TWI536731B - 預失真方法、預失真裝置以及機器可讀媒體 - Google Patents

預失真方法、預失真裝置以及機器可讀媒體 Download PDF

Info

Publication number
TWI536731B
TWI536731B TW102129807A TW102129807A TWI536731B TW I536731 B TWI536731 B TW I536731B TW 102129807 A TW102129807 A TW 102129807A TW 102129807 A TW102129807 A TW 102129807A TW I536731 B TWI536731 B TW I536731B
Authority
TW
Taiwan
Prior art keywords
sub
item
predistortion
input data
test signal
Prior art date
Application number
TW102129807A
Other languages
English (en)
Other versions
TW201509118A (zh
Inventor
張元碩
Original Assignee
瑞昱半導體股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 瑞昱半導體股份有限公司 filed Critical 瑞昱半導體股份有限公司
Priority to TW102129807A priority Critical patent/TWI536731B/zh
Priority to CN201310552417.4A priority patent/CN104426823B/zh
Priority to US14/458,244 priority patent/US9450544B2/en
Publication of TW201509118A publication Critical patent/TW201509118A/zh
Application granted granted Critical
Publication of TWI536731B publication Critical patent/TWI536731B/zh

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/189High-frequency amplifiers, e.g. radio frequency amplifiers
    • H03F3/19High-frequency amplifiers, e.g. radio frequency amplifiers with semiconductor devices only
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/32Modifications of amplifiers to reduce non-linear distortion
    • H03F1/3241Modifications of amplifiers to reduce non-linear distortion using predistortion circuits
    • H03F1/3247Modifications of amplifiers to reduce non-linear distortion using predistortion circuits using feedback acting on predistortion circuits
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/32Modifications of amplifiers to reduce non-linear distortion
    • H03F1/3241Modifications of amplifiers to reduce non-linear distortion using predistortion circuits
    • H03F1/3258Modifications of amplifiers to reduce non-linear distortion using predistortion circuits based on polynomial terms
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/20Power amplifiers, e.g. Class B amplifiers, Class C amplifiers
    • H03F3/24Power amplifiers, e.g. Class B amplifiers, Class C amplifiers of transmitter output stages
    • H03F3/245Power amplifiers, e.g. Class B amplifiers, Class C amplifiers of transmitter output stages with semiconductor devices only
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/451Indexing scheme relating to amplifiers the amplifier being a radio frequency amplifier
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2201/00Indexing scheme relating to details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements covered by H03F1/00
    • H03F2201/32Indexing scheme relating to modifications of amplifiers to reduce non-linear distortion
    • H03F2201/3224Predistortion being done for compensating memory effects
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2201/00Indexing scheme relating to details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements covered by H03F1/00
    • H03F2201/32Indexing scheme relating to modifications of amplifiers to reduce non-linear distortion
    • H03F2201/3233Adaptive predistortion using lookup table, e.g. memory, RAM, ROM, LUT, to generate the predistortion

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Algebra (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Pure & Applied Mathematics (AREA)
  • Amplifiers (AREA)

Description

預失真方法、預失真裝置以及機器可讀媒體
本發明所揭露之實施例係相關於通訊系統的校正方法以及相關電路,尤指一種用來補償具有非線性特性及/或記憶效應(memory effect)的射頻(radio frequency,RF)電路之功率放大器的預失真(pre-distortion)方法以及相關裝置與機器可讀媒體。
隨著通訊系統的快速發展,頻寬上升使得頻譜效率(spectral efficiency)在行動通訊中所造成的影響也越來越顯著,例如在複雜度較高的非固定波封調變(Non-constant Envelope Modulation)中,由於具有較高的峰均功率比(peak-to-power ratio,PAPR),因此對於設計者來說,便需要掌握其中的射頻電路中所使用的功率放大器的特性。舉例來說,請參考第1圖,第1圖為習知無線通訊系統的傳送端的示意圖。功率放大器104的非線性特性會造成輸出端的振幅調變-振幅調變(amplitude modulation-amplitude modulation,AM-AM)失真以及振幅調變-相位調變(amplitude modulation-phase modulation,AM-PM)失真,這些失真會隨著頻寬上升而跟著提高,並且導致鄰近波道的頻譜增長(spectral re-growth)以及頻內(in-band)失真,進而降低系統的誤差向量振幅值(Error Vector Magnitude,EVM)。除此之外,功率放大器104的輸出有可能會受到過去的輸入影響,稱做記憶效應,記憶效應的影響同樣地會隨著通訊系統的頻寬提高而跟著增加,使得基頻電路中無法處理非線性特性/記憶效應的習知預失真電路102已不能滿足現今無線通訊系統的需求。
根據本發明的示範性實施例,揭露一種用來補償具有非線性特性及/或記憶效應的射頻電路之功率放大器的預失真(pre-distortion)方法以及相關電路與機器可讀媒體,以解決上述問題。
依據本發明一第一實施例,揭露一種預失真方法,包含有:接收一輸入資料;將該輸入資料輸入至一預失真函式以得到一預失真輸出,其中該預失真函式係依據後續的一功率放大器來決定;以及將該輸入資料以及該功率放大器的輸出之間之一預失真比例的倒數乘上該功率放大器的輸出。
依據本發明一第二實施例,揭露一種預失真裝置,包含有一接收單元、一預失真單元以及一增益補償單元。其中該接收單元係用來接收一輸入資料,該預失真單元係用來將所輸入之該輸入資料經過一預失真函式以得到一預失真輸出,其中該預失真函式係依據後續的一功率放大器來決定,以及該增益補償單元係用來將該輸入資料以及該功率放大器的輸出之間之一預失真比例的倒數乘上該功率放大器的輸出。
依據本發明一第三實施例,揭露一種機器可讀媒體,儲存一程式碼,當該程式碼被一處理器所執行時,該程式碼會致使該處理器執行以下的步驟:接收一輸入資料;將該輸入資料輸入至一預失真函式以得到一預失真輸出,其中該預失真函式係依據後續的一功率放大器來決定;以及將該輸入資料以及該功率放大器的輸出之間之一預失真比例的倒數乘上該功率放大器的輸出。
本發明的其中一個優點是可以藉由上述方法、裝置與機器可讀媒體來補償射頻電路之功率放大器中的非線性特性及/或記憶效應,使電子裝置的使用者可以在完整的頻寬中得到良好的操作效果。
102、202‧‧‧預失真電路
104、204‧‧‧功率放大器
404、904、1204‧‧‧預失真單元
206‧‧‧增益補償單元
302~310、502~508、802~808‧‧‧步驟
400、900、1100、1200‧‧‧預失真裝置
402‧‧‧接收單元
4042‧‧‧自適應性係數產生單元
4044‧‧‧第一查找表單元
4046‧‧‧第二查找表單元
4050‧‧‧運算單元
602‧‧‧測試訊號產生單元
604、9044、12044‧‧‧延遲單元
606‧‧‧有限脈衝響應濾波器
608‧‧‧自適應性運算單元
610‧‧‧誤差計算電路
612‧‧‧數位類比轉換器
614‧‧‧低通濾波器
615、617‧‧‧混頻器
708、710、9050、1006、1007‧‧‧加法器
616‧‧‧振盪器
618‧‧‧功率放大器
620‧‧‧衰減器
622‧‧‧可程式增益放大器
624‧‧‧類比數位轉換器
702‧‧‧第一虛擬隨機值產生單元
704‧‧‧第二虛擬隨機值產生單元
706‧‧‧功率控制單元
712、714、716、9052、9054、9056‧‧‧乘法器
1001、1002、1003‧‧‧乘法器
718、9046、9048、1008、1009、1011‧‧‧平方運算單元
720、100‧‧‧平方根運算單元
9042‧‧‧預失真比例計算單元
1004、1005‧‧‧除法器
1012‧‧‧共軛複數運算單元
1014‧‧‧實部運算單元
1016‧‧‧虛部運算單元
1102‧‧‧處理器
1104‧‧‧機器可讀媒體
第1圖為習知無線通訊系統的傳送端的示意圖。
第2圖為本發明之預失真模型的一示意圖。
第3圖為本發明預失真方法的一示範性實施例的流程圖。
第4圖為本發明預失真裝置的一示範性實施例的示意圖。
第5圖為本發明預失真方法中利用一自適應性演算法來計算複數個係數的一示範性實施例的流程圖。
第6圖為本發明預失真裝置中的自適應性係數產生單元來自適應性地產生係數的一示範性實施例的示意圖。
第7圖為本發明預失真裝置中的自適應性係數產生單元中的測試訊號產生單元的一示範性實施例的示意圖。
第8圖為本發明預失真方法中依據一第一查找表以及一第二查找表來得到一預失真函式的一示範性實施例的流程圖。
第9圖為本發明預失真裝置的另一示範性實施例的示意圖。
第10圖為本發明預失真裝置的又一示範性實施例的示意圖。
第11圖為本發明預失真裝置中的一預失真比例計算單元的一示範性實施例的示意圖。
第12圖為本發明預失真裝置的再一示範性實施例的示意圖。
在說明書及後續的申請專利範圍當中使用了某些詞彙來指稱特定的元件。所屬領域中具有通常知識者應可理解,製造商可能會用不同的名詞來稱呼同樣的元件。本說明書及後續的申請專利範圍並不以名稱的差異來作為區分元件的方式,而是以元件在功能上的差異來作為區分的準則。在通篇說明書及後續的請求項當中所提及的「包含」係為一開放式的用語,故應解 釋成「包含但不限定於」。另外,「耦接」一詞在此係包含任何直接及間接的電氣連接手段。因此,若文中描述一第一裝置耦接於一第二裝置,則代表該第一裝置可直接電氣連接於該第二裝置,或透過其他裝置或連接手段間接地電氣連接至該第二裝置。
首先應說明的是,本發明的主要目的在於消除功率放大器的非線性特性及/或記憶特性的影響,保留功率放大器的線性特性,而對於功率放大器之不想要的特性進行補償。本發明一實施例中,在訊號進入位於射頻電路中的功率放大器之前的基頻電路中(例如基頻數位電路),預先讓訊號經過功率放大器的非線性函式及/或記憶函式的反函式(即預失真函式),使得經過功率放大器的非線性函式及/或記憶函式的反函式的訊號在經過功率放大器並且被輸出之後,可抵銷功率放大器的非線性特性及/或記憶特性的部分。
關於本發明的預失真方法,以數學式的推導過程來說明如後。首先建立射頻電路中的功率放大器的模型,實務上,建立功率放大器模型是以特徵函式來表示,其表示方法有許多種,例如,以記憶多項式(memory polynomial,MP)來表示功率放大器的非線性特徵,記憶多項式來表示一功率放大器的數學式如下:
在方程式(1)中,y(n)係功率放大器之一功率放大器輸出訊號,而x(n)係功率放大器之一功率放大器輸入訊號,另外,M係用來表示功率放大器的一記憶深度(memory depth),而p係用來表示功率放大器的一多項式級數(polynomial order)。
在本實施例中,為簡化後續的預失真方法,並根據功率放大器的 非線性特性,特別是根據一般功率放大器在射頻的實際行為模式,在不過度影響準確度的前提之下,僅保留功率放大器的記憶多項式的偶數級,如方程式(1)所示。如此一來,根據上述的假設,我們可以將方程式(1)展開並重新整理:
其中
其中d i 可視為時變(time-variant)的係數,也就是說,依據將功率放大器的記憶多項式整理之後所得到的方程式(2),我們可以將功率放大器視為一時變的濾波器,即具有時變分接頭(tap)係數的濾波器。例如,若功率放大器的記憶多項式的級數為4,即p=4,且記憶深度為2,即M=2,則功率放大器輸出訊號y(n)受到目前的功率放大器輸入訊號x(n)影響,也受到前一時間單位的功率放大器輸入x(n-1)以及前兩時間單位的功率放大器輸入x(n-2)的影響。p=4以及M=2帶入方程式(3)中,可推導出下列的方程式:y(n)=C 0,0 x(n)+C 0,2 x(n)|x(n)|2+C 0,4 x(n)|x(n)|4 +C 1,0 x(n-1)+C 1,2 x(n-1)|x(n-1)|2+C 1,4 x(n-1)|x(n-1)|4 +C 2,0 x(n-2)+C 2,2 x(n-2)|x(n-2)|2+C 2,4 x(n-2)|x(n-2)|4 =x(n)d 0+x(n-1)d 1+x(n-2)d 2(4)
其中三個濾波器抽頭係數d 0 d 1 d 2 分別為:d 0=C 0,0+C 0,2|x(n)|2+C 0,4|x(n)|4 d 1=C 1,0+C 1,2|x(n-1)|2+C 1,4|x(n-1)|4 d 2=C 2,0+C 2,2|x(n-2)|2+C 2,4|x(n-2)|4 (5)
也就是說,將功率放大器化簡所得到之時變濾波器具有係數d 0 d 1 以及d 2 ,且d 0 係|x(n)|2的函式,d 1 係|x(n-1)|2的函式,而d 2 係|x(n-2)|2的函式。應注意,前述功率放大器的記憶多項式的級數以及記憶深度的範例僅為說明用途,本發明並不以此為限,實務上可利用本發明來處理任何長度的記憶多項式的級數以及記憶深度的設計,都屬於本發明的範疇。
接下來,將會進一步說明本發明預失真方法係如何利用上述所推導出的公式來進一步得到所欲取得的預失真函式。請參考第2圖,第2圖為本發明預失真裝置的一示意圖。預失真裝置包含有一預失真單元202、一功率放大器204以及一增益補償單元206,在時間n的時候,a(n)係預失真單元202的一預失真輸入訊號,而x(n)係預失真單元202的一預失真輸出訊號,也就是功率放大器204的輸入訊號,此外,y(n)係功率放大器204的一功率放大器輸出訊號,而y(n)/F係增益補償單元206的一增益補償單元輸出訊號,其中F係一預失真比例。令y(n)=a(n)F,即可得到增益補償單元206之輸出訊號y(n)/F=a(n)。也就是預失真單元202所代表的函式加上增益補償單元206所代表的函式之後,會成為功率放大器204所代表的函式的反函式,換言之,預失真單元202加上增益補償單元206得以抵消功率放大器204的非線性特性及/或記憶特性的部分。依據上述之方程式(2),我們可以進一步得到如下的方程式:
也就是說,預失真單元202必須滿足方程式(6),才能夠使預失真單元202所代表的函式加上增益補償單元206所代表的函式成為功率放大器204所代表的函式的反函式的要求。
此外,在方程式(6)的等號兩邊分別取平方,且由於|a(n)|2=|x(n)|2,因此可以進一步得到:
請注意,雖然本實施例係用來處理經過一正交分頻多工調變(Orthogonal Frequency Division Multiplexing,OFDM)的一正交分頻多工調變訊號,且雖然a(n)x(n-i)d i 都是複數,然而,預失真比例F是使 的平方等於的平方,且預失真比例F僅需為實數即 可使的平方等於的平方,因此預失真比例F可為一 實數。進一步言,令a(n)=p+qi,以及且帶入方程式 (7)中,可以得到:|(p+qi)F+(s+ti)|2=|a(n)d 0|2=E(8)
其中pqstE都是實數,又方程式(8)經過化簡之後可以得到|(pF+s)+(qF+t)i|2=E(9)
而(pF+s)2+(qF+t)2=E(10)
因此(p 2+q 2)F+2(ps+qt)F+(s 2+t 2)=E(11)
經由以下的推導,得到方程式(12):
其中ps+qt是取a(n)乘上G的共軛複數(complex conjugate)後的實數部分,pt-qs是取a(n)乘上G的共軛複數後的虛數部分再乘上-1。
因此對於取正的部分,即 ,其中Re{a(n)G*}是指{a(n)G*}的實數部分,Im{a(n)G*}是指{a(n)G*}虛數部分。
在時間為n的時候,預失真單元202取得當時的預失真輸入訊號a(n),另外,時間n之前的預失真輸出訊號x(n-i)在時間n的時候為已知,其中i=1,2,...,M。例如,若儲存時間n-i的資料x(n-i),在時間n的時候便可直接使用。對於d i 的取得,亦可事先針對不同的x(n-i),利用自適應性演算法來分別得到並儲存其相對應的d i ,例如儲存在一查找表(look-up table)中,如此一來,在時間n的時候便可以依據x(n-i)來查找相對應的d i 並使用。又,由方程式(7)可知|a(n)|2=|x(n)|2,在時間n的時候,|a(n)|2為已知,因此,亦可事先針對不同的|x(n)|2,利用自適應性演算法來分別得到其相對應的d 0 2 ,並且儲存在一查找表中,如此,便可即時地計算出方程式(13)中的F的值,以及方程式(6)中x(n)的值,意即,可得到預失真單元202的預失真輸出x(n)。其中關於建立查找表的方式係使用自適應性演算法,於後段詳述。
第3圖為本發明預失真方法的一示範性實施例的流程圖。若大體上可達到相同的結果,則不須依第3圖所示之流程中的步驟順序來進行,且第3圖所示之步驟不一定為連續,其他步驟亦可插入其中,此外,第3圖中的某些步驟亦可根據不同實施例或設計需求省略之。該方法至少包含:步驟302:接收一輸入資料;步驟304:利用一自適應性演算法來計算出該預失真輸出訊號在一特定功率範圍內的複數個功率之每一功率所對應之複數個係數,其中該複數個係數包含該功率放大器的函式的至少一第一係數以及一第二係數;步驟306:將該複數個功率所分別對應之複數個第一係數的倒數儲存於一第一查找表;步驟308:將該複數個功率所分別對應之複數個第二係數儲存於一第二查找表;以及步驟310:依據該第一查找表以及該第二查找表來得到該預失真 函式。
為了說明第3圖之流程,請一併參考第4圖,第4圖為本發明預失真裝置400的一示範性實施例的示意圖,其中預失真裝置400包含有一電子裝置之至少一部分,而該電子裝置包含至少一傳送電路與至少一接收電路,且該電子裝置可包含但不限於:多功能行動電話、智慧型行動電話、個人數位助理(Personal Digital Assistant)、個人電腦(Personal Computer)諸如膝上型(Laptop)電腦與桌上型(Desktop)電腦。在一實施例中,預失真裝置400代表該電子裝置中之處理模組,如一處理器。在另一實施例中,預失真裝置400代表該電子裝置之整體。然而,此僅係為了說明的用途,並非對本發明之限制,實際上,任何能夠達到同樣或類似功能的設計,且符合本發明之發明精神的其他變化,都屬於本發明的權利範圍。在又一實施例中,預失真裝置400代表包含該電子裝置之一系統,而該電子裝置為該系統的子系統。進一步言,該電子裝置可包含正交分頻多工調變電路之電子裝置,其中預失真裝置400可針對上述之正交振幅調變電路中的功率放大器進行預失真補償;但本發明並不以此為限。
如第4圖所示,預失真裝置400包含一接收單元402以及一預失真單元404。接收單元402係用來進行步驟302中所述的動作,即接收一輸入資料a(n),其中n表示數位訊號處理中的離散時間,在本實施例中,輸入資料a(n)係經過一正交分頻多工調變處理而產生的正交分頻多工調變資料,其中該正交分頻多工調變被廣泛地運用在通訊系統中,尤其是無線通訊系統,但本發明不限於無線通訊系統,其他可利用本發明的通訊系統的設計亦屬於本發明的範疇。另外,預失真單元404包含有一自適應性係數產生單元4042、一第一查找表單元4044、一第二查找表單元4046以及一運算單元4050。在此實施例中,將預失真單元404所針對的功率放大器的記憶多項式 的級數設定為2,記憶深度設定為1;也就是說,在方程式(1)、(2)、(3)中,p=2且M=1。以上所述之功率放大器的記憶多項式的級數以及記憶深度僅為說明用途,本發明並不以此為限,實際上可以利用本發明來處理任何長度的記憶多項式的級數以及記憶深度的設計皆屬於本發明的範疇。
在第4圖中,接收單元402將輸入資料a(n)傳送至預失真單元404之後,使輸入資料a(n))會經過預失真單元404所代表的一預失真函數並且得到一預失真輸出訊號x(n),在此實施例中,該預失真函式的運算即為前述之方程式(6)的內容。接下來,依據前述關於查找表的說明,即事先針對不同的x(n-i),利用自適應性演算法來分別得到並儲存其相對應的d i ,在時間n的時候便可以依據x(n-i)來找出相對應的d i 並使用,又依據方程式(5),可知d i 係|x(n-i)|2的函式,而在正交分頻多工調變的系統中,x(n-i)實際上係由同相位分量與正交相位分量所構成,|x(n-i)|2可以看成是x(n-i)的功率,因此,為了產生自適應性演算法中的測試訊號(後段詳述),在本實施例的步驟304中,便使用一自適應性演算法的自適應性單元4042來預先計算出預失真輸出訊號x(n)在一特定功率範圍內的複數個功率之每一功率所對應之係數d 0 以及d 1 ,也就是說,透過使用一自適應性演算法的自適應性單元4042來預先計算出該特定功率範圍內的不同的|x(n)|2以及其所分別對應的d 0 ,還有該特定功率範圍內的不同的x(n-1)|2以及其所分別對應的d 1 。舉例來說,該自適應性演算法可以為一最小均方(least mean square,LMS)演算法,然而應注意的是,本發明所採用的自適應性演算法並不以最小均方演算法為限,實際上可以利用任何其他的自適應性演算法來應用在本發明的設計都屬於本發明的範疇。另一方面,該特定功率範圍所指的是該功率放大器在實際的正常操作情況下的功率操作範圍,也就是說,在實際的正常操作情況下,該功率放大器可能所產生的一般訊號的功率範圍;此外,因為必須在一個適當的合理範圍內儘量儲存足夠使用的有限筆資料,因此在本實施例中,該特定功率範圍內的該複數個功率之 分配係依據該功率放大器的非線性特性來決定。然而應注意的是,本發明之該特定功率範圍內的該複數個功率之分配方式並不以此為限,實際上可以利用任何其他的方式來分配該特定功率範圍內的該複數個功率的分布,例如,將該特定功率範圍平均分割為10等份,並且分別計算該10組功率所對應的係數,而也屬於本發明的範疇。
在步驟304之後,在步驟306中將該特定功率範圍內的複數組|x(n)|2以及其所分別對應的d 0 的倒數儲存於一第一查找表LUT1中,以供後續計算方程式(6)所使用,即其中的1/d 0 。在步驟308中,將該特定功率範圍內的的複數組|x(n-1)|2以及其所分別對應的d 1 儲存至一第二查找表LUT2中,以供後續計算方程式(6)所使用,即其中的d i ,在此i=1。最後,依據方程式(6),在步驟310中,便可利用該第一查找表以及該第二查找表來得到該預失真函式。
步驟304詳述如後。請參考第5圖,第5圖為本發明預失真方法中利用一自適應性演算法來計算複數個係數的一示範性實施例的流程圖。若大體上可達到相同的結果,則不須依第5圖所示之流程中的步驟順序來進行,且第5圖所示之步驟不一定為連續,其他步驟亦可插入其中,此外,第5圖中的某些步驟亦可根據不同實施例或設計需求省略之。該方法至少包含有:步驟502:產生具有該複數個功率中之一特定功率的一測試訊號至一有限脈衝響應(finite impulse response,FIR)濾波器以及該功率放大器;步驟504:在該有限脈衝響應濾波器的一輸出端得到一有限脈衝響應濾波器輸出;步驟506:將該功率放大器的輸出回授至該有限脈衝響應濾波器 之該輸出端,並和該有限脈衝響應濾波器輸出相減以得到一誤差項;以及步驟508:利用該誤差項來進行該自適應性演算法來最佳化該有限脈衝響應濾波器,以得到該預失真輸出在該特定功率所對應之複數個係數。
為說明第5圖之流程,請一併參考第6圖,第6圖為本發明預失真裝置400中的自適應性係數產生單元4042自適應性地產生係數的一示範性實施例的示意圖。如第6圖所示,自適應性係數產生單元4042包含有一測試訊號產生單元602、一延遲單元604、一有限脈衝響應濾波器606、一自適應性運算單元608以及一誤差計算電路610。此外,第6圖中另包含有本實施例所應用的通訊系統的傳送端電路以及接收端電路,例如一數位類比轉換器612、一低通濾波器614、一振盪器616、一功率放大器618、一衰減器(attenuator)620、一可程式增益放大器(Programmable Gain Amplifier,PGA)622、一類比數位轉換器624以及複數個混頻器615、617。應注意的是,以上所述之傳送端電路以及接收端電路的範例僅為說明用途,本發明並不以此為限,實際上可以將本發明來應用在其他架構的通訊系統都屬於本發明的範疇。
在步驟502中,自適應性係數產生單元4042中的測試訊號產生單元602會被用來產生步驟304中所述之對應該複數個功率的複數個測試訊號,其中對應每一功率的測試訊號都會分別被用來進行自適應性係數產生的流程,舉例來說,該特定功率範圍內可以選擇出五個不同的功率值,而測試訊號產生單元602會分別依據這五個不同的功率值來產生相對應的五個測試訊號,而後續的電路首先會針對這五個不同的測試訊號中的其中一個來進行自適應性的係數產生流程,待完成之後,才會再針對這五個不同的測試訊號中剩餘的四個不同的測試訊號中的其中一個來繼續進行自適應性的係數產生流程,並且以此類推,直到完成所有的測試訊號的自適應性的係數產生流程 為止。另外請注意,由於想要得到的是能夠在正常操作模式下補償功率放大器618的預失真電路,因此測試訊號產生單元602所產生之每一測試訊號的頻寬應該儘量地接近功率放大器618在正常操作模式下所處理的資料訊號的實際頻寬,也就是說,應該儘量讓測試訊號的特性接近功率放大器618在正常操作模式下所處理的資料訊號的特性。舉例來說,測試訊號的內容可以為虛擬隨機(pseudo random)值,然而,這僅為說明用途,本發明所述之測試訊號的內容並不以虛擬隨機值為限。再者,測試訊號具有固定的特定功率,因此,在本實施例中,測試訊號中之同相位分量的平方值以及正交相位分量的平方值之和應為一固定值(此即測試訊號所具有之固定的特定功率)。
請參考第7圖,第7圖為本發明預失真裝置400中的自適應性係數產生單元4042中的測試訊號產生單元602的一示範性實施例的示意圖。測試訊號產生單元602包含有一第一虛擬隨機值產生單元702、一第二虛擬隨機值產生單元704、一功率控制單元706、複數個加法器708、710、複數個乘法器712、714、716、一平方運算單元718以及一平方根運算單元720。第一虛擬隨機值產生單元702係用來利用虛擬隨機的方式來產生介於-1至1之間的隨機值PN1,並輸出為一同相位測試訊號分量TS_I,再透過平方運算單元718對同相位測試訊號分量TS_I(亦即PN1)取平方值,然後加法器708對1與該平方值的負數進行加法運算(使1和該平方值的負值相加)以得到一計算結果CR。之後,平方根運算單元720會對計算結果CR取平方根(即開根號)並產生一計算結果CR’。而第二虛擬隨機值產生單元704係用來利用虛擬隨機的方式選擇1或是-1來輸出一選擇結果PN2,並將選擇結果PN2和計算結果CR’相乘,並且得到一正交相位測試訊號分量TS_Q,而功率控制單元706會依據此時所欲產生的測試訊號的特定功率值來調整同相位測試訊號分量TS_I以及正交相位測試訊號分量TS_Q,進而產生一功率調整後的同相位測試訊號分量T_I以及一功率調整後的正交相位測試訊號分量T_Q,最後,將 功率調整後的同相位測試訊號分量T_I以及功率調整後的正交相位測試訊號分量T_Q合併並且輸出,而測試訊號產生單元602的輸出可表示為T_I+j*T_Q。
接著說明步驟504至步驟508。請再次參閱第6圖,當自適應性係數產生單元4042中的測試訊號產生單元602產生了一特定功率測試訊號ST(例如上述的T_I+j*T_Q)後,特定功率測試訊號ST會分為兩路傳送到後續的電路,其中一路會經過數位類比轉換器612被轉換到類比域,再經過低通濾波器614之後,透過混頻(升頻)而被載在振盪器616所產生的高頻訊號上傳送至功率放大器618,接著,不透過天線發送出去,而是透過內部的回授迴路直接進入接收電路中的衰減器620,然後,經由混頻(降頻)而將訊號從載波上取下,經過可程式增益放大器622之後被類比數位轉換器624轉換回數位域,將此回授的測試訊號稱作以一回授測試訊號SR。而另一方面,另一路的特定功率測試訊號ST被傳送至有限脈衝響應濾波器606中,並且輸出為一有限脈衝響應濾波器輸出SF,而回授測試訊號SR以及有限脈衝響應濾波器輸出SF則一同被送到誤差計算電路610中來計算兩著之間的一誤差Err。
應注意,在實際的電路中,由於前述的回授路徑較長,可能會使得回授測試訊號SR和有限脈衝響應濾波器輸出SF的內容不同步,因此應視情況將延遲單元604加入至另一路的路徑中,例如,將特定功率測試訊號ST傳送至有限脈衝響應濾波器606的過程中,經過延遲單元604來造成一經過計算的特定時間延遲,以使得回授測試訊號SR和有限脈衝響應濾波器輸出SF的內容能夠同步。最後,將誤差Err傳送至一自適應性運算單元608中,自適應性運算單元608便可依據誤差Err以及自適應性演算法來調整有限脈衝響應濾波器606的抽頭係數(tap coefficient),直到誤差Err已經無法再更進一步地被縮小的時候,意即,直到有限脈衝響應濾波器606的抽頭係數已經最 佳化的時候(所採用的不同演算法會有不同的最佳化結果),便可以得到前述之該預失真輸出在該特定功率所對應之複數個係數。
請參考第8圖,第8圖為本發明預失真方法中依據一第一查找表以及一第二查找表來得到一預失真函式的一示範性實施例的流程圖。若大體上可達到相同的結果,並不須依第8圖所示之流程中的步驟順序來進行,且第8圖所示之步驟不一定為連續,其他步驟亦可插入其中,此外,第8圖中的某些步驟亦可根據不同實施例或設計需求省略之。該方法主要至少包含有以下步驟:步驟802:計算該預失真函式在前一時間單位的輸出的一平方值,並利用該第二查找表找出前一時間單位的輸出的該平方值所對應之一特定第二係數,並將該特定第二係數乘上該預失真函式在前一時間單位的輸出以得到一第一子項;步驟804:將該輸入資料取平方以得到一輸入資料平方值,並利用該第一查找表來找出該輸入資料平方值所對應之一特定第一係數,以得到一第二子項;步驟806:將該輸入資料乘上該預失真比例以得到一第三子項;以及步驟808:將該第三子項減去該第一子項,以得到一第四子項,並將該第四子項乘上該第二子項來產生該預失真函式;為說明第8圖之流程,請一併參考第9圖,第9圖為本發明預失真裝置的另一示範性實施例的示意圖,其中預失真裝置900可以包含有一電子裝置的至少一部分(例如,部分或全部),更具體地說,可以作為該電子裝置內的一控制電路,如一積體電路。在另一範例中,預失真裝置900可以是 上述電子裝置的整體。舉例來說,該電子裝置可包含有(但不侷限於)行動電話(例如,多功能行動電話)、行動電腦(例如,平板電腦)、個人數位助理或是個人電腦,例如膝上型電腦或是桌上型電腦。
如第9圖所示,預失真裝置900包含有如前述第4圖中的接收單元402以及一預失真單元904。如前所述,接收單元402係用來進行步驟302中所述的動作,即接收一輸入資料a(n),其中n表示數位訊號處理中的離散時間,在本實施例中,輸入資料a(n)係經過一正交分頻多工調變處理的一正交分頻多工調變資料,其中該正交分頻多工調變被廣泛地運用在通訊系統中,尤其是無線通訊系統,但本發明不以無線通訊系為限,可利用本發明來處理任何類似的通訊系統的設計都屬於本發明的範疇。另一方面,預失真單元904之中包含有如前述第4圖中的一自適應性係數產生單元4042、一第一查找表單元4044、一第二查找表單元4046,並包含有一預失真比例計算單元9042以及一延遲單元9044、複數個平方運算單元9046、9048、一加法器9050以及複數個乘法器9052、9054、9056。應注意的是,為了能夠在說明本發明的時候簡化實施例的複雜度,在此實施例中,設定預失真單元904所針對的功率放大器的記憶多項式的級數為2,且記憶深度為1;也就是說,在方程式(1)、(2)、(3)中,p=2且M=1。然而以上之功率放大器的記憶多項式的級數以及記憶深度的範例,僅為說明用途,本發明並不以此為限,換句話說,實際上可以利用本發明來處理任何長度的記憶多項式的級數以及記憶深度都屬於本發明的範疇。
在第9圖中,於接收單元402將輸入資料a(n)傳送至預失真單元904之後,輸入資料a(n))會經過預失真單元904所代表的一預失真函數並且得到一預失真輸出x(n),在此實施例中,該預失真函式的運算即為前述之方程式(6)的內容。接下來,關於第一查找表單元4044以及第二查找表單元4046 的建立以及內容的計算,請參考本說明書中關於方程式(1)至方程式(8)的推導,以及步驟304至步驟310的上述說明。
在經過自適應性演算法的計算之後,第一查找表單元4044中的第一查找表LUT1儲存了一特定功率範圍內的複數組|x(n)|2以及其所分別對應的1/d 0 ;第二查找表單元4046中的第二查找表LUT2儲存了該特定功率範圍內的的複數組|x(n-1)|2以及其所分別對應的d 1 。接下來我們便可以依據方程式(6)來計算出x(n),也就是進行的運算,其中M=1。
首先,在步驟802中,延遲單元9044可以暫存一個時間單位的資料,也就是說,延遲單元9044的輸出為x(n-1),而利用|x(n-1)|2(亦即平方運算單元9048的輸出)可以在第二查找表單元4046中找到所對應的d 1 ;接著我們將x(n-1)與d 1 相乘來得到一第一子項G,即方程式(6)中的x(n-1)d 1 。接下來,在步驟804中,我們可以將將該輸入資料a(n)取平方以得到一輸入資料平方值,並利用該第一查找表來找出該輸入資料平方值所對應之一特定第一係數,以得到一第二子項。在步驟806中,我們將輸入資料a(n)乘上預失真比例F以得到一第三子項a(n)F。最後,在步驟808中,再將該第三子項a(n)F減去第一子項x(n-1)d 1 (即加上第一子項x(n-1)d 1 的負值),以得到一第四子項(a(n)F-x(n-1)d 1 ),並將該第四子項乘上該第二子項來產生該預失真函式,最後我們可以得到(a(n)F-x(n-1)d 1 )/d 0 ,即方程式(6)的等號的右半部,也就是本實施例欲求的結果。其中關於預失真比例F的詳細計算方式,我們將在以下的段落中說明。
經由針對第9圖的預失真裝置900的更進一步的化簡,可以得到能夠達成相同目的的不同的另一架構。第10圖為本發明預失真裝置的又另一示範性實施例的示意圖,其中預失真裝置1000可以包含有一電子裝置的至少 一部分(例如,部分或全部),更具體地說,可以作為該電子裝置內的一控制電路,如一積體電路。在另一範例中,預失真裝置1000可以是上述電子裝置的整體。舉例來說,該電子裝置可包含有(但不侷限於)行動電話(例如,多功能行動電話)、行動電腦(例如,平板電腦)、個人數位助理或是個人電腦,例如膝上型電腦或是桌上型電腦。
如第10圖所示,預失真裝置1200包含有如前述第4圖中的接收單元402以及一預失真單元1204。接收單元402的功能以及操作方式如前所述。另一方面,預失真單元1204之中包含有如前述第4圖中的一自適應性係數產生單元4042、一第一查找表單元4044、一第二查找表單元4046,並且更進一步包含有一預失真比例計算單元9042以及複數個延遲單元9044、12044、一平方運算單元9046、一加法器9050以及複數個乘法器9052、9054、9056。在此實施例中,設定預失真單元1204所針對的功率放大器的記憶多項式的級數為2,且記憶深度為1;也就是說,在方程式(1)、(2)、(3)中,p=2且M=1。然而以上之功率放大器的記憶多項式的級數以及記憶深度的範例,僅為說明用途,本發明並不以此為限,可以利用本發明來處理任何長度的記憶多項式的級數以及記憶深度都屬於本發明的範疇。
請參考第10圖,藉由化簡,原本的M+1個平方運算單元可以被化簡為1個平方運算單元,也就是說在在方程式(1)、(2)、(3)中,p=2且M=1的情況下,原本第9圖中需要2個平方運算單元9046、9048可以被化簡為1個平方運算單元9046。由於預失真單元1204必須滿足方程式(7)|x(n)|2=|a(n)|2,在時間n的時候,可以僅使用一個平方運算單元來計算a(n)的功率,並利用其來找出儲存於第一係數查找表單元4044中對應的1/d 0 ;在下一時間n+1的時候,同樣的a(n)的功率可用來找出第二係數查找表單元4046中所對應的d 1 ;依此類推。預失真裝置1200不僅簡化了預失真裝置900硬體 上的複雜度,並且加快了操作速度。
請參考第11圖,第11圖為本發明預失真裝置900中的一預失真比例計算單元9042的一示範性實施例的示意圖,其中包含有複數個乘法器1001、1002、1003、複數個加法器1006、1007、複數個除法器1004、1005、一共軛複數運算單元1012、一實部運算單元1014、一虛部運算單元1016、複數個平方運算單元1008、1009、1011以及一平方根運算單元1010。依據 方程式(13),我們可以得知,其中 Re{a(n)G*}是指{a(n)G*}的實數部分,Im{a(n)G*}是指{a(n)G*}虛數部分。先利用共軛複數運算單元1012得到G*,將a(n)與G*相乘,再分別利用實部運算單元1014以及虛部運算單元1016以得到Re{a(n)G*}以及Im{a(n)G*}。接下來,從第一查找表單元4044中得到1/d 0 ,經過除法器1005以及平方運算單元1011得到|d 0 | 2 ,再利用平方運算單元1011得到I2即|a(n)| 4 ,再將|d 0 | 2 和|a(n)| 4 相乘便可得到|a(n)| 2 E,將|a(n)| 2 E減去Im{a(n)G*}的平方,並利用平方根運算單元1010對此結果取平方根之後減去Re{a(n)G*},再除以I,便可得到所欲求得的F
應注意的是,本實施例中建立第一查找表LUT1以及之第二查找表LUT2內容的動作可以在預失真電路400、900上電後自動執行,亦可以在所屬通訊系統的環境發生改變時自動執行,舉例來說,本實施例中建立第一查找表LUT1以及之第二查找表LUT2之內容的動作可以在通道發生變化時自動執行,或是本實施例中建立第一查找表LUT1以及之第二查找表LUT2之內容的動作可以在溫度發生較大變化時自動執行。以上所述僅為說明用途,本發明並不以此為限,實際上可以視實際應用的需求來設定建立第一查找表LUT1以及之第二查找表LUT2之內容的動作的時間點。另外,本實施 例中關於實現方程式(6)的電路僅為說明用途,本發明並不以此為限,換句話說,任何可以滿足方程式(6)的數學式的設計,都可以應用在本發明中,且任何類似的應用都屬於本發明的範疇。
請參閱第12圖,第12圖為本發明預失真裝置的再另一示範性實施例的示意圖。預失真裝置1100可用以執行上述的預失真方法。於本實施例中,預失真裝置1100包含有一處理器1102以及一機器可讀媒體1104,其中機器可讀媒體1104可以是任何具有資料儲存功能的儲存裝置,例如揮發性記憶體、非揮發性記憶體、硬碟、光碟等等。本實施例中,機器可讀媒體1104中儲存一程式碼PROG,因此,當程式碼PROG被處理器1102所載入並執行時,程式碼PROG會致使處理器1002執行本發明所揭示的預失真方法(亦即第3圖所示的步驟302~310、第5圖所示之步驟502~508以及第8圖所示之步驟802~808)。熟習技藝者於閱讀上述針對預失真方法的內容之後應可輕易瞭解處理器1102執行程式碼PROG所進行的預失真操作。
本發明的其中一個優點是可以藉由上述之方法、裝置與機器可讀媒體來補償射頻電路之功率放大器中的非線性特性及/或記憶效應,使電子裝置的使用者可以在完整的頻寬中得到良好的操作效果。
302~310‧‧‧步驟

Claims (36)

  1. 一種預失真方法,包含有:接收一輸入資料;將該輸入資料輸入至一預失真函式以得到一預失真輸出,其中該預失真函式係依據後續的一功率放大器來決定;以及將該輸入資料以及該功率放大器的輸出之間之一預失真比例的倒數乘上該功率放大器的輸出;其中將該輸入資料輸入至該預失真函式以得到該預失真輸出,其中該預失真函式係依據後續的一功率放大器來決定的步驟包含有:利用一自適應性(adaptive)演算法來計算出該預失真輸出在一特定功率範圍內的複數個功率之每一功率所對應之複數個係數,其中該複數個係數包含該功率放大器的函式的至少一第一係數以及一第二係數;將該複數個功率所分別對應之複數個第一係數的倒數儲存於一第一查找表;將該複數個功率所分別對應之複數個第二係數儲存於一第二查找表;以及依據該第一查找表以及該第二查找表來得到該預失真函式。
  2. 如申請專利範圍第1項所述的預失真方法,其中該輸入資料係一正交分頻多工調變(Orthogonal Frequency Division Multiplexing,OFDM)資料。
  3. 如申請專利範圍第1項所述的預失真方法,其中該自適應性演算法係一最小均方(least mean square,LMS)演算法。
  4. 如申請專利範圍第1項所述的預失真方法,其中該特定功率範圍內的該複 數個功率之分配係依據該功率放大器的非線性特性來決定。
  5. 如申請專利範圍第1項所述的預失真方法,其中利用該自適應性演算法來計算出該輸入資料在該特定功率範圍內的該複數個功率之每一功率所對應之該複數個係數的步驟包含有:產生具有該複數個功率中之一特定功率的一測試訊號至一有限脈衝響應濾波器(finite impulse response,FIR)以及該功率放大器;在該有限脈衝響應濾波器的一輸出端得到一有限脈衝響應濾波器輸出;將該功率放大器的輸出回授至該有限脈衝響應濾波器之該輸出端,並和該有限脈衝響應濾波器輸出相減以得到一誤差項;以及利用該誤差項來進行該自適應性演算法來最佳化該有限脈衝響應濾波器,以得到該預失真輸出在該特定功率所對應之複數個係數。
  6. 如申請專利範圍第5項所述的預失真方法,其中該測試訊號的內容係為虛擬隨機值。
  7. 如申請專利範圍第6項所述的預失真方法,其中產生具有該複數個功率中之該特定功率之該測試訊號的步驟包含有:利用一虛擬隨機的方式來產生介於-1至1之間的一隨機值,並輸出為一同相位測試訊號分量;對該同相位測試訊號分量取平方值以得到一同相位測試訊號分量平方值;對1與該同相位測試訊號分量平方值的負數進行加法運算以得到一計算結果;對該計算結果取平方根並產生一平方根計算結果;利用該虛擬隨機的方式選擇1或是-1來輸出一選擇結果,並將該至少一 選擇結果和該至少一平方根計算結果相乘,並且得到一正交相位測試訊號分量;依據此時所欲產生之該測試訊號之該特定功率來調整該同相位測試訊號分量以及該正交相位測試訊號分量,進而產生一功率調整後同相位測試訊號分量以及一功率調整後正交相位測試訊號分量;以及將該功率調整後同相位測試訊號分量以及該功率調整後正交相位測試訊號分量合併並且輸出為該測試訊號。
  8. 如申請專利範圍第5項所述的預失真方法,其中該測試訊號係具有該功率放大器所欲處理之實際訊號的頻寬。
  9. 如申請專利範圍第1項所述的預失真方法,其中依據該第一查找表以及該第二查找表來得到該預失真函式的步驟包含有:計算該預失真函式在前一時間單位的輸出的一平方值,並利用該第二查找表找出前一時間單位的輸出的該平方值所對應之一特定第二係數,並將該特定第二係數乘上該預失真函式在前一時間單位的輸出以得到一第一子項;將該輸入資料取平方以得到一輸入資料平方值,並利用該第一查找表來找出該輸入資料平方值所對應之一特定第一係數,以得到一第二子項;將該輸入資料乘上該預失真比例以得到一第三子項;以及將該第三子項減去該第一子項,以得到一第四子項,並將該第四子項乘上該第二子項來產生該預失真函式。
  10. 如申請專利範圍第9項所述的預失真方法,其中將該輸入資料乘上該預失真比例以得到該第三子項的步驟包含有: 將該輸入資料乘上該第一子項的共軛複數以得到一第五子項;將該特定第一係數的倒數的平方值乘上該輸入資料的四次方值以得到一第六子項;將該第六子項減去該第五子項的虛部的平方值以得到一第七子項;將該第七子項的平方根值減去該第五子項的實部以得到一第八子項;以及將該第八子項除以該輸入資料的平方值以得到該預失真比例,並且將該輸入資料乘上該預失真比例得到該第三子項。
  11. 如申請專利範圍第1項所述的預失真方法,其中依據該第一查找表以及該第二查找表來得到該預失真函式的步驟另包含有:將該輸入資料取平方以得到一輸入資料平方值,並利用該第二查找表找出該輸入資料平方值所對應之一特定第二係數,並將前一時間單位之該特定第二係數乘上該預失真函式在前一時間單位的輸出以得到一第一子項;利用該第一查找表來找出該輸入資料平方值所對應之一特定第一係數,以得到一第二子項;將該輸入資料乘上該預失真比例以得到一第三子項;以及將該第三子項減去該第一子項,以得到一第四子項,並將該第四子項乘上該第二子項來產生該預失真函式。
  12. 如申請專利範圍第11項所述的預失真方法,其中將該輸入資料乘上該預失真比例以得到該第三子項的步驟包含有:將該輸入資料乘上該第一子項的共軛複數以得到一第五子項;將該特定第一係數的倒數的平方值乘上該輸入資料的四次方值以得到一第六子項; 將該第六子項減去該第五子項的虛部的平方值以得到一第七子項;將該第七子項的平方根值減去該第五子項的實部以得到一第八子項;以及將該第八子項除以該輸入資料的平方值以得到該預失真比例,並且將該輸入資料乘上該預失真比例以得到該第三子項。
  13. 一種預失真裝置,包含有:一接收單元,用來接收一輸入資料;一預失真單元,用來將該輸入資料輸入至一預失真函式以得到一預失真輸出,其中該預失真函式係依據後續的一功率放大器來決定;以及一增益補償單元,用來將該輸入資料以及該功率放大器的輸出之間之一預失真比例的倒數乘上該功率放大器的輸出;其中該預失真單元包含有:一自適應性係數產生單元,用來利用一自適應性(adaptive)演算法來計算出該預失真輸出在一特定功率範圍內的複數個功率之每一功率所對應之複數個係數,其中該複數個係數包含該功率放大器的函式的至少一第一係數以及一第二係數;以及一第一查找表單元,具有一第一查找表,該第一查找表儲存該複數個功率所分別對應之複數個第一係數的倒數;一第二查找表單元,具有一第二查找表,該第二查找表儲存該複數個功率所分別對應之複數個第二係數;以及一運算單元,用來依據該第一查找表以及該第二查找表來得到該預失真函式。
  14. 如申請專利範圍第13項所述的預失真裝置,其中該輸入資料係一正交分頻多工調變(Orthogonal Frequency Division Multiplexing,OFDM)資料。
  15. 如申請專利範圍第13項所述的預失真裝置,其中該自適應性演算法係一最小均方(least mean square,LMS)演算法。
  16. 如申請專利範圍第13項所述的預失真裝置,其中該特定功率範圍內的該複數個功率之分配係依據該功率放大器的非線性特性來決定。
  17. 如申請專利範圍第13項所述的預失真裝置,其中利用該自適應性係數產生單元包含有:一測試訊號產生單元,用來產生具有該複數個功率中之一特定功率的一測試訊號至一有限脈衝響應濾波器以及該功率放大器;該有限脈衝響應濾波器,用來接收將該測試訊號,並輸出一有限脈衝響應濾波器輸出;一誤差計算電路,用來將該功率放大器的輸出回授至該有限脈衝響應濾波器之該輸出端和該有限脈衝響應濾波器輸出相減以得到一誤差項;以及一自適應性運算單元,用來利用該誤差項來進行該自適應性演算法來最佳化該有限脈衝響應濾波器,以得到該預失真輸出在該特定功率所對應之複數個係數。
  18. 如申請專利範圍第17項所述的預失真裝置,其中該測試訊號的內容係為虛擬隨機值。
  19. 如申請專利範圍第18項所述的預失真裝置,其中該測試訊號產生單元包含有:一第一虛擬隨機值產生單元,用來利用一虛擬隨機的方式來產生介於-1 至1之間的至少一隨機值,並輸出為一同相位測試訊號分量;一平方運算單元,用來對該同相位測試訊號分量取平方值以得到一同相位測試訊號分量平方值;一加法器,用來對1與該同相位測試訊號分量平方值的負數進行加法運算以得到一計算結果;一平方根運算單元,用來對該計算結果取平方根並產生一平方根計算結果;一第二虛擬隨機值產生單元,用來利用該虛擬隨機的方式選擇1或是-1來輸出一選擇結果,並將該選擇結果和該平方根計算結果相乘,並且得到一正交相位測試訊號分量;一功率控制單元,用來依據此時所欲產生之該測試訊號之該特定功率來調整該同相位測試訊號分量以及該正交相位測試訊號分量,進而產生一功率調整後同相位測試訊號分量以及一功率調整後正交相位測試訊號分量;以及一訊號合併單元,用來將該功率調整後同相位測試訊號分量以及該功率調整後正交相位測試訊號分量合併並且輸出為該測試訊號。
  20. 如申請專利範圍第17項所述的預失真裝置,其中該測試訊號係具有該功率放大器所欲處理之實際訊號的頻寬。
  21. 如申請專利範圍第13項所述的預失真裝置,其中該運算單元包含有:一第一子運算單元,用來計算該預失真函式在前一時間單位的輸出的一平方值,並利用該第二查找表找出前一時間單位的輸出的該平方值所對應之一特定第二係數,並將該特定第二係數乘上該預失真函式在前一時間單位的輸出以得到一第一子項;一第二子運算單元,將該輸入資料取平方以得到一輸入資料平方值,並 利用該第一查找表來找出該輸入資料平方值所對應之一特定第一係數,以得到一第二子項;一第三子運算單元,用來將該輸入資料乘上該預失真比例以得到一第三子項;以及一第四子運算單元,用來將該第三子項減去該第一子項,以得到一第四子項,並將該第四子項乘上該第二子項來產生該預失真函式。
  22. 如申請專利範圍第21項所述的預失真裝置,其中該第三子運算單元包含有:一第五子運算單元,用來將該輸入資料乘上該第一子項的共軛複數以得到一第五子項;一第六子運算單元,用來將該特定第一係數的倒數的平方值乘上該輸入資料的四次方值以得到一第六子項;一第七子運算單元,用來將該第六子項減去該第五子項的虛部的平方值以得到一第七子項;一第八子運算單元,用來將該第七子項的平方根值減去該第五子項的實部以得到一第八子項;以及一第九子運算單元,用來將該第八子項除以該輸入資料的平方值以得到該預失真比例,並且將該輸入資料乘上該預失真比例以得到該第三子項。
  23. 如申請專利範圍第13項所述的預失真裝置,其中該運算單元包含有:一第一子運算單元,用來將該輸入資料取平方以得到一輸入資料平方值,並利用該第二查找表找出該輸入資料平方值所對應之一特定第二係數,並將前一時間單位之該特定第二係數乘上該預失真函式在前一時間單位的輸出以得到一第一子項; 一第二子運算單元,利用該第一查找表來找出該輸入資料平方值所對應之一特定第一係數,以得到一第二子項;一第三子運算單元,用來將該輸入資料乘上該預失真比例以得到一第三子項;以及一第四子運算單元,用來將該第三子項減去該第一子項,以得到一第四子項,並將該第四子項乘上該第二子項來產生該預失真函式。
  24. 如申請專利範圍第23項所述的預失真裝置,其中該第三子運算單元包含有:一第五子運算單元,用來將該輸入資料乘上該第一子項的共軛複數以得到一第五子項;一第六子運算單元,用來將該特定第一係數的倒數的平方值乘上該輸入資料的四次方值以得到一第六子項;一第七子運算單元,用來將該第六子項減去該第五子項的虛部的平方值以得到一第七子項;一第八子運算單元,用來將該第七子項的平方根值減去該第五子項的實部以得到一第八子項;以及一第九子運算單元,用來將該第八子項除以該輸入資料的平方值以得到該預失真比例,並且將該輸入資料乘上該預失真比例以得到該第三子項。
  25. 一種內儲一程式碼之機器可讀媒體,當該程式碼被一處理器所執行時,該程式碼會致使該處理器執行以下的步驟:接收一輸入資料;將該輸入資料輸入至一預失真函式以得到一預失真輸出,其中該預失真函式係依據後續的一功率放大器來決定;以及 將該輸入資料以及該功率放大器的輸出之間之一預失真比例的倒數乘上該功率放大器的輸出;其中將該輸入資料輸入至該預失真函式以得到該預失真輸出,其中該預失真函式係依據後續的該功率放大器來決定的步驟包含有:利用一自適應性(adaptive)演算法來計算出該預失真輸出在一特定功率範圍內的複數個功率之每一功率所對應之複數個係數,其中該複數個係數包含該功率放大器的函式的至少一第一係數以及一第二係數;以及將該複數個功率所分別對應之複數個第一係數的倒數儲存於一第一查找表;將該複數個功率所分別對應之複數個第二係數儲存於一第二查找表;以及依據該第一查找表以及該第二查找表來得到該預失真函式。
  26. 如申請專利範圍第25項所述的機器可讀媒體,其中該輸入資料係一正交分頻多工調變(Orthogonal Frequency Division Multiplexing,OFDM)資料。
  27. 如申請專利範圍第25項所述的機器可讀媒體,其中該自適應性演算法係一最小均方(least mean square,LMS)演算法。
  28. 如申請專利範圍第25項所述的機器可讀媒體,其中該特定功率範圍內的該複數個功率之分配係依據該功率放大器的非線性特性來決定。
  29. 如申請專利範圍第25項所述的機器可讀媒體,其中利用該自適應性演算法來計算出該輸入資料在該特定功率範圍內的該複數個功率之每一功率所對應之該複數個係數的步驟包含有: 產生具有該複數個功率中之一特定功率的一測試訊號至一有限脈衝響應濾波器(finite impulse response,FIR)以及該功率放大器;在該有限脈衝響應濾波器的一輸出端得到一有限脈衝響應濾波器輸出;將該功率放大器的輸出回授至該有限脈衝響應濾波器之該輸出端,並和該有限脈衝響應濾波器輸出相減以得到一誤差項;以及利用該誤差項來進行該自適應性演算法來最佳化該有限脈衝響應濾波器,以得到該預失真輸出在該特定功率所對應之複數個係數。
  30. 如申請專利範圍第29項所述的機器可讀媒體,其中該測試訊號的內容係為虛擬隨機值。
  31. 如申請專利範圍第30項所述的機器可讀媒體,其中產生具有該複數個功率中之該特定功率之該測試訊號的步驟包含有:利用一虛擬隨機的方式來產生介於-1至1之間的至少一隨機值,並輸出為一同相位測試訊號分量;對該同相位測試訊號分量取平方值以得到一同相位測試訊號分量平方值;對1與該同相位測試訊號分量平方值的負數進行加法運算以得到一計算結果;對該計算結果取平方根並產生一平方根計算結果;利用該虛擬隨機的方式選擇1或是-1來輸出一選擇結果,並將該選擇結果和該平方根計算結果相乘,並且得到一正交相位測試訊號分量;依據此時所欲產生之該測試訊號之該特定功率來調整該同相位測試訊號分量以及該正交相位測試訊號分量,進而產生一功率調整後同相位測試訊號分量以及一功率調整後正交相位測試訊號分量;以及將該功率調整後同相位測試訊號分量以及該功率調整後正交相位測試 訊號分量合併並且輸出為該測試訊號。
  32. 如申請專利範圍第29項所述的機器可讀媒體,其中該測試訊號係具有該功率放大器所欲處理之實際訊號的頻寬。
  33. 如申請專利範圍第25項所述的機器可讀媒體,其中依據該第一查找表以及該第二查找表來得到該預失真函式的步驟包含有:計算該預失真函式在前一時間單位的輸出的一平方值,並利用該第二查找表找出前一時間單位的輸出的該平方值所對應之一特定第二係數,並將該特定第二係數乘上該預失真函式在前一時間單位的輸出以得到一第一子項;將該輸入資料取平方以得到一輸入資料平方值,並利用該第一查找表來找出該輸入資料平方值所對應之一特定第一係數,以得到一第二子項;將該輸入資料乘上該預失真比例以得到一第三子項;以及將該第三子項減去該第一子項以得到一第四子項,並將該第四子項乘上該第二子項來產生該預失真函式。
  34. 如申請專利範圍第33項所述的機器可讀媒體,其中將該輸入資料乘上該預失真比例以得到該第三子項的步驟包含有:將該輸入資料乘上該第一子項的共軛複數以得到一第五子項;將該特定第一係數的倒數的平方值乘上該輸入資料的四次方值以得到一第六子項;將該第六子項減去該第五子項的虛部的平方值以得到一第七子項;將該第七子項的平方根值減去該第五子項的實部以得到一第八子項;以及 將該第八子項除以該輸入資料的平方值以得到該預失真比例,並且將該輸入資料乘上該預失真比例得到該第三子項。
  35. 如申請專利範圍25項所述的機器可讀媒體,其中依據該第一查找表以及該第二查找表來得到該預失真函式的步驟另包含有:將該輸入資料取平方以得到一輸入資料平方值,並利用該第二查找表找出該輸入資料平方值所對應之一特定第二係數,並將前一時間單位之該特定第二係數乘上該預失真函式在前一時間單位的輸出以得到一第一子項;利用該第一查找表來找出該輸入資料平方值所對應之一特定第一係數,以得到一第二子項;將該輸入資料乘上該預失真比例以得到一第三子項;以及將該第三子項減去該第一子項,以得到一第四子項,並將該第四子項乘上該第二子項來產生該預失真函式。
  36. 如申請專利範圍第35項所述的機器可讀媒體,其中將該輸入資料乘上該預失真比例以得到該第三子項的步驟包含有:將該輸入資料乘上該第一子項的共軛複數以得到一第五子項;將該特定第一係數的倒數的平方值乘上該輸入資料的四次方值以得到一第六子項;將該第六子項減去該第五子項的虛部的平方值以得到一第七子項;將該第七子項的平方根值減去該第五子項的實部以得到一第八子項;以及將該第八子項除以該輸入資料的平方值以得到該預失真比例,並且將該輸入資料乘上該預失真比例得到該第三子項。
TW102129807A 2013-08-20 2013-08-20 預失真方法、預失真裝置以及機器可讀媒體 TWI536731B (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
TW102129807A TWI536731B (zh) 2013-08-20 2013-08-20 預失真方法、預失真裝置以及機器可讀媒體
CN201310552417.4A CN104426823B (zh) 2013-08-20 2013-11-07 预失真方法及预失真装置
US14/458,244 US9450544B2 (en) 2013-08-20 2014-08-12 Pre-distortion method, associated apparatus and non-transitory machine readable medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW102129807A TWI536731B (zh) 2013-08-20 2013-08-20 預失真方法、預失真裝置以及機器可讀媒體

Publications (2)

Publication Number Publication Date
TW201509118A TW201509118A (zh) 2015-03-01
TWI536731B true TWI536731B (zh) 2016-06-01

Family

ID=52479817

Family Applications (1)

Application Number Title Priority Date Filing Date
TW102129807A TWI536731B (zh) 2013-08-20 2013-08-20 預失真方法、預失真裝置以及機器可讀媒體

Country Status (3)

Country Link
US (1) US9450544B2 (zh)
CN (1) CN104426823B (zh)
TW (1) TWI536731B (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016112532A1 (en) * 2015-01-16 2016-07-21 Mediatek Singapore Pte. Ltd. Signal transmitting apparatus and signal transmitting method
EP3425794B1 (en) * 2015-06-17 2019-08-07 Telefonaktiebolaget LM Ericsson (publ) Least mean squares adaptation of a concurrent multi-band pre-distorter using overlapping spines
CN105024960B (zh) * 2015-06-23 2018-11-09 大唐移动通信设备有限公司 一种dpd系统
EP3588779B1 (en) * 2018-06-22 2021-02-24 Menta Digital signal processor and method of operation
CN111277279B (zh) * 2018-12-04 2022-10-14 深圳市中兴微电子技术有限公司 一种数据处理方法及装置
TWI703813B (zh) * 2019-04-23 2020-09-01 瑞昱半導體股份有限公司 訊號補償裝置
CN111953370B (zh) * 2019-04-30 2022-02-18 瑞昱半导体股份有限公司 信号补偿装置
TWI743955B (zh) * 2020-08-20 2021-10-21 瑞昱半導體股份有限公司 具有數位預失真機制的功率放大裝置及方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1285169C (zh) * 2000-08-04 2006-11-15 Lg电子株式会社 预失真数字线性化电路及其增益控制方法
SE0102885D0 (en) 2001-08-28 2001-08-28 Ericsson Telefon Ab L M Calibration of an adaptive signal conditioning systern
US7023273B2 (en) * 2003-10-06 2006-04-04 Andrew Corporation Architecture and implementation methods of digital predistortion circuitry
US7071777B2 (en) * 2003-12-02 2006-07-04 Motorola, Inc. Digital memory-based predistortion technique
JP4492246B2 (ja) * 2004-08-02 2010-06-30 富士通株式会社 歪み補償装置
US8619906B2 (en) * 2012-03-15 2013-12-31 Telefonaktiebolaget L M Ericsson (Publ) Look up table-based sum predistorter for power amplifification with concurrent dual band inputs
CN103023842B (zh) * 2012-11-26 2016-08-24 大唐移动通信设备有限公司 一种多频段预失真系数查找表更新方法和系统

Also Published As

Publication number Publication date
US9450544B2 (en) 2016-09-20
TW201509118A (zh) 2015-03-01
CN104426823B (zh) 2017-10-24
US20150054585A1 (en) 2015-02-26
CN104426823A (zh) 2015-03-18

Similar Documents

Publication Publication Date Title
TWI536731B (zh) 預失真方法、預失真裝置以及機器可讀媒體
CN102017553B (zh) 用于多信道宽带通信系统中的基带预失真线性化的方法和系统
JP5516269B2 (ja) 増幅装置およびプリディストーション制御方法
US6141390A (en) Predistortion in a linear transmitter using orthogonal kernels
US8030997B2 (en) Resource efficient adaptive digital pre-distortion system
JP4555702B2 (ja) 歪補償装置
KR100959032B1 (ko) 통신 네트워크들에서의 스퓨리어스 방사들을 감소시키기위한 주파수 의존적 크기 전치 왜곡
US20110249768A1 (en) Peak suppression device and peak suppression method
EP2837093A1 (en) Digital predistorter (dpd) structure based on dynamic deviation reduction (ddr)-based volterra series
JP5707999B2 (ja) 歪補償装置、送信機及び歪補償方法
US9438177B2 (en) Pre-distortion method and associated apparatus and non-transitory machine readable medium
US20190097589A1 (en) Circuit and method for predistortion
CN104300919B (zh) 预失真方法以及预失真装置
US9172333B2 (en) Distortion compensation device and distortion compensation method
Nuñez Perez et al. FPGA‐based system for effective IQ imbalance mitigation of RF power amplifiers
JP5141694B2 (ja) 非線形歪み補償付き増幅装置
Pham Contribution to dimensionality reduction of digital predistorter behavioral models for RF power amplifier linearization
CN115529212A (zh) 基于开环的短波通信方法、装置、设备及可读存储介质
JP2003218970A (ja) 非線形歪み補償装置及びその方法並びにプログラム
Baran Energy-efficient design techniques for LUT based adaptive digital pre-distorters
US11658618B2 (en) Distortion compensation device, distortion compensation method, and non-transitory computer-readable storage medium
Abi Hussein et al. LUT/parametric digital predistortion approach for the linearization of power amplifiers characteristics
JP2006295992A (ja) 信号補正方法及び装置並びに送信機
Bleickert Evaluation and characterization of a reduced-bandwidth sampling system for predistorting broadband E-Band communication links
JP5339083B2 (ja) ディジタル歪補償方法及び回路