TWI540043B - Image display device and polyester film - Google Patents

Image display device and polyester film Download PDF

Info

Publication number
TWI540043B
TWI540043B TW103117087A TW103117087A TWI540043B TW I540043 B TWI540043 B TW I540043B TW 103117087 A TW103117087 A TW 103117087A TW 103117087 A TW103117087 A TW 103117087A TW I540043 B TWI540043 B TW I540043B
Authority
TW
Taiwan
Prior art keywords
film
image display
display device
polyester film
layer
Prior art date
Application number
TW103117087A
Other languages
English (en)
Other versions
TW201446506A (zh
Inventor
Yoshinori Itsuki
Mikiya Hayashibara
Original Assignee
Toyo Boseki
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Boseki filed Critical Toyo Boseki
Publication of TW201446506A publication Critical patent/TW201446506A/zh
Application granted granted Critical
Publication of TWI540043B publication Critical patent/TWI540043B/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3025Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3083Birefringent or phase retarding elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/13338Input devices, e.g. touch panels

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Liquid Crystal (AREA)
  • Polarising Elements (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Description

影像顯示裝置及聚酯膜
本發明係有關影像顯示裝置。
影像顯示裝置已在行動電話、平板終端、個人電腦、電視機、PDA、電子字典、汽車導航裝置、音樂播放器、數位相機、數位攝影機、可攜式遊戲機等眾多類型的產品上實用化。隨著影像顯示裝置日益小型化、輕量化,其早已不再限於在辦公室和室內利用,亦已擴及至在室外及於車輛、電車等移動中時利用。
在這樣的發展下,隔著太陽眼鏡等偏光濾光鏡觀看(視認)影像顯示裝置的機會增多了。關於此類影像顯示裝置之利用,在下述之專利文獻1中已報告一個問題,即當在影像顯示裝置的構成視認側偏光板的視認側使用遲滯值(retardation)未滿3000nm(nanometer;奈米)的高分子膜時,透過偏光板觀察畫面就會出現明顯的干涉色。此外,作為解決前述問題的手段,在專利文獻1中係記載將比視認側偏光板更靠視認側的高分子膜的遲滯值設定在3000nm至30000nm。
[先前技術文獻] [專利文獻]
[專利文獻1]WO2011/058774
然而,目前市場需要更加薄型的影像顯示裝置,雖然單單將遲滯值控制在3000nm至30000nm就能夠解決因虹斑的產生所造成的視認性之惡化,但令膜的厚度變薄,機械強度就會顯著降低,因而難以因應薄型化的訴求。有鑒於此,本發明的其中一個目的就在於提供具有良好的視認性且能夠更加薄型化的影像顯示裝置。
本案的發明人等為了解決上述課題,在不斷致力於研究後,發現藉由將聚酯(polyester)膜的面配向度控制在一定的值以下,能夠既將遲滯值的值維持在3000nm以上30000nm以下而保有良好的視認性,也將膜的機械強度提高而把膜的厚度進一步薄化。此外,本案的發明人等係發現藉由將此改良型聚酯膜使用於影像顯示裝置,能夠獲得視認性優異且能更加薄型化的影像顯示裝置。本案的發明人等係根據上述見解,不斷地進行更進一步的研究及改良而完成了本發明。
本發明的代表性樣態如以下。
項1.一種影像顯示裝置,係具有:(1)發光光譜連續的白色光源;(2)影像顯示單元(cell);(3)配置在比前述影像顯示單元更靠視認側的偏光板;及 (4)比前述偏光板更靠視認側的聚酯膜;前述聚酯膜係滿足下述物性(a)至(c):(a)遲滯值(Re)為3000nm以上30000nm以下;(b)遲滯值(Re)與厚度方向遲滯值(Rth)之比(Re/Rth)為1.0以上;及(c)面配向度(△P)為0.12以下。
項2.如項1之影像顯示裝置,其中前述聚酯膜係滿足下述物性(d):(d)雙折射率(△Nxy)為0.1以上。
項3.如項1或2之影像顯示裝置,其中前述聚酯膜係以其配向主軸與前述偏光板的偏光軸呈略45度之方式配置。
項4.如項1至3中任一項之影像顯示裝置,其中前述聚酯膜的厚度為20μm(micrometer;微米)以上90μm以下。
項5.如項1至4中任一項之影像顯示裝置,其中前述聚酯膜的撕裂強度為50mN以上。
項6.如項1至5中任一項之影像顯示裝置,其中前述發光光譜連續的白色光源係白色發光二極體。
項7.一種聚酯膜,係滿足下述物性(a)至(c):(a)遲滯值(Re)為3000nm以上30000nm以下;(b)遲滯值(Re)與厚度方向遲滯值(Rth)之比(Re/Rth)為1.0以上;及(c)面配向度(△P)為0.12以下。
本發明的影像顯示裝置係使用滿足一定物性的改良型聚酯膜,藉此,減輕了以隔著偏光濾光鏡注視影像時取決於角度而生的虹斑為代表所造成的畫質低落,具有優異的視認性,且更適於薄型化。另外,在本說明書中,所謂的「虹斑」乃係包含「色斑」、「色偏」及「干涉色」之概念。
1‧‧‧液晶顯示裝置
2‧‧‧光源
3‧‧‧光源側偏光板
4‧‧‧液晶單元
5‧‧‧視認側偏光板
6‧‧‧觸控面板
7‧‧‧光源側偏光元件
8‧‧‧視認側偏光元件
9a‧‧‧偏光元件保護膜
9b‧‧‧偏光元件保護膜
10a‧‧‧偏光元件保護膜
10b‧‧‧偏光元件保護膜
11‧‧‧光源側透明導電性膜
11a‧‧‧光源側基材膜
11b‧‧‧透明導電層
12‧‧‧視認側透明導電性膜
12a‧‧‧視認側基材膜
12b‧‧‧透明導電層
13‧‧‧間隔件
14‧‧‧光源側飛散防止膜
15‧‧‧視認側飛散防止膜
第1圖係具備觸控面板(touch panel)的影像顯示裝置的代表性示意圖。
[實施發明之形態]
典型的影像顯示裝置係具有影像顯示單元及偏光板。典型的影像顯示單元係使用液晶單元或有機EL(Electro-Luminescence;電致發光)單元。第1圖顯示使用液晶單元作為影像顯示單元的影像顯示裝置的代表性示意圖。
液晶顯示裝置(1)一般係具有光源(2)、液晶單元(4)及作為功能層的觸控面板(6)。此處,在本說明書中係將顯示液晶顯示裝置的影像之側(人們視認影像之側)稱為「視認側」,將視認側的相對側(亦即在液晶顯示裝置中通常設有稱為背光(backlight)光源的光源之側)稱為「光源側」。另外,在第1圖中,右側為視認側,左側為光源側。
於液晶單元(4)的光源側及視認側兩方,分別 設有偏光板(光源側偏光板(3)及視認側偏光板(5))。就典型而言,各偏光板(3、5)係具有在稱為偏光元件(7、8)的膜的兩側積層偏光元件保護膜(9a、9b、10a、10b)之構造。在第1圖的影像顯示裝置(1)中,係於比視認側偏光板(5)更靠視認側的位置設有作為功能層的觸控面板(6)。第1圖中所示觸控面板為電阻膜式的觸控面板。觸控面板(6)係具有隔著間隔件(spacer)(13)配置2張透明導電性膜(11、12)之構造。透明導電性膜(11、12)係基材膜(11a、12a)與透明導電層(11b、12b)所積層的膜。此外,在觸控面板(6)的光源側及視認側係隔介黏合層設有為透明基體的飛散防止膜(14、15)。
雖然在第1圖中記載於視認側偏光板(5)的視認側設有觸控面板(6)作為功能層,但亦可為不配置觸控面板的構成。又,並不限定於觸控面板,只要是具有膜的層則無論何種層皆可。再者,就觸控面板而言,雖記載為電阻膜式的觸控面板,但亦能夠使用投影電容式等其他方式的觸控面板。雖然第1圖的觸控面板係具有2張透明導電性膜之構造,但觸控面板的構造並不限於此,例如,透明導電性膜及/或飛散防止膜的張數亦可為1張。在液晶顯示裝置(1)中,飛散防止膜未必一定要配置在觸控面板(6)的兩側,亦可為僅配置在其中一側之構成,亦或可為兩側皆不配置飛散防止膜之構成。飛散防止膜係可隔介黏合層配置在觸控面板上,亦可不隔介黏合層配置在觸控面板上。
在本說明書中,當於單一構件使用複數張配 向膜(膜群)時,該等複數張配向膜視為是1張膜。此處,所謂的構件,指的是例如偏光元件保護膜、光源側飛散防止膜、光源側基材膜、視認側基材膜、視認側飛散防止膜等從功能性及/或目的的觀點來判斷為個別的構件者。
<使用聚酯膜的位置>
從改善視認性的觀點來看,影像顯示裝置較佳為含有滿足下述物性(a)至(c)的聚酯膜。
(a)遲滯值(Re)為3000nm以上30000nm以下
(b)遲滯值(Re)與厚度方向遲滯值(Rth)之比(Re/Rth)為1.0以上
(c)面配向度(△P)為0.12以下
滿足上述物性的聚酯膜有時在以下會稱為「該聚酯膜」。
在影像顯示裝置中,該聚酯膜較佳為使用作為比視認側偏光板更靠視認側之任意的1張以上的膜。更具體而言,以第1圖中所示液晶顯示裝置為例來說明,該聚酯膜較佳為由比間隔件(13)更靠光源側的透明導電性膜(11)的基材膜(11a)(以下,稱為「光源側基材膜」)、比間隔件(13)更靠視認側的透明導電性膜(12)的基材膜(12a)(以下,稱為「視認側基材膜」)、位於視認側偏光元件保護膜(10b)與光源側基材膜(11a)之間的飛散防止膜(14)(以下,稱為「光源側飛散防止膜」)及比視認側基材膜12a位於視認側的飛散防止膜(15)(以下,稱為「視認側飛散防止膜」)所組成的群中,選擇作為1張以上的膜 來使用。
該聚酯膜的配向主軸與視認側偏光元件的偏光軸所形成的角度(假設該聚酯膜與偏光元件位於同一平面狀)並末特別限定,從視認性(黑化(blackout)的減輕)的觀點來看,較佳為接近45度(略45度)。例如,前述角度較佳為45度±25度以下,較佳為45度±20度以下,較佳為45度±15度以下,較佳為45度±10度以下,較佳為45度±5度以下,較佳為45度±3度以下,較佳為45度±2度以下,較佳為45度±1度以下,較佳為45度。另外,在本說明書中,「以下」此一用語係指僅及於「±」後面的數值。亦即,前述「45度±15度以下」指的是以45度為中心,容許上下變動15度之範圍。
能夠藉由例如下述的方法來將該聚酯膜配置成滿足上述條件:將裁好的聚酯膜配置成其配向主軸與偏光元件形成特定角度之方法、將聚酯膜斜向拉伸,藉此配置成與偏光元件形成特定角度之方法。
尤其是使用在電腦等的液晶顯示裝置的偏光板,其偏光軸並不是位在與畫面的縱方向或橫方向平行的位置,多是以斜角45度的方式配置。在從橫向斜角觀看影像顯示裝置的一般性樣態中,該聚酯膜的配向主軸較佳為以與偏光軸成45度的關係配置,以使該配向主軸與畫面的縱方向平行。在多是從縱向斜角觀看影像顯示裝置的樣態(例如,抬頭看顯示器畫面的樣態、在站立的狀態下從斜上方觀看採及腰程度的高度於地面呈水平設置的畫面的樣態等)中,該聚酯膜的配向主軸較佳為以與 偏光軸成45度的關係配置,以使配向主軸與畫面的橫方向平行。藉由上述的配置方式,便能夠進一步減少從斜角方向隔著太陽眼鏡等偏光膜觀察影像顯示裝置的畫面時的虹斑。
影像顯示裝置亦可具備2張以上的該聚酯膜。當影像顯示裝置具備有2張以上的該聚酯膜時,2張該聚酯膜的設置位置並未特別限定。此時,2張該聚酯膜較佳為兩者的配向主軸接近互相平行。例如,2張該聚酯膜的配向主軸所形成的角度較佳為0度±15度,較佳為0度±10度,較佳為0度±5度,較佳為0度±3度,較佳為0度±2度,較佳為0度±1度,較佳為0度。2張該聚酯膜不屬於略平行的關係時,2張該聚酯膜的遲滯值差較佳為1800nm以上,較佳為2500nm以上,較佳為3500nm以上,較佳為4000nm以上,較佳為5000nm以上。
從減少虹斑的觀點來看,該聚酯膜的遲滯值較佳為3000nm以上30000nm以下。遲滯值的下限值較佳為4500nm以上,再佳為5000nm以上,更佳為6000nm以上,再更佳為8000nm以上,甚佳為10000nm以上。另一方面,關於遲滯值的上限,因為就算將遲滯值設定得更高也無法實質獲得更進一步的視認性改善效果,且膜的厚度也有相應於高遲滯值愈趨增加的傾向,可能會與薄型化的要求背道而馳,故而從這些觀點出發將遲滯值的上限設定為30000nm,但亦能夠設定為更高的值。另外,在本說明書中,單純記載為「遲滯值」時指的是面內遲滯值。
遲滯值係以入射至膜面(x-y平面)的光所產生的雙折射率(△Nxy)與厚度(d)之積來表示。因此,△Nxy的值愈大,所獲得的遲滯值愈高。另一方面,膜的厚度愈薄,遲滯值相對地愈小,因此,要既將厚度變薄又維持一定值以上的遲滯值,理想方式是具有大的△Nxy值。然而,一旦△Nxy的值過大,膜的撕裂強度便會有降低的傾向。因此,聚酯膜的△Nxy的值較佳為0.1以上未滿0.3。更具體而言,當為聚對苯二甲酸乙二酯(polyethylene terephthalate)膜時,△Nxy的值較佳為0.1以上0.16以下,再佳為0.105以上0.15以下,更佳為0.11以上0.145以下。又,當為聚萘二甲酸乙二酯(polyethylene naphthalate)膜時,△Nxy的值較佳為未滿0.3,再佳為未滿0.27,更佳為未滿0.25,再更佳為未滿0.24。另一方面,一旦雙折射率△Nxy低時,為了提高遲滯值就會產生增加膜厚度的必要,因此當為聚萘二甲酸乙二酯膜的情形下,雙折射率△Nxy較佳為0.15以上,再佳為0.16以上,更佳為0.17以上,再更佳為0.18以上,特佳為0.20以上。
聚酯膜的遲滯值係依存觀察角度而變化。此處,所謂的觀察角度,指的是以垂直於聚酯膜平面的方向為基準(0度)時,該方向與觀察者注視聚酯膜的方向之角度差(θ)。觀察角度愈大,該角度下的遲滯值愈低。因此,即使從顯示裝置的正面(亦即垂直方向)觀察時未發現虹斑,從斜角方向觀察時還是有可能會發現虹斑。因此,為了在從斜角方向觀察顯示裝置時也能確保有良好的視認性,較佳為將觀察角度之增大所導致的遲滯值之 降低納入考量。尤其當是厚度薄的聚酯膜的情況,由於遲滯值較低,因此遲滯值隨著觀察角度之增大而降低對視認性產生的影響會比較大。就表示遲滯值隨著觀察角度之增大而降低之降低程度的指標而言,使用的是聚酯膜的遲滯值(Re)與厚度方向的遲滯值(Rth)之比(Re/Rth)。Re/Rth愈大,雙折射效果的等方性愈顯著,遲滯值因觀察角度之增大而降低的程度愈小,因此取決於觀察角度的虹斑就變得不易產生。從這個觀點來看,聚酯膜的遲滯值(Re)與厚度方向遲滯值(Rth)之比(Re/Rth)較佳為1.0以上,再佳為1.1以上,更佳為1.2以上,更佳為1.25以上,更佳為1.3以上。所謂的厚度方向遲滯值,指的是從膜厚度方向剖面觀看時的兩雙折射率△Nxz及△Nyz分別乘上膜厚度(d)而得的遲滯值的平均值。
Re/Rth比的最大值為2.0(亦即完全的單軸對稱性膜),但有時隨著超過1.0、接近完全的單軸對稱性膜,與配向主軸方向正交之方向的機械強度會降低,此時較佳為以使後述的面配向度成為特定數值以下的方式進行調整。從薄膜化、提升視野角特性的觀點來看,Re/Rth比的數值愈高愈好,但其上限值不需要到最大值2.0,較佳為1.9以下,更佳為1.8以下。
遲滯值能夠遵循周知的手法進行量測。具體而言,能夠量測2軸方向的折射率與厚度來求得。此外,亦能夠使用可經商業管道取得的自動雙折射量測裝置(例如,KOBRA-21ADH:王子計測機器股份有限公司製)來求得。不論是哪一種量測方法,皆是量測鈉D線的波長 即589nm的遲滯值。
從滿足供抑制虹斑用的遲滯值及Re/Rth比的同時,且既維持能夠承受工業化的液晶顯示裝置製造流程的機械強度(撕裂強度),也使膜的厚度進一步薄化的觀點來看,面配向度(△P)較佳為0.12以下。面配向度乃係膜的縱方向的折射率(Nx)與寬度方向的折射率(Ny)之平均值與厚度方向的折射率(Nz)之值的差,能夠以下式表示:△P=((Nx+Ny)/2)-Nz。
關於面配向度的上限,再佳為0.11以下,更佳為0.102以下,再更佳為0.1以下,甚佳為0.098以下,再甚佳為0.095以下,更甚佳為0.09以下。另一方面,面配向度的下限較佳為0.04以上,再佳為0.05以上,更佳為0.06以上。
當面配向度未滿0.04時,膜的機械強度會過低,故在加工性等方面不甚理想。此外,當面配向度超過0.12時,在薄膜條件方面難以兼顧到遲滯值與機械強度,會有其中一方達不到標準,故不甚理想。
該聚酯膜的厚度(d)雖然未特別限定,但從提供更薄的液晶顯示裝置的觀點來看,較佳為500μm以下,再佳為300μm以下,更佳為100μm以下,再更佳為80μm以下,甚佳為60μm以下,再甚佳為50μm以下,更甚佳為45μm以下,特佳為40μm以下,最佳為35μm以下。從會難以維持足夠的撕裂強度的觀點來看,該聚酯膜的厚度的下限值為10μm以上,較佳為15μm以上,再佳為20μm以上,更佳為25μm以上。
該聚酯膜較佳為當厚度薄時仍保有能夠在工業化的液晶顯示裝置製造流程中承受處理的機械強度。從此觀點來看,該聚酯膜較佳為具有50mN以上的撕裂強度。撕裂強度較佳為100mN以上,更佳為130mN以上。如後述的實施例所示,膜的撕裂強度係能夠遵照JIS P-8116的方法進行量測。
該聚酯膜於接受150℃、30分鐘的加熱處理時,膜流動方向及寬度方向的熱收縮率皆為-5%至5%為佳。若聚酯膜的熱收縮率在此範圍內,則例如當將該聚酯膜作為透明導電性膜使用時,便能夠以高精度設置經圖案(pattern)化的透明導電層,故而較佳。再佳的熱收縮率為-3%至3%,更佳為-2%至2%。如後述的實施例所示,膜的熱收縮率係能夠遵照JIS C-2318的方法進行量測。
在不妨礙本發明的效果且不損及透明性的範圍內,該聚酯膜係亦可含有例如無機粒子、耐熱性高分子粒子、鹼金屬化合物、鹼土類金屬化合物、磷化合物、帶電防止劑、紫外線吸收劑、耐光劑、阻燃劑、熱安定劑、氧化防止劑、抗膠凝劑、界面活性劑等。
在一般的聚酯膜的製造條件下,滿足上述物性的聚酯膜係能夠藉由控制拉伸條件等來獲得。一般而言,聚酯膜係以下述步驟製造。亦即,熔化聚酯樹脂,將擠出成片(sheet)狀的不定向聚酯以玻璃轉化溫度以上的溫度利用輥(roll)的速度差沿縱方向拉伸後,利用拉幅機(tenter)沿橫方向拉伸,再施行熱處理而獲得。關於往縱方向及橫方向之拉伸,係有針對各方向個別進行的方 法、與導入至拉幅機後一邊擴大夾持寬度一邊變化輥的速度,藉此同時拉伸縱方向與橫方向的方法。
為了獲得滿足上述物性的聚酯膜,較佳為進行單純的單軸拉伸,更佳為於往任意方向拉伸的同時沿與拉伸方向垂直的方向進行鬆弛(relax)處理。更具體而言,能夠列舉出使用一般稱為同時雙軸拉伸機的設備,在進行過縱方向的拉伸與橫方向的鬆弛處理之後、或進行過橫方向的拉伸與縱方向的鬆弛處理之後施行熱處理的方法。拉伸處理與鬆弛處理的順序較佳為同時進行,但亦可採取進行拉伸處理後再進行鬆弛處理、或進行鬆弛處理後再進行拉伸處理的順序實施。更佳的方法係同時進行橫方向的拉伸處理與縱方向的鬆弛處理之方法。雖然也能夠在熱處理的過程中施行鬆弛處理,但鬆弛率一旦變高就會產生熱皺褶,故需加以留意。
亦能夠逐次使用雙軸拉伸機來製造。其情形係當往縱方向進行鬆弛處理時能夠實施如下,即一邊以外部加熱器(heater)等加熱,一邊令拉伸處理後的輥慢於拉伸處理前的輥,藉此沿縱方向施行鬆弛處理,然後導入至拉幅機沿橫方向進行拉伸處理。又,當往橫方向進行鬆弛處理時能夠實施如下,即在藉由通常的雙軸拉伸中所使用的方式施行縱拉伸處理後,在拉幅機內一邊加熱一邊漸漸縮窄橫方向的夾持寬度。另外,使用逐次雙軸拉伸機時,單軸拉伸的方向較佳為往橫方向之拉伸。雖然往縱方向之拉伸亦為可能,但縱拉伸時易於膜表面產生微小的傷痕,有容易產生拉伸不均等的課題,需加 以留意。此外,亦能夠實施如下,即對單軸拉伸膜,利用與上述相同的原理,以同時雙軸拉伸機、拉幅機及輥其中任一設備,增加施行鬆弛處理。
更具體地說明該聚酯膜的製膜條件(尤其是拉伸條件)。拉伸溫度較佳為80℃至130℃,特佳為90℃至120℃。拉伸倍率較佳為0.4倍至6倍,特佳為0.6倍至5倍。較佳為設定成進行鬆弛處理的方向的拉伸倍率為0.4倍至0.97倍,與進行鬆弛處理的方向垂直的方向的倍率為3倍至6倍。並且,更佳為令一方向以0.6倍至0.9倍進行鬆弛處理,與該方向垂直的方向以3.5倍至5.5倍進行拉伸處理。
關於進行鬆弛處理的方向與進行拉伸處理的方向的倍率,只要是在上述的範圍內便能夠任意設定,但拉伸倍率提升得愈高,單軸性會愈高,故較佳為更進一步提高鬆弛的程度。另一方面,將拉伸倍率降低時,此時若大幅度鬆弛便無法忽略皺褶的影響,因此較佳為降低鬆弛率。
為了把遲滯值控制在上述範圍,較佳為對縱拉伸倍率與橫拉伸倍率的比率進行控制。若縱橫的拉伸倍率之差過小,就難以提高遲滯值,故不甚理想。又,若進行鬆弛處理的方向的倍率過低,就避不了皺褶等的產生,故不甚理想。再者,若進行延伸處理的方向的倍率過高,就容易破裂,故不甚理想。將拉伸溫度設低也是在提高遲滯值上較佳之對策。在接著的熱處理中,處理溫度較佳為100℃至250℃,更佳為160℃至250℃,特 佳為180℃至245℃。
膜上的遲滯值的變動宜小,為了抑制變動,較佳為對膜的厚度不均進行控制。拉伸溫度、拉伸倍率會給膜的厚度不均帶來顯著的影響,因此,從抑制厚度不均的觀點來看,較佳為進行製膜條件的最佳化。特別是若為了提高遲滯值而將縱拉伸倍率降低,縱厚度不均的情形將有可能惡化。縱厚度不均有時會在拉伸倍率的某個特定範圍時惡化,因此較理想為避開該範圍來設定製膜條件。
從上述的觀點來看,該聚酯膜的厚度不均較佳為5.0%以下,再佳為4.5%以下,更佳為4.0%以下,特佳為3.0%以下。
為了將聚酯膜的遲滯值控制在特定範圍,能夠藉由適當設定拉伸倍率和拉伸溫度、膜的厚度來進行。例如,拉伸倍率愈高、拉伸溫度愈低、膜的厚度愈厚,愈容易獲得高遲滯值。相反的,拉伸倍率愈低、拉伸溫度愈高、膜的厚度愈薄,愈容易獲得低遲滯值。但若將膜的厚度增厚,厚度方向相位差便容易變大。因此,膜厚度較理想為適當設定在後述的範圍。又,除了遲滯值的控制,也應考量加工所需的物性等後再設定最終的製膜條件。
供獲得滿足上述物性的聚酯膜之用的聚酯樹脂係可為該領域所使用的任意的聚酯樹脂。亦即,能夠令任意的二羧酸(dicarboxylic acid)與二醇(diol)進行縮合而得。就二羧酸而言,例如可列舉對苯二甲酸 (terephthalic acid)、間苯二甲酸(isophthalic acid)、磷苯二甲酸(orthophthalic acid)、2,5-萘二羧酸(2,5-naphthalene dicarboxylic acid)、2,6-萘二羧酸、1,4-萘二羧酸、1,5-萘二羧酸、二苯基羧酸(diphenyl carboxylic acid)、二苯氧乙烷二羧酸(diphenoxy ethane dicarboxylic acid)、二苯碸甲酸(diphenyl sulfone carboxylic acid)、蒽二羧酸(anthracene dicarboxylic acid)、1,3-環戊烷二羧酸(1,3-cyclopentane dicarboxylic acid)、1,3-環己烷二羧酸(1,3-cyclohexane dicarboxylic acid)、1,4-環己烷二羧酸、六氫對苯二甲酸(hexahydro terephthalic acid)、六氫間苯二甲酸(hexahydro isophthalic acid)、丙二酸(malonic acid)、二甲基丙二酸(dimethyl malonic acid)、丁二酸(succinic acid)、3,3-二乙基丁二酸(3,3-diethyl succinic acid)、戊二酸(glutaric acid)、2,2-二甲基戊二酸(2,2-dimethyl glutaric acid)、己二酸(adipic acid)、2-甲基己二酸(2-methyl adipic acid)、三甲基己二酸(trimethyl adipic acid)、庚二酸(pimelic acid)、壬二酸(azelaic acid)、二聚酸(dimer acid)、癸二酸(sebacic acid)、辛二酸(suberic acid)、十二烷二羧酸(dodeca dicarboxylic acid)等。
就二醇而言,例如能夠出乙二醇(ethylene glycol)、丙二醇(propylene glycol)、六亞甲二醇(hexamethylene glycol)、新戊二醇(neopentyl glycol)、1,2-環己烷二甲醇(1,2-cyclohexanedimethanol)、1,4-環己烷二甲醇、十二亞甲基二醇(decamethylene glycol)、1,3- 丙二醇(1,3-propanediol)、1,4-丁二醇(1,4-butanediol)、1,5-戊二醇(1,5-pentanediol)、1,6-己二醇(1,6-hexane diol)、2,2-雙(4-羥苯)丙烷(2,2-bis(4-hydroxyphenyl)propane)、雙(4-羥苯)碸(bis(4-hydroxyphenyl)sulfone)等。
構成聚酯膜的二羧酸成分與二醇成分係可分別使用1種或2種以上。就構成聚酯膜的具體的聚酯樹脂而言,例如可舉出聚對苯二甲酸乙二酯、聚對苯二甲酸丙二醇酯(polypropylene terephthalate)、聚對苯二甲酸丁二酯(polybutylene terephthalate)、聚萘二甲酸乙二酯等,較佳為聚對苯二甲酸乙二酯及聚萘二甲酸乙二酯,更佳為聚對苯二甲酸乙二酯。聚酯樹脂係亦可含有其他的共聚合成分,從機械強度的點來看,共聚合成分的比例以3莫耳(mol)%以下為佳,較佳為2莫耳%以下,再佳為1.5莫耳%。
<光源及影像顯示單元>
影像顯示裝置係能夠具備液晶單元或有機EL單元作為典型的影像顯示單元。此外,從抑制虹斑的觀點來看,影像顯示裝置較佳為具有發光光譜寬且連續的白色光源。當影像顯示裝置具備的是液晶單元時,影像顯示裝置較佳為以獨立於影像顯示單元之外的光源形式具備上述光源。另一方面,當具備的是有機EL單元時,因為有機EL單元本身便具有光源的功能,因此較佳為由有機EL單元本身放出發光光譜寬且連續的光。發光光譜寬且連續的光源的方式及構造並未特別限定,例如可為邊光型 (edge light)方式或直下型方式。所謂的「寬且連續的發光光譜」,指的是至少在450nm至650nm的波長區域,較佳為在可視光的區域,不存在光強度為0的波長區域之發光光譜。所謂的可視光區域係例如為400nm至760nm的波長區域,可為360nm至760nm、400至830nm或360nm至830nm。
就發光光譜寬且連續的白色光源而言,例如可列舉白色發光二極體(白色LED(Light-emitting diode))。關於白色LED,可列舉螢光體方式的發光元件(亦即,將使用化合物半導體製成的發出藍色光或紫外光的發光二極體與螢光體組合,藉此而發出白色光的元件)及有機發光二極體(Organic light-emitting diode;OLED)等。從發光光譜寬且連續、發光效率亦優異的觀點來看,較佳為將使用化合物半導體製成的藍光二極體與釔鋁石榴石(Yttrium Aluminum Garnet;YAG)系黃色螢光體組合而成的發光元件所構成的白色發光二極體。
關於液晶單元,可適當選擇使用在液晶顯示裝置中能使用的任意的液晶單元,液晶單元的方式和構造並未特別限定。例如,能夠適當選擇使用VA(Vertical Alignment;垂直配向)模式、IPS(In Plane Switching;平面電場切換)模式、TN(Twisted Nematic;扭轉向列)模式、STN(Super Twisted Nematic;超扭轉向列)模式和彎曲配向(bend alignment)(π型)等模式的液晶單元。因此,液晶單元係能夠適當選擇使用以周知的液晶材料及今後可能開發的液晶材料所製作的液晶。在一實施形態中,較 佳的液晶單元為穿透型的液晶單元。
關於有機EL單元,係能夠適當選擇使用在該技術領域中已知的有機EL單元。有機EL單元乃係發光體(有機電致發光體),就典型而言,係具有於透明基材上依序積層透明電極、有機發光層、金屬電極之構造。有機發光層乃係各種有機薄膜的積層體,例如可列舉三苯胺(triphenylamine)衍生物等所構成的電洞注入層與蒽等螢光性有機固體所構成的發光層之積層體、及上述發光層與苝(perylene)衍生物等所構成的電子注入層之積層體等。如上述,有機EL單元係兼具作為影像顯示單元的功能與作為光源的功能,因此當影像顯示裝置具備的是有機EL單元時,便不需要獨立光源。亦即,關於影像顯示裝置的光源與影像顯示裝置,只要能發揮出該兩者的功能,則可為彼此獨立的存在,亦可為一體的形態。
當使用有機EL單元作為影像顯示單元時,影像顯示裝置的偏光板便不需要。然而,因為有機發光層的厚度極薄,薄至10nm左右,外部光會因金屬電極反射而再次往視認側射出,有時從外部視認時,有機EL顯示裝置的顯示面看起來會像是鏡面一樣。為了遮蔽上述外部光的鏡面反射,較佳為在有機EL單元的視認側設置偏光板及1/4波長板。因此,當影像顯示裝置具有有機EL單元及偏光板時,只要把第1圖中的液晶單元(4)當作有機EL單元,把視認側偏光板(5)當作偏光板,便能夠按原樣適用液晶顯示裝置(1)中的配向膜的位置關係。
<偏光板>
偏光板係具有以2張保護膜(有時亦稱為「偏光元件保護膜」)包夾膜狀的偏光元件兩側之構造。偏光元件係能夠適當選擇使用在該技術領域中使用的任意的偏光元件(或偏光膜)。具代表性的偏光元件,可列舉於聚乙烯醇(polyvinyl alcohol;PVA)膜等染上碘等二色性材料而成的偏光元件,但並不以此為限,能夠適當選擇周知及今後可能開發的偏光元件。
PVA膜係能夠使用市售品,例如能夠使用「Kuraray Vinylon(Kuraray(股)製)」、「Tohcello Vinylon(Tohcello(股)製)」、「日合Vinylon(日本合成化學(股)製)」等。就二色性材料而言,係可列舉碘、重氮化合物(diazo compound)、多次甲基(polymethine)染料等。
偏光元件係能夠以任意的手法獲得,例如能夠藉由將以二色性材料染色後的PVA膜於硼酸水溶液中進行單軸拉伸,在保持著拉伸狀態之下進行洗淨及乾燥來獲得。單軸拉伸的拉伸倍率通常為4倍至8倍左右,但並未特別限定。其他的製造條件等係能夠遵循周知的手法適當設定。
偏光元件保護膜可為任意種類,能夠適當選擇使用習知作為保護膜使用的膜。從處理性及取得容易性的觀點來看,較佳為使用例如從三乙醯纖維素(triacetyl cellulose;TAC)膜、丙烯酸(acrylic)膜、及環狀烯烴系膜(例如,降莰烯(norbornene)系膜)、聚丙烯(polypropylene)膜、及聚烯烴(polyolefin)系膜(例如,TPX)、聚酯膜等所組成的群中選擇的一種以上不具有雙 折射性的膜。
在一實施形態中,視認側偏光元件的光源側保護膜及光源側偏光元件的視認側保護膜較佳為具有光學補償功能的光學補償膜。該光學補償膜係能夠配合液晶的各方式適當選擇,例如可列舉從在三醋酸纖維素中分散液晶化合物(例如,盤狀(discotic)液晶化合物及/或雙折射性化合物)而成的樹脂、環狀烯烴樹脂(例如,降莰烯樹脂)、丙醯乙酸乙酯(propionyl acetate)樹脂、聚碳酸酯(polycarbonate)膜樹脂、丙烯酸樹脂、苯乙烯丙烯腈共聚合物(styrene-acrylonitrile copolymer)樹脂、含內酯環(lactone ring)的樹脂、及含亞胺基(imido)的聚烯烴樹脂等所組成的群中選擇的1種以上的樹脂所構成的膜。
光學補償膜係可經商業管道取得,因此亦能夠適當選擇使用該等光學補償膜。例如能舉出TN方式用的「Wide View-EA」及「Wide View-T」(富士FILM公司製)、VA方式用的「Wide View-B」(富士FILM公司製)、VA-TAC(KONICA MINOLTA公司製)、「ZeonorFilm」(日本ZEON公司製)、「ARTON」(JSR公司製)、「X-plate」(日東電工公司製)、IPS方式用的「Z-TAC」(富士FILM公司製)、「CIG」(日東電工公司製)、「P-TAC」(大倉工業公司製)等。
偏光元件保護膜係能夠直接或隔介黏合劑層積層於偏光元件上。從提升黏合性的點來看,較佳為隔介黏合劑進行積層。就黏合劑而言,並未特別限定,能夠使用任意的黏合劑。從薄化黏合劑層的觀點來看,較 佳為水系的黏合劑(亦即,將黏合劑成分溶解於水中或分散於水中而成者)。例如,當使用聚酯膜作為偏光元件保護膜時,其主成分使用聚乙烯醇系樹脂、胺基甲酸乙酯(urethane)樹脂等,為了使黏合性提升,能夠視需要使用混合異氰酸酯(isocyanate)系化合物、環氧(epoxy)化合物等而成的組成物作為黏合劑。黏合劑層的厚度較佳為10μm以下,再佳為5μm以下,更佳為3μm以下。
當使用TAC膜作為偏光元件保護膜時,能夠使用聚乙烯醇系的黏合劑進行黏合。當使用丙烯酸膜、環狀烯烴系膜、聚丙烯膜、或TPX、聚酯膜等透濕性低的膜作為偏光元件保護膜時,黏合劑較佳為使用光硬化性黏合劑。就光硬化性樹脂而言,例如可列舉光硬化性環氧樹脂與光陽離子聚合起始劑的混合物等。
偏光元件保護膜的厚度為任意值,例如能夠在15μm至300μm的範圍適當設定,較佳為30μm至200μm的範圍適當設定。
<觸控面板、透明導電性膜、基材膜、飛散防止膜>
影像顯示裝置係可具備觸控面板。觸控面板的種類及方式並未特別限定,例如可列舉電阻膜式觸控面板及電容式觸控面板。觸控面板通常具有1張或2張以上的透明導電性膜,這無關於其方式。透明導電性膜係具有於基材膜上積層透明導電層之構造。就基材膜而言,係能夠使用滿足上述物性的聚酯膜。此外,不使用該聚酯膜作為基材膜時,能夠使用習知作為基材膜使用的其他膜 或玻璃板等剛性板。
就習知作為基材膜使用的其他膜而言,可列舉具有透明性的各種樹脂膜。例如能夠使用從聚酯樹脂、乙酸酯(acetate)樹脂、聚醚碸(polyethersulfone)樹脂、聚碳酸酯樹脂、聚醯胺(polyamide)樹脂、聚醯亞胺(polyimide)樹脂、聚烯烴樹脂、(甲基)丙烯酸樹脂、聚氯乙烯(polyvinyl chloride)樹脂、聚偏二氯乙烯(polyvinylidene chloride)樹脂、聚苯乙烯(polystyrene)樹脂、聚乙烯醇樹脂、聚芳香酯(polyarylate)樹脂、及聚苯硫(polyphenylene sulfide)樹脂等所組成的群中選擇的1種以上的樹脂所構成的膜。上述的樹脂之中,以聚酯樹脂、聚碳酸酯樹脂及聚烯烴樹脂為佳,較佳為聚酯樹脂。
基材膜的厚度為任意值,但較佳的範圍為15μm至500μm。
關於基材膜,亦可在預先對表面施行濺鍍(sputtering)、電暈(corona)放電、火焰、紫外線照射、電子射線照射、化成、氧化等蝕刻(etching)處理和底塗處理。藉此,能夠提升基材膜與設置在基材膜上的透明導電層等之間的密接性。此外,在設置透明導電層等之前,亦可視需要藉由溶劑洗淨和超音波洗淨等將基材膜表面予以除塵、潔淨化。
透明導電層係可直接積層於基材膜,但亦能夠隔介易黏合層及/或各種其他的層進行積層。就其他的層而言,例如可列舉硬塗(hard coating)層、折射率匹配 (index matching;IM)層及低折射率層等。就具代表性的透明導電性膜的積層構造而言,可列舉下列6種積層組合,但並非以此為限。
(1)基材膜/易黏合層/透明導電層
(2)基材膜/易黏合層/硬塗層/透明導電層
(3)基材膜/易黏合層/IM(折射率匹配)層/透明導電層
(4)基材膜/易黏合層/硬塗層/IM(折射率匹配)層/透明導電層
(5)基材膜/易黏合層/硬塗層(高折射率且兼IM)/透明導電層
(6)基材膜/易黏合層/硬塗層(高折射率)/低折射率層/透明導電性薄膜
因為IM層本身就是高折射率層/低折射率層的積層構成(透明導電性薄膜側為低折射率層),故使用IM層能夠在觀看液晶表示畫面時讓ITO圖案不易被看到。如上述(6)所示,亦能夠讓IM層的高折射率層與硬塗層一體化,從薄型化的觀點來看,此種構成組合較佳。
上述(3)至(6)的構成尤其適合使用在電容式的觸控面板。此外,從能夠防止基材膜表面析出寡聚物(oligomer)的觀點來看,以上述(2)至(6)的構成為佳,且較佳為在基材膜的另一側的面也設置硬塗層。
基材膜上的透明導電層係以導電性金屬氧化物形成。構成透明導電層的導電性金屬氧化物並未特別限定,能夠使用從銦、錫、鋅、鎵、銻、鈦、矽、鋯、 鎂、鋁、金、銀、銅、鈀、鎢所組成的群中選擇的至少1種金屬的導電性金屬氧化物。在該金屬氧化物中亦可視需要進一步含有上述群中所示的金屬原子。透明導電層係例如以氧化銦錫(ITO)層及氧化銻錫(ATO)層為佳,較佳為ITO層。此外,透明導電層亦可為Ag奈米線(nanowire)、Ag墨水(ink)、Ag墨水的自組導電膜、網格狀電極、CNT墨水、導電性高分子。
透明導電層的厚度並未特別限定,但較佳為10nm以上,再佳為15nm至40nm,更佳為20nm至30nm。若透明導電層的厚度為15nm以上,便容易獲得表面電阻為例如1×103Ω/□以下的良好的連續被膜。此外,若透明導電層的厚度為40nm以下,便能夠形成透明性更高的層。
透明導電層係能夠遵循周知的步驟來形成。例如能夠列舉出真空蒸鍍法、濺鍍法、離子鍍覆(ion plating)法。透明導電層係可為非晶質(amorphous),亦可為結晶性。就形成結晶性的透明導電層的方法而言,較佳為藉由於基材上形成非晶膜後,將該非晶膜與可撓性透明基材一同進行加熱.結晶化來形成。
透明導電性膜係可為將透明導電層面內的一部分去除、圖案化而成的膜。透明導電層經圖案化的透明導電性膜係具有:於基材膜上形成有透明導電層的圖案形成部、及於基材膜上未具有透明導電層的圖案開口部。圖案形成部的形狀係例如可舉出條紋(stripe)形狀,此外還有方形(square)形狀等。
觸控面板較佳為具有1張或2張以上的飛散防止膜作為前述的透明基體。飛散防止膜係可為具有前述特定物性的聚酯膜。此外,飛散防止膜亦能夠使用習知作為飛散防止膜使用的各種膜(例如,針對前述基材膜所記載的透明樹脂膜)。當設置有2張以上的飛散防止膜時,該些飛散防止膜可採用相同的材料形成,亦可採用不同的材料形成。
在不妨礙本發明效果的範圍內,能夠讓偏光元件保護膜、基材膜及飛散防止膜含有各種添加劑。例如可列舉紫外線吸收劑、無機顆粒、耐熱性高分子顆粒、鹼金屬化合物、鹼土類金屬化合物、磷化合物、帶電防止劑、耐光劑、阻燃劑、熱安定劑、氧化防止劑、抗膠凝劑、界面活性劑等。此外,為了達到高透明性,以實質上不含有顆粒為佳。所謂的「實質上不含有顆粒」,係指例如若含有的是無機顆粒,則以螢光X射線分析進行無機元素的定量時,以重量而言,含量在50ppm以下,較佳為10ppm以下,特佳為檢測極限以下。
滿足前述特定物性的聚酯膜係可具有各種功能層。就該功能層而言,例如能夠使用從硬塗層、防眩層、反射防止層、低反射層、低反射防眩層、反射防止防眩層、帶電防止層、矽氧(silicone)層、黏著層、防污層、撥水層及抗藍光(blue-cut)層等所組成的群中選擇的1種以上的層。藉由設置防眩層、反射防止層、低反射層、低反射防眩層、反射防止防眩層,能夠期待也能有改善從斜角方向進行觀察時的色斑之效果。
在設置各種功能層時,較佳為在聚酯膜表面具有易黏合層。此時,從抑制反射光所造成的干涉的觀點來看,較佳為將易黏合層的折射率調整成接近功能層的折射率與配向膜的折射率的幾何平均。易黏合層的折射率的調整係能夠採用周知的方法,例如能夠藉由令黏結劑(binder)樹脂含有鈦、鋯、其他金屬種,以容易進行調整。
(硬塗層)
硬塗層只要是具有硬度及透明性的層便可,通常係使用以紫外線或電子射線為代表的放射線進行照射而硬化的電離放射線硬化性樹脂、加熱而硬化的熱硬化性樹脂等各種硬化性樹脂所形成的硬化樹脂層。為了在該些硬化性樹脂加上適度的柔軟性、其他物性等,亦可適當添加熱可塑性樹脂等。在硬化性樹脂中,尤以電離放射線硬化性樹脂為佳,因其具有代表性且能獲得優異的硬質塗膜。
就上述的電離放射線硬化性樹脂而言,適當採用習知的樹脂便可。另外,就電離放射線硬化性樹脂而言,以使用具有乙烯性雙鍵的自由基(radical)聚合性化合物、環氧化合物等各種陽離子聚合性化合物等為代表,該些化合物係能夠以單體(monomer)、寡聚物、預聚合物(prepolymer)等形式,單獨地或適當組合2種以上來使用。具代表性的化合物係屬於自由基聚合性化合物的各種(甲基)丙烯酸酯系化合物。在(甲基)丙烯酸酯系化合物中,就以較低分子量使用的化合物而言,例如可舉出 聚酯(甲基)丙烯酸酯、聚醚(甲基)丙烯酸酯、丙烯酸(甲基)丙烯酸酯、環氧(甲基)丙烯酸酯、胺甲酸乙酯(甲基)丙烯酸酯等。
就單體而言,例如亦能夠適當使用(甲基)丙烯酸乙酯、(甲基)丙烯酸乙基己酯、苯乙烯、甲基苯乙烯、N-乙烯吡咯啶酮(N-vinyl pyrrolidone)等單官能單體;或例如亦能夠適當使用三羥甲基丙烷三(甲基)丙烯酸酯(trimethylol propane tri(meth)acrylate)、三伸丙二醇二(甲基)丙烯酸酯(tripropylene glycol di(meth)acrylate)、二乙二醇二(甲基)丙烯酸酯(diethylene glycol di(meth)acrylate)、季戊四醇三(甲基)丙烯酸酯(pentaerythritol tri(meth)acrylate)、二季戊四醇六(甲基)丙烯酸酯(dipentaerythritol hexa(meth)acrylate)、1,6-己二醇二(甲基)丙烯酸酯(1,6-hexanediol di(meth)acrylate)、新戊二醇二(甲基)丙烯酸酯(neopentyl glycol di(meth)acrylate)等多官能單體等。所謂的(甲基)丙烯酸酯,係指丙烯酸酯(acrylate)或甲基丙烯酸酯(methacrylate)。
以電子射線令電離放射線硬化性樹脂硬化時,不需要光聚合起始劑,而以紫外線令電離放射線硬化性樹脂硬化時,使用周知的光聚合起始劑。例如,當電離放射線硬化性樹脂為自由基聚合系時,能夠單獨或混合使用苯乙酮(acetophenone)類、二苯基酮(benzophenone)類、9-氧硫(thioxanthone)類、安息香(benzoin)、安息香甲醚(benzoin methylether)等作為光聚 合起始劑。當電離放射線硬化性樹脂為陽離子聚合系時,能夠單獨或混合使用芳香族偶氮鹽(diazonium salt)、芳香族鋶鹽(sulfonium salt)、芳香族錪鹽(iodonium salt)、茂金屬(metallocene)化合物、苯偶姻磺酸酯(benzoin sulfonic acid ester)等作為光聚合起始劑。
硬塗層的厚度係只要形成適當的厚度便可,例如0.1μm至100μm,但通常形成1μm至30μm。此外,硬塗層係能夠適當採用周知的各種塗布法來形成。
為了適度調整物性等,亦能夠在電離放射線硬化性樹脂中適當添加熱可塑性樹脂或熱硬化性樹脂等。就熱可塑性樹脂或熱硬化性樹脂而言,各例如可列舉丙烯酸樹脂、胺基甲酸乙酯樹脂、聚酯樹脂等。
為了給硬塗層賦予耐光性,防止陽光等所含的紫外線造成的變色、強度劣化、產生龜裂等,較佳為在電離放射線硬化性樹脂中添加紫外線吸收劑。若添加紫外線吸收劑,此時為了確實防止該紫外線吸收劑阻礙硬塗層硬化,較佳為以電子射線令電離放射線硬化性樹脂硬化。就紫外線吸收劑而言,只要從苯并三唑(benzotriazole)系化合物、二苯基酮系化合物等有機系紫外線吸收劑或粒徑0.2μm以下的微粒狀的氧化鋅、氧化鈦、氧化鈰等無機系紫外線吸收劑等周知的紫外線吸收劑之中選擇使用便可。紫外線吸收劑的添加量係佔電離放射線硬化性樹脂組成物的0.01質量%至5質量%左右。為了使耐光性進一步提升,較佳為添加受阻胺(hindered amine)系自由基捕捉劑等自由基捕捉劑,與紫外線吸收 劑一同併用。另外,電子射線照射係採用加速電壓70kV至1MV、照射劑量5kGy至100kGy(0.5Mrad至10Mrad)左右。
(防眩層)
就防眩層而言,只要適當採用習知的防眩層便可,一般而言係採用在樹脂中分散防眩劑而成的層之形式來形成。就防眩劑而言,能夠使用無機系或有機系的微粒。該些微粒的形狀為真球狀、橢圓狀等。微粒較佳為具有透明性者。關於這類的微粒,就無機系微粒係例如可列舉二氧化矽珠粒(silica beads),就有機系微粒而言係例如可列舉樹脂珠粒。就樹脂珠粒而言係例如可列舉苯乙烯(styrene)珠粒、三聚氰胺(melamine)珠粒、丙烯酸珠粒、丙烯酸-苯乙烯珠粒、聚碳酸酯珠粒、聚乙烯(polyethylene)珠粒、苯胍-甲醛(benzoguanamine-formaldehyde)珠粒等。微粒通常係能夠相對於樹脂100質量份添加20質量份至30質量份左右,較佳為10質量份至25質量份左右。
將防眩劑分散保持的上述樹脂的硬度較佳為盡量和硬塗層一樣高。因此,就上述樹脂而言,例如能夠使用於前記硬塗層時所說明的電離放射線硬化性樹脂、熱硬化性樹脂等硬化性樹脂等。
防眩層的厚度係只要形成適當的厚度便可,通常形成1μm至20μm左右。防眩層係能夠適當採用周知的各種塗布法來形成。另外,為了防止防眩劑的沉澱,較佳為在用來形成防眩層的塗液中適當添加二氧化矽等周知的沉降防止劑。
(反射防止層)
就反射防止層而言,只要適當採用習知的反射防止層便可。一般而言,反射防止層係至少由低折射率層構成,進一步則由將低折射率層與(折射率比該低折射率層高的)高折射率層交錯鄰接積層且表面側為低折射率層的多層構造之層所構成。低折射率層及高折射率層各層的厚度係只要依據用途形成適當厚度便可,鄰接積層構成時,較佳為各為0.1μm左右,由低折射率層單獨構成時,較佳為0.1μm至1μm左右。
就低折射率層而言,可列舉在樹脂中含有二氧化矽、氟化鎂等低折射率物質的層、氟系樹脂等的低折射率樹脂的層、在低折射率樹脂中含有低折射率物質的層、以薄膜形成法(例如,蒸鍍、濺鍍、CVD(Chemical Vapor Deposition;化學氣相沉積)等物理性或化學性氣相成長法)形成有由二氧化矽、氟化鎂等低折射率物質構成的層之薄膜、以氧化矽的溶膠(sol)液形成氧化矽凝膠(gel)膜的以溶膠凝膠法形成的膜、或是在樹脂中含有含空隙微粒作為低折射率物質的層等。
上述的含空隙微粒,指的是內部含有氣體的微粒、含有氣體的多孔質構造的微粒等,即微粒全體的折射率因為該氣體所產生的空隙而表觀上比微粒固體部分原本的折射率低之微粒。就這類的含空隙微粒而言,可列舉日本國特開2001-233611號公報中揭示的二氧化矽微粒等。此外,就含空隙微粒而言,除了二氧化矽這類的無機物以外,亦可列舉日本國特開2002-805031號公 報等中揭示的中空聚合物微粒。含空隙微粒的粒徑係例如5nm至300nm左右。
就高折射率層而言,可列舉在樹脂中含有氧化鈦、氧化鋯、氧化鋅等高折射率物質的層、不含氟樹脂等高折射率樹脂的層、在高折射率樹脂中含有高折射率物質的層、以薄膜形成法(例如,蒸鍍、濺鍍、CVD等物理性乃至於化學性氣相成長法)形成有由氧化鈦、氧化鋯、氧化鋅等高折射率物質所構成的層之薄膜等。
(帶電防止層)
就帶電防止層而言,只要適當採用習知的帶電防止層便可,一般而言係採用在樹脂中含有帶電防止層的層來形成。就帶電防止層而言,能夠使用有機系和無機系的化合物。例如,就有機系化合物的帶電防止層而言,可列舉陽離子系帶電防止劑、陰離子系(anionic)帶電防止劑、兩性系帶電防止劑、非離子系(non-ionic)帶電防止劑、有機金屬系帶電防止劑等,此外,該些帶電防止劑係除了以低分子化合物的形式使用之外,亦能夠以高分子化合物的形式使用。此外,就帶電防止劑而言,亦能夠使用聚噻吩(polythiophene)、聚苯胺(polyaniline)等導電性聚合物等。此外,就帶電防止劑而言,例如亦能夠使用由金屬氧化物構成的導電性微粒等。考量透明性,導電性微粒的粒徑係例如平均粒徑為0.1nm至0.1μm左右。另外,就該金屬氧化物而言,例如可列舉ZnO、CeO2、Sb2O2、SnO2、ITO(氧化銦錫)、In2O3、Al2O3、ATO(氧化銻錫)、AZO(氧化鋁鋅)等。
就含有帶電防止層的上述樹脂而言,例如使用如在前述硬塗層時所說明的電離放射線硬化性樹脂、熱硬化性樹脂等硬化性樹脂等之外,當將帶電防止層形成為中間層而無需帶電防止層本身的表面強度時,亦能夠使用熱可塑性樹脂等。帶電防止層的厚度係只要能夠形成適當厚度便可,通常形成0.01μm至5μm左右。帶電防止層係能夠適當採用周知的各種塗布法來形成。
(防污層)
就防污層而言,係只要使用習知的防污層便可,一般而言,能夠使用在樹脂中含有矽油(silicone oil)、矽氧(silicone)樹脂等矽系化合物;含有氟系界面活性劑、氟系樹脂等氟系化合物;含有蠟(wax)等防污染劑之塗料,以周知的塗布法來形成。防污層的厚度係只要形成適當厚度便可,通常能夠形成1μm至10μm左右。
[實施例]
以下,舉實施例來進一步具體說明本發明,但本發明並不受下述實施例所限定,當可在符合本發明主旨的範圍內添加適當變更,且該些變更皆屬於本發明的技術範圍。
以下記載的是實施例所採用的物性量測方法。
(1)厚度(d)
遵照JIS K 7130「塑膠膜及片(sheet)厚度測定方法(A法)」,求出厚度(d)。
(2)折射率(Nx、Ny、Nz)
遵照JIS K 7142「塑膠折射率測定方法(A法)」,求 出MD的折射率(Nx)、TD的折射率(Ny)、厚度方向的折射率(Nz)。
(3)雙折射率(△Nxy)及遲滯值(Re)
所謂的遲滯值,指的是以相對於膜面的厚度方向為z軸、以正交於z軸且也彼此正交的兩個軸方向為x軸及y軸時,以各軸方向的折射率(Nx、Ny、Nz)所產生的雙折射率與膜厚度d之積表示的相位差。此處,係以縱方向(MD)為x軸、以寬度方向(TD)為y軸,令入射至膜面(x-y平面)的光所產生的雙折射率(△Nxy)與厚度(d)之積即面內遲滯值為遲滯值(Re)。因此,針對雙折射率(△xy)及遲滯值(Re)係分別以下式求出。各折射率係使用阿貝折射計(Abbe refractometer),以589nm的波長量測而得。遲滯值的單位為nm。
△Nxy=|Nx-Ny|
Re=△Nxy×d
(4)厚度方向遲滯值(Rth)
厚度方向遲滯值係代表從厚度方向入射的光所產生的遲滯值。此處係藉由下式求出x-z平面與y-z平面兩平面的雙折射率的平均與膜厚度(d)之積。單位為nm。
Rth=(|Nx-Nz|+|Ny-Nz|)/2×d
(5)面配向度(△P)
使用膜的縱方向的折射率(Nx)、寬度方向的折射率(Ny)、厚度方向的折射率(Nz)的值,依照下式算出面配向度(△P)。
△P=((Nx+Ny)/2)-Nz
(6)虹斑評估
按照常法製作具備構成如下之觸控面板的影像顯示裝置,於視認側表面,以平行於視認側表面之方式配置偏光膜,令其顯示白色影像。在維持前述平行狀態下且偏光膜的偏光軸與影像顯示裝置的視認側偏光元件的偏光軸所形成之角度為360°的範圍內,一邊旋轉偏光膜一邊隔著偏光膜注視白色影像,確認虹斑有無產生及產生的程度,遵循下述的基準進行評估。
<評估基準>
◎:從任何方向觀察皆沒有觀察到虹斑。
○:從斜角方向觀察時,局部觀察到極淡的虹斑。
×:從斜角方向觀察時,觀察到虹斑。
<影像顯示裝置的構成>
(A)背光光源:白色LED
(B)影像顯示單元:液晶單元
(C)偏光板:偏光板的偏光元件由PVA與碘構成,並使用TAC膜作為偏光元件保護膜。
(D)觸控面板:為電阻膜式觸控面板,係具有隔介間隔件配置透明導電性膜(視認側)及ITO玻璃(光源側)之構造,其中,該透明導電性膜(視認側)係在後述的聚酯膜1至12的其中一者上設置由ITO構成的透明導電層而製成,該ITO玻璃(光源側)係在玻璃基材上設置由ITO構成的透明導電層而製成。
另外,以聚酯膜的主配向軸與偏光板的偏光軸的夾角成45°之方式配置。
(7)撕裂強度
使用東洋精機製作所製的Elmendorf型撕裂強度撕裂試驗機,遵照JIS P-8116,量測各膜的撕裂強度。以撕裂方向與膜的配向主軸方向平行之方式進行,遵循下述的基準進行評估。配向主軸方向的量測係以分子配向計(王子計測器股份有限公司製:MOA-6004型分子配向計)進行量測。
○:撕裂強度為50mN以上
×:撕裂強度未滿50mN
(8)150℃時的熱收縮率
遵照JIS C 2318-19975.3.4(尺寸變化),量測長邊方向及寬度方向的尺寸變化率(%)。針對要量測的方向,將膜截取成寬10mm(millimeter;毫米)、長度250mm,取間隔200mm作記號,在5gf的固定張力下量測記號的間隔(A)。接著,將膜放入150℃環境中的烘箱,在無荷重下進行150±3℃、30分鐘的加熱處理,然後在5gf的固定張力下量測記號的間隔(B)。使用該些量測值,藉由下式求出熱收縮率。
熱收縮率(%)=(A-B)/A×100
以下記載的是實施例中所使用的聚酯膜的製造方法。
(製造例1-聚酯樹脂A)
將酯化反應容器升溫,在達到200℃時,投入對苯二甲酸86.4質量份及乙二醇64.6質量份,一邊攪拌一邊投入作為催化劑的三氧化二銻0.017質量份、醋酸鎂四水合物 (magnesium acetate tetrahydrate)0.064質量份、三乙胺(triethylamine)0.16質量份。接著,進行加壓升溫,以錶壓0.34MPa、240℃的條件進行加壓酯化反應後,將酯化反應容器回復至常壓,添加磷酸0.014質量份。接著,花15分鐘升溫至260℃,添加磷酸三甲酯(trimethyl phosphate)0.012質量份。接著,於15分鐘後,利用高壓均質機進行分散處理,15分鐘後,將所獲得的酯化反應生成物移至聚縮合反應容器,以280℃進行減壓聚縮合反應。
在聚縮合反應結束後,以95%截取粒徑為5μm的NASLON金屬纖維過濾器進行過濾處理,從噴嘴擠出成股線(strand)狀,使用預先進行過過濾處理(孔徑:1μm以下)的冷卻水進行冷卻,使之固化,切成顆粒(pellet)狀。所獲得的樹脂的固有黏度為0.62dl/g,實質上未含有不活性顆粒及內部析出顆粒。以下,將如上述方式獲得的的聚對苯二甲酸乙二酯樹脂簡稱為PET(A)。
(製造例2-聚酯樹脂B)
混合乾燥過的紫外線吸收劑(2,2'-(1,4-伸苯基)雙(4H-3,1-苯并-4-酮)((2,2'-(1,4-phenylene)bis(4H-3,1-benzoxazinon-4-one))10質量份、不含顆粒的PET(A)(固有黏度0.62dl/g)90質量份,利用混練擠出機,獲得含有紫外線吸收劑的樹脂。將如上述方式獲得的的聚對苯二甲酸乙二酯樹脂簡稱為PET(B)。
(製造例3-黏合性改質塗布液的調整)
藉由常法利用酯交換反應及聚縮合反應,調製水分 散性含磺酸金屬鹽基共聚合聚酯樹脂,其調製的組成為:就二羧酸成分而言,(相對於二羧酸成分全體)對苯二甲酸46莫耳%、間苯二甲酸46莫耳%及5-磺酸基間苯二甲酸鈉(5-sulfoisophthalic acid sodium)8莫耳%;就二醇成分而言,(相對於二醇成分全體)乙二醇50莫耳%及新戊二醇50莫耳%。接著,混合水51.4質量份、異丙醇(isopropyl alcohol)38質量份、n-丁氧乙醇(n-butyl cellosolve)5質量份、非離子系界面活性劑0.06質量份。接著,加熱攪拌,在達到77℃時,加入上述水分散性含磺酸金屬鹽基共聚合聚酯樹脂5質量份,持續攪拌直到沒有樹脂塊。然後,將樹脂水分散液冷卻至常溫,獲得固形物含量濃度5.0質量%的均勻的水分散性共聚合聚酯樹脂液。接著,將凝集體二氧化矽顆粒(富士Silysia(股)製,Sylysia 310)3質量份分散於水50質量份後,將Sylysia 310的水分散液0.54質量份加入上述水分散性共聚合聚酯樹脂液99.46質量份,一邊攪拌一邊加入水20質量份,獲得黏合性改質塗布液。
聚酯膜1
作為由3層構造構成的基材膜中間層用原料,將沒有含顆粒的PET(A)樹脂粒90質量份與含有紫外線吸收劑的PET(B)樹脂粒10質量份以135℃進行6小時的減壓乾燥(1Torr)後供給至擠出機2(中間層II層用)。此外,藉由常法乾燥PET(A),分別供給至擠出機1(外層I層及外層III用),以285℃熔解。將此兩種聚合物分別以不鏽鋼(stainless)燒結體的濾材(標稱過濾精度10μm顆粒95%截 取)過濾,利用兩種3層合流塊(block)進行積層,從金屬口擠出成片狀,然後使用靜電施加成型(electrostatic charge casting)法,捲附至表面溫度30℃的成型滾筒(casting drum)予以冷卻固化,製作出未拉伸膜。此時,係以I層、II層、III層的厚度之比成為10:80:10的方式調整各擠出機的吐出量。
接著,藉由反向輥(reverse roll)法,以乾燥後的塗布量會成為0.08g/m2之方式,在該未拉伸PET膜的兩面塗布上述黏合性改質塗布液,然後以80℃乾燥20秒。
將形成有該塗布層的未拉伸膜導入至同時雙軸拉伸機,一邊以夾持具拿持膜的端部,一邊導入至溫度90℃的熱風區,沿縱方向以形成倍率0.8倍之方式進行鬆弛處理,同時沿橫方向拉伸4.0倍。接著,以溫度170℃處理30秒,再沿寬度方向進行3%的鬆弛處理,獲得膜厚度約50μm的單軸配向聚酯膜。
聚酯膜2
除了改變未拉伸膜的厚度而將厚度形成為約58μm、沿縱方向以0.9倍的倍率進行鬆弛處理之外,其餘處理皆與聚酯膜1相同而獲得單軸配向聚酯膜。
聚酯膜3
除了改變未拉伸膜的厚度而將厚度形成為約38μm、沿縱方向以0.7倍的倍率進行鬆弛處理、以180℃的溫度施行30秒的熱處理之外,其餘處理皆與聚酯膜1相同而獲得單軸配向聚酯膜。
聚酯膜4
除了改變未拉伸膜的厚度而將厚度形成為約25μm、將橫方向的拉伸倍率形成為5.0倍、以180℃的溫度施行30秒的熱處理之外,其餘處理皆與聚酯膜1相同而獲得單軸配向聚酯膜。
聚酯膜5
除了改變未拉伸膜的厚度而將厚度形成為約80μm、沿縱方向以0.85倍的倍率進行鬆弛處理、將拉伸時的溫度設定為95℃、以180℃的溫度施行30秒的熱處理之外,其餘處理皆與聚酯膜1相同而獲得單軸配向聚酯膜。
聚酯膜6
除了改變未拉伸膜的厚度而將厚度形成為約38μm、沿縱方向以0.6倍的倍率進行鬆弛處理之外,其餘處理皆與聚酯膜1相同而獲得單軸配向聚酯膜。
聚酯膜7
將以與聚酯膜1相同的方法製得的未拉伸膜導入至拉幅拉伸機,一邊以夾持具拿持膜的端部,一邊導入至溫度125℃的熱風區,沿寬度方向拉伸4.0倍。接著,在保持著寬度方向的拉伸寬度下,以溫度225℃處理30秒,再沿寬度方向進行3%的鬆弛處理,獲得膜厚度約25μm的單軸配向聚酯膜。
聚酯膜8
以與聚酯膜1相同的方法,沿前進方向拉伸3.4倍、沿寬度方向拉伸4.0倍拉伸,獲得膜厚度約38μm的雙軸配向聚酯膜。
聚酯膜9
以與聚酯膜7相同的方法,沿前進方向拉伸4.0倍、沿寬度方向拉伸1.0倍,獲得膜厚度約100μm的單軸配向聚酯膜。因為是縱單軸拉伸膜,所以在膜表面觀察到微小的傷痕。
聚酯膜10
除了改變未拉伸膜的厚度而將厚度形成為約38μm、未進行縱方向的鬆弛處理之外,其餘處理皆與聚酯膜1相同而獲得單軸配向聚酯膜。
聚酯膜11
除了改變未拉伸膜的厚度而將厚度形成為約38μm、未進行縱方向的鬆弛處理之外,其餘處理皆與聚酯膜3相同而獲得單軸配向聚酯膜。
聚酯膜12
除了改變未拉伸膜的厚度而將厚度形成為約25μm、未進行縱方向的鬆弛處理之外,其餘處理皆與聚酯膜4相同而獲得單軸配向聚酯膜。
各聚酯膜的物性及虹斑評估等結果顯示於下表1。
如上表,當使用聚酯膜1至6作為基材膜時,虹斑的產生明顯受到抑制,確認了能夠獲得視認性優異的液晶顯示裝置。此外,聚酯膜1至6的膜不僅能夠提供視認性優異的影像顯示裝置,聚酯膜1至6的厚度儘管較薄,仍然具有足夠的撕裂強度,因此確認了適於影像顯示裝置的工業化製造流程中的使用。另一方面,當使用聚酯膜7、8及12作為基材膜時,從正面觀察時會產生虹斑,無法獲得良好的視認性。此外,聚酯膜9雖然在視認性方面沒有問題,但撕裂強度不足,故可知並不適於液晶顯示裝置的工業化且穩定的製造流程。聚酯膜9的Re值及Re/Rth比雖然較高,但△P的值也高,撕裂強度不足的原因在此。聚酯膜10及11在從斜角方向觀察時,會有局部發現極淡的虹斑。聚酯膜10及11的Re雖然較高,但Re/Rth比低,虹斑的原因在此。聚酯膜12因△P值高的關係,撕裂強度也是不足。
[產業上之可利用性]
藉由使用本發明的液晶顯示裝置,能夠提供視認性優異且薄型的液晶顯示裝置。因此,本發明在產業上的利用可能性極高。

Claims (10)

  1. 一種影像顯示裝置,係具有:(1)發光光譜連續的白色光源;(2)影像顯示單元;(3)配置在比前述影像顯示單元更靠視認側的偏光板;及(4)比前述偏光板更靠視認側的聚酯膜;前述聚酯膜係滿足下述物性(a)至(c):(a)遲滯值(Re)為3000nm以上30000nm以下;(b)遲滯值(Re)與厚度方向遲滯值(Rth)之比(Re/Rth)為1.25以上;及(c)面配向度(△P)為0.12以下。
  2. 一種影像顯示裝置,係具有:(1)白色發光二極體;(2)影像顯示單元;(3)配置在比前述影像顯示單元更靠視認側的偏光板;及(4)比前述偏光板更靠視認側的聚酯膜;前述聚酯膜係滿足下述物性(a)至(c):(a)遲滯值(Re)為3000nm以上30000nm以下;(b)遲滯值(Re)與厚度方向遲滯值(Rth)之比(Re/Rth)為1.25以上;及(c)面配向度(△P)為0.12以下。
  3. 如請求項1或2之影像顯示裝置,其中前述聚酯膜係滿足下述物性(d): (d)雙折射率(△Nxy)為0.1以上。
  4. 如請求項1或2之影像顯示裝置,其中前述聚酯膜係以其配向主軸與前述偏光板的偏光軸成略45度之方式配置。
  5. 如請求項1或2之影像顯示裝置,其中前述聚酯膜的厚度為20μm以上90μm以下。
  6. 如請求項1或2之影像顯示裝置,其中前述聚酯膜的撕裂強度為50mN以上。
  7. 如請求項1之影像顯示裝置,其中具有前述的連續發光光譜的白色光源係白色發光二極體。
  8. 如請求項2或7之影像顯示裝置,其中前述白色發光二極體是螢光體方式的白色發光二極體。
  9. 如請求項2或7之影像顯示裝置,其中前述白色發光二極體是藍光二極體與釔鋁石榴石系黃色螢光體組合而成的發光元件所構成的白色發光二極體。
  10. 一種聚酯膜,係滿足下述物性(a)至(c):(a)遲滯值(Re)為3000nm以上30000nm以下;(b)遲滯值(Re)與厚度方向遲滯值(Rth)之比(Re/Rth)為1.25以上;及(c)面配向度(△P)為0.12以下。
TW103117087A 2013-05-16 2014-05-15 Image display device and polyester film TWI540043B (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2013103846 2013-05-16
JP2013103848 2013-05-16
JP2013195585 2013-09-20
JP2013195593 2013-09-20

Publications (2)

Publication Number Publication Date
TW201446506A TW201446506A (zh) 2014-12-16
TWI540043B true TWI540043B (zh) 2016-07-01

Family

ID=51898291

Family Applications (1)

Application Number Title Priority Date Filing Date
TW103117087A TWI540043B (zh) 2013-05-16 2014-05-15 Image display device and polyester film

Country Status (3)

Country Link
JP (1) JP6439445B2 (zh)
TW (1) TWI540043B (zh)
WO (1) WO2014185312A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6290628B2 (ja) * 2014-01-09 2018-03-07 富士フイルム株式会社 画像表示装置
JP6314228B2 (ja) * 2014-07-18 2018-04-18 富士フイルム株式会社 一軸配向ポリエステルフィルム、ハードコートフィルム、タッチパネル用センサーフィルム、飛散防止フィルム、反射防止フィルム、タッチパネルおよび一軸配向ポリエステルフィルムの製造方法
JP6377541B2 (ja) * 2015-01-20 2018-08-22 富士フイルム株式会社 フレキシブルデバイスの製造方法、および、フレキシブルデバイス積層体
JP2019073598A (ja) * 2017-10-13 2019-05-16 王子ホールディングス株式会社 フィルムおよび導電フィルム
JP7308592B2 (ja) * 2018-01-25 2023-07-14 コニカミノルタ株式会社 光学フィルムおよびその製造方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4888853B2 (ja) * 2009-11-12 2012-02-29 学校法人慶應義塾 液晶表示装置の視認性改善方法、及びそれを用いた液晶表示装置
EP2824506B1 (en) * 2010-06-22 2020-05-20 Toyobo Co., Ltd. Liquid crystal display device, polarizer and protective film

Also Published As

Publication number Publication date
WO2014185312A1 (ja) 2014-11-20
JPWO2014185312A1 (ja) 2017-02-23
JP6439445B2 (ja) 2018-12-19
TW201446506A (zh) 2014-12-16

Similar Documents

Publication Publication Date Title
KR102285068B1 (ko) 액정표시장치, 편광판 및 편광자 보호 필름
TWI547727B (zh) Image display device
TWI540043B (zh) Image display device and polyester film
TWI547726B (zh) Image display device
JP6880548B2 (ja) 液晶表示装置
JP6197360B2 (ja) 画像表示装置
JP6459160B2 (ja) 画像表示装置
JP6102310B2 (ja) 画像表示装置
JP6160109B2 (ja) 画像表示装置
JP2014157289A (ja) 画像表示装置
JP6398148B2 (ja) 画像表示装置
JP6521149B2 (ja) 画像表示装置
JP2014153561A (ja) 画像表示装置
JP6036375B2 (ja) 画像表示装置
TWI600951B (zh) Video display device
JP6064654B2 (ja) 画像表示装置
JP6102309B2 (ja) 画像表示装置
JP6509478B2 (ja) 画像表示装置
JP6303264B2 (ja) 画像表示装置
JP6102312B2 (ja) 画像表示装置
JP6102313B2 (ja) 画像表示装置
JP6102311B2 (ja) 画像表示装置
JP2014157256A (ja) 画像表示装置