TWI519668B - 具有結晶矽薄膜之基板及其製備方法 - Google Patents

具有結晶矽薄膜之基板及其製備方法 Download PDF

Info

Publication number
TWI519668B
TWI519668B TW103124510A TW103124510A TWI519668B TW I519668 B TWI519668 B TW I519668B TW 103124510 A TW103124510 A TW 103124510A TW 103124510 A TW103124510 A TW 103124510A TW I519668 B TWI519668 B TW I519668B
Authority
TW
Taiwan
Prior art keywords
substrate
germanium film
crystalline germanium
crystalline
source
Prior art date
Application number
TW103124510A
Other languages
English (en)
Other versions
TW201604306A (zh
Inventor
戴念華
李紫原
謝秉諺
Original Assignee
國立清華大學
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 國立清華大學 filed Critical 國立清華大學
Priority to TW103124510A priority Critical patent/TWI519668B/zh
Priority to US14/539,738 priority patent/US9443924B2/en
Application granted granted Critical
Publication of TW201604306A publication Critical patent/TW201604306A/zh
Publication of TWI519668B publication Critical patent/TWI519668B/zh
Priority to US15/227,454 priority patent/US9640393B2/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/24Deposition of silicon only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/511Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using microwave discharges
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02422Non-crystalline insulating materials, e.g. glass, polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02532Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/04Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their crystalline structure, e.g. polycrystalline, cubic or particular orientation of crystalline planes
    • H01L29/045Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their crystalline structure, e.g. polycrystalline, cubic or particular orientation of crystalline planes by their particular orientation of crystalline planes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Metallurgy (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Plasma & Fusion (AREA)
  • Photovoltaic Devices (AREA)
  • Chemical Vapour Deposition (AREA)
  • Recrystallisation Techniques (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Description

具有結晶矽薄膜之基板及其製備方法
本發明係關於一種具有結晶矽薄膜之基板及其製備方法,尤指於可撓高分子基板上,利用低溫微波電漿輔助化學氣相沉積法(Microwave plasma enhanced chemical vapor deposition,MWPECVD),以矽氯化物為前驅物,製備具高結晶度、高附著性及優異光電性質之結晶矽薄膜之基板。
現今消費者及業者對電子元件不但追求輕薄短小兼具多樣化功能亦須具備低成本造價。為滿足此目的,近年來將電子元件建構輕薄特質的可撓性高分子基板備受重視,其不僅能夠擴大電子元件之市場價值與應用範圍,亦能夠利用捲對捲(Roll to roll)製程來降低製造成本。然而一般而言,由於高分子基板具有低熔點特性,因此,大幅限制了高分子基板的應用廣度,亦限制了電子元件材料製程技術的選擇。
與非晶矽薄膜相關之可撓光電元件製程技術目前已相當成熟,然而,由於非晶矽薄膜具有不穩定的光電性質,因此使得可撓光電元件的技術發展無法突飛猛進。 事實上,目前技術已了解結晶矽薄膜因具有較佳地光電特性及載子移動速率而能夠藉此改善非晶矽薄膜的諸多效能缺點。
現階段結晶矽薄膜的製程技術主要分為四種:固相結晶法(Solid phase crystallization)、準分子雷射退火法(Excimer laser annealing)、金屬誘發結晶法(Metal induce crystallization)以及直接沉積法。其中,固相結晶法係將矽材料進行高溫長時間加熱,使矽原子能夠重新成核成長,然而其製程溫度卻高達600℃以上;準分子雷射退火法係以高能量雷射入射非晶矽薄膜,而使非晶矽薄膜瞬間熔融再結晶,以形成結晶矽薄膜,然而其製程溫度亦高達400~600℃;金屬誘發結晶法係於非晶矽薄膜中加入特定金屬,使金屬與非晶矽形成共晶反應或是生成金屬矽化物,以降低固相結晶法所需之溫度,其製程溫度約達250~500℃;另外,直接沉積法目前係以物理氣象沉積、熱化學氣相沉積法、電漿輔助化學氣相沉積法或熱燈絲化學相沉積法等製程過程中,輔以基座加熱、高密度電漿輔助裝置或是雷射處理,以有效生長多晶矽薄膜,然而其製程溫度亦高約250~350℃。
由上述之習知結晶矽薄膜製備技術中,前三種處理法皆係透過高溫使非晶矽再結晶而形成,即便使用直接沉積法,其製程溫度也高達250~500℃,此外,上述習知方法所形成的結晶矽往往無法具有高結晶度。由於可撓高分子基板多半具有低熔點特性,因此目前製備技術難以於 可撓高分子基板上直接形成具有高結晶度且優異光電性質之結晶矽薄膜。
有鑑於上述問題,研發於低熔點之可撓高分子基板上直接形成高度結晶之結晶矽薄膜,將為電子元件之輕薄短小帶來可觀的發展。
本發明之目的係提供一種具有結晶矽薄膜之基板及其製備方法,俾能以矽氯化物作為前驅物,透過微波電漿輔助化學氣相沉積法,於低溫條件下,直接在可撓高分子基板之至少一表面上生長高結晶度之結晶矽薄膜。
本發明提供一種具有結晶矽薄膜之基板,其結構包含:一基板;以及一結晶矽薄膜,其中,上述基板較佳為高分子基板,且上述結晶矽薄膜係形成於基板之至少一表面上。上述結晶矽薄膜之結晶度可高於90%,目前實施例之最佳結晶度約97%,且此結晶矽薄膜包含有複數個柱狀(Column structure)矽晶體。
矽材料之拉曼光譜主要有三個訊號,分別為:約480cm-1處之非晶相、約500cm-1處之中間相(或稱奈米晶相)及約520cm-1處之結晶相訊號。當矽材料之結晶程度越高及晶粒越大時,其拉曼光譜訊號將越接近520cm-1此外,將拉曼光譜訊號進行高斯擬合後,藉由其訊號之積分面積,遂可計算出矽材料之結晶度。於上述具有結晶矽薄膜之基板中,結晶矽薄膜於拉曼光譜主要於500~520cm-1處具有一波峰,較佳係於520cm-1處具有一波峰。
於上述具有結晶矽薄膜之基板中,使用Cu K α照射所測得該結晶矽薄膜之X光繞射圖裡,主要於繞射角(2 θ)20~60度處具有繞射峰,分別為28.4度之(111)方向、47.3度之(220)方向及56.1度之(311)方向。當繞射峰相對強度越強及半高寬越狹窄表示其具越佳之結晶度。另外,於此X光繞射圖譜中,結晶矽薄膜之結晶矽具有(220)之優選結晶方向結構。
該技術可製備具高生長速率之結晶矽薄膜,其薄膜生長速率達100nm/min,甚至以上,其中,較佳係為100nm/min至150nm/min。關於上述之該些柱狀矽晶體,其粒徑大小並無特別限制,目前實施例之粒徑可約為61.40~88.18nm,最大粒徑約88.18nm。再者,該些柱狀矽晶體之晶粒高度亦無特別限制,其可由製程時間所調控,例如可介於1~3μm。
於本發明具有結晶矽薄膜之基板中,適用於本發明之基板無特別限制,較佳為可撓高分子基板,該基板之熔點無特別限制,可為185~400℃,較佳為185~350℃,再佳為185~300℃,更佳為185~250℃。符合上述條件之可撓高分子基板材料可例如為:聚亞醯胺(Polyimide,PI)、聚醚碸(Polyethersulfone,PES)、聚醚醚酮(Polyetheretherketone,PEEK),但無特別限制。再者,關於上述基板的厚度亦無特別限制,只要能夠符合上述熔點者皆可使用,而較佳之基板厚度係介於100~200μm間。
除此之外,本發明具有結晶矽薄膜之基板上的 結晶矽薄膜具有優異的附著力、可撓性以及光電性質。以ASTM D3599-02規範為準,本發明之結晶矽薄膜附著於基板之附著力等級皆可達到5B。再者,經彎曲實驗結果,本發明之結晶矽薄膜仍可在緊貼基板狀況下,無裂縫產生。此外,無論將本發明之具有結晶矽薄膜之基板進行正角度(張應力)或負角度(壓應力)彎曲,皆能達到10-3~10-1S/cm之導電度,尤其當進行負角度之彎曲時,更能顯著提高其導電度;而當進行正角度之彎曲時,其導電度亦無顯著降低。而經微波光電導衰退法(Microwave photoconductive decay,μ-PCD)量測可知,其載子壽命約10~20μs,載子移動率約100~150cm2/Vs,明顯高於非晶矽材料。
為製得上述具有優異的附著力、可撓性、及光電性質之具有結晶矽薄膜之基板,本發明提供一種製備該結晶矽基板之方法,其步驟包括:(A)提供一基板、一矽源以及一氫氣,其中,矽源為一液態矽源,且為液態矽氯化物,較佳為SiCl4、Si2Cl6或其組合,更佳為SiCl4;(B)置放上述基板於小於10-2torr之減壓環境下,以該氫氣作為一載流氣體引導該矽源進入減壓環境中,其中該載流氣體之流量為10~20sccm;(C)額外通入50~600sccm之氫氣,並於250~2000W微波功率以及1~10torr工作壓力條件下進行一微波電漿輔助化學氣相沉積法(Microwave plasma enhanced chemical vapor deposition,MWPECVD);以及(D)沉積一結晶矽薄膜於上述之該基板上,以形成一具有結晶矽薄膜之基板。
較佳情況下,於上述步驟(B)中,該氫氣係注入上述之液態矽源並引導液態矽源之蒸氣進入上述減壓環境中,其中,減壓環境之壓力係小於10-2torr,而該載流氣體之流量為10~20sccm,更佳為10sccm。
關於步驟(C)中,作為載流氣體之氫氣,其額外通入的流量較佳為100~300sccm,更佳為150~250sccm,最佳為200sccm,藉此可獲得最佳品質之結晶矽薄膜。
再者,於步驟(C)中,係於200℃以下及1012~1013電漿密度條件下進行微波電漿輔助化學氣相沉積法。
本發明之所以能夠於低熔點可撓基板上形成高度結晶之結晶矽薄膜原因,主要在於本發明所提供之製備方法係藉由氫氣/矽氯化物(矽源)於微波電漿反應生成結晶矽薄膜過程中,因電漿中的氫自由基與氯自由基反應生成鹽酸時的放熱反應,以及因自由基可蝕刻較弱的Si-Si鍵結及不純物之Si-O鍵結,故可具有蝕刻效應、自我清潔效應以及化學退火效應,除此原因外,由於微波電漿具有高電漿密度之特性,因此能夠於較低的製程溫度下,有效於低熔點之高分子可撓基板上形成高結晶度之結晶矽薄膜。
由此,本發明之方法不但能藉由簡單的製程方法直接於低熔點高分子基板上成長結晶矽薄膜,亦能夠突破習知技術,於低熔點高分子基板上成長高結晶度之結晶矽膜,因此,本發明之方法非常適合應用例如像矽薄膜太陽能電池、薄膜電晶體及感測器等裝置上,藉此提高裝置輕薄及可撓攜帶性,亦能提升其導電效能特性。
此外,本案最佳之矽源SiCl4,其係一種提煉高純度單晶矽晶圓之終端副產物,故容易取得且成本低廉,於常溫下為液態,相較於SiH4(應用於化學氣相沉積法生長矽薄膜之矽源)更安全且易保存。本發明之製備方法所使用之微波電漿輔助化學氣相沉積法乃是一種真空製程,其具有高密度電漿、無電極汙染且具有大面積且高鍍膜繞鍍特性之優勢,故能夠整合於現有半導體產業之真空製程。
1、3‧‧‧冷凝井裝置
2‧‧‧真空抽氣裝置
4‧‧‧反應室
5‧‧‧微波功率控制裝置
6‧‧‧基板架
A、B、C‧‧‧方向
7‧‧‧基板
8‧‧‧結晶矽薄膜
圖1係本發明實施例1之微波電漿輔助化學氣相沉積裝置。
圖2係使用Cu K α照射本發明實施例1之不同微波功率(a)500W、(b)750W及(c)1000W下所製得之結晶矽薄膜的X光繞射圖。
圖3係本發明實施例1之於(a)500W、(b)750W及(c)1000W不同微波功率下製得之結晶矽薄膜拉曼光譜圖。
圖4A~4C係本發明實施例1之於(a)500W、(b)750W及(c)1000W不同微波功率下製得之結晶矽薄膜掃描式電子顯微鏡圖。
圖5係本發明實施例1之結晶矽薄膜的柱狀晶體示意圖。
圖6係本發明實施例1之於(a)500W、(b)750W及(c)1000W不同微波功率下製得之結晶矽薄膜晶附著力測試後之外觀圖以及掃描式電子顯微鏡圖。
圖7係本發明實施例1之於1000W微波功率下製得之 結晶矽薄膜(a)彎曲外觀圖,以及(c)、(d)及(e)之掃描式電子顯微鏡圖。
圖8係本發明實施例1之結晶矽薄膜彎曲導電度測試結果曲線圖。
圖9係本發明實施例1之於1000W微波功率下製得之結晶矽薄膜之載子壽命量測圖。
圖10係本發明實施例2之結晶矽薄膜掃描式電子顯微鏡圖。
圖11係本發明實施例2之結晶矽薄膜拉曼光譜圖。
圖12係本發明實施例3之於氫氣載流氣體為(a)50sccm、(b)100sccm、(c)200sccm、(d)300sccm、(e)400sccm及(f)600sccm條件下所製得之結晶矽薄膜掃描式電子顯微鏡圖。
圖13係本發明實施例3之於氫氣載流氣體為50sccm、100sccm、200sccm、300sccm、400sccm及600sccm之條件下所製得之結晶矽薄膜拉曼光譜圖。
實施例1
本實施例以聚亞醯胺(Polyimide,PI)作為高分子可撓基板,以SiCl4作為矽源。
請參考圖1,將液態SiCl4保存於-55℃冷凝井裝置1中以減少其揮發。接著,以油封式機械幫浦作為真空抽氣裝置2,搭配液態氮冷凝井裝置3,由C方向進行抽氣,除了使反應室4內部空間形成趨近於真空之減壓環境 外,亦能捕捉下述反應形成結晶矽薄膜時產生的鹽酸副產物,以避免鹽酸損害真空抽氣裝置。
首先,以真空抽氣裝置2對反應室4進行抽氣,以使內部壓力達到極限真空(<10-2torr)之減壓環境後,先由A方向處通入50sccm流量之氬氣,並使微波功率控制裝置5提供500W的微波功率,對置放於基板架6上之高分子可撓基板進行轟擊,以清潔該基板表面5分鐘。
接著,以10sccm流量之氫氣做為載流氣體,由B方向注入液態SiCl4並引導SiCl4蒸氣體進入減壓之反應室4中,其中經換算,此時SiCl4的實際氣體流量為2.9×10-2sccm。再由A方向處額外通入200sccm流量之氫氣進入反應室4,調控壓力使反應室總體壓力達5torr壓力後,進行500W、750W及1000W不同微波功率條件之微波電漿輔助化學沉積,反應時間共15分鐘。此時,反應過程中的電漿密度約1013,製程溫度為185℃。
待製程結束後,由A方向通入氫氣使反應室4壓力回至一大氣壓後,以油封式機械幫浦作由C方向進行抽氣至減壓環境,一共循環操作至少5次,進行回復(Recover)動作後,即可破真空,以獲得本實施例之具有結晶矽薄膜之基板。以下將透過測試例檢測具有結晶矽薄膜之基板上之結晶矽薄膜的各項特性。
測試例1-檢測具有結晶矽薄膜之基板上之結晶矽薄膜的結晶度及微觀結構
請參考圖2及圖3,圖2及圖3分別係將實施 例1之不同微波功率下成長之結晶矽薄膜進行以Cu Kα照射測得結晶矽薄膜之X光繞射以及拉曼光譜檢測,由圖2之結果可得知,上述實施例之結晶矽薄膜結具有結晶性,且具(220)之優選結晶方向結構,且使用Cu K α照射所測得該結晶矽薄膜之X光繞射圖裡,於28.4度、47.3度及56.1度分別具(111)、(220)及(311)繞射峰。
由圖3拉曼光譜結果可得知結晶矽薄膜於拉曼位移之510~520cm-1處具有一明顯波峰,根據圖3計算出實施例之結晶矽薄膜之結晶度皆大於90%。
再者,請參考圖4及圖5,圖4亦為不同微波功率下製得之結晶矽薄膜掃描電子顯微鏡截面圖,而圖5係結晶矽薄膜之柱狀矽晶體示意圖。由該些結果可了解,以本實施例之方法所製得之結晶矽薄膜具有多個柱狀矽晶體,其中柱狀結構如圖5之示意圖,且於(a)500W、(b)750W及(c)1000W微波功率下製備之結晶矽薄膜中,其柱狀矽晶體高度依序為2.11μm、2.02μm及1.52μm,其粒徑係依序為61.40nm、69.81nm及88.18nm。換言之,換算其結晶矽薄膜之生長速率約為1.69~2.34nm/s。
測試例2-檢測具有結晶矽薄膜之基板上之結晶矽薄膜對基板的附著力
請參考圖6,圖6主要係根據ASTM D3359-02規範之膠帶附著力測定標準試驗方法,針對實施例1之500W、750W及1000W微波功率下製得之具有結晶矽薄膜之基板進行附著力檢測。試驗步驟為以Elcometer F107劃格器 於具有結晶矽薄膜之基板表面畫上網狀格線,接著使用3MTM Scotch Brand Tape Core Series 4-1000膠帶黏貼在畫格處,撕開膠帶後觀察其面積剝落百分比,並以掃描電子顯微鏡觀察薄膜之破損情形。依據檢測後的結果對照標準分級表對照得知,上述實施例製得知結晶矽薄膜皆具有最高等級的附著力5B,且由SEM圖亦可再次證明該附著於基板上的結晶矽薄膜無脫落的情形,確實具有良好的附著力。
測試例3-檢測具有結晶矽薄膜之基板上之結晶矽薄膜的可撓性
請參考圖7,圖7例將實施例1之1000W微波條件下製得之形成有結晶矽薄膜之具有結晶矽薄膜之基板進行彎曲,並由巨觀及微觀方式仔細觀察結晶矽薄膜是否有裂縫產生。圖7(a)係具有結晶矽薄膜之基板之彎曲外觀圖,圖7(b)及圖7(d)微觀掃描式電子顯微鏡截面圖,圖7(c)微觀掃描式電子顯微鏡上視圖。根據圖7結果可明顯發現即便將本實施例製得之具有結晶矽薄膜之基板進行彎曲,結晶矽薄膜仍然保持其完整性,無任何裂縫產生。據此,由本實施例之方法所製得之結晶矽薄膜確實具有優異的可撓性。
測試例4-檢測具有結晶矽薄膜之基板上之結晶矽薄膜的光電性質
本測試例係將實施例1之於500W、750W及1000W微波條件下所製得具有結晶矽薄膜之基板進行不同角度的彎曲,以檢測其暗導電度(Dark conductivity)及光導電 度(Photoconductivity)。
如圖8結果所示,不同微波功率下所製得之結晶矽薄膜皆具有大於10-3S/cm之優異導電度,且於太陽模擬燈照射下,其導電度(及光導電度)皆有提升的現象,此表示具有光響應特性。
此外,當具有結晶矽薄膜8之基板7進行正角度(大於0度)彎曲時(即結晶矽薄膜處於拉應力條件下),仍維持優異的導電度;另外,當具有結晶矽薄膜8之基板7進行負角度(小於0度)彎曲時(即結晶矽薄膜處於壓應力條件下),其導電度反而有明顯提升的現象。此結果表示即使結晶矽薄膜在曲撓情況下,亦具有優異的光電性質。
如圖9結果所示,圖9例將實施例1之1000W微波條件下製得之形成有結晶矽薄膜之具有結晶矽薄膜之基板進行載子壽命量測,由色塊分布可知,結晶矽薄膜之載子壽命約達10~20μs。
實施例2
本實施例所使用製備裝置與製造方法與實施例1大致相同,差別在於本實施例係以液態Si2Cl6為矽源,保存於15℃冷凝井裝置1且微波功率為1000W,反應時間共5分鐘。本實施例製出之結晶矽薄膜基板如圖10所示,由圖10結果可得知,以Si2Cl6為矽源亦可於可撓性基板上製備出具有柱狀結晶體之結晶矽薄膜。
再者,由圖11之拉曼光譜檢測結果可確認,本實施例之結晶矽薄膜於拉曼位移之約520cm-1處亦具有 一波峰。
實施例3
本實施例所使用之製備裝置與製造方法與實施例1大致相同,差別在於本實施例於製造方法中分別使用(a)50sccm、(b)100sccm、(c)200sccm、(d)300sccm、(e)400sccm、(f)600sccm的額外氫氣流量製備具結晶矽薄膜之基板。
本實施例之電子顯微鏡以及拉曼光譜圖結果如圖12及圖13所示,氫氣的流量會影響結晶矽薄膜的晶體結構,其中,當氫氣載流氣體流量為100~300sccm時,可製得柱狀晶體之結晶矽薄膜,且結晶矽薄膜的柱狀矽晶體的高度依序為(a)1.10μm、(b)1.28μm、(c)1.52μm、(d)1.91μm、(e)1.74μm及(f)1.23μm,且當氫氣載流氣體流量為200sccm時,可製得最佳品質之結晶矽薄膜。
綜上結果,於本發明實施例方法確實能夠在低熔點的可撓基板上,低溫形成高結晶度之結晶矽薄膜,且根據測試結果可得知該結晶矽薄膜係由柱狀矽晶體所組成,且其結晶度最高可達97%,且該結晶矽薄膜之附著力、可撓度及光電特性皆具有優異的測試結果。另外,由霍爾量測可得知,於功率1000W,氫氣載流氣體流量為200sccm條件下所製備的結晶矽薄膜載子移動率約100~150cm2/Vs。
上述實施例僅係為了方便說明而舉例而已,本發明所主張之權利範圍自應以申請專利範圍所述為準,而 非僅限於上述實施例。

Claims (13)

  1. 一種具有結晶矽薄膜之基板,係包含:一基板,其係一高分子基板;以及一結晶矽薄膜,其係形成於該基板之至少一表面上,其中,該結晶矽薄膜的結晶度係高於90%,且其係包含複數個柱狀(Column structure)矽晶體,其中,該具有結晶矽薄膜之基板係以下列步驟所製得:(A)提供該基板、一矽源以及一氫氣,且該矽源係SiCl4、Si2Cl6或其組合;(B)置放該基板於小於10-2torr之一減壓環境下,以該氫氣作為一載流氣體引導該矽源進入該減壓環境中,其中該載流氣體之流量為10-20sccm;(C)額外通入50~600sccm之該載流氣體,並於250~2000W微波功率以及1~10torr工作壓力條件下進行一微波電漿輔助化學氣相沉積法(microwave plasma enhanced chemical vapor deposition,MWPECVD);以及(D)沉積該結晶矽薄膜於該基板之至少一表面上,以形成該具有結晶矽薄膜之基板。
  2. 如申請專利範圍第1項所述之具有結晶矽薄膜之基板,其中該結晶矽薄膜於拉曼位移之510~520cm-1處具有一波峰。
  3. 如申請專利範圍第1項所述之具有結晶矽薄膜之基板,其中使用Cu Kα照射測得該結晶矽薄膜之X光繞射圖中,係於20~60度處具有繞射峰。
  4. 如申請專利範圍第1項所述之具有結晶矽薄膜之基板,其中該結晶矽薄膜之矽晶體具有(220)之優選結晶方向結構。
  5. 如申請專利範圍第1項所述之具有結晶矽薄膜之基板,其中該結晶矽薄膜之薄膜生長速率係100nm/min至150nm/min。
  6. 如申請專利範圍第1項所述之具有結晶矽薄膜之基板,其中該基板係一可撓高分子基板。
  7. 如申請專利範圍第1項所述之具有結晶矽薄膜之基板,其中以ASTM D3599-02規範為準,該結晶矽薄膜附著於該基板之附著力等級為5B。
  8. 如申請專利範圍第1項所述之具有結晶矽薄膜之基板,其中該結晶矽薄膜的導電度係10-3~10-1S/cm。
  9. 如申請專利範圍第1項所述之具有結晶矽薄膜之基板,其中該結晶矽薄膜的載子移動率係100~150cm2/Vs。
  10. 如申請專利範圍第1項所述之具有結晶矽薄膜之基板,其中該結晶矽薄膜的載子壽命係10~20μs。
  11. 一種具有結晶矽薄膜之基板的製備方法,其步驟包含:(A)提供一基板、一矽源以及一氫氣,其中該基板係一高分子基板,且該矽源係SiCl4、Si2Cl6或其組合;(B)置放該基板於小於10-2torr之一減壓環境下,以該氫氣作為一載流氣體引導該矽源進入該減壓環境中,其中該載流氣體之流量為10-20sccm; (C)額外通入50~600sccm之該載流氣體,並於250~2000W微波功率以及1~10torr工作壓力條件下進行一微波電漿輔助化學氣相沉積法(microwave plasma enhanced chemical vapor deposition,MWPECVD);以及(D)沉積一結晶矽薄膜於該基板之至少一表面上,以形成一具有結晶矽薄膜之基板。
  12. 如申請專利範圍第11項所述之製備方法,其中該矽源係一液態矽源,於步驟(B)中,該氫氣之載流氣體係注入該液態矽源並引導該液態矽源之蒸氣進入該減壓環境中。
  13. 如申請專利範圍第11項所述之製備方法,步驟(C)中,更係於200℃以下及1012~1013電漿密度條件下進行該微波電漿輔助化學氣相沉積法。
TW103124510A 2014-07-17 2014-07-17 具有結晶矽薄膜之基板及其製備方法 TWI519668B (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
TW103124510A TWI519668B (zh) 2014-07-17 2014-07-17 具有結晶矽薄膜之基板及其製備方法
US14/539,738 US9443924B2 (en) 2014-07-17 2014-11-12 Substrate with crystallized silicon film and manufacturing method thereof
US15/227,454 US9640393B2 (en) 2014-07-17 2016-08-03 Substrate with crystallized silicon film and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW103124510A TWI519668B (zh) 2014-07-17 2014-07-17 具有結晶矽薄膜之基板及其製備方法

Publications (2)

Publication Number Publication Date
TW201604306A TW201604306A (zh) 2016-02-01
TWI519668B true TWI519668B (zh) 2016-02-01

Family

ID=55809531

Family Applications (1)

Application Number Title Priority Date Filing Date
TW103124510A TWI519668B (zh) 2014-07-17 2014-07-17 具有結晶矽薄膜之基板及其製備方法

Country Status (2)

Country Link
US (2) US9443924B2 (zh)
TW (1) TWI519668B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9817416B2 (en) * 2015-08-17 2017-11-14 Skyworks Solutions, Inc. Apparatus and methods for programmable low dropout regulators for radio frequency electronics

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0215174A (ja) * 1988-07-01 1990-01-18 Canon Inc マイクロ波プラズマcvd装置
US6617644B1 (en) * 1998-11-09 2003-09-09 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method of manufacturing the same
JP2003313299A (ja) * 2002-04-22 2003-11-06 Seiko Epson Corp 高次シラン組成物及び該組成物を用いたシリコン膜の形成方法
WO2006012766A2 (en) * 2004-08-04 2006-02-09 Oc Oerlikon Balzers Ag Adhesion layer for thin film transistors
CN100560811C (zh) * 2004-08-28 2009-11-18 清华大学 硅纳米线结构及其生长方法
US7427776B2 (en) * 2004-10-07 2008-09-23 Hewlett-Packard Development Company, L.P. Thin-film transistor and methods
TW200822191A (en) 2006-08-30 2008-05-16 Applied Materials Inc Precursors and hardware for CVD and ALD
JP2008124408A (ja) * 2006-11-16 2008-05-29 Sony Corp 薄膜半導体装置の製造方法
US20080188062A1 (en) * 2007-02-02 2008-08-07 Chi-Lin Chen Method of forming microcrystalline silicon film
US8076222B2 (en) * 2008-02-11 2011-12-13 Applied Materials, Inc. Microcrystalline silicon thin film transistor
US20100059110A1 (en) * 2008-09-11 2010-03-11 Applied Materials, Inc. Microcrystalline silicon alloys for thin film and wafer based solar applications
WO2011011764A2 (en) * 2009-07-23 2011-01-27 Gigasi Solar, Inc. Systems, methods and materials involving crystallization of substrates using a seed layer, as well as products produced by such processes
KR101097344B1 (ko) * 2010-03-09 2011-12-23 삼성모바일디스플레이주식회사 플렉서블 디스플레이 장치의 제조 방법
WO2012092020A2 (en) 2010-12-30 2012-07-05 Applied Materials, Inc. Thin film deposition using microwave plasma

Also Published As

Publication number Publication date
US9443924B2 (en) 2016-09-13
TW201604306A (zh) 2016-02-01
US20160343566A1 (en) 2016-11-24
US9640393B2 (en) 2017-05-02
US20160020271A1 (en) 2016-01-21

Similar Documents

Publication Publication Date Title
Zhang et al. Influence of deposition temperature on the crystallinity of Al-doped ZnO thin films at glass substrates prepared by RF magnetron sputtering method
Husna et al. Influence of annealing temperature on the properties of ZnO thin films grown by sputtering
CN104389016B (zh) 一种快速制备大尺寸单晶石墨烯的方法
US9371582B2 (en) Method for manufacturing silicon carbide thin film
Fernández et al. Effect of argon plasma-treated polyethylene terepthalate on ZnO: Al properties for flexible thin film silicon solar cells applications
US9324898B2 (en) Varying cadmium telluride growth temperature during deposition to increase solar cell reliability
US20120058366A1 (en) Film-formed article and method of producing the same
Guo et al. High-quality transparent conductive indium oxide film deposition by reactive pulsed magnetron sputtering: Determining the limits of substrate heating
TWI519668B (zh) 具有結晶矽薄膜之基板及其製備方法
KR101851171B1 (ko) 그래핀계 배리어 필름의 제조 방법
Sokolov et al. Study of the structural properties of silicon-on-sapphire layers in hydride-chloride vapor-phase epitaxy
Mosleh et al. Investigation of growth mechanism and role of H2 in very low temperature Si epitaxy
Soler et al. Hot-wire chemical vapor deposition of few-layer graphene on copper substrates
Hashim et al. Room-temperature deposition of silicon thin films by RF magnetron sputtering
Tabuchi et al. Thin-film crystal growth of microcrystalline silicon using very-high-frequency hollow-electrode-enhanced glow plasma
TWI428466B (zh) 具有微晶結構之矽薄膜的形成方法
Mukhopadhyay et al. Better control over the onset of microcrystallinity in fast-growing silicon network
Ma et al. The effect of negative bias on the preparation conditions and structural changes in boron-doped nanocrystalline silicon thin films prepared on PET
Liu et al. Textured transparent conductive B/Al doped ZnO films utilizing reactive magnetron sputtering
Hazra et al. Polycrystalline silicon thin films prepared by plasma enhanced chemical vapour deposition at C using fluorinated source gas
Astuti et al. Oxygen Effect in Annealing Process of Aluminium Doped Zinc Oxide Films
Kumar et al. Effect of substrate position on Structural, Morphological, and optical properties of reactively sputtered ZnO thin films
Tsai et al. Study on the low leakage current of an MIS structure fabricated by ICP-CVD
JP4729191B2 (ja) 多結晶シリコン薄膜の作製方法
Bakr Helium induced structural disorder in hydrogenated nanocrystalline silicon (nc-Si: H) thin films prepared by HW-CVD Method

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees