541058B
TWI541058B TW100102369A TW100102369A TWI541058B TW I541058 B TWI541058 B TW I541058B TW 100102369 A TW100102369 A TW 100102369A TW 100102369 A TW100102369 A TW 100102369A TW I541058 B TWI541058 B TW I541058B
Authority
TW
Taiwan
Prior art keywords
gas
sequestering
product
reactant
solution
Prior art date
Application number
TW100102369A
Other languages
English (en)
Other versions
TW201134542A (en
Inventor
理查E 里蒙
李慶華
Original Assignee
羅格斯新澤西州立大學
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 羅格斯新澤西州立大學 filed Critical 羅格斯新澤西州立大學
Publication of TW201134542A publication Critical patent/TW201134542A/zh
Application granted granted Critical
Publication of TWI541058B publication Critical patent/TWI541058B/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/1456Removing acid components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/1425Regeneration of liquid absorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2252/00Absorbents, i.e. solvents and liquid materials for gas absorption
    • B01D2252/10Inorganic absorbents
    • B01D2252/102Ammonia
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2252/00Absorbents, i.e. solvents and liquid materials for gas absorption
    • B01D2252/20Organic absorbents
    • B01D2252/204Amines
    • B01D2252/2041Diamines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2252/00Absorbents, i.e. solvents and liquid materials for gas absorption
    • B01D2252/20Organic absorbents
    • B01D2252/204Amines
    • B01D2252/20415Tri- or polyamines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2252/00Absorbents, i.e. solvents and liquid materials for gas absorption
    • B01D2252/20Organic absorbents
    • B01D2252/204Amines
    • B01D2252/20436Cyclic amines
    • B01D2252/20442Cyclic amines containing a piperidine-ring
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2252/00Absorbents, i.e. solvents and liquid materials for gas absorption
    • B01D2252/20Organic absorbents
    • B01D2252/204Amines
    • B01D2252/20436Cyclic amines
    • B01D2252/20447Cyclic amines containing a piperazine-ring
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2252/00Absorbents, i.e. solvents and liquid materials for gas absorption
    • B01D2252/20Organic absorbents
    • B01D2252/204Amines
    • B01D2252/20478Alkanolamines
    • B01D2252/20484Alkanolamines with one hydroxyl group
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2252/00Absorbents, i.e. solvents and liquid materials for gas absorption
    • B01D2252/20Organic absorbents
    • B01D2252/204Amines
    • B01D2252/20478Alkanolamines
    • B01D2252/20489Alkanolamines with two or more hydroxyl groups
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2252/00Absorbents, i.e. solvents and liquid materials for gas absorption
    • B01D2252/20Organic absorbents
    • B01D2252/204Amines
    • B01D2252/20494Amino acids, their salts or derivatives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/20Halogens or halogen compounds
    • B01D2257/202Single element halogens
    • B01D2257/2027Fluorine
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/20Halogens or halogen compounds
    • B01D2257/204Inorganic halogen compounds
    • B01D2257/2047Hydrofluoric acid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/30Sulfur compounds
    • B01D2257/302Sulfur oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/30Sulfur compounds
    • B01D2257/304Hydrogen sulfide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/50Carbon oxides
    • B01D2257/504Carbon dioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/02Other waste gases
    • B01D2258/0283Flue gases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/48Sulfur compounds
    • B01D53/50Sulfur oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/48Sulfur compounds
    • B01D53/52Hydrogen sulfide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/62Carbon oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/68Halogens or halogen compounds

Description

工業工廠排放氣的封存
本發明涉及一種封存多元素氣體的方法,尤其是封存工業工廠所排放之多元素氣體的方法。
來自工業工廠如發電廠(electric power plants)(諸如燃煤系統(coal-fired system))之氣體排放量(emission)係主要受到關注,此歸因於該氣體的可觀體積-質量數十億噸(giga-ton(Gt))二氧化碳(CO2)的排放量,其中每間工廠每年平均排放四百萬噸左右的二氧化碳(IPCC(跨政府氣候變遷小組)報告,ISBN 92-9169-119-4)。當今超過2100間燃煤發電廠(尚未提及其他無數排放一種或一種以上氣體的工業工廠(含製造工廠、組裝工廠(assembly plant)等))係佔全美二氧化碳排放量的33%左右,對應每年二十億噸左右(Science,vol. 317,184(2007)),而燃氣(gas-fired)或燃油工廠亦受到關注。此外,工業程序(industrial process)如煉鋼(steel-making)、熔融玻璃、製造陶瓷為促成二氧化碳排放之主因(如水泥,每間工廠每年排放79萬噸),且此等程序中煉鋼可能產生最高的排放量,其接近燃煤發電廠的排放量(每間工廠每年排放350萬噸)。如上所述,其他多種製造程序亦會產生二氧化碳,如製鋁或製氨。
已提出有數種碳捕捉及封存(Carbon Capture and Sequestration,CCS)的傳統方法,且/或用於排放量控制。一個通常採用之用於二次燃燒(post combustion)的碳捕捉及封存方法係涉及單乙醇胺(monoethanolamine,MEA)的使用。藉此程序,廢氣(flue gas,FG)中的二氧化碳與單乙醇胺便形成加合物(adduct),其中單乙醇胺-二氧化碳加合物可溶於單乙醇胺或單乙醇胺水溶液中。後續將該加合物輸送至氣提塔(stripping tower),於該處,在提升溫度下分離單乙醇胺與二氧化碳,單乙醇胺可被回收或重複使用以形成更多的單乙醇胺-二氧化碳加合物。隨後再將從該加合物釋出的二氧化碳加壓、輸送並儲存或注入於地底下(地質層系(geologic formations)、油井(oil wells)或停採之礦坑(retired mines)中)。進一步如下述,當形成加合物、釋出二氧化碳以及後續儲存二氧化碳於地底下之該方法作為封存方法時,係耗費成本、昂貴且近乎非理想的。
所述程序存有幾個缺點:第一、該單乙醇胺方法僅於下述情況下有效:溫度夠低以助於形成二氧化碳加合物並避免單乙醇胺分解。即,在使廢氣與單乙醇胺接觸之前,須首先將該廢氣冷卻至50℃左右或更低。換言之,將單乙醇胺溶液暴露於該廢氣前須將其冷卻,故存有冷卻該溶液所需的能量成本而導致寄生的電力損失,其亦因電網(power grid)所耗費之額外的電力需求而產生二氧化碳。第二、分離二氧化碳與單乙醇胺所需之氣提塔亦因將該單乙醇胺-二氧化碳加合物溶液加熱至120℃左右所需之大量能量而與其操作成本息息相關。對發電廠而言,需加熱之溶液其大體積將導致大的能量輸入與額外的寄生電力損失。第三、二氧化碳之加壓步驟亦為一伴有寄生電力損失的高成本步驟(「寄生」(parasitic,附加)係指由發電廠產生並理想上可經由電力網傳輸予用戶的能量被所述傳統方法之能量需求所消耗),其中需使用壓縮機(compressor)來達到14 MPa(2000lb/in2)左右或更大的超臨界壓力(supercritical pressures)。
藉由注入至地底下來儲存二氧化碳雖可於世界上優選地點進行,惟管線和維護成本將進一步增加投資資本及操作成本。總之,這些成本問題可能使產物(如電力)成本增加數十個百分比,其中已報導有數字高達81%。
已提出有數種降低耗能的方法。將少量一級或二級胺添加至三級胺中是一種增加吸收劑中之吸收率,同時降低二氧化碳氣提塔中再生(regeneration)步驟之能量需求的方法。然而,溶劑再生所耗費的特定量耗能依舊無可避免,又傳統碳捕捉及封存設備的成本高昂,故建設發電廠所耗費的成本增加可多達87%。除關注成本、溫室氣體排放量、產能率與發電率之外亦關注生態方面,其有關於儲存二氧化碳於地質層系中或海底下之結果(consequence,影響)。長期儲存氣態物質將充滿不確定性及未知的危害。
因此,需有一方法可整合發電、各種製造與其他工業上作業以捕捉並封存此等工業工廠的排放氣,同時減少成本、寄生的能量損失、進而減少溫室氣體(greenhouse gas,GHG)及/或廢氣的產生並將儲存被捕捉之氣體於地底下的花費降至最低。
本發明係提供一種廣用方法,其由較廣的製造實體範圍或作業範圍來減少溫室氣體或廢氣的排放量,並採用一礦物碳酸化程序來提供廣用方法中的一實施例。此處所述的方法可具有負或中性的碳足跡(carbon footprint、碳排放量之衡量)並可分離並封存工業工廠排放之溫室氣體或廢氣,同時產生有用的副產物如陶瓷或適於醫藥中使用的成分。
一實施例係提供一種封存氣體的方法,該方法包括:(1)提供一溶液,其包含至少一可吸收氣體的氣體吸收劑,且該氣體吸收劑含氮;(2)使該溶液與該氣體接觸以藉該至少一氣體吸收劑促進吸收而產生至少第一反應物,且隨後其將存在於該溶液中;(3)提供一包含至少第二反應物的固體;以及(4)使包含該至少第一反應物之該溶液接觸固體的一部分來促進該至少第一反應物與該至少第二反應物之間的反應以提供至少第一產物。
另一實施例為一種封存溫室氣體或廢氣的方法,該方法包括:(1)提供一第一溶液,其包含至少一可與含兩種或兩種以上元素之溫室氣體或廢氣形成加合物的氣體吸收劑,且該氣體吸收劑係含氮;(2)使該第一溶液與該溫室氣體或廢氣接觸以促進包含該至少一氣體吸收劑與該溫室氣體或廢氣之加合物的形成,且隨後該加合物將存在於溶液中;(3)提供一包含至少一反應物的多孔固體;以及(4)使包含該加合物的該溶液接觸該固體來促進一反應,其中使該加合物的該溫室氣體或廢氣與該固體的該反應物反應以提供至少一第一產物。
另一實施例係提供一種封存工業工廠排放氣的方法,包括:(1)提供一溶液,其包含至少一含氣體的第一反應物與至少一含氮的氣體吸收劑;(2)提供一包含至少第二反應物的固體;以及(3)使包含該至少第一反應物的該溶液接觸固體的一部分以促進該至少第一反應物與該至少第二反應物之間的反應來提供至少第一產物。
藉此分離該氣體與該氣體吸收劑,該吸收劑可回收用於後續氣體吸收步驟或其他程序中,因而不需要發電廠或工業工廠中之氣提塔。
另一實施例係提供一種封存多元素氣體的方法,包括:(1)提供一第一溶液,其包含至少一氣體吸收劑,該氣體吸收劑含氮並可與多元素氣體結合而形成一加合物;(2)使該第一溶液與該多元素氣體接觸以促使該加合物形成,該加合物包含該至少一氣體吸收劑與該多元素氣體,隨後該加合物存在於溶液中;(3)提供一包含至少一元素之反應物;以及(4)在促進一反應的條件下使包含該加合物的該第一溶液接觸該反應物,其中使該加合物中的該多元素氣體與該反應物反應以在該溶液中形成至少第一產物與第二產物,其中該第一產物包含該多元素氣體的至少一元素,且其中該第二產物包含該至少一氣體吸收劑的至少一元素與該反應物的至少一元素。
另一實施例為一種由封存多元素氣體來形成有機化合物的方法,包括:(1)提供一第一溶液,其包含至少一氣體吸收劑,該氣體吸收劑含氮並可與多元素氣體結合而形成一加合物;(2)使該第一溶液與該多元素氣體接觸以促使該加合物形成,該加合物包含該至少一氣體吸收劑與該多元素氣體,隨後該加合物存在於溶液中;(3)提供一多元素之反應物;(4)在促進一反應的條件下使包含該加合物的該第一溶液接觸該反應物,其中使該加合物中的該多元素氣體與該反應物反應以在該溶液中形成至少第一產物與第二產物,其中該第一產物包含該多元素氣體的至少一元素,且其中該第二產物包含該至少一氣體吸收劑的至少一元素與該反應物的至少一元素;以及(5)在催化劑的存在下加熱該溶液以形成包含該第二產物的至少一元素的第三產物,其中該第三產物包含一有機化合物。
另一實施例係提供一種由溫室氣體或廢氣封存程序所產生的陶瓷,該程序包括:使多孔基質(porous matrix)的至少一成分與一含溫室氣體或廢氣以及至少一含胺之氣體吸收劑的加合物反應,藉此產生陶瓷,該加合物係由一滲透介質(infiltrating medium)運送以接觸該多孔基質的至少一成分來提供至少第一產物。
另一實施例係提供一種由氣體分離或氣體封存程序(或其等組合)所產生的含氮化合物,該程序包括:於含氮滲透介質中,使固態基質的至少一成分與至少一包含至少一溫室氣體或廢氣的第一反應物反應以在溶液中提供至少第一產物與第二產物,其中該第一產物包含至少一溫室氣體或廢氣的至少一元素,且其中該第二產物包含該固態基質的至少一元素與該反應物的至少一元素;以及在催化劑的存在下加熱該第二產物以形成一包含該第二產物的至少一元素的第三產物,其中該第三產物包含一含氮化合物。
溫室氣體或廢氣的封存
依據此處所述之方法來封存的氣體可為任何可被封存之氣體。例如該氣體可為溫室氣體、廢氣或其等組合。此等氣體之來源可來自工業工廠,包括如發電廠或製造工廠。廢氣可為例如來自工業工廠的排放氣,諸如工業程序產物(或副產物)。溫室氣體可為任何眾所皆知之氣體,如可包括含元素-氫、碳、硫、磷、氧、氮、氟或其等組合的氣體。該氣體分子能夠包含(可見於週期表之)一種、兩種、三種或多種元素。該元素可相同或相異,例如多元素氣體可為含碳及氧元素(原子)之二氧化碳。此外,該氣體可為包含兩個氟原子的氟氣(即F2);該氣體亦可為氣體分子混合物,例如該氣體可包括水蒸氣、二氧化碳、甲烷、一氧化二氮(nitrous oxide,笑氣)、臭氧、氯氟碳化物、硫化氫、硫氧化物、三氧化硫或其等組合。此外,該多元素氣體可較佳包含HF、SO2、SO3、CO2、F2、H2S或其等組合。無拘氣體來源,此處術語「溫室氣體或廢氣」可互換使用。
封存氣體一般係指「以永久形式儲存氣體」,諸如,例如將氣體永久固定於固相或液相中,以固相中為佳。然而,如此處所採用之術語「封存」可包含捕捉、分離與儲存氣體至少其中之一的更普遍程序。捕捉程序可為在永久儲存氣體前吸收或「捕捉」排放氣之程序。氣體「封存劑」(sequesteror)同樣可指捕捉、分離與/或儲存氣體分子的材料。
用於氣體封存的一般條件
此處所述之封存方法可為任何捕捉及/或永久儲存氣體於固相或液相中的合適方法。一此種方法可為水熱液相燒結(hydrothermal liquid phase sintering,HLPS),其可用以製造單晶緻密體(monolithic dense bodies)。亦可將此種程序整合於工業工廠(如發電廠)中,以封存工廠所排放及/或產生之溫室氣體或廢氣。水熱液相燒結程序之敘述可見於如Riman等人之美國專利申請第12/271,566號(美國公開第2009/0143211號)與第12/271,513號(美國公開第2009/0142578號),其中任一者之揭示係整體載入此處以供參照。
在一水熱液相燒結之較佳實施例中,具相連間隙孔的未燒結(green)或部分燒結、多孔且呈固態的基質可藉由液相滲透介質的作用轉變為燒結的陶瓷。可於相對較溫和的條件下實施水熱液相燒結,其通常不超過功能性高壓釜(functioning autoclave)中常見的溫度和壓力。水熱液相燒結可於較廣之溫度和壓力範圍實施,例如在某些實施例中,水熱液相燒結條件可包括溫度低於2000℃左右,如低於1000℃、低於500℃、低於200℃、低於100℃、低於40℃或室溫。反應表之壓力(reaction gauge pressure)可低於100000 psi左右,如低於70000 psi、低於50000 psi、低於10000 psi、低於5000 psi、低於2000 psi、低於1000 psi、低於500 psi、低於100 psi、低於50 psi或低於10 psi。在一實施例中,該水熱液相燒結程序可於溫度範圍80℃左右~180℃左右及壓力範圍1大氣壓左右~3大氣壓左右(1大氣壓為15 psi左右)。注意在此實施例中因為壓力意指表壓力,可藉由將表壓力加上1大氣壓來計算實際壓力。任何可與滲透物種進行水熱反應以產生相異物質的起始基質材料可用來產生水熱燒結產物,故可根據所要之最終用途來選擇多種起始材料,該材料可組成具有所要之形狀和尺寸的固態基質,並後續被用於此處所述方法之步驟中以轉變成燒結完成產物。該固態基質可為多孔基質或實質上緻密的固體。將於後詳述該基質。
此處所述之「水熱反應」可包括發生於水溶液或非水溶液液態介質中的轉變。再者,所述轉變可包括相同化學物種的溶解與再沉澱、一化學物種溶解並與第二化學物種結合以形成複合材料,於該材料中初始化學物種仍明顯存在、或者一化學物種與第二化學物種反應以產生有別於起始物種的新化學官能團(moiety,基元)。藉此,該水熱燒結程序即可由沉澱(或再沉澱)、離子添加、離子取代或其等組合而將官能團填充於多孔固態基質中之間隙(interstitial spaces)或空隙(voids)。該官能團可包含:與固態基質中所含者相同的化學物種、由兩相異化學物種共同再沉澱所產生的複合物(composite)、由兩化學物種間之反應所產生的新產物、由含於介質中之浸滲劑(infiltrant)物種所獲得的再沉澱材料或其等組合。
在一實施例中,可於以下條件下實施水熱液相燒結來產生新產物:使未燒結之多孔固態基質的至少一部分質量與存在於流體介質中之預先選擇的浸滲劑物種反應。例如在本發明的一實施例中,該浸滲劑物種可為上述氣體-胺加合物之氣體,該流體介質可為溶有氣體-胺加合物之溶液。
產物的形狀可由固態基質的形狀來保持。在一實施例中,當產物的莫耳體積大於氧化物粉末的莫耳體積(即莫耳體積變化(量)為正(值),亦即轉變為較大之莫耳體積)時,成核產物便填充緻密體(compact)的間隙並增大其密度。莫耳體積變化不需為正,亦可依據離子物種或反應機制而為負(值)(亦即轉變為較小之莫耳體積)或無變化。例如,基質的一部分可於反應期間溶去而增加其多孔性,同時產生新化學鍵結與負莫耳體積變化。倘若新材料形態同樣具有與由基質損失之體積相同的體積,則實質上並無莫耳體積變化。
水熱液相燒結可經由例如離子添加及/或離子取代來發生反應。離子添加反應係於滲透介質中的離子(陰離子或陽離子)可添加至基質主體而未取代基質中的其他離子的情況下產生,離子添加之實例可包括氧化物至氫氧化物的轉變,或氧化物至碳酸鹽的轉變。離子取代之實例則可包括氫氧化物至碳酸鹽的轉變、或氫氧化物至草酸鹽的轉變。此外,該反應可經由歧化作用(disproportionation,不均反應)產生,其中不溶無機主體/基質材料可分裂成兩不溶無機產物。例如可對氧化物、氟化物、氫氧化物、硫化物、混合金屬氧化物、矽酸鹽、羥磷灰石(hydroxyapatites)進行歧化作用。
異質成核(heterogeneous nucleation)亦可能發生於反應期間。如前述,密度變化係依據基質材料及/或所形成的產物類型。水熱反應一旦完成,則開孔可進一步由例如熟化(aging)來移除。當上述反應完成後,可將緻密化單晶基質清洗(rinse)並浸漬於溶液中以洗去過多的滲透溶液。清洗溶液可為任何合適溶液,諸如,例如pH 5下之乙酸銨。在一實施例中,可後續在室溫附近至300℃,如90~250℃下於烘箱中乾燥該緻密化之基質。可能存在於燒結陶瓷中的殘餘孔隙可由加熱至較高溫,如500℃與700℃之間或600℃左右來進一步移除。
以水熱液相燒結程序所燒結之產物可為陶瓷形態。此種陶瓷可具有多種應用,如其可用作構造上使用、化學上使用(如催化劑、過濾)、電子組件、半導體材料、電子材料或其等組合。另一方面,所產生之產物可為具有某種能使之用作(一部分)醫藥成分之特性的成分,或包含此種成分之成分。
氣體的封存
基於水熱液相燒結的反應程序可經由溶解-再沉澱反應機制產生,此外該反應可由離子取代反應產生。前者中,少部分緻密化多孔固態基質能溶解並提供可與浸滲劑溶液中之離子反應的溶解物種;該浸滲劑溶液中之離子可為金屬離子。在一實施例中,可於單一步驟中添加足以產生完全反應的浸滲劑量。此外,其可涉及多個步驟,如可涉及多種浸滲劑。在一實施例中,鈦酸鍶可由氧化鈦基質形成,之後再藉由另一滲透步驟便可形成鍶磷灰石。此外,經由多次滲透可形成碳酸鹽,而後即可形成草酸鹽保護層。在另一實施例中可將緻密體部分滲透並乾燥之,且該滲透步驟可重複至產生最終產物為止。
一使用基於水熱液相燒結之反應來封存溫室氣體或廢氣的實例係涉及使至少兩反應物接觸並隨後使其等反應。第一反應物可含於一溶液中並可處於意指至少一氣體及至少一氣體吸收劑之「滲透物種」或「浸滲劑」的形態。氣體吸收劑可為以氮為基之吸收劑,例如其可含氨或胺,如單乙醇胺(MEA)、二乙醇胺(DEA)、甲基二乙醇胺(MDEA)、2-胺基-2-甲基-1-丙醇(AMP)或其等組合;將於後續段落中詳述氣體吸收劑。氣體可為任何多元素溫室氣體或廢氣,氣體吸收劑可含胺並可進一步與氣體形成加合物,該加合物可透過氣體吸收劑吸收氣體而形成。第二反應物可為基質一部分並可為例如多元素反應物,一後續段落將進一步詳述該基質。在此實施例中,第一與第二反應物可於控制環境下反應以產生多種產物,例如第一產物可結合有該氣體之一種或以種以上的元素。使氣體轉變為至少一反應產物,由此封存氣體。
在氣體封存方法的一實施例中,當氣體係由工業工廠排放時,氣體吸收劑可與氣體形成加合物。即,使包含至少一以胺為基之氣體吸收劑的溶液接觸工業工廠排放氣,且氣體吸收劑可為任何能吸收氣體之合適吸收劑。在此實施例中使氣體吸收劑吸收氣體,藉此可產生反應物如上述第一反應物,且該反應物可進一步與基質反應。此外,第一反應物無需在氣體排放時形成,例如此處所述的氣體封存可應用於一封存程序,於其中供給氣體以形成處理後之「預吸收(pre-absorbed)(狀態)」。換言之,第一反應物係以其「原本狀態」(as is)被供給至封存程序中而非在封存程序中產生。此種預形成之第一反應物的一實例可為:形成於與將進行封存之處所相異的處所的第一反應物。
各種類型的產物可藉由此處所述之方法形成,例如產物可為多元素成分,其中元素之一係來自工廠排放氣。舉例而言,該成分可包含(或為)醫藥成分或陶瓷。在一實施例中,產物可包含無機化合物,其包括如上述之陶瓷,另外其可為有機化合物,諸如含氮有機化合物。可對此種有機化合物進一步進行處理以形成至少一另一化合物。此外,反應可產生多數產物化合物,例如於一實施例中,加合物與存在於固態基質中的反應物之間的反應可形成第一產物,此產物可包含該氣體的至少一元素,即元素「碳」(若該氣體為二氧化碳(CO2))。在此實施例中,可產生第二產物,且其可包含來自滲透溶液/基質的至少一元素、以及來自該基質之該反應物的至少一元素。
於一實施例中,含氮化合物係藉由封存程序產生。在此實施例中,使一固態基質與含至少一試劑之溶液反應,該試劑可包含進一步含有至少一溫室氣體或廢氣與氣體吸收劑的加合物,並可在一滲透介質中。該反應可如上所述,由反應結果形成第一產物,其包含該氣體的至少一元素。亦可形成第二產物,其包含該固體基質的至少一元素、以及氣體吸收劑的至少一元素。可實施附加之步驟,如可實施一附加步驟來增加任何產物的濃度。舉例而言,在一實施例中,透過一加熱步驟來增大第二產物的濃度,以便進一步形成包含該第二產物之至少一元素的第三產物,該第三產物可為例如醫藥成分或其中之一部份成分,該醫藥成份可為哌嗪。該第三產物亦可包含亞硝酸單乙醇銨(monoethanolammonium nitrite),此外其可包含乙醯胺。在另一實施例中,該第三產物可包含不同產物的前驅物(precursor),於一實施例中該前驅物為一氧化二氮氣體(即笑氣)的前驅物。於一氧化二氮氣體之此實施例中,在加熱步驟期間並無需使用催化劑。
該加熱步驟可例如於催化劑的存在下實施,該催化劑可包含如金屬的鹵化鹽。該金屬可為例如鋅、鐵、鋁、鎂或其等組合;該催化劑可為去水催化劑,如鋅、鐵、鋁或鎂之鹵化鹽或其等混合物。該加熱步驟可依據所涉及之材料於任何適合溫度下實施,例如其可從100℃左右至500℃,如150℃左右至400℃左右、200℃左右至300℃左右或220℃至250℃左右。
視材料而定,任何已述之產物可為無機性或有機性,且此等產物無需相同,例如第一產物可為有機性,然第二產物可為無機性(反之亦可)。該無機(性)產物可為陶瓷,例如該陶瓷可包含碳酸鹽。在一實施例中,第一產物可包含硫化物(sulfide)、亞硫酸鹽(sulfite)、硫酸鹽(sulfate)、碳酸鹽或其等組合。在一碳分離/封存實施例中,氣體吸收劑如碳氣體吸收劑首先於溶液中與溫室氣體或廢氣形成一加合物,接著該加合物與固態基質如具間隙的多孔固態基質反應,包含該加合物之滲透溶液便填充間隙部分以促進該加合物與存在於該基質中的反應物之間的反應而產生一產物,如陶瓷產物。該產物可含有該氣體之至少一元素。
又該產物可為有機產物如含氮有機化合物;此類化合物可為例如適用於醫藥成分中者,如哌嗪(piperazine)。另一方面,該化合物可包含一氧化二氮或亞硝酸單乙醇銨的前驅物。
一種或一種以上產物形成之後,可進一步對該氣體吸收劑進行處理以使其從該加合物釋放,藉此可回收該氣體吸收劑並將其重複使用於下一個封存程序或其他程序中。
可對上述任何產物進一步進行處理,例如在一實施例中形成陶瓷顆粒(未燒結之緻密體),該顆粒可經由標準輸送系統流送至自動乾燥壓機(automated dry presses),且此等壓機能以高達每分鐘數千件之速率壓印出形狀,藉此可進行單晶陶瓷未燒結體的量產(mass production)。隨後可將此等未燒結體在水熱液相燒結條件下予以緻密化,由此使之強固而使用於廣範圍的應用(如建造應用上的構造材料)中。因此,在一實施例中,溫室氣體或廢氣封存的一副產物可為陶瓷,且該產物亦可用作支撐劑(proppants)及屋頂材料(roofing)或衛生掩埋(landfill)用的集料(aggregate)。在一實施例中,使用顆粒有其優點,包括實質上將噴霧乾燥單元之所需降至最低,因此可實質上降低能量、勞力與原料所需的成本。
基質
基質可為各種固體類型,在一實施例中較佳含有可與滲透物種或加合物反應的基質以形成固態產物(將進一步述於後)。來自此反應的產物可為非溶性,且較佳於一實施例中,在反應期間不形成液體(如水)。須注意在附加程序(如另外反應性化學程序)中,可將產物用作反應物以形成其他產物(其後可為固體或液體),此種另外的程序將述於後。
於一基質為固態基質的實施例中,該基質(或可改稱起始材料)可處於粉末緻密體之形態,固態基質則可處於緻密固體或多孔固體之形態。例如,固體基質的孔隙率(porosity)可為任何較佳值,如大於20%左右、大於40%左右、大於60%左右、大於70%左右、大於80%左右或大於90%左右。在一實施例中,微粒化粉末可作為能被壓製成成形(shaped)對象物的進料(feedstock)來使用。且可採用多種對微粒化粉末進行處理的技術,包括噴霧乾燥法,惟此等技術中的某一些可能具有較高成本。在一實施例中,發電廠廢氣的熱可用作乾燥媒介以形成用以製造緻密體的陶瓷顆粒。粉末緻密體亦可為漿料的一部分,在一實施例中可將陶瓷漿料噴灑至洗滌塔。該漿料可包含一種或一種以上粉末且該粉末可包含廣範圍之材料如陶瓷,例如該漿料可包含碳酸鹽如碳酸鈣,其可用以對溫室氣體或廢氣(如含硫者,包括SO2)進行(氣體)洗滌(scrub)。氣體洗滌可於噴霧乾燥之前或之後進行。在一實施例中,噴霧乾燥塔可為對溫室氣體或廢氣進行氣體洗滌之後處理的一部分。
可藉由任何該領域中廣為人知的方法來噴灑漿料,包括例如同向流(co-current flow)或逆向流(counter-current flow)。可採用任何適用於工廠的洗滌器例如,如Babcock and Wilcox(B&W)所設計之商業洗滌器可適用於製造並收集陶瓷顆粒。
基質可包含與上述滲透介質中的另一反應物接觸或反應的反應物,且基質中的反應物可進一步包含氣體分離器與氣體封存劑的至少其中之一者。
在一實施例中,多孔固態基質係由氧化物粉末如金屬氧化物粉末及/或陶瓷獲得。粉末可為非晶或呈結晶,較佳呈結晶。再者,該金屬氧化物粉末可具有平均粒徑為0.01微米左右~100微米左右,包括例如0.02微米左右~50微米左右、0.04微米左右~20微米左右或0.08微米左右~10微米左右之廣範圍的顆粒大小。在一實施例中,粉末具有0.1微米左右~5微米左右的平均粒徑。
金屬氧化物中的金屬可選自IIA族金屬、IIB族金屬、IIIB族金屬、IVB族金屬、VB族金屬、過渡金屬、鑭系金屬、錒系金屬(actinide metal)或其等組合。所選擇之金屬氧化物或燒結完成產物較佳可具有具潛力之化學、陶瓷、磁性、電子、超導(superconducting)、機械、構造甚或生物上的應用;該燒結完成產物則可具有工業上或家庭中的實用性。該完成產物未必需包含與反應物相同的材料,例如實質上不含鈦酸鋇(BaTiO3)的產物可由包含鋇及/或鈦的反應物產生。然而,在不同實施例中,含反應物(或一種以上反應物)的鋇及/或鈦可主要當作中間反應物種,故未必需含於最終產物中。
基質可包含以下所述之能與來自滲透介質/溶液的滲透物種反應的至少一反應物,該反應物可包含至少一元素,如一種、兩種或三種元素。該基質可包含至少一工業廢棄物,例如該基質可包含紅泥(red mud)、煤炭、石膏、木材或一般由工廠所產生的廢料(garbage)。該基質可為來自實施於工廠中之程序的副產物、或以氣體封存為目的而特別製備者,例如在一實施例中,該基質為由工廠產生之熱廢氣所生成的固態基質。
於固態基質的情況下,該固態基質可包含不會立即溶於溶液中的材料。在一實施例中多孔固態基質係由粉末獲得,且該粉末可為任何種類,例如可為金屬氧化物粉末。合適之金屬氧化物實例可包括下述金屬之氧化物:鈹(如BeO)、鎂(如MgO)、鈣(如CaO、CaO2)、鍶(如SrO)、鋇(如BaO)、鈧(如Sc2O3)、鈦(如TiO、TiO2、Ti2O3)、鋁(如Al2O3)、釩(如VO、V2O3、VO2、V2O5)、鉻(如CrO、Cr2O3、CrO3、CrO2)、錳(如MnO、Mn2O3、MnO2、Mn2O7)、鐵(如FeO、Fe2O3)、鈷(如CoO、Co2O3、Co3O4)、鎳(如NiO、Ni2O3)、銅(如CuO、Cu2O)、鋅(如ZnO)、鎵(如Ga2O3、Ga2O)、鍺(如GeO、GeO2)、錫(如SnO、SnO2)、銻(如Sb2O3、Sb2O5)、銦(如In2O3)、鎘(如CdO)、銀(如Ag2O)、鉍(如Bi2O3、Bi2O5、Bi2O4、Bi2O3、BiO)、金(如Au2O3、Au2O)、鉛(如PbO、PbO2、Pb3O4、Pb2O3、Pb2O)、銠(如RhO2、Rh2O3)、釔(如Y2O3)、釕(如RuO2、RuO4)、鎝(如Tc2O、Tc2O3)、鉬(如MoO2、Mo2O5、Mo2O3、MoO3)、釹(如Nd2O3)、鋯(如ZrO2)、鑭(如La2O3)、鉿(如HfO2)、鉭(如TaO2、Ta2O5)、鎢(如WO2、W2O5)、錸(如ReO2、Re2O3)、鋨(如OsO、OsO2)、銥(如IrO2、IR2O3)、鉑(如PtO、PtO2、PtO3、Pt2O3、Pt3O4)、汞(如HgO、Hg2O)、鉈(TlO2、Tl2O3)、鈀(如PdO、PdO2)、鑭系氧化物、錒系等之氧化物。又視所涉及的特殊應用而定,金屬氧化物之混合物亦可用以製作預形體(preform)。
基質亦可包含氫氧化物如金屬氫氧化物。舉例而言,其可包含氫氧化鎂(Mg(OH)2)、氫氧化鈣(Ca(OH)2)、氫氧化鍶(Sr(OH)2)、氫氧化鋇(Ba(OH)2)、氫氧化鉻(Cr(OH)2)、氫氧化鈦(Ti(OH)2)、氫氧化鋯(Zr(OH)2)、氫氧化錳(Mn(OH)2)、氫氧化鐵(Fe(OH)2)、氫氧化銅(Cu(OH)2)、氫氧化鋅(Zn(OH)2)、氫氧化鋁(Al(OH)3)或其等組合。
基質亦可包含氟化物如金屬氟化物。舉例而言,其可包含氟化鎂(MgF2)、氟化鈣(CaF2)、氟化鍶(SrF2)、氟化鋇(BaF2)、氟化鉻(CrF2)、氟化鈦(TiF2)、氟化鋯(ZrF2)、氟化錳(MnF2)、氟化鐵(FeF2)、氟化銅(CuF2)、氟化鎳(NiF2)、氟化鋅(ZnF2)、氟化鋁(AlF3)或其等組合。
基質亦可包含混合金屬氧化物如金屬鈦酸鹽。舉例而言,其可包含鈦酸鎂(MgTiO3)、鈦酸鈣(CaTiO3)、鈦酸鍶(SrTiO3)、鈦酸鋇(BaTiO3)或其等組合。
基質亦可包含硫酸鹽如金屬硫酸鹽。舉例而言,其可包含硫酸鎂(MgSO4)、硫酸鈣(CaSO4)、硫酸鍶(SrSO4)、硫酸鋇(BaSO4)、硫酸鉻(Cr2(SO4)3)、硫酸鈦(TiSO4、Ti2(SO4)3)、硫酸鋯(ZrSO4)、硫酸錳(MnSO4)、硫酸鐵(FeSO4)、硫酸銅(CuSO4)、硫酸鎳(NiSO4)、硫酸鋅(ZnSO4)、硫酸鋁(Al2(SO4)3)或其等組合。
基質亦可包含矽酸鹽或水合矽酸鹽如金屬矽酸鹽或金屬水合矽酸鹽。舉例而言,其可包含偏矽酸鋰(lithium metasilicate)、正矽酸鋰(lithium orthosilicate)、偏矽酸鈉、矽酸鈹、矽酸鈣、正矽酸鍶、偏矽酸鋇、矽酸鋯、偏矽酸錳、矽酸鐵、正矽酸鈷、正矽酸鋅、偏矽酸鎘、紅柱石(andaluste)、矽線石(sillimanite)、藍晶石(kyanite)、高嶺石、矽酸鎂、水合矽酸鎂、水合矽酸鈣或其等組合。基質亦可包含礦物如矽酸鹽礦物,譬如無機矽酸鹽(inosilicate)(矽灰石(wollastonite))、島狀矽酸鹽(neosilicate)(橄欖石)、頁矽酸鹽(phyllosilicate)(蛇紋石(serpentine))、架狀矽酸鹽(tectosilicate)(長石(feldspar))或其等組合。
基質亦可包含鋁矽酸鹽如金屬鋁矽酸鹽。舉例而言,其可包含鋁矽酸鈣、鋁矽酸鈉鈣、鋁矽酸鉀鈣、鋁矽酸鈉鎂或其等組合。
基質亦可包含羥磷灰石如金屬羥磷灰石。舉例而言,其可包含碳酸鈣、四水合硝酸鈣(calcium nitrate tetrahydrate)、氫氧化鈣或其等組合。
除上述任何材料及其他以外,基質可進一步包含惰性填充材料。惰性填充材料可為任何攙入基質中以填充孔隙,且未與滲透物種產生重要反應而形成化學鍵結的材料,例如惰性材料可為木材、塑膠、玻璃、金屬、陶瓷、灰渣(ash)或其等組合。
在粉末的情況下,該粉末可由平均粒徑為0.005 μm左右至500 μm,如0.01 μm左右至100 μm左右、粒徑分布與比表面積來鑑定。對增大溶解作用而言,係以細微的平均粒徑與窄的粒徑分布為佳。該粉末可經由任何傳統技術,包括擠壓成型(extrusion)、射出成型(injection molding)、模壓法(die pressing)、均壓法(isostatic pressing)與注漿成型(slip casting)來形成具任何所要之形狀和大小的未燒結體,也可形成陶瓷薄膜。可採用任何用於使緻密體成形之含相似材料的潤滑劑及/或黏結劑,且其不應對所產生的材料造成不良影響。此等材料較佳為以下類型:於相對較低溫下(較佳低於500℃)蒸發或加熱燒去而未留下明顯殘餘部分(residues)者。
基質可包含例如礦物、工業廢棄物或工業化學材料。礦物可為例如矽酸鹽礦物、鐵礦(iron ore)、方鎂石(periclase)或石膏;工業廢棄物可為例如氫氧化亞鐵、飛灰、底灰、熔渣(slag)、玻璃、油殼類(oil shells)、紅泥、電池廢棄物、回收水泥、尾礦(砂)(mine tailing)、紙灰或來自濃縮逆滲透鹽水(concentrated reverse osmosis brine)的鹽類;且工業化學材料可為任何由工廠或一般工業所合成或製備的化學品。
緻密體可形成產物材料之形狀與尺度(dimension),且該產物材料具預定的形狀與大小。該緻密體可處於任何形態。該緻密體的開孔率(0~80%(體積))可取決於反應產物的莫耳體積與粉末的莫耳體積的比(例)。產物材料可為例如單晶體,如單晶緻密體。在一實施例中,形成於緻密體孔隙中的反應產物可具有較粉末為大的莫耳體積。在反應期間,反應產物可具有大於氧化物粉末的莫耳體積以填充緻密體之間隙,例如,若反應產物的莫耳體積為氧化物粉末的莫耳體積的兩倍時,則該緻密體應具有50%(體積)左右的開孔率。
起始粉末緻密體的孔隙可較小,例如0.01微米(μm)~100 μm左右,如0.1 μm左右~1 μm左右且均勻分佈於整個緻密體,由此可使浸滲劑溶液完全穿透該粉末緻密體。孔隙體積容量(含閉孔率及開孔率兩者)與孔徑可由標準方法測定,譬如汞滲孔隙儀(mercury intrusion pore sizer)可用以評估此三參數。
用於基質的反應物材料可為任何以上所述者。進而,基質中的反應物可由反應物之前驅物形成,例如該反應物可藉由使反應物之前驅物與另一試劑(如鹼溶液(basic solution))反應而形成。鹼溶液可包含例如氫氧化物,如金屬氫氧化物。在一實施例中,該固態基質可至少部分地由熱氣體(如工業工廠產生之廢氣)所生成的熱來製備。
滲透介質
如前述,水熱封存法可利用水溶液或非水溶液媒介。液態溶劑的選擇可取決於能成為滲透介質一部分的滲透物種。此處術語「滲透物種」一般係指任何含於滲透介質溶液中的分子;在水熱燒結程序之條件下,該物種可具有含於液態溶劑中的實質溶解度,例如,倘若該浸滲劑物種為離子性則液態溶劑可為水。某些非離子性浸滲劑在水溶液媒介中亦可擁有足夠的溶解度。此外,該物種可為包含氣體加合物的反應物,且該加合物可包含氣體吸收劑與該氣體吸收劑所吸收的氣體分子。在將其用以封存溫室氣體或廢氣時,該介質可改稱「氣體捕捉溶液」。該滲透物種可作為與基質中另一反應物反應的反應物,在一實施例中,該物種可包含氣體吸收劑與氣體分子,且氣體分子能由該氣體吸收劑吸收。在吸收過程中,該氣體吸收劑可幾乎不與氣體分子產生化學反應。
氣體吸收劑可為任何吸收氣體的分子類型,例如其可為以胺(類)為基之氣體吸收劑。胺類可為任何該領域中已知的胺類;該胺類可例如包含一級胺、二級胺、三級胺、四級胺或其等組合。其亦可包含氨;烷醇胺;混合或單一類型之聚胺;環胺或芳香胺;胺基酸;以及無立體障礙與具立體障礙之胺類(sterically free and hindered amines)。該胺類亦可包含單乙醇胺(MEA)、二乙醇胺(DEA)、乙基二乙醇胺、甲基二乙醇胺(MDEA)、2-胺基-2-甲基-1-丙醇(AMP)、3-哌啶-1,2-丙二醇、3-奎寧醇(3-quinuclidinol)、2-哌啶乙醇、2-哌啶甲醇、N,N-二甲基乙醇胺、2-胺基-2-甲基-1,3-丙二醇、二異丙醇胺、哌嗪或其等組合。附加材料亦可見於「Puxty等人,Environ. Sci. Technol.,2009,43,6327-6433」。此外,該胺類亦可為專屬胺類(proprietary amine)如Flexsorb、KS-1、KS-2、KS-3或其等組合;此等胺類之敘述可見於例如「Gupta等人,加拿大之二氧化碳捕捉技術與機會,第一屆加拿大碳捕捉及封存技術規劃藍圖研討會,2003年9月18~19日於加拿大亞伯達省卡爾加里市(Gupta et al.,CO2 capture technologies and opportunities in Canada. 1st Canadian CC&S technology roadmap workshop,18-19 sep 2003,Calgary,Alberta,Canada.)」。
例如,氣體吸收劑可包含氨、單乙醇胺(MEA)、二乙醇胺(DEA)、甲基二乙醇胺(MDEA)、2-胺基-2-甲基-1-丙醇(AMP)或其等組合。在某些場合,可添加表面活性劑(如聚矽氧烷、聚乙二醇與烷基二甲胺氧化物等)至滲透介質中。
氣體吸收劑可進一步包含鹼如鹼性溶液、有機鹼及/或無機鹼。有機鹼可為任何有機材料,可例如為以胺為基之氣體吸收劑如單乙醇銨。其亦可為充當路易士鹼的聚合物,如有機鹼可為吡啶。無機氣體吸收劑可包括含鹵素元素的材料。滲透介質較佳含有水溶性鹽類如金屬鹽類(即離子形態之金屬),此種鹽類的陽離子例如可來自以下金屬:鈹、鎂、鈣、鍶、鋇、鈧、鈦、釩、鉻、錳、鐵、鈷、鎳、銅、鋅、鋁、鎵、鍺、錫、銻、銦、鎘、銀、鉛、銠、釕、鎝、鉬、釹、鋯、鐿、鑭、鉿、鉭、鎢、錸、鋨、銥、鉑、金、汞、鉈、鈀、鑭系金屬陽離子、錒系金屬陽離子或其等混合物。此外,該陽離子可為銨。
一般而言,溶於滲透溶液中之鹽類的陰離子可例如來自以下群組:氫氧化物、硝酸鹽、氯化物、乙酸鹽、甲酸鹽、丙酸鹽、乙酸苯酯、苯甲酸鹽(苯甲酸酯)、羥基苯甲酸鹽(酯)(hydroxybenzoates)、胺基苯甲酸鹽(酯)、甲氧基苯甲酸鹽(酯)、硝基苯甲酸鹽(酯)、硫酸鹽、氟化物、溴化物、碘化物、碳酸鹽、草酸鹽、磷酸鹽、檸檬酸鹽、矽酸鹽或其等組合。可選擇含於浸滲劑的金屬離子與氧化物粉末的金屬離子的莫耳比,來達到所要的化學計量反應產物,並可能需要溶液中過量的(excess)金屬離子來幫助達到完全反應。
視滲透介質與基質材料而定,若涉及含鈦材料則所得的燒結產物可為例如鈦酸鹽。舉例言之,具鈦鐵礦(ilmenite)結構的鈦酸鹽可於水中,由TiO2與Fe2+、Mg2+、Mn2+、Co2+、Ni2+之鹽類或其等組合來獲得;具鈣鈦礦(perovskite)結構的鈦酸鹽則可由Ca2+、Sr2+、鋇離子之鹽類水溶液或其等組合來製備。又,可獲得具尖晶石(spinel)結構的化合物,其包括Mg2TiO4、Zn2TiO4與Co2TiO4。再者,鈦酸鋇的不同相(phase,晶相)(如具結構式BaxTiyOx+2y者,其中x與y為整數)可由本發明方法來獲得。
此外,所得的燒結產物可為碳酸鹽、硫酸鹽、草酸鹽或其等組合;所能採用的材料可以包括使用傳統燒結方法時,於燒結前可分解的材料,例如在習知燒結方法中,加熱碳酸鹽於燒結前其將分解成其氧化物。碳酸鹽、硫酸鹽或草酸鹽可例如分別為金屬碳酸鹽、金屬硫酸鹽或金屬草酸鹽,其中包含可見於週期表之金屬的陽離子。
工業工廠
此處所述之基於水熱液相燒結的封存程序可與既存的工業工廠整合,以提供精簡(compact)、具能源效益(energy efficient)且環保(environmentally friendly)的程序來封存工廠所產生的溫室氣體及/或廢氣。該程序可為廣用性(versatile)並採用廣範圍的原料,此可使該程序被用於能方便取得的成分(如工廠廢棄物)中,由此將運輸成本降至最低。
一此類工廠可為排放氣體如多元素氣體之工業工廠。該工廠可包含一種或一種以上的裝置以封存工業工廠排放氣。藉由裝置可促進第一反應物與第二反應物之間的反應,該第一反應物係由氣體與至少一含氮(如胺)的氣體吸收劑構成,而該第二反應物則提供為固體以產生至少一產物。該產物可結合有多元素氣體之一種或一種以上元素以封存該多元素氣體。
溫室氣體或廢氣如二氧化碳可來自各種來源,例如在一實施例中,二氧化碳係於低溫下(如低於200℃左右、低於100℃左右、於50℃左右或於室溫附近)從廢氣中捕捉(「二次燃燒捕捉」)。此處所述之封存程序可與其他適合的工業上作業,如工業分離、預燃(pre-combustion)與基於富氧燃燒之方法(oxyfuel-based approaches)整合。在一實施例中,該程序可捕捉大於70%,如大於80%、大於90%或大於95%之產生的溫室氣體或廢氣。
工廠可為任何類型的工業工廠,如製造工廠、發電廠、電力發電廠、處理工廠或其等組合。該工廠可為利用固態燃料、液態燃料、氣態燃料或其等組合者。該固態燃料可包含煤炭、該液態燃料可包含化石燃料(fossil fuel),而該氣態燃料則可包含天然氣(如甲烷、乙烷、辛烷等)。由於此處所述之封存方法無需涉及氣提塔,故工廠無需具備氣提塔。氣提塔可用以分離氣體與含該氣體的混合物,其中該混合物可包含氣體吸收劑。此外,工廠可具備氣提塔,惟此種塔並未實際涉及此處所述之封存程序。
本文所述的工業工廠可具備氣體分離塔或氣提塔,或者未具備氣提塔。在任一場合中,本文所述的方法並未涉及使用氣提塔以分離該氣體與傳統所使用的單乙醇胺,故可節省極為大量的能量(及成本)。該氣體可為任何類型的氣體如溫室氣體或廢氣,包括二氧化碳、或一般含碳、硫、磷、氮、氫、氧或其等組合的氣體。工廠則可為任何類型的工業工廠如發電廠,此外其亦可為涉及有工業程序,包括水泥、肥料、金屬(如鋼、鋁)或玻璃的工廠。工廠可利用任何類型的燃料,如固態燃料、液態燃料、氣態燃料或其等組合。該固態燃料可為例如煤炭、該液態燃料可為例如化石燃料,而該氣態燃料則可為例如天然氣。
產物的鑑定
水熱液相燒結可產生具甚為均勻且非常細微之微米結構的燒結產物。燒結材料的孔隙率可例如小於15%左右,如小於10%左右或小於5%左右,甚或實質上完全緻密。緻密體的總孔隙率可由標準技術來測定,譬如使用汞孔隙儀,密度則可使用傳統技術如阿基米德汞孔隙儀來估量。
進行水熱液相燒結程序後的燒結材料其一特徵為:可具有與起始未燒結緻密體相同之形狀或相等之大小。在一實施例中,相對於多數陶瓷製造程序,該產物實質上並無莫耳體積變化且未有導致緻密體收縮的可能性,故僅需對燒結材料極小部分進行機械加工(machining),或無需對其進行機械加工。
燒結材料的組成
如實施例所說明,可採用廣範圍之化學成分來製作燒結材料,又形成燒結材料所涉及之相異金屬氧化物與鹽類的數目並未限於任何特殊方式。此外,最終產物的化學計量可由存在於未燒結緻密體與滲透介質中之反應物的莫耳比來指定,且燒結材料的組成可使用定量X光繞射(Quantitative X Ray Diffraction,QXRD)及感應耦合電漿(Inductively Coupled Plasma,ICP)來鑑定。
微結構與相關機械特性
水熱液相燒結程序的產物可具有實質上類似網狀互聯網格(net-like interconnecting network)的微結構。由該水熱液相燒結程序製得的單晶亦能展現出複合結構,如芯殼(core-shell)結構。此外,產物可具有優異的機械特性,如高拉伸強度(tensile strength)、高壓縮強度及較佳的拉伸模數(tensile modulus)。此種強化可緣於:在該程序期間,藉離子取代、離子添加、奧斯華爾德熟化(Ostwald ripening,即,可形成新網格之再結晶(recrystalline))或其等組合形成於以物理方式鍵結的顆粒之間的化學鍵結。在一實施例中,奧斯華爾德熟化可能涉及使含於鹼性介質中的碳酸鹽材料熟化。又,當正莫耳體積變化存在時,可如前述般達到緻密化。
水熱液相燒結可提供替代方法以在適當的溫度及/或壓力條件下,於流體中形成欲研究的各種陶瓷材料來取代利用高溫程序製造陶瓷。該陶瓷可為任何類型,例如其可包含結晶無機材料、非晶無機材料、傳統陶瓷或其等組合。該結晶無機材料可包含例如非金屬,如氮化碳(carbon nitride)、或金屬與非金屬物種,如石英、氮化鈦、氧化釔(yttria)、氟化鈣或其等組合。該非晶無機材料可包含例如非金屬,如非晶碳、或金屬與非金屬物種,如氧化矽、鋯鑭合金(zirconium-lanthanum)、氟化鈉鋁(aluminum-sodium-fluoride)、氮氧化矽(silicon oxynitride)或其等組合。
陶瓷晶體可在未使用如傳統步驟中之「修正的(corrective)」研磨程序的情況下製作,並能擁有具用來製作材料之適當反應性的晶體大小和形貌(morphology,形態)。再者,由水熱液相燒結產生之產物其化學鍵可為實質上不含水硬鍵結(hydraulic bonds,水硬結合)的陶瓷鍵結(ceramic bonds,陶瓷結合)。傳統水泥因具水硬鍵結,故可能相對其機械強度,於200℃左右開始分解,並可能於1000℃下失去其幾乎所有強度。透過實質上極力減少水硬鍵結(即涉及水分子或其中多部分之鍵結)的形成,由水熱液相燒結產生的陶瓷即可耐受至少1000℃左右的溫度。
無水硬鍵結(hydraulic-free bonds)能夠包括可見於陶瓷中的各種不同類型鍵結,例如非水硬鍵結(non-hydraulic bonds)可包括氫鍵,如介於氟離子與羥基之間或介於磷酸鹽基與羥基之間者。非水硬鍵結亦可包括離子鍵、共價鍵、具部分離子性與共價性的鍵結或具共價性及/或金屬性的鍵結諸如:例如可見於陶瓷中(二硼化鈦(titanium diboride,TiB2)等)的鍵結。
其他採用水熱液相燒結來產生水泥或陶瓷的益處一般可包括以較短反應時間形成陶瓷產物。水熱反應可基於水溶液反應,於其中陶瓷可直接由其溫度典型上低於400℃,如低於300℃或於室溫附近的溶液形成。
所產生之陶瓷亦可因幾乎未消耗水、實質上不含水硬鍵結且大多數為陶瓷鍵結而高度緻密。例如,水泥中的鍵結可藉由使水中成糊(slurred)的粉末水合來生成。相對於傳統陶瓷其大多數鍵結係由高溫燒成(high temperature firing)引發的擴散(diffusion)所生成,水熱液相燒結陶瓷可藉由使粉末或固態基質的單晶緻密體與滲透介質反應來填充間隙(即孔隙)而形成。於此等間隙中,晶體成核與生長可使彼此之間形成化學鍵並與粉末基質形成化學鍵,以生成具陶瓷鍵結的單晶體。因此,不同於水硬水泥膠結程序(hydraulic cementation process),其能夠形成穩定性可為至少1000℃左右,如2000℃左右的無水陶瓷鍵結。再者,不同於傳統緻密化程序(如固態燒結),該反應溫度可低於90℃左右,如50℃或室溫。
如前述,水熱液相燒結程序的產物可進行莫耳體積變化(增或減),或可實質上無變化。在一實施例中莫耳體積變化為正,並可發生緻密化。在一實施例中,該固態基質可充當支架(scaffold)以使鍵結結構形成且其尺度實質上未發生變化,故實質上無誘發缺陷(defects)如裂痕(crack)或瑕疵形成的可能。若該材料未改變其尺度,則結構的相對孔隙率可藉由選擇反應性化學過程(reactive chemistry)來控制,其中產物和反應物之間的莫耳體積變化百分比可由殘留於結構中的孔隙率來決定,例如使50%多孔結構反應以形成具100%莫耳體積變化的產物可完全達到緻密化。在一實施例中,具大孔徑可較佳達到完全轉換。應注意初始密度可由同時選擇基質粉末與用以壓實(pack)該粉末之成形技術來控制。
存有多種使陶瓷與由該反應形成的晶體結合時,可操控體積增減以使孔隙率發生變化的反應,例如將基質CaSO4轉換成CaC2O4‧H2O可使莫耳體積增加(緻密化)44.4%,而將CaSO4轉換成CaCO3則可能使莫耳體積減少量為(增加孔隙率)-19.7%。此程序的控管可進一步由以下控制:將具負體積變化與正體積變化的成分混合,且該成分的淨密度(孔隙分率(pore fraction))變化可被操控成零、正值或負值。在一實施例中,莫耳體積增加量可能大至616%(體積),而莫耳體積減少量則可能為50.2%(體積)。
增減孔隙率的能力可具有較大的實用性。舉例言之,大的莫耳體積增加量可具有對低密度基質(如可摻入道路建築物材料或建築物結構中的集料)提供大擴張空間(expansion)的實用性。另一方面,大的體積減少量可用來改良運輸或反應溶液,當反應進行時藉由增加其滲透率(permeability)來改良集料之黏合。此外,複合物可包含添加惰性粉末以減小密度增加量(或減少量),此可成比例地減少莫耳體積增加量(或減少量)。一般而言,無論該反應是否致使基質體積擴張或收縮,由該反應所形成的晶體仍可用以結合基質(其可為反應物、惰性成分或已由該反應形成的產物)。
水熱液相燒結可提供一方法來與各種材料形成陶瓷鍵結,其包括無法由任何傳統程序製備的陶瓷鍵結。因此,陶瓷如大理石(marble)、天然產生的碳酸鈣(CaCO3)可由非碳酸化的鈣源(non-carbonated calcium sources)來合成。
緣於水熱液相燒結程序的廣用性,該程序可用以捕捉溫室氣體或廢氣(如二氧化碳)而如前述般形成緻密陶瓷。又該程序可進一步整合於排放溫室氣體或廢氣的發電設施中,於其中該氣體可被捕捉並作為反應物直接被供入水熱液相燒結程序中。
單乙醇胺(MEA)的使用
藉水熱液相燒結程序,氣體即可由大氣或直接由工業工廠(如發電廠)排放而被捕捉(並後續被儲存),並且被使用於反應中以形成各種作為產物的陶瓷(含大理石或水泥)。氣體捕捉溶液可含有高濃度溫室氣體或廢氣。在一實施例中,高濃度二氧化碳溶液係與一氣體吸收劑(如碳吸收劑、胺或單乙醇胺)錯合以形成加合物。如前述,單乙醇胺係可用作碳捕捉應用之試劑,且含單乙醇胺的溶液亦可含有其他化學物(如氨)。藉合適的固態基質,隨後即可利用熱化學驅動力(thermochemical driving force)使胺與二氧化碳離解(dissociate),由此氣體便可自由地與該固態基質反應。
後續可藉由數種方法使單乙醇胺與二氧化碳離解,例如使單乙醇胺離解時,可直接使氣體與固態氧化物發生反應以形成產物、或二氧化碳可直接與氧化物(如氧化亞鐵(FeO))反應以形成碳酸鹽與自由單乙醇胺,係如:FeO+CO2=FeCO3
因此,溫室氣體或廢氣(如二氧化碳)可萃取自氣體-胺加合物(如二氧化碳-胺加合物)以產生離解(「自由」)的單乙醇胺以及燒結的陶瓷單晶。自由單乙醇胺可被回收而利用於後續的氣體捕捉應用中,且整個程序並不需要單乙醇胺氣提塔。除實質上可將對氣體塔的需求降至最低之外,由於產物係呈熱力學穩定(thermodynamically stable),故用以捕捉工廠所排放之溫室氣體或廢氣的水熱液相燒結程序亦實質上將對封存後的氣體進行加壓以儲存於地底下之所需降至最低。再者,藉由利用廢氣來處理顆粒,便無需在捕捉氣體前冷卻該廢氣。
其他述於本文別處之以胺為基的氣體吸收劑能夠以與本文所述之相似的方式來使用,以使單乙醇胺獲得類似的結果。
金屬碳酸鹽的沉澱(precipitation)
在一可換實施例中,吸附有二氧化碳的單乙醇胺水溶液(MEA-CO2)可與鹼土金屬氫氧化物(Ca(OH)2或Mg(OH)2)反應而產生碳酸鹽,並以低能量需求與快速反應速率再生單乙醇胺。該第一程序係如下所述:
步驟(1):由苛性(鹼)水溶液(caustic aqueous solution)形成鹼土金屬氫氧化物:
2MOH+M'Mx "Oy(s)=M'(OH)2(s)+M2Mx "Oy(l) (1-1)
2MOH+M'Mx "Oy(s)=M'(OH)2(s)+M2Mx "Oy(s) (1-2)
其中,MOH為苛性固體或溶液(例如NaOH、KOH或任何來自工廠的廢棄苛性固體/溶液);M'Mx "Oy可為帶有鹼土金屬氧化物之材料,如硫酸鹽、矽酸鹽與鋁矽酸鹽材料或工業廢棄產物(例如石膏(CaSO4)、矽灰石(CaSiO3)、橄欖石(MgSiO4)、鈣長石(鈣斜長石,CaAl2Si2O8)或其等組合)。產物M2Mx "Oy可溶於水或不溶於水。
步驟(2):形成鹼土金屬碳酸鹽並再生單乙醇胺
MEA-CO2(l)+2M'(OH)2(s)=M'CO3(s)+MEA(l) (2-1)
MEA-CO2(l)+2M'(OH)2(s)+M2Mx "Oy(s)=M'CO3(s)+MEA(l)+M2Mx "Oy(s) (2-2)
若所產生之M2Mx "Oy溶於溶液中(反應(1-1)),則可採用額外用於碳酸化步驟(見反應(2-1))的分離程序來回收M'(OH)2固體。若所產生之M2Mx "Oy為固體(見反應(1-2)),則此固體不太可能影響MEA-CO2與M'(OH)2所進行之反應。反應結束時,僅單乙醇胺(MEA)溶液為液相,同時伴有碳酸鹽固體與M2Mx "Oy固體(見反應(2-2))。
在大氣環境(ambient)條件下,以溫和攪拌(agitation)可使碳酸化反應(2-1)與(2-2)皆成為瞬間反應(instantaneous reactions),由此二氧化碳的固定與胺類的再生即可成為具時間及能量效益的程序。
【非限制之作業實例(NON-LIMITING WORKING EXAMPLES)】
實例A:由礦物(鋁)矽酸鹽封存二氧化碳並再生單乙醇胺 實例A1:矽灰石(CaSiO 3 )
反應1:2CaSiO3+4NaOH→Na4SiO4(s)+2Ca(OH)2
反應2:MEA(水溶液)+CO2→MEA-CO2(l)
反應3:MEA-CO2(l)+Na4SiO4(s)+2Ca(OH)2→2CaCO3(s)+Na4SiO4(s)+MEA(l)
熱力學模擬(thermodynamic simulation)顯示出:當[NaOH](氫氧化鈉濃度)為4M左右時,1m(重量莫耳濃度(molal))矽灰石完全溶解(由圖1中代表矽灰石之曲線其x-截距來表示)而產生1莫耳(mol)Ca(OH)2與1莫耳Na4SiO4固體(見圖1),且Na4SiO4固體並未對MEA-CO2與Ca(OH)2所進行之反應造成影響(見圖2)。
將2g CaSiO3添加至100 ml 4M NaOH溶液中,並於90℃、500 rpm攪拌下加熱6小時,便形成7g Ca(OH)2與9g Na4SiO4。將30 wt%二氧化碳飽和單乙醇胺溶液添加至如上述所形成的固體中,並將該溶液於500 rpm攪拌10分鐘。最終產物之XRD(X光繞射)分析指出存有CaCO3(碳酸鈣)。
實例A2:鈣長石(anorthite,CaAl 2 Si 2 O 8 )
反應1:CaAl2Si2O8+8NaOH→2Na4SiO4(s)+Ca(OH)2+2Al(OH)3
反應2:MEA(水溶液)+CO2→MEA-CO2(l)
反應3:MEA-CO2(l)+2Na4SiO4(s)+Ca(OH)2+2Al(OH)3→MEA(l)+CaCO3(s)+2Al(OH)3(s)+2Na4SiO4(s)
熱力學模擬顯示出:當[NaOH]為8M左右時,1m鈣長石可完全溶解而產生1莫耳Ca(OH)2、2莫耳Na4SiO4固體與2莫耳Al(OH)3(見圖3)。Al(OH)3與Na4SiO4固體並未對MEA-CO2與Ca(OH)2所進行之反應造成影響(見圖4)。
將28g CaAl2Si2O8添加至100 ml 8M NaOH溶液中。對該溶液於90℃、500 rpm攪拌下加熱1天,便形成7g Ca(OH)2、36g Na4SiO4與15g Al(OH)3。將30 wt%二氧化碳飽和單乙醇胺溶液添加至如上述所形成的固體中,並將該溶液於500 rpm攪拌10分鐘。最終產物之XRD分析指出存有CaCO3
實例B:水熱液相燒結碳酸鹽並再生單乙醇胺 實例B1:水熱液相燒結氫氧化鈣(Ca(OH) 2 )顆粒(pallet)
將10g左右的氫氧化鈣與10g去離子水混合,隨後將該漿料(slurry)搖晃並倒入直徑1英吋(1”)的不鏽鋼模(die)中。緩慢施加6噸的負載(load)於該模上,將壓製後的氫氧化鈣顆粒於95℃下乾燥1天,並於室溫下將乾燥後的顆粒置入20 wt%二氧化碳飽和單乙醇胺溶液中1天。反應1天後,將該顆粒於60℃下乾燥4小時後再於95℃下乾燥過夜,並於室溫下將乾燥後的顆粒置入20 wt%二氧化碳飽和單乙醇胺溶液中以進行另一反應1天。取出該顆粒,以去離子水充分清洗並將該顆粒於烘箱中、60℃下乾燥4小時後再於95℃下乾燥過夜。XRD分析指出:該顆粒含>50%的CaCO3(方解石(calcite)參圖5)。樣品在水熱液相燒結後保留其形狀及大小而未改變其尺度。該材料係呈機械穩定。
實例B2:水熱液相燒結矽灰石(CaSiO 3 )顆粒
將35g左右的矽灰石與35g去離子水混合,隨後將該漿料搖晃並倒入直徑1英吋(1”)的不鏽鋼模中。緩慢施加6噸的負載於該模上,於60℃下將壓製後的矽灰石顆粒置入30 wt%二氧化碳飽和單乙醇胺溶液中3天。反應3天後,將該顆粒於烘箱中、95℃下乾燥過夜後,再於60℃下將乾燥後的顆粒置入30 wt%二氧化碳飽和單乙醇胺溶液中以進行另一反應2天。2天後以上述方式乾燥該顆粒,然後於60℃下置入30 wt%二氧化碳飽和單乙醇胺溶液中2天,其後再以上述方式乾燥該顆粒。總反應時間為7天。XRD分析指出:該顆粒具CaCO3(方解石與文石(aragonite))之圖形(見圖6)。樣品在水熱液相燒結後保留其形狀及大小而未改變其尺度。該材料係呈機械穩定。
實例C:封存溫室氣體並形成其他化學物 實例C1:封存二氧化碳並形成哌嗪
反應1:CaCl2(s)+CO2-(OH-C2H4-NH2)(l)→CaCO3(s)+OH-C2H4-NH3 +‧Cl-(l)
反應2:MEA(水溶液)+CO2→MEA-CO2(l)
反應3:
將20g CaCl2(氯化鈣)固體添加至88g 30 wt%二氧化碳飽和單乙醇胺溶液中。以500 rpm攪拌5分鐘後將反應停止,並藉由過濾來分離固體產物。XRD分析指出該固體產物為純碳酸鈣(見圖7)。在去水氯化鎂催化劑的存在下,於220~250℃下加熱濾液即離解出氯化氫,並形成18g左右的哌嗪。
實例C2:封存二氧化硫(SO 2 )並形成哌嗪
反應1:MEA(水溶液)+SO2→MEA-SO3(l)
反應2:MgCl2+MEA-SO3→MgSO3(s)+MEA-Cl
反應3:
將24g MgCl2(氯化鎂)添加至146g 30 wt%二氧化硫飽和單乙醇胺水溶液(吸收有6g左右的二氧化硫)中。以500 rpm攪拌5分鐘後將反應停止,並藉由過濾來分離溶液;固體為亞硫酸鎂。在去水氯化鎂催化劑的存在下,於220~250℃下加熱濾液即離解出氯化氫並形成哌嗪。
實例C3:封存硫化氫(H 2 S)並形成哌嗪
反應1:MEA(水溶液)+H2S→MEA-S(l)+H2O
反應2:FeCl2+MEA-S→FeS(s)+MEA-Cl
反應3:
將32g FeCl2(氯化亞鐵)添加至139g 30 wt%硫化氫飽和單乙醇胺水溶液(吸收有8.5g左右的硫化氫)中。以500 rpm攪拌5分鐘後將反應停止,並藉由過濾來分離固體;該固體為FeS(硫化亞鐵)。在去水氯化鎂催化劑的存在下,於220~250℃下加熱濾液即離解出氯化氫並形成哌嗪。
實例C4:封存二氧化碳並形成笑氣
反應1:NH4OH+CO2→(NH4)2CO3(l)
反應2:Ca(NO3)2(s)+(NH4)2CO3(l)→CaCO3(s)+NH4NO3(l)
反應3:NH4NO3→N2O+H2O
將49g Ca(NO3)2(硝酸鈣)添加至123g 10 wt%二氧化碳飽和氨水溶液中。以500 rpm攪拌5分鐘後將反應停止,並藉由過濾來分離固體;該固體為碳酸鈣。於170~240℃間謹慎加熱濾液即分解成一氧化二氮與水蒸氣。
實例C5:封存二氧化碳並形成硝酸單乙醇銨(monoethanolammonium nitrate)
反應:Ca(NO3)2(s)+CO2-(OH-C2H4-NH2)(l)→CaCO3(s)+OH-C2H4-NH3‧NO3(l)
將16g Ca(NO3)2添加至44g 30 wt%二氧化碳飽和單乙醇胺水溶液中。以500 rpm攪拌5分鐘後將反應停止,並藉由過濾來分離溶液。在烘箱中、70℃下將濾液置入蒸發皿(evaporating dish)內至其乾燥為止,隨後即形成硝酸單乙醇銨。若產物為吸濕性(hygroscopic,吸水性)則將其儲存於乾燥器(desiccator,去溼器)內。
實例C6:封存二氧化碳並形成乙醯胺(ethanamide)
反應1:NH3‧H2O+CO2→(NH4)2CO3
反應2:(NH4)2CO3+CH3COOH→CH3COONH4+CO2
反應3:CH3COONH4→CH3CONH2+H2O
使30g二氧化碳吸收於107g 2M氨水溶液並將12g乙酸添加至該溶液中,隨後即釋放出二氧化碳並形成乙酸銨溶液。將乙酸銨溶液於95℃下去水,即產生15.4g左右的白色乙醯胺固體。
本申請案係主張美國臨時申請案第61/297,646號(申請日為2101年1月22日)的優先權,並將該臨時申請案載入本文以供參照。此處所引用之所有參考資料係整體載入以供參照。
圖1示出熱力學模擬的結果,說明以1m矽灰石,在大氣環境條件下CaSiO3與不同NaOH濃度之間的關係。該反應可表示為:2CaSiO3+4NaOH=Na4SiO4(s)+2Ca(OH)2
圖2示出熱力學模擬的結果,說明以1m Na4SiO4,在大氣環境條件下Na4SiO4與不同單乙醇銨濃度之間的關係。該反應可表示為:MEA-CO2(l)+Na4SiO4(s)+2Ca(OH)2=2CaCO3(s)+Na4SiO4(s)+MEA(l);
圖3示出熱力學模擬的結果,說明以1m鈣長石,在大氣環境條件下鈣長石與不同NaOH濃度之間的關係。該反應可表示為:CaAl2Si2O8+8NaOH=2Na4SiO4(s)+Ca(OH)2+2Al(OH)3
圖4示出熱力學模擬的結果,說明Na4SiO4與Al(OH)3固體對MEA-CO2與Ca(OH)2所進行之反應的影響。模擬係在大氣環境條件下,以2莫耳Na4SiO4(s)+1莫耳Ca(OH)2+2莫耳Al(OH)3+1莫耳CO2與不同單乙醇銨濃度進行;該反應可表示為:MEA-CO2(l)+2Na4SiO4(s)+Ca(OH)2+2Al(OH)3=CaCO3(s)+MEA(l)+2Na4SiO4(s)+2Al(OH)3
圖5提供一實施例中,由Ca(OH)2顆粒與MEA-CO2溶液所合成之CaCO3的X光繞射圖形;
圖6提供另一實施例中,由CaSiO3顆粒與MEA-CO2溶液所合成之CaCO3的X光繞射圖形;以及
圖7提供又一實施例中,由CaCl2與MEA-CO2溶液所合成之CaCO3的X光繞射圖形。

Claims (63)

  1. 一種封存多元素氣體的方法,包括:(1)提供一第一溶液,其包含至少一氣體吸收劑,該氣體吸收劑含氮並可與多元素氣體結合而形成一加合物;(2)使該第一溶液與該多元素氣體接觸以促使該加合物形成,該加合物包含該至少一氣體吸收劑與該多元素氣體,隨後該加合物存在於溶液中;(3)提供一包含至少一元素的反應物;以及(4)在促進一反應的條件下使包含該加合物的該第一溶液接觸該反應物,其中使該加合物中的該多元素氣體與該反應物反應以在該溶液中形成至少一第一產物與一第二產物,其中該第一產物包含該多元素氣體的至少一元素,且其中該第二產物包含該至少一氣體吸收劑的至少一元素與該反應物的至少一元素;其中該至少一氣體吸收劑係從該步驟(4)中之該加合物釋放。
  2. 如申請專利範圍第1項所述之封存多元素氣體的方法,其中,該氣體係由工業工廠所排放。
  3. 如申請專利範圍第1項所述之封存多元素氣體的方法,進一步包含加熱含該第二產物的該溶液以增大該第二產物的濃度。
  4. 如申請專利範圍第1項所述之封存多元素氣體的方法,進一步包含加熱含該第二產物的該溶液以形成一包含該第二產物之至少一元素的第三產物。
  5. 如申請專利範圍第4項所述之封存多元素氣體的方法,其中,該第三產物包含一含氮有機化合物。
  6. 如申請專利範圍第4項所述之封存多元素氣體的方法,其中,該第二產物包含一氧化二氮的前驅物。
  7. 如申請專利範圍第1項所述之封存多元素氣體的方法,其中,該氣體為溫室氣體、廢氣或其等組合。
  8. 如申請專利範圍第1項所述之封存多元素氣體的方法,其中,該反應物係由工業廢棄產物製得。
  9. 如申請專利範圍第1項所述之封存多元素氣體的方法,其中,該反應物包含一鹵素元素。
  10. 如申請專利範圍第1項所述之封存多元素氣體的方法,其中,該至少一氣體吸收劑包含氨;烷醇胺;混合或單一類型之聚胺;環胺或芳香胺;胺基酸;無立體障礙與具立體障礙之胺類;以及單乙醇胺(MEA)、二乙醇胺(DEA)、乙基二乙醇胺、甲基二乙醇胺(MDEA)、2-胺基-2-甲基-1-丙醇(AMP)、3-哌啶-1,2-丙二醇、3-奎寧醇、2-哌啶乙醇、2-哌啶甲醇、N,N-二甲基乙醇胺、2-胺基-2-甲基-1,3-丙二醇、二異丙醇胺、哌嗪或其等組合。
  11. 如申請專利範圍第1項所述之封存多元素氣體的方法,其中,該第一產物包含一無機化合物,其包含硫化物、亞硫酸鹽、硫酸鹽、碳酸鹽或其等組合。
  12. 如申請專利範圍第1項所述之封存多元素氣體的方法,其中,該第二產物包含一含氮有機物種、鹵化物或其等組合。
  13. 如申請專利範圍第1項所述之封存多元素氣體的方法,其中,該反應物為固體的一部分,該固體包含(1)一可分離氣體分子之材料與(2)一氣體封存劑的至少其中之一。
  14. 如申請專利範圍第1項所述之封存多元素氣體的方法,其中,該氣體包含元素碳、硫、氧、磷、氮、氟或其等組合。
  15. 如申請專利範圍第1項所述之封存多元素氣體的方法,其中,該氣體包含二氧化碳。
  16. 如申請專利範圍第1項所述之封存多元素氣體的方法,其中,該反應物包含氫氧根離子。
  17. 如申請專利範圍第1項所述之封存多元素氣體的方法,其中,該反應物包含一鹼金屬元素。
  18. 如申請專利範圍第1項所述之封存多元素氣體的方法,其中,該反應物係藉由使一反應前驅物與一鹼溶液反應而形成。
  19. 如申請專利範圍第18項所述之封存多元素氣體的方法,其中,該鹼溶液包含金屬氫氧化物。
  20. 如申請專利範圍第1項所述之封存多元素氣體的方法,其中,該反應物係由一金屬氧化物、金屬氫氧化物、金屬硫酸鹽、金屬氟化物、金屬鈦酸鹽、礦物矽酸鹽、礦物鋁矽酸鹽、金屬磷酸鹽或其等組合製得。
  21. 如申請專利範圍第1項所述之封存多元素氣體的方法,其中,步驟(4)係實施沉澱、離子添加、離子取代、歧化作用或其等組合。
  22. 一種由封存多元素氣體來形成有機化合物的方法,包括:(1)提供一第一溶液,其包含至少一氣體吸收劑,該氣體吸收劑含氮並可與一多元素氣體結合而形成一加合物;(2)使該第一溶液與該多元素氣體接觸以促使該加合物的形成,該加合物包含該至少一氣體吸收劑與該多元素氣體,隨後該加合物存在於溶液中;(3)提供一多元素之反應物;(4)在促進一反應的條件下使包含該加合物的該第一溶液接觸該反應物,其中使該加合物中的該多元素氣體與該反應物反應以在該溶液中形成至少一第一產物與一第二產物,其中該第一產物包含該多元素氣體的至少一元素,且其中該第二產物包含該至少一氣體吸收劑的至少一元素與該反應物的至少一元素;以及(5)在一催化劑的存在下加熱該溶液以形成一包含該第二產物之至少一元素的第三產物,其中該第三產物包含一有機化合物。
  23. 如申請專利範圍第22項所述之由封存多元素氣體來形成有機化合物的方法,其中,該催化劑包含一金屬鹵化物。
  24. 如申請專利範圍第22項所述之由封存多元素氣體來形成有機化合物的方法,其中,該催化劑包含鋅、鐵、鋁、鎂或其等組合的一鹵化物鹽類。
  25. 如申請專利範圍第22項所述之由封存多元素氣體來形成有機化合物的方法,其中,該催化劑為一去水催化劑。
  26. 如申請專利範圍第22項所述之由封存多元素氣體來形成有機化合物的方法,其中,步驟(5)係實施於220℃左右與250℃左右之間。
  27. 如申請專利範圍第22項所述之由封存多元素氣體來形成有機化合物的方法,其中,該多元素氣體包含氫、碳、硫、氧、磷、氮、氟或其等組合。
  28. 如申請專利範圍第22項所述之由封存多元素氣體來形成有機化合物的方法,其中,該氣體包含二氧化碳。
  29. 如申請專利範圍第22項所述之由封存多元素氣體來形成有機化合物 的方法,其中,該第三產物係適用於一醫藥成分中的使用。
  30. 如申請專利範圍第22項所述之由封存多元素氣體來形成有機化合物的方法,其中,該第三產物包含哌嗪。
  31. 如申請專利範圍第22項所述之由封存多元素氣體來形成有機化合物的方法,其中,該至少一含氮的氣體吸收劑為胺。
  32. 一種用於產生一陶瓷之溫室氣體或廢氣封存之方法,該方法包含:使多孔基質的至少一成分與一包含溫室氣體或廢氣以及至少一含胺的氣體吸收劑的加合物反應,藉此產生陶瓷,該加合物由一滲透介質運送以接觸該多孔基質的至少一成分來提供至少一第一產物。
  33. 如申請專利範圍第32項所述之方法,其中,該多孔基質的一殘餘部分係充當有助於該第一產物的形成的一支架。
  34. 如申請專利範圍第32項所述之方法,其中,該所產生的陶瓷包含均一勻微結構。
  35. 如申請專利範圍第32項所述之方法,其中,該所產生的陶瓷具低於15%左右的孔隙率。
  36. 如申請專利範圍第32項所述之方法,其中,該所產生的陶瓷具低於5%左右的孔隙率。
  37. 如申請專利範圍第32項所述之方法,其中,該所產生的陶瓷包含一單晶體。
  38. 如申請專利範圍第32項所述之方法,其中,該所產生的陶瓷包含藉離子取代、離子添加、奧斯華爾德熟化或其等組合以物理方式鍵結的顆粒。
  39. 如申請專利範圍第32項所述之方法,其中,該所產生的陶瓷實質上不含水硬鍵結。
  40. 如申請專利範圍第32項所述之方法,其中,該所產生之陶瓷包含結晶無機材料、非晶無機材料或其等組合。
  41. 一種用於產生一含氮化合物之氣體分離或氣體封存方法或其等組合之方法,該方法包括:於一含氮滲透介質存在中,使一固態基質的至少一成分與至少一包含至少一溫室氣體或廢氣的第一反應物反應以在溶液中提供至少一第一產物與一第二產物,其中該第一產物包含至少一溫室氣體或廢氣的至少一元素,且該第二產物包含該固態基質的至少一元素與該反應 物的至少一元素;以及在一催化劑的存在下加熱該第二產物以形成一包含該第二產物之至少一元素的第三產物,其中該第三產物包含一含氮化合物。
  42. 如申請專利範圍第41項所述之方法,其中,該催化劑包含金屬的鹵化物鹽類。
  43. 如申請專利範圍第41項所述之方法,其中,該化合物包含哌嗪、一氧化二氮的前驅物或硝酸單乙醇銨。
  44. 如申請專利範圍第41項所述之方法,其中,該化合物係適用於一醫藥成分中的使用。
  45. 一種封存氣體的方法,該方法包含:(1)提供一溶液,其包含至少一可吸收氣體的氣體吸收劑,該氣體吸收劑含氮;(2)使該溶液與該氣體接觸以藉該至少一氣體吸收劑促進氣體吸收而產生至少一第一反應物,且隨後其將存在於該溶液中;(3)提供一包含至少一第二反應物的固體;以及(4)使包含該至少第一反應物的該溶液接觸該固體的一部分以促進該至少第一反應物與該至少第二反應物之間的反應來提供至少一第一產物與一離解的氣體吸收劑。
  46. 如申請專利範圍第45項所述之封存氣體的方法,其中,該氣體為溫室氣體、廢氣或其等組合。
  47. 如申請專利範圍第45項所述之封存氣體的方法,其中,該氣體包含兩種或兩種以上元素。
  48. 如申請專利範圍第45項所述之封存氣體的方法,其中,該氣體包含氫、碳、硫、氧、磷、氮、氟或其等組合。
  49. 如申請專利範圍第45項所述之封存氣體的方法,其中,該氣體係含於一混合物中。
  50. 如申請專利範圍第45項所述之封存氣體的方法,其中,該至少一氣體吸收劑包含氨、一級胺、二級胺、三級胺、四級胺或其等組合。
  51. 如申請專利範圍第45項所述之封存氣體的方法,其中,該至少一氣體吸收劑包含氨;烷醇胺;混合或單一類型之聚胺;環胺或芳香胺;胺基酸;無立體障礙與具立體障礙之胺類;以及單乙醇胺(MEA)、二乙醇胺 (DEA)、乙基二乙醇胺、甲基二乙醇胺(MDEA)、2-胺基-2-甲基-1-丙醇(AMP)、3-哌啶-1,2-丙二醇、3-奎寧醇、2-哌啶乙醇、2-哌啶甲醇、N,N-二甲基乙醇胺、2-胺基-2-甲基-1,3-丙二醇、二異丙醇胺、哌嗪或其等組合。
  52. 如申請專利範圍第45項所述之封存氣體的方法,其中,該固體係至少部分地使用來自工業工廠產生之熱廢氣所生成的熱來製備。
  53. 如申請專利範圍第45項所述之封存氣體的方法,其中,該固體包含工業廢棄物。
  54. 如申請專利範圍第45項所述之封存氣體的方法,其中,該第一產物包含一無機化合物。
  55. 如申請專利範圍第45項所述之封存氣體的方法,其中,該反應係實施於溫度低於200℃左右。
  56. 如申請專利範圍第45項所述之封存氣體的方法,其中,該反應係實施於溫度低於40℃左右。
  57. 如申請專利範圍第45項所述之封存氣體的方法,其中,該反應係實施於壓力低於5000psi左右。
  58. 一種封存溫室氣體或廢氣的方法,該方法包括:(1)提供一第一溶液,其包含至少一可與含兩種或兩種以上元素之溫室氣體或廢氣形成一加合物的氣體吸收劑,且該氣體吸收劑係含氮;(2)使該第一溶液與該溫室氣體或廢氣接觸以促進包含該至少一氣體吸收劑與該溫室氣體或廢氣的一加合物的形成,隨後該加合物存在於溶液中;(3)提供一包含至少一反應物的多孔固體;以及(4)使包含該加合物的該溶液接觸該固體以促進一反應,其中使該加合物的該溫室氣體或廢氣與該固體的該反應物反應來提供至少一第一產物;其中該至少一氣體吸收劑係從該步驟(4)中之該加合物釋放。
  59. 如申請專利範圍第58項所述之封存溫室氣體或廢氣的方法,其中,該氣體係由工業工廠所排放。
  60. 如申請專利範圍第58項所述之封存溫室氣體或廢氣的方法,其中, 該釋放後的氣體吸收劑可回收用於步驟(1)或步驟(2)中。
  61. 如申請專利範圍第58項所述之封存溫室氣體或廢氣的方法,其中,該多孔固體包含一廢棄物材料或由其所製備的成分。
  62. 一種封存工業工廠排放氣的方法,包括:(1)提供一溶液,其包含至少一第一反應物與至少一氣體吸收劑,該至少一第一反應物含有一氣體以及該至少一氣體吸收劑含有氮;(2)提供一包含至少一第二反應物的固體;以及(3)使包含該至少一第一反應物之溶液接觸該固體的一部分以促進該至少一第一反應物與該至少一第二反應物之間的反應來提供至少一第一產物與一離解的氣體吸收劑。
  63. 如申請專利範圍第62項所述之封存工業工廠排放氣的方法,其中,該第一反應物包含一加合物,該加合物包含該氣體之至少一元素。
TW100102369A 2010-01-22 2011-01-21 工業工廠排放氣的封存 TWI541058B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US29764610P 2010-01-22 2010-01-22
US13/008,422 US20110158873A1 (en) 2010-01-22 2011-01-18 Sequestration of a gas emitted by an industrial plant
US13/008,464 US20110182799A1 (en) 2010-01-22 2011-01-18 Sequestration of a gas emitted by an industrial plant

Publications (2)

Publication Number Publication Date
TW201134542A TW201134542A (en) 2011-10-16
TWI541058B true TWI541058B (zh) 2016-07-11

Family

ID=44187809

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100102369A TWI541058B (zh) 2010-01-22 2011-01-21 工業工廠排放氣的封存

Country Status (5)

Country Link
US (2) US20110182799A1 (zh)
EP (1) EP2525896A4 (zh)
AU (1) AU2011207639B2 (zh)
TW (1) TWI541058B (zh)
WO (1) WO2011090967A1 (zh)

Families Citing this family (55)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8795618B2 (en) * 2010-03-26 2014-08-05 Babcock & Wilcox Power Generation Group, Inc. Chemical compounds for the removal of carbon dioxide from gases
UA113844C2 (xx) 2011-03-05 2017-03-27 Зв'язуючий елемент, зв'язуюча матриця і композитний матеріал, що має зв'язуючий елемент, та спосіб його виготовлення
WO2012130803A1 (de) * 2011-03-31 2012-10-04 Bayer Technology Services Gmbh Verfahren zur abtrennung von halogenen aus stoffgemischen
US9745224B2 (en) 2011-10-07 2017-08-29 Boral Ip Holdings (Australia) Pty Limited Inorganic polymer/organic polymer composites and methods of making same
TWI421123B (zh) * 2011-10-17 2014-01-01 China Steel Corp 捕捉二氧化碳之方法
WO2014012808A1 (de) 2012-07-17 2014-01-23 Siemens Aktiengesellschaft Waschlösung zur absorption von kohlendioxid sowie verfahren zur beschleunigung der absorption durch germaniumdioxid
CA2880426C (en) 2012-08-01 2019-04-09 Oxane Materials, Inc. Synthetic proppants and monodispersed proppants and methods of making the same
US9840845B2 (en) * 2012-09-14 2017-12-12 Certainteed Corporation Building product including a metal carbonate and a process of forming the same
US9670677B2 (en) * 2012-09-14 2017-06-06 Certainteed Corporation Roofing granule including a base particle and a layer covering the base particle, a process of forming the same, and a roofing product including the roofing granule
US9567466B2 (en) * 2012-09-14 2017-02-14 Certainteed Corporation Roofing granule including a base particle and a layer covering the base particle, a process of forming the same, and a roofing product including the roofing granule
CA2886963C (en) * 2012-10-01 2021-08-03 Rutgers, The State University Of New Jersey Precursors and transport methods for hydrothermal liquid phase sintering (hlps)
US20140342124A1 (en) * 2012-10-04 2014-11-20 Dawid Zambrzycki Wood-like composite materials and methods of preparation thereof
US20140127450A1 (en) * 2012-10-04 2014-05-08 Richard E. Riman Marble-like composite materials and methods of preparation thereof
US20140127458A1 (en) * 2012-10-04 2014-05-08 Dawid Zambrzycki Slate-like composite materials and methods of preparation thereof
EP2727661A3 (en) 2012-11-02 2015-12-16 Strategic Metals Ltd. Processing of sulfate and/or sulfide-rich waste using CO2-enriched gases to sequester CO2, reduce environmental impacts including acid rock drainage, and produce valuable reaction products
US9695050B2 (en) 2012-11-02 2017-07-04 Terra Co2 Technologies Ltd. Methods and systems using electrochemical cells for processing metal sulfate compounds from mine waste and sequestering CO2
EA031720B1 (ru) * 2013-03-13 2019-02-28 Солидия Текнолоджиз, Инк. Композиционные материалы для брусчатки и строительных блоков и способы их получения
EP2971353B1 (en) 2013-03-13 2018-10-31 Solidia Technologies, Inc. Composite railroad ties and method of production thereof
BR112015023198A2 (pt) 2013-03-13 2017-07-18 Solidia Technologies Inc materiais compósitos aerados, metodos de produção e usos dos mesmos
JP2016517365A (ja) 2013-03-14 2016-06-16 ソリディア テクノロジーズ インコーポレイテッドSolidia Technologies, Inc. 二酸化炭素を消費する材料の養生システム
CA2849415C (en) 2013-04-24 2017-02-28 Robert D. Skala Methods for fracturing subterranean formations
WO2014197545A1 (en) 2013-06-07 2014-12-11 Solidia Technologies, Inc. Pervious composite materials, methods of production and uses thereof
HUE059188T2 (hu) 2013-06-07 2022-10-28 Solidia Technologies Inc Eljárás kompozit anyagú laposbuga elõállítására
BR112016003767B1 (pt) * 2013-08-21 2022-06-28 Solidia Technologies, Inc Processo para produzir um artigo de um material compósito aerado
AU2014318458B2 (en) * 2013-09-16 2018-02-01 Savannah River Nuclear Solutions, Llc Mass transfer apparatus and method for separation of gases
JP6837836B2 (ja) 2013-10-04 2021-03-03 ソリディア テクノロジーズ インコーポレイテッドSolidia Technologies, Inc. 中空コア物品及び複合材料、並びにそれらを製造及び使用する方法
KR102091678B1 (ko) 2013-11-06 2020-04-24 럿거스, 더 스테이트 유니버시티 오브 뉴저지 적층가공공정에서 저온 고화를 이용하여 다공성 매트릭스로부터 모놀리식 바디의 제조
CA2937822C (en) 2014-01-22 2023-05-16 Solidia Technologies, Inc. Method and apparatus for curing co2 composite material objects at near ambient temperature and pressure
EA036120B1 (ru) 2014-08-04 2020-09-30 Солидиа Текнолоджиз, Инк. Карбонизируемые композиции на основе силиката кальция и способы их изготовления и использования
CA2957400C (en) 2014-08-05 2022-11-29 Solidia Technologies, Inc. Method and apparatus for the curing of composite material by control over rate limiting steps in water removal
WO2016022103A1 (en) 2014-08-05 2016-02-11 Amitabha Kumar Filled polymeric composites including short length fibers
TW201617126A (zh) * 2014-08-22 2016-05-16 卡本克林解決方案有限公司 含有醇類及胺類之碳捕捉溶劑以及使用此溶劑之方法
EP3201156B1 (en) 2014-10-03 2023-11-29 Solidia Technologies, Inc. Carbonatable calcium silicate cement composition containing hydraulic contaminants
WO2016105383A1 (en) 2014-12-23 2016-06-30 Boral Ip Holdings (Australia) Pty Limited Rapid setting material for improved processing and performance of carbonating metal silicate cement
US10875815B2 (en) * 2015-01-05 2020-12-29 Rutgers, The State University Of New Jersey Sustainable supply of recipe components for ceramic composites produced by hydrothermal liquid phase sintering
WO2016118141A1 (en) 2015-01-22 2016-07-28 Boral Ip Holdings (Australia) Pty Limited Highly filled polyurethane composites
BR112017020150B1 (pt) 2015-03-20 2023-02-14 Solidia Technologies, Inc Material compósito produzido pela carbonatação de silicato de cálcio e matriz de ligação do mesmo
MX2017012247A (es) 2015-03-23 2018-01-09 Basf Corp Sorbentes de dioxido de carbono para el control de calidad del aire interior.
TWI569866B (zh) * 2015-04-07 2017-02-11 中國鋼鐵股份有限公司 自動化二氧化碳吸收裝置及其方法
US10695949B2 (en) 2015-05-18 2020-06-30 Solidia Technologies, Ltd. Lightweight composite materials produced from carbonatable calcium silicate and methods thereof
WO2016195717A1 (en) 2015-06-05 2016-12-08 Boral Ip Holdings (Australia) Pty Limited Filled polyurethane composites with lightweight fillers
US20170267585A1 (en) 2015-11-12 2017-09-21 Amitabha Kumar Filled polyurethane composites with size-graded fillers
US10233127B2 (en) 2016-01-19 2019-03-19 Solidia Technologies, Inc. Cement chemistries
CN108602047B (zh) 2016-02-12 2022-05-03 巴斯夫公司 用于空气质量控制的二氧化碳吸着剂
CN109153607A (zh) 2016-03-04 2019-01-04 索里迪亚科技公司 白色可碳酸化硅钙基水泥及其制备方法和用途
WO2017155899A1 (en) 2016-03-11 2017-09-14 Solidia Technologies, Inc. Hazing control for carbonatable calcium silicate-based cements and concretes
BR112018074831B1 (pt) 2016-05-31 2023-03-14 Solidia Technologies, Inc Processo para curar um objeto pré-moldado, objeto pré-moldado curado, laje de núcleo oco curada e aparelho para curar um objeto pré- moldado
BR112019019790A2 (pt) 2017-03-23 2020-04-22 Solidia Technologies Inc cimentos e concretos baseados em silicato de cálcio carbonatável tendo aditivos minerais, e seus métodos de uso
WO2019101809A1 (en) 2017-11-21 2019-05-31 Holcim Technology Ltd Compositions and method to improve the aesthetics of calcium silicate-based cements and concretes
WO2019101810A1 (en) 2017-11-21 2019-05-31 Holcim Technology Ltd Compositions and method to improve the strength development of calcium silicate-based cements and concretes
WO2019101811A1 (en) 2017-11-21 2019-05-31 Holcim Technology Ltd Compositions and method to improve the durability of calcium silicate-based cements and concretes
CN117823086A (zh) 2019-04-02 2024-04-05 含氧低碳投资有限责任公司 涉及使用二氧化碳作为反应物的水泥的方法
EP4208281A2 (en) * 2020-09-03 2023-07-12 Cornell University Methods and systems for producing solid inorganic carbonate and bicarbonate compounds
CN114749008B (zh) * 2022-05-16 2023-12-15 昆明理工大学 一种利用MgCl2强化赤泥脱碱吸收SO2并对矿浆加以利用的方法
CN115228276B (zh) * 2022-07-14 2024-04-26 武汉科技大学 基于页岩提钒尾渣与氨氮废液的co2矿化剂及制备方法

Family Cites Families (53)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3632624A (en) * 1967-12-11 1972-01-04 Signal Co Inc The Dialkyl carbonate preparation
AU541464B2 (en) * 1978-08-04 1985-01-10 Csr Limited Manufacturing fibre reinforced building element
DE3232078C2 (de) * 1982-08-28 1986-04-24 Rheinisch-Westfälisches Elektrizitätswerk AG, 4300 Essen Verwendung der Rückstandsfeststoffe der trockenen Rauchgasentschwefelung als Baustoff zur Verfüllung von Untertageräumen im Bergbau
US4595465A (en) * 1984-12-24 1986-06-17 Texaco Inc. Means and method for reducing carbn dioxide to provide an oxalate product
US4781901A (en) * 1986-05-01 1988-11-01 The Dow Chemical Company Method and composition for the removal of hydrogen sulfide and carbon dioxide from gaseous streams
US5252127A (en) * 1989-03-20 1993-10-12 Philippe Pichat Process for the insolubilization and aggregation of smoke purification waste materials
DE4034417C2 (de) * 1990-10-29 2002-02-07 Walhalla Kalk Entwicklungs Und Hochreaktive Reagentien und Zusammensetzungen für die Abgas- und Abwasserreinigung, ihre Herstellung und ihre Verwendung
EP0543767B1 (en) * 1991-11-20 1997-01-08 Mitsubishi Jukogyo Kabushiki Kaisha Method of producing solid moldings from a by-product of wet limestone-gypsum desulfurization of flue gas
JPH0783831B2 (ja) * 1992-02-07 1995-09-13 共栄物産株式会社 建設廃材から二酸化炭素消費材を製造する方法
IL103918A (en) * 1992-11-29 1996-10-16 Hamit Energy As Method for reducing atmospheric pollution caused by SO2
US5518540A (en) * 1995-06-07 1996-05-21 Materials Technology, Limited Cement treated with high-pressure CO2
GB9520469D0 (en) * 1995-10-06 1995-12-06 Hills Colin Hazardous waste treatment
US5779464A (en) * 1996-01-10 1998-07-14 The Ohio State University Research Foundation Calcium carbonate sorbent and methods of making and using same
US5830815A (en) * 1996-03-18 1998-11-03 The University Of Chicago Method of waste stabilization via chemically bonded phosphate ceramics
IL120852A (en) * 1996-05-20 2001-03-19 Materials Technology Ltd Method for treating a hardened cement matrix
AUPO520597A0 (en) * 1997-02-21 1997-04-11 Earth Systems Pty. Ltd. Space filling methods
US5769940A (en) * 1997-05-07 1998-06-23 Dravo Lime Company Process for producing cement and elemental sulfur from a flue gas desulfurization waste product
US6271172B2 (en) * 1997-07-31 2001-08-07 Kabushiki Kaisha Toshiba Method for manufacturing a carbon dioxide gas absorbent
US5897702A (en) * 1998-02-19 1999-04-27 Fuller Company Removal of sulfur oxides from preheater off gases
US5987704A (en) * 1998-04-15 1999-11-23 Apple Computer, Inc. Dual axis hinge apparatus with braking mechanism
US6787023B1 (en) * 1999-05-20 2004-09-07 Exxonmobil Chemical Patents Inc. Metal-containing macrostructures of porous inorganic oxide, preparation thereof, and use
US6447437B1 (en) * 2000-03-31 2002-09-10 Ut-Battelle, Llc Method for reducing CO2, CO, NOX, and SOx emissions
DE10042026A1 (de) * 2000-08-26 2002-04-04 Forschungszentrum Juelich Gmbh Keramik
JP2002363325A (ja) * 2001-06-06 2002-12-18 Tadashi Hasegawa 発泡プラスチックの製造方法
DE10214003B4 (de) * 2002-03-27 2005-12-22 Lurgi Ag Verfahren zur Erzeugung von Kohlenmonoxid und Methanol
US7067456B2 (en) * 2003-02-06 2006-06-27 The Ohio State University Sorbent for separation of carbon dioxide (CO2) from gas mixtures
US7618606B2 (en) * 2003-02-06 2009-11-17 The Ohio State University Separation of carbon dioxide (CO2) from gas mixtures
US7132090B2 (en) * 2003-05-02 2006-11-07 General Motors Corporation Sequestration of carbon dioxide
US7056482B2 (en) * 2003-06-12 2006-06-06 Cansolv Technologies Inc. Method for recovery of CO2 from gas streams
US7141093B2 (en) * 2003-08-04 2006-11-28 Graymont Qc Inc. Hydrated lime kiln dust recirculation method for gas scrubbing
US7722842B2 (en) * 2003-12-31 2010-05-25 The Ohio State University Carbon dioxide sequestration using alkaline earth metal-bearing minerals
DE102004011429A1 (de) * 2004-03-09 2005-09-29 Basf Ag Verfahren zum Entfernen von Kohlendioxid aus Gasströmen mit niedrigen Kohlendioxid-Partialdrücken
US7314847B1 (en) * 2004-10-21 2008-01-01 The United States Of America As Represented By The United States Department Of Energy Regenerable sorbents for CO2 capture from moderate and high temperature gas streams
US7820591B2 (en) * 2005-01-04 2010-10-26 Korea Electric Power Corporation Highly attrition resistant and dry regenerable sorbents for carbon dioxide capture
DE102005005818A1 (de) * 2005-02-08 2006-08-17 Grochowski, Horst, Dr. Verfahren zum Reinigen von Abgasen eines Sinterprozesses von Erzen in der Metallerzeugung
US9028607B2 (en) * 2005-02-24 2015-05-12 Wisconsin Electric Power Company Carbon dioxide sequestration in foamed controlled low strength materials
US7390444B2 (en) * 2005-02-24 2008-06-24 Wisconsin Electric Power Company Carbon dioxide sequestration in foamed controlled low strength materials
US7399339B2 (en) * 2005-06-15 2008-07-15 Gas Technology Institute Polyoxometalate material for gaseous stream purification at high temperature
EP1785396A1 (en) * 2005-11-09 2007-05-16 Nederlandse Organisatie voor Toegepast-Natuuurwetenschappelijk Onderzoek TNO Process for preparing a metal hydroxide
US8298986B2 (en) * 2005-12-12 2012-10-30 Georgia Tech Research Corporation Structures for capturing CO2, methods of making the structures, and methods of capturing CO2
GB0603443D0 (en) * 2006-02-21 2006-04-05 Hills Colin D Production of secondary aggregates
NO20062465L (no) * 2006-05-30 2007-12-03 Omar Chaalal Method and for cleaning of gases and uses thereof
US7795175B2 (en) * 2006-08-10 2010-09-14 University Of Southern California Nano-structure supported solid regenerative polyamine and polyamine polyol absorbents for the separation of carbon dioxide from gas mixtures including the air
US7767175B2 (en) * 2007-01-09 2010-08-03 Catalytic Solutions, Inc. Ammonia SCR catalyst and method of using the catalyst
WO2008140788A1 (en) * 2007-05-11 2008-11-20 The Regents Of The University Of California Adsorptive gas separation of multi-component gases
MX2009012746A (es) * 2007-05-24 2009-12-10 Calera Corp Cementos hidraulicos que comprenden composiciones de compuesto de carbonato.
US7753618B2 (en) * 2007-06-28 2010-07-13 Calera Corporation Rocks and aggregate, and methods of making and using the same
US7993616B2 (en) * 2007-09-19 2011-08-09 C-Quest Technologies LLC Methods and devices for reducing hazardous air pollutants
MY150249A (en) * 2007-11-15 2013-12-31 Univ Rutgers Systems and methods for carbon capture and sequestration and compositions derived therefrom
NZ585191A (en) * 2007-11-15 2013-02-22 Univ Rutgers Method of hydrothermal liquid phase sintering of ceramic materials and products derived therefrom
KR20100105860A (ko) * 2007-12-28 2010-09-30 칼레라 코포레이션 Co2 분리 방법
GB0921881D0 (en) * 2009-12-15 2010-01-27 Priestnall Michael A Carbonate fuel cell
GB0922386D0 (en) * 2009-12-22 2010-02-03 Univ Nottingham Improvements in or relating to the capture of carbon dioxide

Also Published As

Publication number Publication date
AU2011207639B2 (en) 2014-05-29
US20110158873A1 (en) 2011-06-30
WO2011090967A1 (en) 2011-07-28
AU2011207639A1 (en) 2012-08-09
US20110182799A1 (en) 2011-07-28
EP2525896A1 (en) 2012-11-28
TW201134542A (en) 2011-10-16
EP2525896A4 (en) 2014-02-19

Similar Documents

Publication Publication Date Title
TWI541058B (zh) 工業工廠排放氣的封存
JP6224201B2 (ja) ガス及びこれから得られる組成物の回収隔離システム及び方法
AU2009260036B2 (en) Methods and systems for utilizing waste sources of metal oxides
US9260314B2 (en) Methods and systems for utilizing waste sources of metal oxides
US7754169B2 (en) Methods and systems for utilizing waste sources of metal oxides
CA3057832C (en) Ammonia mediated carbon dioxide (co2) sequestration methods and systems
WO2010132863A1 (en) Systems and methods for processing co2
CN113348213B (zh) 碳酸盐骨料组合物及其制备和使用方法
US10875815B2 (en) Sustainable supply of recipe components for ceramic composites produced by hydrothermal liquid phase sintering

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees