TWI532210B - 高注入效率之極性及非極性iii族氮化物發光器 - Google Patents

高注入效率之極性及非極性iii族氮化物發光器 Download PDF

Info

Publication number
TWI532210B
TWI532210B TW100104171A TW100104171A TWI532210B TW I532210 B TWI532210 B TW I532210B TW 100104171 A TW100104171 A TW 100104171A TW 100104171 A TW100104171 A TW 100104171A TW I532210 B TWI532210 B TW I532210B
Authority
TW
Taiwan
Prior art keywords
polar
light emitting
type doped
emitting device
layer
Prior art date
Application number
TW100104171A
Other languages
English (en)
Other versions
TW201133925A (en
Inventor
米凱爾V 奇辛
葛洛力 哈森S 艾爾
Original Assignee
傲思丹度科技公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 傲思丹度科技公司 filed Critical 傲思丹度科技公司
Publication of TW201133925A publication Critical patent/TW201133925A/zh
Application granted granted Critical
Publication of TWI532210B publication Critical patent/TWI532210B/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/04Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction
    • H01L33/06Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction within the light emitting region, e.g. quantum confinement structure or tunnel barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/34Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
    • H01S5/343Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
    • H01S5/34333Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser with a well layer based on Ga(In)N or Ga(In)P, e.g. blue laser
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/32Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures
    • H01S5/3202Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures grown on specifically orientated substrates, or using orientation dependent growth
    • H01S5/320225Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures grown on specifically orientated substrates, or using orientation dependent growth polar orientation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/32Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures
    • H01S5/3202Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures grown on specifically orientated substrates, or using orientation dependent growth
    • H01S5/32025Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures grown on specifically orientated substrates, or using orientation dependent growth non-polar orientation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/34Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/04Processes or apparatus for excitation, e.g. pumping, e.g. by electron beams
    • H01S5/042Electrical excitation ; Circuits therefor
    • H01S5/0425Electrodes, e.g. characterised by the structure
    • H01S5/04256Electrodes, e.g. characterised by the structure characterised by the configuration
    • H01S5/04257Electrodes, e.g. characterised by the structure characterised by the configuration having positive and negative electrodes on the same side of the substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/2004Confining in the direction perpendicular to the layer structure
    • H01S5/2009Confining in the direction perpendicular to the layer structure by using electron barrier layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/2004Confining in the direction perpendicular to the layer structure
    • H01S5/2018Optical confinement, e.g. absorbing-, reflecting- or waveguide-layers
    • H01S5/2031Optical confinement, e.g. absorbing-, reflecting- or waveguide-layers characterized by special waveguide layers, e.g. asymmetric waveguide layers or defined bandgap discontinuities
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/34Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
    • H01S5/343Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
    • H01S5/34346Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser characterised by the materials of the barrier layers

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Biophysics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Semiconductor Lasers (AREA)
  • Led Devices (AREA)

Description

高注入效率之極性及非極性III族氮化物發光器
本發明係關於極性及非極性III族氮化物發光器(亦即,發光二極體及雷射二極體)之注入效率。
本申請案主張於2010年2月4日申請之美國臨時專利申請案第61/301,523號之權利。
在III族氮化物發光器中,對非極性技術進展之預期非常高(見Wetzel等人,「RPI starts to extinguish the green gap,」Compound Semiconductors,第15卷,第21-23頁,2009)。在非極性結構中內部極化場之不存在及相關量子約束斯達克(Stark)效應之缺乏意味非極性裝置之較好傳送及光學特性(見Waltereit等人,「Nitride semiconductors free of electrostatic fields for efficient white light-emitting diodes,」Nature,第406卷,第865-868頁,2000)。預期非極性模板尤其有利於在綠-黃光譜區中操作之發光器,在該等發光器中在作用量子井(QW)中之較高的銦併入係必要的,且因此較高的應變誘發極化將抑制極性裝置之特性。然而,綠色雷射二極體實際上第一次同時在極性(見Miyoshi等人,「510-515 nm InGaN-Based Green Laser Diodes on c-Plane GaN Substrate,」Applied Physics Express,vol. 2,p. 062201,2009;Queren等人,「500 nm electrically driven InGaN based laser diodes,」Applied Physics Letters,第94卷,第081119-3頁,2009;及Avramescu等人,「InGaN laser diodes with 50 mW output power emitting at 515 nm,」Applied Physics Letters,第95卷,第071103-3頁,2009)及非極性(見Okamoto等人,「Nonpolar m-plane InGaN multiple quantum well laser diodes with a lasing wavelength of 499.8 nm,」Applied Physics Letters,第94卷,第071105-3頁,2009)晶體定向模板兩者上實施,而無後者之任何實質優點,此情形指示了對於III族氮化物極性及非極性發光結構之共同缺點的存在。
藉由實例且並非以限制方式來說明本發明,在隨附圖式之諸圖中,相同參考數字指代相似元件。
在本發明之以下詳細描述中對「一實施例」或「實施例」之參考意謂結合該實施例所描述之特定特徵、結構或特性包括於本發明之至少一實施例中。在此詳細描述中之各處出現之片語「在一實施例中」未必均指代相同實施例。
在現存III族氮化物發光結構中之高程度之光學及電學損耗使得作用區之多重QW(MQW)設計成為必要。在極性結構中,強大的內建式自發性及壓電極化場產生針對不同QW(其中P側QW主導光學發射)的非均一佈居之條件(見David等人,「Carrier distribution in(0001)InGaN/GaN multiple quantum well light-emitting diodes,」Applied Physics Letters,第92卷,第053502-3頁,2008;Liu等人,「Barrier effect on hole transport and carrier distribution in InGaN/GaN multiple quantum well visible light-emitting diodes,」Applied Physics Letters,第93卷,第021102-3頁,2008;及Xie等人,「On the efficiency droop in InGaN multiple quantum well blue light emitting diodes and its reduction with p-doped quantum well barriers,」Applied Physics Letters,第93卷,第121107-3頁,2008)。在雷射結構中,過低泵激之QW可將其帶間吸收添加至總損失因而增加雷射臨限值。在經極化之QW中的雷射狀態之間的減少空間重疊導致較小光學增益且要求在極性雷射器之作用區中的較多QW。考慮到在寬間隙III族氮化物中之固有高透明度濃度,增加數目之QW將甚至進一步增加在極化結構中之雷射臨限值。此情形使得非極性或半極性技術成為極性模板之具吸引力的替代物。實際上,在不存在內部極化場的情況中,在達到平能帶條件之後,在非極性作用區中之QW應得以更均一地佈居,因而確保針對非極性發光裝置之較低臨限值。然而,在本發明中,吾人強調甚至在不存在內部極化場的情況中,具有高QW銦含量(深QW)之非極性MQW結構在一寬範圍之注入電流下仍遭受同等嚴重的非均一QW佈居。本文中所展示之結果表明此不勻性為極性及非極性模板兩者之共同特徵。該不勻性由在深QW中之載子約束所誘發且由剩餘QW電荷予以自洽地(self-consistently)支援。該載子佈居非均一性伴隨QW深度而增加,且因此在較長波長發射器中變得更明顯。本發明表明將銦併入至波導及障壁層中藉由使作用QW有效地更淺而改良在極性及非極性III族氮化物發射器兩者中之QW注入均一性。視所要的發射波長而定,具有增強之銦併入之波導及障壁層之最佳組成亦可包括用於應變管理之鋁。在無銦之III族氮化物結構中,應維持併入至波導及障壁層中的鋁之最佳含量以確保淺的作用QW及均一QW注入。
給定當前III族氮化物發光裝置之前述缺點,則克服此等弱點當然具有顯著的商業價值。因此,本發明之目標係提供一種III族氮化物發光裝置結構,該III族氮化物發光裝置結構包含多重量子井且將最佳銦及/或鋁濃度併入至其波導層及/或裝置作用區之障壁層中。將最佳銦及/或鋁併入至該III族氮化物發光裝置之波導及障壁層中改良了該等作用QW之注入均一性,改良之注入均一性導致該結構之總體較高注入效率、針對雷射二極體之較低臨限電流及針對發光二極體之較高外部效率。自參考隨附圖式進行之本發明的較佳實施例之以下詳細描述,本發明之額外目標及優點將變得顯而易見。
本文描述一種III族氮化物多重量子井(MQW)發光裝置,該III族氮化物多重量子井(MQW)發光裝置具有併入於其波導層及作用區障壁層中之銦及/或鋁。在以下描述中,出於解釋之目的,闡述眾多特定細節以提供本發明之透徹理解。然而,熟習此項技術者應顯而易見可藉由不同特定細節來實踐本發明。在其他例子中,以方塊圖形式展示結構及裝置以避免使本發明混淆。
圖1說明本發明之III族氮化物發光半導體裝置100之多層橫截面的例示性實施例。如在圖1中所說明,本發明之III族氮化物發光裝置100之較佳實施例為一具有MQW作用區之半導體二極體結構,該MQW作用區藉由使用被通稱為金屬有機化學氣相沈積(MOCVD)之熟知磊晶沈積製程而生長於一氮化鎵(GaN)基板上。亦可使用諸如液相磊晶(LPE)、分子束磊晶(MBE)、金屬有機氣相磊晶(MOVPE)、氫化物氣相磊晶(HVPE)、氫化物金屬有機氣相磊晶(H-MOVPE)之其他沈積製程或其他已知晶體生長製程,且可採用其他基板材料。將藉由選擇多層結構之若干設計參數之恰當值來達成由該發光裝置之例示性實施例100發射之光的所要波長及其他相干特性,該若干設計參數包括(但不限於):在該等作用區層中所使用之III族氮化物合金組成InxGa1-xN、AlyGa1-yN及AlyInxGa1-x-yN、量子井層之數目、該等量子井層之寬度、及分離該MQW作用區中之該等量子井層之障壁層的寬度。該多層半導體結構之例示性實施例之設計參數經選擇以使得由發光裝置100發射之光將具有450 nm之主波長。然而,熟習此項技術者將知曉如何選擇針對圖1之多層結構的前述參數來達成一不同波長,該不同波長比可經由選擇圖1之多層半導體結構的例示性實施例之設計參數而達成之波長短或長。
如圖1中所說明,多層半導體結構100包括一厚度為100-nm之以6×1018 cm-3層級摻雜的摻Si之GaN的n型接觸層162,n型接觸層162生長於一具有所要晶體定向(亦即,極性、半極性或非極性)之厚GaN基板模板160上。儘管在典型III族氮化物裝置結構中之基板160及n型接觸層162通常為GaN,但銦-鎵-氮化物(InxGa1-xN)或鋁-銦-鎵-氮化物(AlyInxGa1-x-yN)材料合金可用於圖1之多層半導體結構之例示性實施例的基板160及n型接觸層162。在n型接觸層162上沈積AlyGa1-yN/GaN超晶格(SL)之n型覆蓋層164,覆蓋層164通常為500-nm厚且具有2×1018 cm-3之Si摻雜。InxGa1-xN及AlyInxGa1-x-yN材料合金亦可用於覆蓋層164。在覆蓋層164上沈積100-nm厚之n型GaN波導層166,n型波導層166通常以1018 cm-3層級經摻雜Si。InxGa1-xN及AlyInxGa1-x-yN材料合金亦可用於波導層166。在波導層166上沈積發光裝置結構100之作用區131,作用區131包含由InxGa1-xN障壁層168分離之多個In0.2Ga0.8N QW層170。InxGa1-xN或AlyInxGa1-x-yN材料合金亦可用於QW層170及/或障壁層168以實現在此等層中之所要帶隙值。QW層170及障壁層168可經摻雜或未經摻雜以達成發光裝置100之最佳效能。QW層170及障壁層168之厚度經選擇分別為3-nm及8-nm,然而可視所使用之晶體定向來增加或減少此等層之厚度,以將發光裝置100之發射特性調諧至所要發射波長。在圖1之多層半導體結構之例示性實施例中,QW層及障壁層168之選定厚度及針對在QW層170內之銦併入的非零值x=0.2經選擇以使得由發光裝置100發射之光將具有450 nm之主波長。
儘管圖1展示包含三個QW之發光裝置100的作用區131,但可增加或減少所使用的QW之數目以精細調諧發光裝置100之操作特性。此外,發光裝置100之作用區131亦可包含多種量子線或量子點來代替量子井。
在作用區131之上沈積一可經摻雜或未經摻雜的10-nm厚之GaN分隔層172。在分隔層172上沈積15-nm厚之AlyGa1-yN電子阻擋層174,電子阻擋層174通常藉由大致10×1018 cm-3之摻雜層級以鎂(Mg)來加以p型摻雜。InxGa1-xN或AlyInxGa1-x-yN材料合金亦可用於分隔層172及電子阻擋層174。併入電子阻擋層174以減小電子漏電流,電子漏電流將增加發光裝置100之臨限電流及操作溫度。
在電子阻擋層174之上沈積100-nm厚之p型GaN波導層176,p型波導層176通常以1019 cm-3層級經摻雜鎂(Mg)。在波導層176上沈積400-nm厚之p型AlyGa1-yN/GaN超晶格(SL)覆蓋層178,覆蓋層178通常以1019 cm-3層級經摻雜鎂(Mg)。在覆蓋層178上沈積50-nm厚之p型GaN接觸層179,p型GaN接觸層179通常以1019 cm-3層級經摻雜鎂。InxGa1-xN及AlyInxGa1-x-yN材料合金亦可用於波導層176、覆蓋層178及接觸層179。
熟習此項技術者知曉多層164-166-131-172-174-176為發光裝置100之光學諧振器或光學約束區,由MQW作用區131所產生之光在該光學諧振器或光學約束區內得以約束。此等光學約束結構通常用以提供在雷射二極體裝置之實施中所需之回饋或在諧振腔發光二極體裝置中之光再循環。
藉由模擬的方式來說明本發明之III族氮化物發光裝置結構100之預期益處。對於載子傳送模擬,傳統的漂移擴散近似對於III族氮化物裝置模型化係廣泛接受的(見J. Piprek,Optoelectronic devices: advanced simulation and analysis. New York: Springer,2005;及J. Piprek,「Nitride Semiconductor Devices: Principles and Simulation,」Berlin: Wiley-VCH Verlag GmbH,2007,第496頁)。在吾人之模擬中,對作用QW中之載子約束之詳細模型化特別重視。使用具有應變誘發之形變位勢(deformation potential)及價帶混合能級(mixing term)之多能帶哈密爾頓函數(Hamiltonian)來自洽地計算III族氮化物QW次能帶結構及井內電荷分佈(見M. V. Kisin,「Modeling of the Quantum Well and Cascade Semiconductor Lasers using 8-Band Schrdinger and Poisson Equation System,」in COMSOL Conference 2007,Newton,MA,USA,2007,第489-493頁)。所採用之裝置模擬允許在包括極性及非極性模板之任意結晶定向中生長之III族氮化物QW的模型化(見Kisin等人,「Modeling of III-Nitride Quantum Wells with Arbitrary Crystallographic Orientation for Nitride-Based Photonics,」in COMSOL Conference 2008,Boston,MA,USA,2008)。經模擬之QW特性考慮到在QW次能帶之間的熱載子重新分佈及內部極化場之QW內屏蔽(見Kisin等人,「Optical characteristics of III-nitride quantum wells with different crystallographic orientations,」Journal of Applied Physics,第105卷,第013112-5頁,2009;及Kisin等人,「Optimum quantum well width for III-nitride nonpolar and semipolar laser diodes,」Applied Physics Letters,第94卷,第021108-3頁,2009)。基於COMSOL之程式化接著允許將QW約束之能量位準、次能帶狀態密度(DOS)參數、經屏蔽之極化場及QW輻射複合率之注入依賴性自洽地併入至該傳送模型化中(見Kisin等人,「Software Package for Modeling III-Nitride Quantum-Well Laser Diodes and Light Emitting Devices,」in COMSOL Conference 2009,Boston,MA,USA,2009)。
特定言之,經模型化之基準裝置結構(極性C-1及非極性M-1)包含對於非極性及極性晶體定向為3 nm及2.5 nm寬之三個In0.2Ga0.80N QW;分別還包含兩個各為8 nm寬之n型摻雜GaN障壁,及將以上描述之MQW層與15 nm寬之Al0.15Ga0.85N P型摻雜電子阻擋層(EBL)分離的10 nm寬之未經摻雜GaN分隔層。MQW作用區夾於100 nm之N型摻雜GaN波導層與100 nm之P型摻雜GaN波導層之間。已自相同來源提取用於模型化之所有微觀參數(見Vurgaftman等人,「Electron band structure parameters,」in Nitride semiconductor devices: Principles and simulation,J. Piprek,Ed.: Wiley,New York,2007,第13-48]頁),除了InGaN基本能帶隙彎曲係數之較高值2.8 eV取自(見Moret等人,「Optical,structural investigations and band-gap bowing parameter of GaInN alloys,」Journal of Crystal Growth,第311卷,第2795-2797頁,2009)。對於所有介面而言,價帶對傳導帶偏移比為3:7。對於所有經模型化的裝置結構而言,假定該作用區之假晶生長具有經彈性應變以配合該GaN波導材料之晶格的QW層。所有該等所接受的特定材料參數值對模型化結果並不具決定性;在吾人的模型化中所表明之該QW佈居不勻性僅源於該作用區中之深QW的存在,此為所有長波長III族發光器之特性特徵。
出於比較目的而將具有與圖1中所說明之結構實質上相同之多層結構的四個發光裝置結構模型化以表明本發明之益處。假定第一發光裝置結構(表示為C-1)將生長於c-平面(極性)晶體定向上,而假定第二、第三及第四裝置結構(表示為M-1、M-2及M-3)已生長於m-平面(非極性)晶體定向上。將發光裝置結構佈局C-1及M-1與本發明之在波導及障壁層中併入銦的發光裝置結構M-2及M-3進行比較(見表1)。可在以下文獻中找到c-平面(極性)及m-平面(非極性)生長之MQW的次能帶結構及輻射特性的詳細比較(見Kisin等人,「Optical characteristics of III-nitride quantum wells with different crystallographic orientations,」Journal of Applied Physics,第105卷,第013112-5頁,2009;及Kisin等人,「Optimum quantum well width for III-nitride nonpolar and semipolar laser diodes,」Applied Physics Letters,第94卷,第021108-3頁,2009)。在微觀模型化期間所獲得的所約束的能量位準、次能帶狀態密度(DOS)、輻射複合率及經屏蔽之極化場對MQW注入能階之依賴性用於經由COMSOL程式間資料內插程序之傳送模型化中,以確保對MQW佈居動態之真實模擬。該等QW參數中之一些呈現於針對極性(C-1)及非極性(M-1、M-2及M-3)裝置結構之表1中。在模型化中所使用之有效宏觀參數包括輻射常數B=0.2×10-10 cm3/s、載子非輻射SRH-複合壽命te=10 ns及th=20 ns,及歐傑(Auger)複合係數C=10-30 cm6/s。此等值非常接近典型實驗估計(見Zhang等人,「Direct measurement of Auger recombination in In0.1Ga0.9N/GaN quantum wells and its impact on the efficiency of In0.1Ga0.9N/GaN multiple quantum well light emitting diodes,」Applied Physics Letters,第95卷,第201108-3頁,2009)。再次,應強調所有以上參數對於實現本發明之益處並不具決定性,實現本發明之益處主要決定於在深III族氮化物MQW中之強載子約束。
經模型化之極性及非極性MQW發光結構之基本參數。
圖2比較在1.5 kA/cm2之高注入能階計算之在基準裝置結構C-1及M-1中的作用區能帶分佈。重要的是,甚至在此高注入能階,在非極性結構M1中未達成平能帶條件。雖然在裝置結構M-1中不存在極性結構C1的典型不利特徵(諸如在EBL兩側上之極化誘發電位凹穴中之極化井間電位障壁及強的載子累積),情形仍係如此。實情為,由於極N側QW之負剩餘電荷所造成的強庫侖(Coulomb)障壁為非極性`結構M-1之特性,該特性提供在非極性結構之作用區中之強內部場;見圖2結構M-1。對於相當之注入能階,在非極性結構M-1之作用區中的內部場可十分相當於在極性結構C-1中之內部場。在非極性結構M-1之作用區中的內部場由極N側量子井(表示為QW1(負))及極P側量子井(表示為QW3(正))之相反電荷來予以支援;見圖3。注意到在極性結構C1中,該等QW電荷係相反的。當強的載子溢流開始起作用時,該等QW甚至在非常高注入電流密度下仍保持帶電。當溢流逐步形成時,典型注入能階值對於極性結構(C-1)為大約1 kA/cm2且對於非極性結構(M-1)為大約15 kA/cm2。藉由由於在EBL邊界處之電荷累積所造成的EBL降級來解釋極性結構(C-1)之劣等特性;見圖1。不具有EBL的兩種結構之模型化確認載子溢流與所觀察到的在作用區中之能帶分佈彎曲無關:儘管在一非EBL結構中洩漏在較低注入處開始,但針對一給定電流密度之作用區內建場實際上仍保持相同。
MQW佈居自然地傾向於隨著增加之注入能階(亦即,電偏壓)而集中。圖4展示在極性結構C-1中,此類集中在大致10 A/cm2之較低注入能階處開始,然而,極P側QW3之相對佈居超過高達10 kA/cm2之非常高的注入能階。在非極性結構M1中,QW佈居之不勻性在一較寬注入電流範圍中仍保持顯著地強且由極N側QW1主導。
具有不同QW寬度及組成的QW結構之模型化揭露出導致QW佈居不勻性之最重要因素為電子及電洞QW之深度;QW內屏蔽、次能帶間載子重新分佈、輻射及非輻射複合率、層摻雜之變化及載子移動力之細節經證明為次等重要的。吾人之模型化展示,由於在MQW深度對於電洞超過100 meV且對於電子超過200 meV時發生之充足的載子約束,所以吾人之基準佈局C-1及M-1之作用區MQW總是經非均一佈居。藉由變化該能帶偏移比,該模型化亦指示:較強電洞約束及/或較弱電子約束使得P側QW之佈居為主導,同時較強電子約束及/或較弱電洞約束提供極N側QW之主導。
該等模型化結果可易於藉由剩餘MQW電荷之自洽動作來加以解釋。在極性結構C-1中,由於內部極化場之效應,所以該等MQW有效地較淺且至波導層中之電子熱逸出亦較有效。此情形促進了隨後的電子朝向p側QW之漂移擴散傳送,同時在極性結構中之電洞注入亦受到EBL強烈地抑制;見圖2(C-1)。在間隔-EBL介面處之強的電子累積亦支援P側QW之主導。在具有相同組成之非極性結構中,該等MQW有效地更深。此情形抑制電子逸出至波導中且阻止電子漂移至P側QW。另一方面,經由非極性EBL之電洞注入更有效;見圖2(M-1)。此情形促進了經由該結構朝向帶負電之N側QW的電洞傳送且增強了其佈居。然而,在非常高的注入能階,經由波導之電子傳送變得充足且P側MQW重新獲得主導。
該作用區設計之影響載子約束之特徵亦影響MQW佈居均一性。舉例而言,在非極性結構中,使用較寬QW改良了光學模式約束且允許達到較長的波長發射,但同時使得該結構更易於受非均一的QW注入之影響。吾人之模型化展示:可根據本發明之較佳實施例藉由將銦併入至波導及/或障壁層中(此舉有效地用以減少MQW深度及載子約束)來補償非均一注入之缺點。圖5說明本發明之III族氮化物發光裝置100之較佳實施例的標稱能帶分佈(無電偏壓及空間電荷電場)。如圖5中所說明,將銦併入至發光結構波導層及障壁層中確保了較淺量子井之實現。較淺QW之實現允許本發明之發光裝置結構100在實施於非極性晶體定向中時在其MQW內達成電荷載子佈居均一性及因此較高之注入效率及在雷射二極體中之較低雷射臨限值。
圖6展示將銦併入至本發明之發光裝置100之非極性結構M-2及M-3之波導層及障壁層中的效應,其特徵為將5%(M-2)及10%(M-3)之銦併入至N型波導及障壁層中。重要的是注意到,電荷載子(電子及電洞)在結構M-2及M-3中之作用MQW中之均一分佈提供了該結構之較高注入效率及發光裝置之較高光學輸出。
遵循相同趨勢,使用較狹窄QW寬度亦可改良MQW佈居之均一性。在較寬QW中,載子約束較強,且該等載子能量位準在能量上定位地較深。與之相反,狹窄QW有效地較淺,且在狹窄QW中之載子約束較弱。因此,為達成作用QW之均一佈居的目的,使用狹窄QW補充至波導層中之銦併入。然而,QW寬度為在QW佈居之均一性與淺QW之熱致佈居減少之間的取捨主題;針對III族氮化物發光MQW結構之最佳寬度不應超過5 nm(見Kisin等人,「Optimum quantum well width for III-nitride nonpolar and semipolar laser diodes,」Applied Physics Letters第94卷,第021108-3頁,2009)。相關地注意到在非極性結構中將QW變窄較有效;在極性QW中,由於內部極化場之效應,有效QW寬度已小於標稱值,且對應地,該載子約束較弱。舉例而言,吾人之模型化展示將QW寬度改變至2 nm不產生在結構C-1中之相關QW佈居之任何值得注意的改變,而在結構M-1中之QW寬度的類似改變使得MQW佈居在更加低的注入能階100 A/cm2集中。
本發明之III族氮化物發光裝置100之主要特徵中之一者(亦即,將銦併入至波導層166中)的一附加優勢在於:此類特徵將促進至MQW層170中之較高銦引入(意謂較高含量之銦併入)。在諸如表1之裝置結構C-1之典型III族氮化物發光裝置中,自在波導層166中無銦併入(意謂「x」之零值)至在第一量子井層QW-1 170中之有限比率「x」之銦的轉變可導致在該兩層之間的足夠顯著的晶格失配,該晶格失配將防止以所要併入比率「x」將銦有效且均一地併入至MQW 170中。已知此類效應防止在MQW內之高銦含量之併入,而此將防止實現來自該III族氮化物發光裝置之較長波長的光發射。除了達成如先前所描述之較高注入效率之優點之外,將銦併入至波導層166中將造成在該波導層與QW-1層170之間的晶格失配的減小,而結果是此將促進將較高比率「x」之銦有效且均一地併入至本發明之III族氮化物發光裝置100之MQW層170中。因此,藉由將銦併入至波導層166中而促進實現高比率「x」的銦併入至MQW層170中,藉此將銦併入至波導層166中作為遍及波導層166之銦的比率「x」之漸進或步進的離散增加來達成,如圖5中所說明。
總體上看,經由數值模擬及模型化展示,具有併入至裝置結構之波導/障壁層中之銦(意謂銦併入比率「x」係非零)的本發明之發光裝置結構將改良電荷載子佈居均一性,而此隨後將引出高注入效率及低臨限值III族氮化物發光裝置之實現。
在以上詳細描述中,已參考本發明之特定實施例來描述本發明。然而,應顯而易見,可在不背離本發明之廣泛精神及範疇的情況下對本發明作出各種修改及改變。因此,該等設計細節及圖式應看作說明性意義而非限制性意義。熟習者將認識到可以一不同於以上對較佳實施例所描述的實施之方式來實施本發明之部分。舉例而言,熟習者將瞭解可藉由針對裝置之量子井之數目、量子井之寬度、障壁之寬度、在波導層中之銦及/或鋁併入比率、在障壁層中之銦及/或鋁併入比率、電子阻擋層(EBL)之組成、p型摻雜層及n型摻雜層之摻雜層級以及波導層及覆蓋層之厚度的眾多變化來實施本發明之具有在裝置結構的波導及障壁層中之最佳銦及/或鋁併入的包含多重量子井之III族氮化物發光裝置結構。
應注意在以上描述中,例示性實施例使用銦作為合金中之主要組分來達成所要結果。此選擇主要用以達成待發射之光的所要波長。然而,注意到本發明可用於至少在自紅外線至紫外線之範圍中發射的發光裝置中。因此,特定針對穿過紫外線之藍光而言,鋁可為用於獲得所要能帶隙之主要組分。因而,大體上,本發明之實施例將使用III族氮化物合金InxGa1-xN、AlyGa1-yN及/或AlyInxGa1-x-yN(在x及/或y允許為零的條件下此等表達式係針對此等合金之最普通表達式)。藉由將對於N型摻雜波導及障壁層使用AlyInxGa1-x-yN(其中x及/或y非零)之發光裝置的效能與具有均等於零之x及y的對應發光裝置之效能進行比較來判定本發明之裝置的比較效能。就此而言,可想而知N型摻雜波導可具有一自x及y之零值(亦即,GaN)漸進或步進地級變至AlyInxGa1-x-yN(其中x及y中之一者或兩者為非零)(鄰近作用多重量子井區)之能帶隙。就此而言,自圖5可看出較佳地該N型波導之能帶隙大致與在該多重量子井區中之障壁層的能帶隙相同,但一般而言此並非本發明之限制。
熟習者將進一步認識到可在不背離本發明之基礎原理及教示的情況下對本發明之前述實施例的細節作出許多改變。因此,本發明之範疇應僅藉由以下申請專利範圍來判定。
100...III族氮化物發光半導體裝置
131...作用區
160...基板
162...n型接觸層
164...n型覆蓋層
166...n型波導層
168...障壁層
170...多重量子井(MQW)層
172...分隔層
174...電子阻擋層
176...p型波導層
178...p型覆蓋層
179...p型接觸層
圖1說明裝置之大體結構。插入圖詳細描述3-QW作用區之佈局。
圖2說明在相同注入能階下在波導層中無銦之典型極性及非極性MQW發光裝置結構之3-QW作用區中的傳導與價帶分佈。虛線指示電子及電洞準費米(Fermi)能階之位置。
圖3說明在波導層中無銦之模型化3-QW極性(C1)及非極性(M1)發光裝置結構中之量子井剩餘電荷。
圖4說明在波導層中無銦之典型極性(C1)及非極性(M1)發光裝置結構中作為注入電流密度之函數的作用量子井之電子及電洞佈居。
圖5說明在裝置之波導及障壁層中有銦併入(結構M3)的本發明之III族氮化物發光裝置之作用區的標稱能帶分佈。虛線指示在波導及障壁層中無銦併入(結構M1)的裝置中之能帶分佈。
圖6說明在非極性III族氮化物發光裝置之波導及障壁層中併入銦5%(結構M2)及併入銦10%(結構M3)對於該等模型化裝置之作用量子井的電子及電洞佈居的不勻性之結果。
100...III族氮化物發光半導體裝置
131...作用區
160...基板
162...n型接觸層
164...n型覆蓋層
166...n型波導層
168...障壁層
170...多重量子井(MQW)層
172...分隔層
174...電子阻擋層
176...p型波導層
178...p型覆蓋層
179...p型接觸層

Claims (9)

  1. 一種固態發光裝置,其係在極性、半極性或非極性晶體定向上使用III族氮化物合金材料來製造,該固態發光裝置包含一基板;一P型覆蓋區;一N型覆蓋區;在該P型覆蓋區與該N型覆蓋區之間有一由多個層形成之光學約束區,該多個層經分組為一P型摻雜波導層、一電子阻擋層、一作用多重量子井區及一N型摻雜波導區,該作用多重量子井區進一步包含多個層以形成多重量子井及障壁層,與該N型摻雜波導區及該等障壁層相關聯之能帶隙係經由在該等層中併入銦及/或鋁來實現,該多重量子井深度對於電洞不超過100meV且對於電子不超過200meV。
  2. 如請求項1之固態發光裝置,其中在該N型摻雜波導區及該等障壁層中之銦及/或鋁的量係經選擇,以減少在該等多重量子井與該N型摻雜波導區與該等障壁層之該等能帶隙之間的能帶隙差。
  3. 如請求項2之固態發光裝置,其中該等障壁層之該等能帶隙與鄰近該多重作用量子井區之該N型摻雜波導層之該能帶隙大致相同。
  4. 如請求項1之固態發光裝置,其中該作用多重量子井區及該N型摻雜波導層係使用三元半導體合金材料或四元 半導體合金材料來製造,其中該三元半導體合金材料為InxGa1-xN或AlyGa1-yN,及該四元半導體合金材料為AlyInxGa1-y-xN,下標「x」及「y」表示在該等多重量子井、障壁及N型摻雜波導層中所使用之合金組成。
  5. 如請求項4之固態發光裝置,其中針對該N型摻雜波導層內之該等合金的「x」及/或「y」已經選擇,以在一遞增非零值之範圍內漸進變化以與該等多重量子井晶格匹配。
  6. 如請求項4之固態發光裝置,其中針對該N型摻雜波導層內之該等合金的「x」及/或「y」已經選擇,以在一遞增非零值之範圍內以離散步驟變化以與該等多重量子井晶格匹配。
  7. 如請求項4之固態發光裝置,其中針對該N型摻雜波導層內之該等合金的「x」及/或「y」之該等值已經選擇,以在一遞增非零值之範圍內漸進變化在該N型摻雜波導內之該能帶隙,從而獲得鄰近該多重作用量子井區之大致等於該等障壁層之該能帶隙之一能帶隙。
  8. 如請求項4之固態發光裝置,其中針對該N型摻雜波導層內之該等合金的「x」及/或「y」之該等值已經選擇,以在一遞增非零值之範圍內以離散步驟變化在該N型摻雜波導內之該能帶隙,從而獲得鄰近該多重作用量子井區之大致等於該等障壁層之該能帶隙之一能帶隙。
  9. 如請求項1之固態發光裝置,其經實現為一高注入效率雷射二極體或發光二極體裝置。
TW100104171A 2010-02-04 2011-02-08 高注入效率之極性及非極性iii族氮化物發光器 TWI532210B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US30152310P 2010-02-04 2010-02-04
US13/014,002 US20110188528A1 (en) 2010-02-04 2011-01-26 High Injection Efficiency Polar and Non-Polar III-Nitrides Light Emitters

Publications (2)

Publication Number Publication Date
TW201133925A TW201133925A (en) 2011-10-01
TWI532210B true TWI532210B (zh) 2016-05-01

Family

ID=44341619

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100104171A TWI532210B (zh) 2010-02-04 2011-02-08 高注入效率之極性及非極性iii族氮化物發光器

Country Status (7)

Country Link
US (1) US20110188528A1 (zh)
EP (1) EP2532059A2 (zh)
JP (1) JP2013519231A (zh)
KR (1) KR101527840B1 (zh)
CN (1) CN102823089B (zh)
TW (1) TWI532210B (zh)
WO (1) WO2011097325A2 (zh)

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130007557A (ko) 2010-01-27 2013-01-18 예일 유니버시티 GaN 소자의 전도도 기반 선택적 에칭 및 그의 응용
JP5996846B2 (ja) * 2011-06-30 2016-09-21 シャープ株式会社 窒化物半導体発光素子およびその製造方法
JP5351290B2 (ja) * 2012-01-05 2013-11-27 住友電気工業株式会社 窒化物半導体レーザ、及びエピタキシャル基板
US20130228743A1 (en) 2012-03-01 2013-09-05 Industrial Technology Research Institute Light emitting diode
TWI499081B (zh) * 2012-10-12 2015-09-01 Ind Tech Res Inst 發光二極體
KR101923670B1 (ko) * 2012-06-18 2018-11-29 서울바이오시스 주식회사 전자 차단층을 갖는 발광 소자
CN103022296B (zh) * 2012-11-30 2015-08-19 华南师范大学 一种半导体外延结构及其发光器件
US11095096B2 (en) 2014-04-16 2021-08-17 Yale University Method for a GaN vertical microcavity surface emitting laser (VCSEL)
JP5919484B2 (ja) * 2014-05-13 2016-05-18 パナソニックIpマネジメント株式会社 窒化物半導体発光ダイオード
US11043792B2 (en) 2014-09-30 2021-06-22 Yale University Method for GaN vertical microcavity surface emitting laser (VCSEL)
US11018231B2 (en) 2014-12-01 2021-05-25 Yale University Method to make buried, highly conductive p-type III-nitride layers
KR102268109B1 (ko) * 2014-12-22 2021-06-22 엘지이노텍 주식회사 발광 소자 및 이를 구비한 발광 소자 패키지
KR102303459B1 (ko) 2015-03-11 2021-09-17 쑤저우 레킨 세미컨덕터 컴퍼니 리미티드 발광소자, 발광소자 패키지, 및 이를 포함하는 조명시스템
JP6961225B2 (ja) * 2015-05-19 2021-11-05 イェール ユニバーシティーYale University 格子整合クラッド層を有する高い閉じ込め係数のiii窒化物端面発光レーザーダイオードに関する方法およびデバイス
CN114640024A (zh) * 2015-06-05 2022-06-17 奥斯坦多科技公司 具有到多个有源层中的选择性载流子注入的发光结构
US9640716B2 (en) 2015-07-28 2017-05-02 Genesis Photonics Inc. Multiple quantum well structure and method for manufacturing the same
US10396240B2 (en) 2015-10-08 2019-08-27 Ostendo Technologies, Inc. III-nitride semiconductor light emitting device having amber-to-red light emission (>600 nm) and a method for making same
TWI569467B (zh) * 2015-11-10 2017-02-01 錼創科技股份有限公司 半導體發光元件
EP3916817B1 (en) 2016-02-09 2024-09-18 Lumeova, Inc Ultra-wideband, wireless optical high speed communication devices and systems
US11287563B2 (en) 2016-12-01 2022-03-29 Ostendo Technologies, Inc. Polarized light emission from micro-pixel displays and methods of fabrication thereof
CN110494987B (zh) * 2017-04-24 2022-03-01 苏州晶湛半导体有限公司 一种半导体结构和制备半导体结构的方法
CN118507614A (zh) * 2024-07-19 2024-08-16 苏州镓锐芯光科技有限公司 一种半导体发光结构及其制备方法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US301523A (en) 1884-07-08 Seeding-machine
JPH09106946A (ja) * 1995-10-11 1997-04-22 Mitsubishi Electric Corp 半導体装置,及び半導体レーザ,並びに高電子移動度トランジスタ装置
JP2006324690A (ja) * 1997-07-30 2006-11-30 Fujitsu Ltd 半導体レーザ、半導体発光素子、及び、その製造方法
TW412889B (en) * 1997-09-24 2000-11-21 Nippon Oxygen Co Ltd Semiconductor laser
JP2000101199A (ja) * 1998-09-24 2000-04-07 Kdd Corp 量子井戸構造及び半導体素子
JP2003163420A (ja) * 2000-03-17 2003-06-06 Nec Corp 窒化物半導体素子およびその製造方法
TW536859B (en) * 2001-03-28 2003-06-11 Nichia Corp Nitride semiconductor device
US6724013B2 (en) * 2001-12-21 2004-04-20 Xerox Corporation Edge-emitting nitride-based laser diode with p-n tunnel junction current injection
KR100755621B1 (ko) * 2002-10-17 2007-09-06 삼성전기주식회사 반도체 광전 소자
US7058105B2 (en) * 2002-10-17 2006-06-06 Samsung Electro-Mechanics Co., Ltd. Semiconductor optoelectronic device
US7751455B2 (en) * 2004-12-14 2010-07-06 Palo Alto Research Center Incorporated Blue and green laser diodes with gallium nitride or indium gallium nitride cladding laser structure
KR100718129B1 (ko) * 2005-06-03 2007-05-14 삼성전자주식회사 Ⅲ-Ⅴ족 GaN계 화합물 반도체 소자
KR20070080696A (ko) * 2006-02-08 2007-08-13 삼성전자주식회사 질화물계 반도체 레이저 다이오드
JP2008182069A (ja) * 2007-01-25 2008-08-07 Toshiba Corp 半導体発光素子
JP4720834B2 (ja) * 2008-02-25 2011-07-13 住友電気工業株式会社 Iii族窒化物半導体レーザ

Also Published As

Publication number Publication date
US20110188528A1 (en) 2011-08-04
WO2011097325A3 (en) 2012-09-13
CN102823089A (zh) 2012-12-12
KR101527840B1 (ko) 2015-06-11
KR20120123128A (ko) 2012-11-07
TW201133925A (en) 2011-10-01
JP2013519231A (ja) 2013-05-23
EP2532059A2 (en) 2012-12-12
WO2011097325A2 (en) 2011-08-11
CN102823089B (zh) 2016-02-17

Similar Documents

Publication Publication Date Title
TWI532210B (zh) 高注入效率之極性及非極性iii族氮化物發光器
Zhao et al. Analysis of internal quantum efficiency and current injection efficiency in III-nitride light-emitting diodes
Li et al. Advantages of AlGaN-based 310-nm UV light-emitting diodes with Al content graded AlGaN electron blocking layers
JP6259611B2 (ja) 短波長発光素子のためのp側層
US9705030B2 (en) UV LED with tunnel-injection layer
Zhang et al. On the effect of step-doped quantum barriers in InGaN/GaN light emitting diodes
JP5404628B2 (ja) 多重量子井戸構造を有するオプトエレクトロニクス半導体チップ
Shih et al. Design of hole-blocking and electron-blocking layers in Al x Ga 1–x N-based UV light-emitting diodes
Chiaria et al. Numerical study of ZnO-based LEDs
Mehta et al. Theory and design of electron blocking layers for III-N-based laser diodes by numerical simulation
Liu et al. Polarization modulation at last quantum barrier for high efficiency AlGaN-based UV LED
Yin et al. Improving charge carrier transport properties in AlGaN deep ultraviolet light emitters using Al-content engineered superlattice electron blocking layer
Lu et al. UV light-emitting diode with buried polarization-induced n-AlGaN/InGaN/p-AlGaN tunneling junction
Li et al. On the quantum efficiency of InGaN light emitting diodes: Effects of active layer design, electron cooler, and electron blocking layer
Amirhoseiny et al. Enhancement of deep violet InGaN double quantum wells laser diodes performance characteristics using superlattice last quantum barrier
Liu et al. Sheet charge engineering towards an efficient hole injection in 290 nm deep ultraviolet light-emitting diodes
Salhi et al. Effect of the quantum-well shape on the performance of InGaN-based light-emitting diodes emitting in the 400–500-nm range
Janjua et al. Enhancing carrier injection using graded superlattice electron blocking layer for UVB light-emitting diodes
KR101937592B1 (ko) 양자우물구조를 이용한 자외선 광소자
Usman et al. The effect of p-Doped AlInN Last quantum barrier on carrier concentration of 266 nm light-emitting diodes without electron blocking layer
Tian et al. Efficiency improvement using thickness-chirped barriers in blue InGaN multiple quantum wells light emitting diodes
Kim et al. Partial polarization matching in GaInN-based multiple quantum well blue LEDs using ternary GaInN barriers for a reduced efficiency droop
KR20130123592A (ko) 경사진 밴드 구조를 가지는 발광 다이오드
Kuo et al. Slightly-doped step-like electron-blocking layer in InGaN light-emitting diodes
Usman et al. High internal quantum efficiency of green GaN-based light-emitting diodes by thickness-graded last well/last barrier and composition-graded electron blocking layer

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees
MM4A Annulment or lapse of patent due to non-payment of fees
MM4A Annulment or lapse of patent due to non-payment of fees