TW200822191A - Precursors and hardware for CVD and ALD - Google Patents

Precursors and hardware for CVD and ALD Download PDF

Info

Publication number
TW200822191A
TW200822191A TW96132094A TW96132094A TW200822191A TW 200822191 A TW200822191 A TW 200822191A TW 96132094 A TW96132094 A TW 96132094A TW 96132094 A TW96132094 A TW 96132094A TW 200822191 A TW200822191 A TW 200822191A
Authority
TW
Taiwan
Prior art keywords
gas
precursor
water vapor
layer
precursors
Prior art date
Application number
TW96132094A
Other languages
Chinese (zh)
Inventor
Shreyas S Kher
Son T Nguyen
Pravin K Narwankar
Sanjeev Tandon
Steve Jumper
Vincent Sermona
Original Assignee
Applied Materials Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Applied Materials Inc filed Critical Applied Materials Inc
Publication of TW200822191A publication Critical patent/TW200822191A/en

Links

Abstract

The present invention generally comprises an apparatus for depositing high k dielectric or metal gate materials in which toxic, flammable, or pyrophoric precursors may be used. Exhaust conduits may be placed on the liquid precursor or solid precursor delivery cabinet, the gas panel, and the water vapor generator area. The exhaust conduits permit a technician to access the apparatus without undue exposure to toxic, pyrophoric, or flammable gases that may collect within the liquid deliver cabinet, gas panel, and water vapor generator area.

Description

200822191 九、發明說明: 【發明所屬之技術領域】 本發明之實施例大體上係有關於#lj用原子層沉積法 (ALD)或化學氣相沉積法(CVD) &沉積高让介電質與 • 金屬閘極材料之前驅物與硬體。 【先前技術】 〇 在半導體之製程領域中,平面面板顯示器製程或其他 電子元件製程、氣相沉積製程已經在沉積材料於基板上佔 2重要角色。隨著電子元件之幾何形狀持續地縮小且元件 密度持續地增加,特徵結構之尺寸與深寬比變得更為先 進,例如正在考量0·07奈米之特徵尺寸與1〇或更大之深 寬比。是以,材料之共形沉積以形成這些元件漸漸地變為 重要。 ”200822191 IX. DESCRIPTION OF THE INVENTION: TECHNICAL FIELD OF THE INVENTION [0001] Embodiments of the present invention generally relate to the deposition of high dielectric properties by atomic layer deposition (ALD) or chemical vapor deposition (CVD) & And • Metal gate materials are precursors and hardware. [Prior Art] 平面 In the field of semiconductor manufacturing, flat panel display processes or other electronic component processes and vapor deposition processes have played an important role in depositing materials on substrates. As the geometry of electronic components continues to shrink and the density of components continues to increase, the size and aspect ratio of the features become more advanced, such as the feature size of 0. 07 nm and the depth of 1 〇 or greater. Width ratio. Therefore, the conformal deposition of materials to form these components has become increasingly important. ”

雖然已經證實傳統CVD對於元件幾何形狀與深寬比 低至0· 1 5奈米是成功的,更先進的元件幾何形狀係需要替 C/' 代性的沉積技術。受到注意的其一技術即是ALD。在ALD • 製程期間,反應物氣體依序地被導入一内含基材之製程腔 室中。通常,第一反應物會被脈衝化地注入製程腔室,且 被吸附到基板表面上。第二反應物被脈衝化地注入製程腔 至’並且與第一反應物發生反應,以形成一沉積材料。典 型地’ 一淨化(purge )步驟實施於各反應物氣體的輸送之 間。淨化步驟可以是使用載氣的連續式淨化,或是反應物 氣體輸送之間的脈衝式淨化。 5 200822191 在ALD製程期間,藉由氧化金屬與矽前驅物來形成高 k介電質材料是此技藝所公知。臭氧、原子氧、水為用於 ALD製程之常見氧化物或氧化源。在沉積製程期間,由於 臭氧與原子氧之自由基狀態而可以有利地維持低製程溫 度,同時形成介電質材料。若可以控制製程,也可以使用 兩温、南氧化電裝壤境。 所以,此技藝需要一種可以進行高k介電質或金屬閘 極材料沉積之設備,其可以在高溫下於高氧化電漿環境中 操作。 【發明内容】 本發明大體上包含一種用於沉積高k介電質或金屬閘 極材料的設備,其係使用有毒、可燃或引火的前驅物。排 出導管可以設置在液體前驅物或固體前驅物輸送櫃、氣體 面盤及水蒸氣產生器區域上。排出導管使技術員可以進入 此設備,而不會不當地暴露於有毒、引火或可燃的氣體, 其中該些有毒、引火或可燃的氣體係收集在液體輸送櫃、 氣體面盤及水蒸氣產生器區域内。 在一實施例中,本發明揭示一種氣相沉積設備。此設 備包含:一液體前驅物或固體前驅物輸送櫃,其具有一排 出線與其耦接;一氣體面盤,其具有一排出線與其耦接; 一水蒸氣產生器系統,其具有一排出線與其耦接;以及一 或多種有毒、可燃或引火的前驅物源。 在另一實施例中,本發明揭示一種氣相沉積方法。此 6 200822191 方法包含:導入至少一前驅物至一設備,該設備具有一液 體前驅物或固體前驅物輸送櫃、一氣體面盤及一水蒸氣產 生器系統,該前驅物係選自從有毒前驅物、可燃前驅物與 引火前驅物構成的群組;將前驅物氣體從該液體輸送櫃、 • 該氣體面盤或該水蒸氣產生器系統的至少一者排出;以及 _ 在一基板上沉積一層。 f、 【實施方式】 本發明大體上包含一種用以沉積高k介電質材料或金 屬閘極材料之設備,其中會使用有毒、易燃或引火的前驅 物。可以設置排出導管於液體前驅物或固體前驅物輸送 氣體面盤、與水蒸氣產生器區域上。排出導管使得技 術員可以操作設備,而不會過度地暴露於在液體前驅物或 固體前驅物輸送櫃、氣體面盤、與水蒸氣產生器區域内收 集之有毒、引火或易燃的氣體。可以被沉積之示範性高k ”電質材料係包括有 Hf〇2、HfSiO、ΡΓ2Ο3、La2〇5、Zr〇2、 1/ ZrSl0、Al2〇3、LaAlO、Ta205、Ta05、A105 與 Ti05。可以 ^ 被沉積之示範性金屬閘極材料係包括有TaN、TiN、TaSiN、While conventional CVD has proven successful for component geometries and aspect ratios as low as 0.55 nm, more advanced component geometries require C/'s deposition techniques. One technique that has received attention is ALD. During the ALD • process, reactant gases are sequentially introduced into a process chamber containing the substrate. Typically, the first reactant is pulsed into the process chamber and adsorbed onto the surface of the substrate. The second reactant is pulsed into the process chamber to & reacts with the first reactant to form a deposition material. Typically, a purge step is performed between the transport of each reactant gas. The purification step can be a continuous purification using a carrier gas or a pulsed purification between reactant gas delivery. 5 200822191 The formation of high-k dielectric materials by oxidizing metal and hafnium precursors during the ALD process is well known in the art. Ozone, atomic oxygen, and water are common oxide or oxidation sources used in ALD processes. During the deposition process, low process temperatures can be advantageously maintained due to the free radical state of ozone and atomic oxygen while forming a dielectric material. If you can control the process, you can also use two-temperature, south-oxidized electric loading. Therefore, this art requires a device that can perform deposition of high-k dielectric or metal gate materials that can operate in high oxidation plasma environments at elevated temperatures. SUMMARY OF THE INVENTION The present invention generally comprises an apparatus for depositing a high-k dielectric or metal gate material using a toxic, flammable or ignited precursor. The discharge conduit can be disposed in the liquid precursor or solid precursor delivery cabinet, the gas faceplate, and the water vapor generator zone. The exhaust conduit allows the technician to enter the device without unduly exposed to toxic, igniting or flammable gases collected in the liquid transfer cabinet, gas faceplate and water vapor generator area. Inside. In one embodiment, the present invention discloses a vapor deposition apparatus. The apparatus comprises: a liquid precursor or solid precursor delivery cabinet having a discharge line coupled thereto; a gas faceplate having a discharge line coupled thereto; a water vapor generator system having a discharge line Coupled with it; and one or more sources of toxic, flammable or ignited precursors. In another embodiment, the present invention discloses a vapor deposition method. The method of 2008 200821191 comprises: introducing at least one precursor to a device having a liquid precursor or solid precursor delivery cabinet, a gas faceplate and a water vapor generator system, the precursor being selected from the group consisting of toxic precursors a group of flammable precursors and igniting precursors; expelling precursor gases from the liquid delivery cabinet, • the gas faceplate or at least one of the water vapor generator systems; and _ depositing a layer on a substrate. f. [Embodiment] The present invention generally comprises an apparatus for depositing a high-k dielectric material or a metal gate material in which a toxic, flammable or ignited precursor is used. A discharge conduit can be provided for the liquid precursor or solid precursor to transport the gas faceplate to the water vapor generator zone. The venting conduit allows the technician to operate the equipment without excessive exposure to toxic, igniting or flammable gases collected in the liquid precursor or solid precursor delivery cabinet, gas faceplate, and water vapor generator zones. Exemplary high-k" dielectric materials that can be deposited include Hf〇2, HfSiO, ΡΓ2Ο3, La2〇5, Zr〇2, 1/ZrS10, Al2〇3, LaAlO, Ta205, Ta05, A105, and Ti05. ^ Demonstrated exemplary metal gate material includes TaN, TiN, TaSiN,

Ru、Pt、TiAIN與HfN。其他也可以被沉積的膜係包括有 多晶石夕、SiN與HT0。此設備可以是ALD反應器或CVD 反應器。 第1圖係繪示可以根據本發明實施例來實施積體電路 製造之製程腔室100的截面圖。製程腔室100包含熱絕緣 材料,以在高溫(例如< 800°C )操作。製程腔室100可以 7 200822191 包含由熱絕緣材料製成之襯裡,其中該熱絕緣材料係譬如 熔合石英、藍寶石(sapphire )、熱解亞硝酸硼(pyr〇lytic boron nitrite,PBN )材料、陶瓷、其衍生物、或其組合物。 製程腔至100大致上容納一基板支掉載座164,基板 支撐載座164用來支撐基板166。基板支撐載座164可以 在製程腔室100内旋轉且垂直地移動。基板支撐載座164 可以包含一加熱構件,以控制其上之基板丨6 6的温度。罩 部172位在製程腔室1〇〇之蓋子12〇上,並且包含多個氣 體入口 114。罩部172也可以包含一轉接頭168,以在電漿 製程(例如PE-ALD製程、預清潔製程、或後處理製程(譬 如氮化製程))期間用於微波設備或遠端電漿設備。替代性 地’罩部172不具有轉接頭^8。 氣體面盤106經由罩部172連接至製程腔室1〇〇。氣 體面盤106包含至少一個且多達約十個部件組之氣體入口 114 導管糸統108、110、閥112、與至少一前驅物源。如 第1圖所示,氣體面盤1〇6包含兩個部件組,包括有氣體 入口 11 4、導管系統1 1 〇、閥u 2、與前驅物源。閥i J 2可 以是快速切換閥,其可以脈衝化地注入反應物或氧化物。 前驅物可以被提供於儲槽中,以確保有足夠的前驅物。 在一替代性實施例中,導管系統1 〇 8、11 0可以進一步 包含渐進擴張的氣體導管,因而在末端形成了喷嘴,其也 /瓜體連通於氣體入口 1 1 4。本發明所敘述之一些實施例中 使用的噴嘴或末端係進一步被描述在共同受讓的美國專利 申請案號2005/0252449 A1中,其在此被併入本文以作為 8 200822191Ru, Pt, TiAIN and HfN. Other film systems that can also be deposited include polycrystalline spine, SiN and HT0. This equipment can be an ALD reactor or a CVD reactor. 1 is a cross-sectional view showing a process chamber 100 in which integrated circuit fabrication can be performed in accordance with an embodiment of the present invention. The process chamber 100 contains a thermally insulating material to operate at high temperatures (e.g., < 800 ° C). The process chamber 100 may include a liner made of a thermally insulating material such as fused quartz, sapphire, pyrolyzed boron nitrite (PBN) material, ceramic, a derivative thereof, or a composition thereof. The process chamber to 100 generally houses a substrate support carrier 164 for supporting the substrate 166. The substrate support carrier 164 can be rotated within the process chamber 100 and moved vertically. The substrate support carrier 164 can include a heating member to control the temperature of the substrate 丨6 6 thereon. The cover portion 172 is located on the cover 12 of the process chamber 1 and includes a plurality of gas inlets 114. The cover portion 172 may also include a adapter 168 for use in a microwave device or a remote plasma device during a plasma process such as a PE-ALD process, a pre-clean process, or a post-treatment process such as a nitridation process. . Alternatively, the cover portion 172 does not have a adapter ^8. The gas face plate 106 is connected to the process chamber 1 through the cover portion 172. The gas face plate 106 includes at least one and up to about ten component sets of gas inlets 114 conduits 108, 110, valves 112, and at least one precursor source. As shown in Fig. 1, the gas panel 1〇6 comprises two component groups including a gas inlet 11 4, a conduit system 1 1 〇, a valve u 2, and a precursor source. Valve i J 2 can be a fast switching valve that can pulse inject reactants or oxides. Precursors can be provided in the reservoir to ensure adequate precursors. In an alternative embodiment, the catheter system 1 〇 8, 110 may further comprise a progressively expanding gas conduit, thereby forming a nozzle at the end that is also in communication with the gas inlet 1 14 . Nozzles or end systems for use in some embodiments of the present invention are further described in commonly assigned U.S. Patent Application Serial No. 2005/0252449 A1, which is incorporated herein in

參考。藉由提供通過的氣體予一經由漸進錐形化流動通道 來漸進擴張而的裝置,氣體導管幾何形狀可以避免大的温 降。在一實施例中,流動通道沿著約3 0毫米至約1 0 0毫米 的距離,從具有約3毫米至約15毫米内徑的輸送氣體線過 渡到具有約 1 〇毫米至約 2 0毫米更大直徑的氣體入口 11 4。流動通道的直徑漸增使得擴張的氣體近似平衡,並且 避免了快速的熱損失,以維持實質上恆定的溫度。擴張的 氣體導管可以包含一或多個錐形化内表面,例如錐形化直 表面、凹表面、凸表面、其衍生物、或其組合,或者可以 包含一或多個錐形化内表面的多個區段(例如部分錐形化 且部分未錐形化)。 導管系統108、110包含一或一些導管及輸管,其連接 氣體入口 114、閥112與氣體面盤106。閥112可以包括一 閥與一閥座組件,閥座組件具有一橫隔膜及一閥座。氣壓 致動閥可以提供低至約0 · 0 2 0秒期間之氣體脈衝。電致動 閥可以提供低至約0.005秒期間之氣體脈衝。大體上,氣 壓與電致動閥可以提供高至約3秒期間之氣體脈衝。雖然 更高期間的氣體脈衝是可能的,典型的 ALD製程係使用 ALD閥,其產生氣體脈衝而同時開啟約 5秒或更小的間 隔。在一實施例中,閥可以開啟約3秒或更小的間隔。在 又一實施例中,閥可以開啟約2秒或更小的間隔。在一實 施例中,ALD閥係被脈衝化於約0.005秒至約3秒的間隔。 在另一實施例中,閥係被脈衝化於約0.002秒至約2秒的 間隔。在又另一實施例中,閥係被脈衝化於約0.05秒至約 9 200822191 1秒的間隔。典型地,電致動閥需要在閥與可程式化邏輯 控制器之間使用一驅動器。包括有閥i丨2、前驅物源、真 空系統150、基板支撐載座164、水蒸氣產生器(water Vapor Generator,WVG )系統i〇4與氣體面盤1〇6之製程腔室loo * 可以具有一控制單元(未示出),例如經程式化的個人電 . 腦、工作站電腦等等,以控制在此描述的處理條件。如第 3圖所示,WVG系統1〇6可以位在腔室下方。 f、 氣體面盤1 0 6可以提供沉積製程期間所使用的一前驅 物源、一淨化(purge )氣體源、與/或一載氣源。前驅物 源可以包括超過一種的化學前驅物(例如铪前驅物與矽前 驅物)且可以包括一載氣。前驅物源係包括容箱 (ampoule )、起泡器(bubbler )、槽(tank )、容器 (container )、盒(cartridge )。此外,前驅物源包括一 wvo 系統104 ’其連接於源1〇2且流體連通於氣體面盤ι〇6。淨 化氣體源與/或載氣源,通常是槽、容器、盒、或内部配管 供應系統’可以提供氮、氬、氦、氫、生成氣(forming gas) 或其組合物到氣體面盤1 0 6。 • 氣體入口 114可以沿著擴張通道Π6之長度設置在罩 部1 72内。不希望被理論所受限,從氣體入口丨丨4流入且 流經擴張通道1 1 6之氣體形成一圓形流。雖然正確的通過 擴張通道11 6的流動型式係未知,所相信的是,圓形流得 以例如渴流、螺流、螺旋流或其衍生物的流動型式行進通 過擴張通道116。圓形流可以被提供在一介於漏斗襯裡122 與基板支撐件1 64之間的處理區域中。在一態樣中,由於 10 200822191 圓形流在擴張通道1 1 6内表面的橫掃作用,渦流有助於將 處理區域有效率地淨化。此外,圓形氣體流在基板1 66表 面上提供了一致的且共形的氣體輸送。 第1圖繪示有熱絕緣襯裡,其可以被用在製程腔室1 〇〇 與在此敘述之沉積製程期間的其他製程腔室内。擴張通道 1 1 6可以形成在罩部1 72内,且介於漏斗襯裡1 22之間。 熱絕緣物1 70設置在罩部1 72周圍。藉由利用固持環襯裡 128而將固持環襯裡128的突出面124對準於漏斗襯裡122 的突出面,漏斗襯裡122可以被固定抵靠住蓋子120的下 側。固持環襯裡1 2 8可以藉由固定件1 2 6 (例如接頭配件、 螺栓、螺絲、或梢)而貼附到蓋子120的下側。在一實例 中,固定件1 2 6為被插入且被固定入固持環襯裡1 2 8之溝 槽内的接頭配件。漏斗襯裡1 2 2也可以包含一些被鬆弛地 嵌入的梢1 1 8,以在進行加熱製程時可以提供漏斗襯裡1 22 予熱膨脹的自由。在一實施例中,漏斗襯裡1 22在熱膨脹 之後,漏斗襯裡1 22變成對準於且對正中心於基板1 64。 替代性地,漏斗襯裡1 22與固持環襯裡1 2 8可以被形成為 單件。 製程腔室100可以進一步包含上製程襯裡132及下製 程襯裡162。下製程襯裡162設置在底表面上,而上製程 襯裡132設置在下製程襯裡162上且沿著腔室本體148之 壁表面140。狹缝閥襯裡(slit valve liner) 136係被設置 成突出穿過上製程襯裡132且進入製程區域。襯裡(包括 漏斗襯裡122、固持環襯裡128、上製程襯裡132、下製程 11 200822191 襯裡1 62與狹缝閥襯裡1 3 6 )為熱絕緣材料,例如疼合$ 英、藍寶石(sapphire )、PBN材料、陶瓷、碳化矽、鋁 Τ6、其衍生物、或其組合物。在一實施例中,襯裡巧 j, μ ° 不錢鋼或紹或石墨’且被塗覆有如上所述的熱絕緣极 i因 * 藉由經塗覆P BN之襯裡,水蒸氣不會黏附至襯裸’ ’ 襯裸 • 此不會使得前驅物在襯裡表面上反應及沉積。通常’ a A卻 係被釋放應力,以避免在此敘述的沉積製程的啟始,、reference. The gas conduit geometry avoids large temperature drops by providing a passing gas to the device that progressively expands through the progressively tapered flow channel. In one embodiment, the flow channel transitions from a delivery gas line having an inner diameter of from about 3 mm to about 15 mm to a distance of from about 1 mm to about 20 mm along a distance of from about 30 mm to about 100 mm. A larger diameter gas inlet 11 4 . The increasing diameter of the flow channels allows the expanded gas to be approximately balanced and avoids rapid heat loss to maintain a substantially constant temperature. The expanded gas conduit may comprise one or more tapered inner surfaces, such as tapered straight surfaces, concave surfaces, convex surfaces, derivatives thereof, or combinations thereof, or may comprise one or more tapered inner surfaces Multiple sections (eg, partially tapered and partially untaped). The conduit system 108, 110 includes one or more conduits and conduits that connect the gas inlet 114, the valve 112, and the gas faceplate 106. Valve 112 can include a valve and a valve seat assembly having a diaphragm and a valve seat. The pneumatically actuated valve provides a pulse of gas as low as approximately 0·0 2 0 seconds. The electrically actuated valve can provide a pulse of gas for periods as low as about 0.005 seconds. In general, the pneumatic and electrically actuated valves can provide gas pulses for periods up to about 3 seconds. While higher periods of gas pulses are possible, a typical ALD process uses an ALD valve that produces a gas pulse while simultaneously opening a gap of about 5 seconds or less. In an embodiment, the valve can be opened for an interval of about 3 seconds or less. In yet another embodiment, the valve can be opened for an interval of about 2 seconds or less. In one embodiment, the ALD valve is pulsed at intervals of from about 0.005 seconds to about 3 seconds. In another embodiment, the valve train is pulsed at intervals of from about 0.002 seconds to about 2 seconds. In yet another embodiment, the valve train is pulsed at intervals of from about 0.05 seconds to about 9 200822191 1 second. Typically, an electrically actuated valve requires the use of a driver between the valve and the programmable logic controller. The process chamber including the valve i丨2, the precursor source, the vacuum system 150, the substrate support carrier 164, the water vapor generator (WVG) system i〇4, and the gas panel 1〇6 can be There is a control unit (not shown), such as a programmed personal computer, workstation computer, etc., to control the processing conditions described herein. As shown in Figure 3, the WVG system 1〇6 can be positioned below the chamber. f. Gas panel 110 may provide a precursor source, a purge gas source, and/or a carrier gas source for use during the deposition process. The precursor source can include more than one chemical precursor (e.g., ruthenium precursor and ruthenium precursor) and can include a carrier gas. The precursor source includes an ampoule, a bubbler, a tank, a container, and a cartridge. In addition, the precursor source includes a wvo system 104' coupled to source 1〇2 and in fluid communication with gas panel ι6. The purge gas source and/or the carrier gas source, typically a tank, vessel, cartridge, or internal piping supply system, may provide nitrogen, argon, helium, hydrogen, forming gas, or a combination thereof to the gas faceplate 10 6. • The gas inlet 114 can be disposed within the shroud 1 72 along the length of the dilation channel Π6. Without wishing to be bound by theory, the gas flowing in from the gas inlet port 4 and flowing through the expansion channel 1 16 forms a circular stream. While the correct flow pattern through the expansion passage 116 is unknown, it is believed that the circular flow travels through the expansion passage 116 in a flow pattern such as a thirst, a spiral, a spiral flow or a derivative thereof. A circular stream can be provided in a processing region between the funnel liner 122 and the substrate support 1 64. In one aspect, the eddy current helps to efficiently purify the treated area due to the sweeping action of the circular flow on the inner surface of the expansion channel 161. In addition, the circular gas stream provides consistent and conformal gas delivery on the surface of the substrate 166. Figure 1 illustrates a thermally insulating liner that can be used in the process chamber 1 and other process chambers during the deposition process described herein. The expansion channel 1 16 can be formed in the hood portion 1 72 and between the hopper liners 1 22 . A thermal insulator 1 70 is disposed around the cover portion 1 72. By aligning the projecting surface 124 of the retaining ring liner 128 with the retaining surface of the hopper liner 122 by the retaining ring liner 128, the hopper liner 122 can be secured against the underside of the lid 120. The retaining ring lining 1 28 can be attached to the underside of the cover 120 by fasteners 1 2 6 (eg, fitting fittings, bolts, screws, or tips). In one example, the fixture 1 26 is a fitting that is inserted and secured into the groove of the retaining ring liner 1 28 . The funnel lining 122 can also include a plurality of loosely embedded tips 181 to provide the free expansion of the funnel lining 1 22 during the heating process. In one embodiment, after the thermal swell of the hopper liner 1 22, the funnel lining 1 22 becomes aligned and aligned toward the substrate 1 64. Alternatively, the funnel lining 1 22 and the retaining ring lining 1 28 may be formed as a single piece. The process chamber 100 can further include an upper process liner 132 and a lower process liner 162. The lower process liner 162 is disposed on the bottom surface and the upper process liner 132 is disposed on the lower process liner 162 and along the wall surface 140 of the chamber body 148. A slit valve liner 136 is positioned to protrude through the upper process liner 132 and into the process area. The lining (including the funnel lining 122, the retaining ring lining 128, the upper process lining 132, the lower process 11 200822191 lining 1 62 and the slit valve lining 1 3 6 ) is a thermally insulating material such as a painful $ sapphire, sapphire, PBN Materials, ceramics, tantalum carbide, aluminum ruthenium 6, derivatives thereof, or combinations thereof. In one embodiment, the liner is j, μ ° steel or sinter or graphite 'and is coated with a thermal insulator as described above* by lining the coated P BN, water vapor does not adhere To the bare lining's bare lining • This does not cause the precursor to react and deposit on the lining surface. Usually ' a A is released stress to avoid the initiation of the deposition process described here,

.〇 〇 0 °C Γ、 循環期間造成對於熱循環之失效。襯裡可以忍受約 t 1 〇 0 〇 °^ 或更高之溫度。在另一實施例中,襯裡可以忍受約 1 2〇〇 或更高之溫度。在又另一實施例中,襯裡可以忍受約 °c或更高之溫度。此外,襯裡可以被火焰拋光(flam polished),以達到約2微英吋(約0 05 1奈米)或更小的 表面光面。經拋光的光面提供了一平滑表面,所以玎以輸 送製程反應物而幾乎沒有或不具有紊流,並且經拋光的光 面可以減少襯裡上的成核部位(其可能會在其上不希望地 促進膜成長)。再者,火焰拋光移除了表面缺陷(例如坑洞 與裂缝),以減少熱應力引發的缺陷的成核。 • 淨化線1 3 〇為一腔室背側淨化線,其從腔室本體1 4 8 之底部設置至腔室蓋子120與漏斗襯裡122。淨化線130 之位置使得淨化氣體流動於壁表面1 4 〇與上/下製程襯裡 132、162之間,並且進入製程區域。淨化氣體源可以經由 入口 1 4 6連接至淨化線1 3 0。流經淨化線1 3 0之淨化氣體 可以避免壁表面140免於從製程區域散發出之污染物與過 量的熱。污染物包括前驅物或反應產物,其可能繞過上/ 12 200822191 下製程襯裡132、162而沉積在壁表面ι4〇 製程區域之熱可能會逃離上/下製程襯裡 吸收至製程本體1 4 8。然而,一流經淨化彳 體束係將污染物與熱傳送回製程區域内。 置在腔室本體148的外侧,以避免熱從製 - 製程襯裡132與下製程襯裡ι62可以包含 以在基板1 6 6移動期間容納多個基板舉升 Ο 製程襯裡132與下製程襯裡162可以設置 對準於舉升梢孔。上製程襯裡1 3 2更包含 出轉接頭154、與狹缝閥埠134以容納狹駕 出轉接頭154被設置成穿過腔室本體ι48 所以製程區域係流體連通於真空系統1 5 〇 狹缝閥襯裡136,以進出製程腔室1〇〇。 也可以突出穿過熱堵塞板142。 藉由使用一堵塞間隙丨56,可以控制 堵塞間隙156為形成在漏斗襯裡122的底 ’ 座164的頂部之間的空間。堵塞間隙156 , 其可以根據製程條件及所需的唧筒抽吸效 間隙156係藉由下降基板支撐载座164來 兩基板支撐载座丨64來減少。藉由改變堵 離可以變更從製程腔室100下部中的唧 出)至擴張通it i i 6巾心之σ即筒抽吸傳導 所敘述沉積製程期間的膜厚度與均勻性。 為了增加氣體從腔室100排出的效率 上。此外,來自 132 、 162 ,並且 _ 1 3 0之淨化氣 熱堵塞板142設 程區域損失。上 多個舉升梢孔, 梢(未示出)。上 在製程腔室内而 真空埠160、排 I閥襯裡1 3 6。排 與真空埠1 6 0, 。基板1 6 6通過 狹縫閥襯裡1 3 6 卿筒抽吸效率。 緣與基板支標载 為一周圍間隙, 率來變更。堵塞 増加,或藉由升 塞間隙1 5 6的距 筒抽吸埠(未示 性,以控制本文 ,一渦輪分子幫 13 200822191 浦!52可以被增添作為真空幫浦15〇之旁流(bypass)或 同流(in-line)。渦輪分子幫浦152可以依需要被啟動或持 續地運轉,以從腔室100移除氧化物且避免氧化物與前驅 物混合。若氧化物與前驅物混合,會發生反應且會產生微 ' 粒0 ' 腔室蓋子1 2〇可以藉由多個加熱器桿1 74維持在恆定 溫度,其中該些加熱器桿174耦接於蓋子。腔室本體148 (、 也可以被多個加熱器桿1 7 6加熱。加熱器桿1 7 4、1 7 6可以 疋電性的’或可以具有在其内流動之加熱流體。替代性地, 加熱器桿174、176可以更換成一熱交換器。熱交換器可以 冷卻蓋子120與腔室本體148。藉由維持蓋子12〇與腔室 本體1 48於恆定溫度,可以減少前驅物冷凝。 基板載座1 64可以被加熱或冷卻。基板載座丨64可以 藉由流經熱交換器之流體來冷卻。替代性地,基板載座i 64 可以被加熱。基板載座丨64可以具有一雙區塊加熱器,因 而可以將基板1 6 6温度控制在約1 5 〇。〇與約8 0 0 °C之間。在 D 一實施例中,溫度可以控制在約20〇。(:與約8〇(TC之間。雙 - 區塊加熱器允許了基板166之各個區域的控制,以提升基 板1 66之中心至邊緣的温度均勻性。 ALD製程可以在約i托耳至約ι〇〇托耳壓力範圍執行 於製程腔室中。在一實施例中,壓力可以約1托耳至約2 〇 托耳。在又另一實施例中,壓力可以約1托耳至約1 〇托耳。 製程腔室内的壓力小於提供前驅物之儲槽内的壓力。基板 溫度可以維持在約70〇c至約100(rc。在一實施例中,此範 14 200822191 圍可以約loot:至約650。(:。在又另一實施例中,此範圍可 以約250°C至約50〇。(:。 當形成金屬閘極材料時,可以導入一含钽化合物,例 如五(一甲基胺)短(pentadimethy lamino-tantalum,PDM AT ; • Ta(NMe2)5 )’之脈衝。得以藉由載氣之輔助來提供含鈕化 , 合物,其中載氣係包括但不受限於氦、氬、氮、氫、與其 組合物。可以導入一含氮化合物(例如氨)之脈衝。也得 f、 以使用載氣以有助於輸送含氮化合物。可以導入一淨化氣 體(例如氬)°在一態樣中,可以持續地提供淨化氣體流, 以作為含组化合物與含氮化合物之脈衝之間的淨化氣體, 且作為含钽化合物與含氮化合物之脈衝期間的載氣。在一 態樣中,經由兩氣體導管來輸送淨化氣體,而非經由一氣 體導管來輸送淨化氣體。在一態樣中,可以經由一氣體導 管來輸送一反應物氣體,這是因為反應物氣體(例如含纽 化合物與含氮化合物)流動之均勾性係不如淨化氣體之均 勻性來得重要’其係導因於反應物在基板結構表面上的自 〇 我限制吸收製程。在其他實施例中,得以脈衝式來提供淨 • 化氣體。在其他實施例中,得以多於或少於兩個氣體流來 提供淨化氣體。在其他實施例中,得以多於單一氣體流(即 兩或更多個氣體流)來提供含钽化合物。在其他實施例中, 得以多於單一氣體流(即兩或更多個氣體流)來提供含氮 化合物。 其他含钽化合物之實例係包括但不受限於有機金屬前 驅物或其衍生物,例如五(乙基曱基胺)鈕 15 200822191 ( pentaethy lmethy lamino_tantalum, PEM AT ..〇 〇 0 °C Γ, causing failure to the thermal cycle during cycling. The lining can withstand temperatures of about t 1 〇 0 〇 °^ or higher. In another embodiment, the liner can withstand temperatures of about 12 Torr or higher. In yet another embodiment, the liner can tolerate temperatures of about °C or higher. In addition, the lining can be flam polished to achieve a surface finish of about 2 microinch (about 0.051 nm) or less. The polished smooth surface provides a smooth surface so that the process reactant delivers little or no turbulence, and the polished surface reduces nucleation on the liner (which may not be desirable on it) Promote film growth). Furthermore, flame polishing removes surface defects such as potholes and cracks to reduce the nucleation of defects caused by thermal stress. • The purge line 13 is a chamber backside purge line that is disposed from the bottom of the chamber body 148 to the chamber lid 120 and the funnel liner 122. The purge line 130 is positioned such that purge gas flows between the wall surface 14 〇 and the upper/lower process liners 132, 162 and into the process area. The source of purge gas can be connected to purge line 130 via inlet 146. The purge gas flowing through the purge line 130 avoids the wall surface 140 from contaminants and excessive heat emanating from the process area. Contaminants include precursors or reaction products that may bypass the process linings 132, 162 of the upper / 12 200822191 and deposit heat on the wall surface ι4 〇 process area may escape the upper/lower process lining and be absorbed into the process body 148. However, state-of-the-art purified steroid bundles transport contaminants and heat back into the process area. Disposed on the outside of the chamber body 148 to prevent heat from the process-process liner 132 and the lower process liner ι62 may be included to accommodate a plurality of substrate lifts during the movement of the substrate 166. The process liner 132 and the lower process liner 162 may be disposed. Align with the lifting tip hole. The upper process lining 1 3 2 further includes a transfer joint 154 and a slit valve 埠 134 to accommodate the narrow drive outlet 154 disposed to pass through the chamber body ι 48 so that the process area is in fluid communication with the vacuum system 1 5 〇 The slit valve liner 136 is moved into and out of the process chamber 1 . It can also protrude through the heat blocking plate 142. By using a clogging gap 丨 56, the clogging gap 156 can be controlled to form a space between the tops of the bottom pedestal 164 of the hopper liner 122. The clogging gap 156 can be reduced by the process conditions and the desired cylinder suction efficiency gap 156 by lowering the substrate support carrier 164 to support the carrier 丨 64. The film thickness and uniformity during the deposition process described can be varied by changing the blockage to change the enthalpy from the lower portion of the process chamber 100 to the sigma of the expansion. In order to increase the efficiency of gas discharge from the chamber 100. In addition, the purge gas clogging plate 142 from 132, 162, and _ 130 is lost in the set area. Upper lift holes, tips (not shown). The upper part is in the process chamber and the vacuum is 埠160, and the I valve lining is 163. Row with vacuum 埠 1 60,. The substrate 1 6 6 is pumped through the slit valve lining 1 3 6 . The edge and substrate support are loaded as a surrounding gap and the rate is changed. Blocking 増, or by pumping the 距 升 升 升 埠 埠 埠 埠 埠 埠 埠 埠 埠 埠 埠 埠 埠 埠 埠 埠 埠 埠 埠 埠 埠 埠 埠 埠 埠 埠 埠 埠 埠 埠 埠 埠 埠 涡轮 涡轮 涡轮 涡轮 涡轮 涡轮 涡轮 涡轮 涡轮 涡轮 涡轮 涡轮 涡轮 涡轮Or in-line. The turbomolecular pump 152 can be activated or continuously operated as needed to remove oxide from the chamber 100 and avoid mixing of the oxide with the precursor. If the oxide is mixed with the precursor The reaction will occur and a micro-particle 0' chamber cover 1 2 can be generated. The plurality of heater rods 1 74 can be maintained at a constant temperature, wherein the heater rods 174 are coupled to the cover. The chamber body 148 ( It can also be heated by a plurality of heater rods 176. The heater rods 174, 176 can be electrically charged or can have a heating fluid flowing therein. Alternatively, the heater rods 174, 176 can be replaced with a heat exchanger. The heat exchanger can cool the lid 120 and the chamber body 148. Precursor condensation can be reduced by maintaining the lid 12 and the chamber body 1 48 at a constant temperature. The substrate carrier 1 64 can be Heating or cooling. The substrate carrier 64 can be used by The fluid flowing through the heat exchanger is cooled. Alternatively, the substrate carrier i 64 can be heated. The substrate carrier 64 can have a dual block heater so that the substrate 16 6 can be controlled to a temperature of about 15 〇 〇 and about 800 ° C. In the embodiment of D, the temperature can be controlled at about 20 〇. Control of the various zones to enhance the temperature uniformity from the center to the edge of the substrate 166. The ALD process can be performed in the process chamber at a pressure range from about 1 Torr to about 1 Torr. In one embodiment, the pressure It can be from about 1 Torr to about 2 Torr. In yet another embodiment, the pressure can be from about 1 Torr to about 1 Torr. The pressure in the process chamber is less than the pressure in the reservoir providing the precursor. The temperature can be maintained from about 70 〇c to about 100 (rc. In one embodiment, this range 14 200822191 can be about loot: to about 650. (In yet another embodiment, this range can be about 250°) C to about 50 〇. (: When forming a metal gate material, a ruthenium-containing compound can be introduced, for example a pulse of pentadimethy lamino-tantalum (PDM AT; • Ta(NMe2)5). It is provided by a carrier gas to provide a button-containing compound, wherein the carrier gas system includes It is not limited to helium, argon, nitrogen, hydrogen, and combinations thereof. A pulse of a nitrogen-containing compound (such as ammonia) can be introduced. F is also used to use a carrier gas to facilitate the transport of nitrogen-containing compounds. The gas (e.g., argon) can continuously provide a flow of the purge gas as a purge gas between the pulse of the group-containing compound and the nitrogen-containing compound, and as a pulse during the pulse of the ruthenium-containing compound and the nitrogen-containing compound. Carrier gas. In one aspect, the purge gas is delivered via two gas conduits rather than via a gas conduit. In one aspect, a reactant gas can be delivered via a gas conduit because the flow of the reactant gas (eg, the neon-containing compound and the nitrogen-containing compound) is less important than the uniformity of the purge gas. Because of the self-destruction of the reactants on the surface of the substrate structure, I limit the absorption process. In other embodiments, the purge gas is provided in a pulsed manner. In other embodiments, more or less than two gas streams are provided to provide purge gas. In other embodiments, more than a single gas stream (i.e., two or more gas streams) is provided to provide a ruthenium containing compound. In other embodiments, more than a single gas stream (i.e., two or more gas streams) is provided to provide a nitrogen containing compound. Examples of other ruthenium containing compounds include, but are not limited to, organometallic precursors or derivatives thereof, such as penta(ethyl decylamine) knobs 15 200822191 ( pentaethy lmethy lamino_tantalum, PEM AT .

Ta[N(C2H5CH3)2]5 )、五(二乙 基胺)组 (pentadiethylamino-tantalum, PDEAT ; Ta(NEt2)5 ),以及 PEM AT、PD EAT或P DM AT的任何和戶斤有衍生物。其他含 钽化合物包括但不受限於 TBTDET ( Ta(NEt2)3NC4H9或 Ci6H39N4Ta),以及組鹵化物(例如TaXs,其中X為氟(F)、 溴(Br)或氯(C1)),與/或其衍生物。Ta[N(C2H5CH3)2]5), penta(diethylamine) group (pentadiethylamino-tantalum, PDEAT; Ta(NEt2)5), and any of PEM AT, PD EAT or P DM AT Things. Other ruthenium containing compounds include, but are not limited to, TBTDET (Ta(NEt2)3NC4H9 or Ci6H39N4Ta), and group halides (such as TaXs, where X is fluorine (F), bromine (Br) or chlorine (C1)), and / Or a derivative thereof.

當形成高k介電質層時,一銓前驅物得以約5 seem至 約200 seem之速率被導入至製程腔室。铪前驅物可以與载 氣(例如氮)以約5 0 s c c m至約1 0 〇 〇 s c c m之總流速—起 被導入。銓前驅物得以約0 · 1秒至約1 0秒之率(視特定製 程條件、铪前驅物、或所沉積含铪材料之欲求組成而定) 被脈衝化地導入至製程腔室。在一實施例中,銓前驅物係 以約1秒至約5秒之率(例如約3秒)被脈衝化地導入至 製程腔室。在另一實施例中,銓前驅物係以約〇 ·丨秒至約 1秒之率(例如約0 · 5秒)被脈衝化地導入至製程腔室。 在一實例中,铪前驅物為四氯化铪(HfCU )。在另一實例 中’給刖驅物為四(二烧基胺)給化合物,例如四(二乙基胺) 铪((Et2N)4Hf 或 TDEAH)。 如第2A圖所示,藉由透過含有铪或钽前驅物之容箱 206來導入載氣,可以將铪或钽前驅物配送至製程腔室2〇2 内。谷相206可以包括^一容箱、一起泡器、或其他用來容 納或配送化學前驅物之容器。一合適的容箱(例如 PROE-VAPTM)係從美國康乃迪克州Danbury市之Advanced 16 200822191When a high-k dielectric layer is formed, a stack of precursors is introduced into the process chamber at a rate of from about 5 seem to about 200 seem. The ruthenium precursor can be introduced with a carrier gas (e.g., nitrogen) at a total flow rate of from about 50 s c c m to about 10 〇 〇 s c c m . The ruthenium precursor is pulsed into the process chamber at a rate of from about 0.1 second to about 10 seconds (depending on the particular process conditions, the ruthenium precursor, or the desired composition of the deposited ruthenium containing material). In one embodiment, the ruthenium precursor is pulsed into the process chamber at a rate of from about 1 second to about 5 seconds (e.g., about 3 seconds). In another embodiment, the ruthenium precursor is pulsed into the process chamber at a rate of from about 丨 丨 丨 to about 1 sec (e.g., about 0.5 sec). In one example, the hafnium precursor is hafnium tetrachloride (HfCU). In another example, the hydrazine is a tetrakis(dialkylamine) compound such as tetrakis(diethylamine) ruthenium ((Et2N)4Hf or TDEAH). As shown in Fig. 2A, the ruthenium or osmium precursor can be dispensed into the process chamber 2〇2 by introducing a carrier gas through a container 206 containing a ruthenium or osmium precursor. The valley phase 206 can include a container, a bubbler, or other container for containing or dispensing a chemical precursor. A suitable container (eg PROE-VAPTM) is from Advanced 16 200822191 in Danbury, Connecticut, USA.

Technology Materials公司購得。容箱2〇6藉由導管2i8流 體連通於製程腔室202。導管218可以是輪管、管子、線、 軟管、或其他此技藝中公知的導管。此外,容箱2〇6隔開 製程腔室202 —距離220。距離220通常小於約2公尺。 在-實施例中,距# 220可以小於,約125公尺。在又另一 實施例中,距離可以約0.7公尺或更小。可以縮短距離 220 ’以維持一致的姶或钽前驅物流。此外,雖然導管21 8 可以為直㈣弯曲的m18較佳地係為直的或盡可能 具有越少管曲點。導管2U可以被一加熱帶纏繞,以維持 預定溫度。容箱206之溫度係維持在例如約2〇χ:至約3〇〇 °C之溫度’視其内的铪或鈕前驅物而定。在一實施例中, 容箱206係容納四氣化姶於約150。〇至約2〇〇t:之溫度。應 當瞭解的是’雖然給被示例性地作為高k介電質材料,也 可以使用锆。 在-實施例中’容箱206可以為一含有注射器閥系統 21〇之液體輸送系統的部件。液體輸送系統被容納在氣體 面盤208内。注射器閥系統21〇藉由導管218連接至容箱 206與製程腔室202。一載氣源(未示出)可以連接至注射 器閥系統210。容納液體前驅物(例如Tdeah、tdmah、 TDMAS或TrU-DMAS)之容箱206可以被加壓,以傳送液 體前驅物至注射器閥系統210。容納液體前驅物之容箱2〇6 可以被加壓於、約BSkPa (約20psi)至約4Mkpa (約6〇Purchased by Technology Materials. The tank 2〇6 is in fluid communication with the process chamber 202 via conduit 2i8. The conduit 218 can be a wheel tube, tube, wire, hose, or other conduit known in the art. In addition, the tanks 2〇6 are spaced apart from the process chamber 202 by a distance 220. The distance 220 is typically less than about 2 meters. In an embodiment, the distance #220 can be less than about 125 meters. In yet another embodiment, the distance can be about 0.7 meters or less. The distance 220 ' can be shortened to maintain a consistent 姶 or 钽 precursor flow. Furthermore, although the conduit 21 8 may be straight (four) curved, m18 is preferably straight or has as few bend points as possible. The conduit 2U can be wound by a heating belt to maintain a predetermined temperature. The temperature of the tank 206 is maintained at a temperature of, for example, about 2 Torr: to about 3 ° C depending on the 铪 or button precursor therein. In one embodiment, the tank 206 holds four gasification crucibles at about 150. 〇 to a temperature of about 2〇〇t:. It should be understood that although zirconium is exemplarily used as a high-k dielectric material, zirconium can also be used. In an embodiment, the container 206 can be a component of a liquid delivery system containing a syringe valve system 21A. The liquid delivery system is housed within a gas panel 208. The syringe valve system 21 is coupled to the tank 206 and the process chamber 202 by a conduit 218. A carrier gas source (not shown) can be coupled to the injector valve system 210. A tank 206 containing a liquid precursor (e.g., Tdeah, tdmah, TDMAS, or TrU-DMAS) can be pressurized to deliver a liquid precursor to the syringe valve system 210. The tank 2 〇 6 containing the liquid precursor can be pressurized, from about BSkPa (about 20 psi) to about 4 MPa (about 6 〇).

PsU之壓力,且可以被加熱至約100t或更低之溫度。在 -實施例中,此溫度係,約抓至、約⑽。注射器闕系統 17 200822191 2 1 0將液體前驅物與載氣結合,以形成一被注入製程腔室 2 02内之前驅物蒸氣。載氣可以包括氮、氬、氦、氫、或 其組合物,並且載氣可以被預熱到約85 °C至約150°C之溫 度。合適得注射器閥可以由日本東京之Ho riba-S tec公司 購得。The pressure of PsU can be heated to a temperature of about 100 t or less. In the embodiment, this temperature system is about caught, about (10). The syringe crucible system 17 200822191 2 1 0 combines the liquid precursor with the carrier gas to form a precursor vapor that is injected into the process chamber 02. The carrier gas can include nitrogen, argon, helium, hydrogen, or combinations thereof, and the carrier gas can be preheated to a temperature of from about 85 °C to about 150 °C. A suitable syringe valve is commercially available from Ho riba-Stec, Tokyo, Japan.

氧化氣體得以約0.05 seem至約1 000 seem之流速被 導入至製程腔室202。在一實施例中,此流速係約0.5 seem 至約100 seem。氧化氣體得以約0.05秒至約10秒之率被 脈衝化地導入至製程腔室 2 0 2。在一實施例中,此範圍係 約0 · 0 8秒至約3秒。在又另一實施例中,此範圍係約〇 · 1 秒至約2秒"在一實施例中,氧化氣體係以約1粆至約5 秒之率(例如約1 · 7秒)被脈衝化地導入。在另一實施例 中,氧化氣體係以約0 · 1秒至約3秒之率(例如約0 · 5秒) 被脈衝化地導入。 氧化氣體可以由WVG系統204產生,WVG系統204 藉由導管214流體連通於製程腔室202。接頭配件212、216 可以被用來將導管214連接至WVG系統204或至製程腔 室202。合適的接頭配件包括UPG接頭配件,其可從美國 Fujikin of America公司購得。導管214可以經由一 ALD 閥组件流體連通於製程腔室202。導管214可以是由金屬 (例如不銹鋼或鋁)、橡膠或塑膠(例如PTFE )製成之輸 管、管子、線或軟管。在一實例中,由不銹鋼316L形成 之管子係用作為導管214。WVG系統204藉由一氧源氣體 (例如〇2 )與一氫源氣體(例如H2 )在低溫(例如< 500 18 200822191 °c )的催化反應而產生超高純度水蒸氣。氫與氧源氣體之 各者係以約5 s c c m至約2 0 0 s c c m之流速流入W V G系統 204。在一實施例中,此流速可以約 10 seem 至約 100 seem。氧與氫源氣體之流速可以被獨立地調整,以於氧化 氣體之流出物内存在有氧或氧源氣體且不存在有氫或氫源 氣體。 可以用來產生一含水蒸氣之氧化氣體的氧源氣體可以 包括氧、原子氧、臭氧、一氧化二氮、一氧化氮、二氧化 氮、五氧化二氮、過氧化氫、其衍生物、或其組合物。可 以用來產生一含水蒸氣之氧化氣體的氫源氣體可以包括 氫、原子氫、生成氣(N2/H2 )、氨、碳氫化合物(例如CH4 )、 醇類(例如 CH3OH)、其衍生物、或其組合物。一載氣可 以與氧源氣體或氫源氣體共流,且可以包括氮、氦、氬、 或其組合物。氧源氣體為氧或一氧化二氮,並且氫源氣體 為氫或生成氣(例如體積百分比5%之氫於氮中)。 能夠以載氣來稀釋氫源氣體與氧源氣體,以在沉積製 程期間靈敏地控制氧化氣體内水蒸氣。在一實施例中,所 希望的是較慢的水蒸氣流速(約< 1 0 s c c m水蒸氣),以在 ALD製程期間完成化學反應而形成含铪材料或其他介電 質材料。較慢的水蒸氣流速係稀釋氧化氣體内的水蒸氣濃 度。經稀釋的水蒸氣的濃度能夠將吸附在基板表面上的前 驅物予以氧化。所以,較慢的水蒸氣流速係減少了淨化時 間,以提升製造產能。此外,較慢的水蒸氣流速藉由避免 不希望的共反應而減少了微粒污染物的生成。當在製造具 19 200822191The oxidizing gas is introduced into the process chamber 202 at a flow rate of from about 0.05 seem to about 1 000 seem. In one embodiment, the flow rate is from about 0.5 seem to about 100 seem. The oxidizing gas is pulsed into the process chamber 2 0 2 at a rate of from about 0.05 seconds to about 10 seconds. In one embodiment, this range is from about 0.08 seconds to about 3 seconds. In yet another embodiment, the range is from about 1 second to about 2 seconds. In one embodiment, the oxidizing gas system is at a rate of from about 1 Torr to about 5 seconds (e.g., about 1.7 seconds). Pulsed introduction. In another embodiment, the oxidizing gas system is pulsed in at a rate of from about 0. 1 second to about 3 seconds (e.g., about 0.5 seconds). Oxidizing gas may be generated by WVG system 204, which is in fluid communication with process chamber 202 via conduit 214. Connector fittings 212, 216 can be used to connect conduit 214 to WVG system 204 or to process chamber 202. Suitable fittings include UPG fittings, which are commercially available from Fujikin of America, USA. The conduit 214 can be in fluid communication with the process chamber 202 via an ALD valve assembly. The conduit 214 can be a tube, tube, wire or hose made of metal (e.g., stainless steel or aluminum), rubber or plastic (e.g., PTFE). In one example, a tube formed of stainless steel 316L is used as the conduit 214. The WVG system 204 produces ultra-high purity water vapor by a catalytic reaction of an oxygen source gas (e.g., helium 2) with a hydrogen source gas (e.g., H2) at a low temperature (e.g., < 500 18 200822191 °c). Each of the hydrogen and oxygen source gases flows into the W V G system 204 at a flow rate of from about 5 s c c m to about 200 s c c m . In one embodiment, the flow rate can be from about 10 seem to about 100 seem. The flow rates of the oxygen and hydrogen source gases can be independently adjusted so that there is an oxygen or oxygen source gas in the effluent of the oxidizing gas and no hydrogen or hydrogen source gas is present. The oxygen source gas which can be used to generate an oxidizing gas containing water vapor can include oxygen, atomic oxygen, ozone, nitrous oxide, nitrogen monoxide, nitrogen dioxide, dinitrogen pentoxide, hydrogen peroxide, derivatives thereof, or Its composition. The hydrogen source gas which can be used to generate an oxidizing gas containing water vapor can include hydrogen, atomic hydrogen, produced gas (N2/H2), ammonia, hydrocarbons (such as CH4), alcohols (such as CH3OH), derivatives thereof, Or a composition thereof. A carrier gas may be co-flowed with an oxygen source gas or a hydrogen source gas and may include nitrogen, helium, argon, or combinations thereof. The oxygen source gas is oxygen or nitrous oxide, and the hydrogen source gas is hydrogen or a generating gas (e.g., 5% by volume of hydrogen in nitrogen). The hydrogen source gas and the oxygen source gas can be diluted with a carrier gas to sensitively control the water vapor in the oxidizing gas during the deposition process. In one embodiment, a slower water vapor flow rate (about < 10 s c c m water vapor) is desired to complete the chemical reaction during the ALD process to form a germanium containing material or other dielectric material. The slower water vapor flow rate is the dilution of the water vapor concentration in the oxidizing gas. The concentration of the diluted water vapor can oxidize the precursor adsorbed on the surface of the substrate. Therefore, a slower water vapor flow rate reduces the purification time to increase manufacturing capacity. In addition, the slower water vapor flow rate reduces particulate contaminant formation by avoiding undesirable co-reactions. When in manufacturing 19 200822191

有約 0 · 5 s c c m流速之水蒸氣束時,一質流控制器(m a s s flow controller,MFC)可以用來控制氫源氣體使其具有約 0.5 s c c m之流速。然而,大部分M F C系統無法在這樣的流 速下提供一致的流速。所以,可以在 WV G系統中使用經 稀釋的氫源氣體(例如生成氣)以達到較慢的水蒸氣流速。 在一實例中,具有約10 seem流速且含有5%氫生成氣之氫 源氣體係以約〇 . 5 s c c m流速從W V G系統輸送水蒸氣。在 一替代性實施例中,當形成含鈴材料或其他介電質材料 時,所希望的是較快的水蒸氣流速(約> 1 0 s c c m水蒸氣), 以在ALD製程期間完成化學反應。例如,約100 seem之 氫係輸送約1 0 0 s c c m之水蒸氣。 生成氣可以經選擇而在載氣(例如氬或氮)中具有體 積百分比約1%至約95%之氫濃度。在一態樣中,生成氣之 氫濃度係在載氣中體積百分比約1%至約30%。在一實施例 中,生成氣係約2%至約20%。在又另一實施例中,生成氣 係約3 %至約1 0 %。例如,生成氣可以包含約5 %氫與約9 5 % 氮。在另一態樣中,生成氣之氫濃度係在載氣中體積百分 比約30%至約95°/。。在另一實施例中,氫濃度係約40%至 約9 0%。在又另一實施例中,氫濃度係約50%至約85%。 例如,生成氣可以包含約80%氫與約20%氮。 在一實例中,WVG系統係接收約10 seem流速之含5% 氫(9 5 %氮)之氫源氣體以及約1 0 s c c m流速之氧源氣體 (例如氧),以形成約0.5 s c c m流速之含水蒸氣之氧化氣 體以及約9· 8 seem流速之氧。在另一實例中,WVG系統 20 200822191 係接收約2 0 s c c m流速之含5 %氫生成氣之氫源氣 10 seem流速之氧源氣體,以形成約1 seem流速 氣之氧化氣體以及約9 sccm流速之氧。在另一 WVG系統係接收約20 scem流速之含氫氣之氫源 ‘ 約1 〇 S c c m流速之氧源氣體,以形成約1 0 s c c m 水蒸氣之氧化氣體以及約9·8 sccm流速之氧。在 例中,作為氧源氣體之一氧化二氮可以與氫源氣 用,以在ALD製程期間形成水蒸氣。大致上,2 C、 的一氧化二氮係取代每一莫耳當量的氧氣。 WVG系統包含一催化劑,例如一排列有催化 器或一催化劑盒,其中含水蒸氣之氧化氣體是藉 氧源之間的催化反應來產生。w V G系統不同於高 (pyrogenic generator),高熱產生器通常在超過 溫度下製造水蒸氣。含有催化劑之WVG系統通1 t:至約500°C之低溫下製造水蒸氣。在一實施你 度可以約350°C或更低。被容納在催化劑反應器 ) 劑可以包括金屬或合金,例如鈀、鉑、鎳、鐵、 、 铑、其合金、或其組合。超高純度水對於本發明 程是理想的。在一實施例中,為了避免未反應負 動,氧源氣體係被允許流動通過WVG系統長達 後,氫源氣體被允許進入反應器纏達5秒。氧與 (例如氫與氧)之間的催化反應產生了水蒸氣。 氫源氣體之流動可以精確地控制經形成之含水寒 氣體内的氧與氫濃度。水蒸氣可以包含氫源氣韻 體以及約 之含水蒸 實例中, 氣體以及 流速之含 其他實施 體一起使 莫耳當量 ,劑之反應 由氫源與 熱產生器 1000°C 之 ,在約100 |中,此溫 内之催化 鉻、釕、 之ALD製 4向下游流 5秒。之 :氫源氣體 調節氧與 ^氣之氧化 [、氧源氣 21 200822191 體、或其組合的剩餘物》合適的 WVG系統可以購得,例 如美國加州SantaClara之FujikinofAmerica公司銷售的 WVG 及 / 或美國加州 Menlo Park 之 Ultra Clean Technology 公司銷售的 Catalyst Stem Generator System (CSGS)。 第2B圖係繪示WVG系統204之組態。氫源244、氧 源248與載氣源246可以藉由導管系統242耦接於WVG 系統204。導管系統242包含多個導管與多個閥,其可以 使來自氫源244、氧源248與/或載氣源246之氣體經由氣 體輸入口 2 4 0與氣體過慮器2 3 8獨立地流體連通於催化劑 反應器2 3 6。此外,導管系統2 4 2包含多個導管與多個閥, 其可以使來自氫源244與氧源248之氣體在接點234獨立 地繞過催化劑反應器2 3 6。所以,額外的氫源氣體與/或氧 源氣體可以繞過催化劑反應器236且與水蒸氣結合,以形 成昌含氧與虱之氧化氣體。氣體感測器232與氣體過滅器 230可以在催化劑反應器23 6下游耦接於導管系統242。氣 體感測器2 3 2係用來決定氧化氣體的組成,包括氧、氮鱼 水濃度。氧化氣體在離開WVG系統204之前可以通過氣 體過濾器2 3 0。 淨化氣體之脈衝得以約2 slm至約22 sim之流速被導 入。在一實施例中,淨化氣體可以為氬或氮。在另一實施 例中,流速可以約10 slm。每一製程循環係持續約〇 〇1秒 至約20秒之期間。在一實例中,製程循環係持續約1〇秒。 在另一實例中’製程循環係持續約2秒。持續約ι〇秒之較 長處理步驟會沉積良好的含铪之膜,但是減少了產能。特 22 200822191 定的淨化氣體流速及製程循環持續時間係透過實驗來獲 得。在一實例中,3 00毫米晶圓對於具有相同持續時間之 200毫米晶圓係需要約兩倍的流速,以維持相當的產能。 在一實施例中,氫氣可以作為載氣、淨化氣體、與/ 或反應物氣體以減少沉積材料的鹵素污染。包含有函素原 子的前驅物(例如HfCl4、SiCl4與Si2Cl6 )容易污染經沉 積的介電質材料。氫為還原劑,並且可以製造魯化氫(例 如HC1 )為易揮發且可移除的副產物。所以,當氫與前驅 物化合物(例如铪、矽、氧前驅物)結合時,氫可以作為 載氣或反應物氣體,並且可以包括另一載氣(例如氬或 氮)。在一實例中,約1 0 0 °C至約5 0 0 °C溫度之水/氫混合物 可以用來減少鹵素濃度,並且增加沉積材料之氧濃度。在 一實例中,水/氫混合物可以藉由注入過量的氫源氣體至 WVG系統以形成富含水蒸氣之氫來產生。 在一實施例中,藉由透過含有铪前驅物之容箱206來 導入載氣,可以將铪前驅物配送至製程腔室202内,如第 2A圖所示。容箱206之溫度可以維持在例如約20°C至約 3 00 °C之溫度,視其内的铪前驅物而定。在一實施例中,容 箱2 06係容納HfCl4於約150°C至約200°C之溫度。容納液 體前驅物(例如 TDEAH、TDMAH、TDMAS 或 Tris-DMAS ) 之容箱206可以被加壓,以傳送液體前驅物至注射器閥系 統2 10。通常,容納液體前驅物之容箱206可以被加壓於 約 138kPa(約 20psi)至約 414kPa(約 60psi)之壓力, 且可以被加熱至約1 00°C或更低之溫度。在一實施例中, 23 200822191 此溫度係約20 °C至約60 °C。注射器闊系統210將液體前驅 物與載氣結合,以形成一被注入製程腔室202内之前驅物 蒸氣。載氣可以包括氮、氬、氦、氫、或其組合物,並且 載氣可以被預熱到約85 t至約150°C之溫度。When there is a water vapor beam with a flow rate of about 0 · 5 s c c m , a mass flow controller (MFC) can be used to control the hydrogen source gas to have a flow rate of about 0.5 s c c m . However, most MF systems are unable to provide consistent flow rates at such flow rates. Therefore, a diluted hydrogen source gas (e.g., generated gas) can be used in the WV G system to achieve a slower water vapor flow rate. In one example, a hydrogen source gas system having a flow rate of about 10 seem and containing 5% hydrogen generating gas delivers water vapor from the W V G system at a flow rate of about 0.5 s c c m . In an alternative embodiment, when forming a bell-containing material or other dielectric material, a faster water vapor flow rate (about > 10 sccm water vapor) is desired to complete the chemical reaction during the ALD process. . For example, about 100 seem of hydrogen transports about 10 s c c m of water vapor. The gas produced can be selected to have a hydrogen concentration of from about 1% to about 95% by volume of the carrier gas (e.g., argon or nitrogen). In one aspect, the hydrogen concentration of the generating gas is from about 1% to about 30% by volume of the carrier gas. In one embodiment, the gas system is formed from about 2% to about 20%. In yet another embodiment, the gas system is formed from about 3% to about 10%. For example, the generated gas may comprise about 5% hydrogen and about 915 nitrogen. In another aspect, the hydrogen concentration of the generating gas is from about 30% to about 95% by volume of the carrier gas. . In another embodiment, the hydrogen concentration is from about 40% to about 90%. In yet another embodiment, the hydrogen concentration is from about 50% to about 85%. For example, the generated gas may comprise about 80% hydrogen and about 20% nitrogen. In one example, the WVG system receives a hydrogen source gas containing 5% hydrogen (95% nitrogen) at a flow rate of about 10 seem and an oxygen source gas (e.g., oxygen) at a flow rate of about 10 sccm to form a flow rate of about 0.5 sccm. Oxidizing gas containing water vapor and oxygen at a flow rate of about 9.8. In another example, the WVG system 20 200822191 receives an oxygen source gas having a flow rate of about 2 0 sccm of a hydrogen source gas containing 5% hydrogen generating gas to form an oxidizing gas of about 1 seem flow rate gas and about 9 sccm. Oxygen at the flow rate. In another WVG system, a hydrogen-containing source of hydrogen gas having a flow rate of about 20 scem is passed to an oxygen source gas of about 1 〇 S c c m flow rate to form an oxidizing gas of about 10 s c c m water vapor and oxygen at a flow rate of about 9.8 sccm. In the example, nitrous oxide, which is one of the oxygen source gases, can be used with the hydrogen source to form water vapor during the ALD process. In general, 2 C, nitrous oxide replaces each molar equivalent of oxygen. The WVG system comprises a catalyst, such as a catalyst or a catalyst cartridge in which an oxidizing gas containing water vapor is produced by a catalytic reaction between oxygen sources. The w V G system is different from a pyrogenic generator, which typically produces water vapor at temperatures in excess of temperature. The WVG system containing the catalyst produces water vapor at a low temperature of from 1 t: to about 500 °C. In one implementation you can be about 350 ° C or lower. The catalyst may be contained in a catalyst reactor. The agent may include a metal or an alloy such as palladium, platinum, nickel, iron, rhodium, an alloy thereof, or a combination thereof. Ultra high purity water is desirable for the process of the invention. In one embodiment, to avoid unreacted negatives, the oxygen source gas system is allowed to flow through the WVG system for a long time, and the hydrogen source gas is allowed to enter the reactor for 5 seconds. The catalytic reaction between oxygen and (e.g., hydrogen and oxygen) produces water vapor. The flow of the hydrogen source gas can precisely control the concentration of oxygen and hydrogen in the formed aqueous cold gas. The water vapor may comprise a hydrogen source gas body and about the aqueous steaming example, the gas and the flow rate of the other embodiments together with the molar equivalent, the reaction of the agent from the hydrogen source and the heat generator 1000 ° C, in about 100 | In this temperature, the catalytic chrome, ruthenium, and ALD system 4 flow downstream for 5 seconds. The hydrogen source gas regulates the oxidation of oxygen and gas [, the oxygen source gas 21 200822191 body, or a combination thereof, a suitable WVG system", such as WVG and/or the United States sold by Fujikinof America, Santa Clara, California, USA. Catalyst Stem Generator System (CSGS), sold by Ultra Clean Technology, Menlo Park, California. Figure 2B depicts the configuration of the WVG system 204. Hydrogen source 244, oxygen source 248, and carrier gas source 246 may be coupled to WVG system 204 by conduit system 242. The conduit system 242 includes a plurality of conduits and a plurality of valves that can independently fluidly communicate gas from the hydrogen source 244, the oxygen source 248, and/or the carrier gas source 246 via the gas input port 240 to the gas filter 2368. In the catalyst reactor 2 3 6 . In addition, conduit system 242 includes a plurality of conduits and a plurality of valves that can bypass gas from hydrogen source 244 and oxygen source 248 independently of catalyst reactor 236 at junction 234. Therefore, an additional hydrogen source gas and/or oxygen source gas can bypass the catalyst reactor 236 and combine with water vapor to form an oxidizing gas containing oxygen and helium. Gas sensor 232 and gas eliminator 230 may be coupled to conduit system 242 downstream of catalyst reactor 236. The gas sensor 2 3 2 is used to determine the composition of the oxidizing gas, including the oxygen and nitrogen fish water concentrations. The oxidizing gas can pass through the gas filter 230 before exiting the WVG system 204. The pulse of the purge gas is introduced at a flow rate of from about 2 slm to about 22 sim. In an embodiment, the purge gas can be argon or nitrogen. In another embodiment, the flow rate can be about 10 slm. Each process cycle lasts from about 1 second to about 20 seconds. In one example, the process cycle lasts about 1 second. In another example, the process cycle lasts for about 2 seconds. Longer treatment steps lasting about ι〇 seconds will deposit a good film containing ruthenium, but reduce productivity. The flow rate of the purge gas and the duration of the process cycle are obtained through experiments. In one example, a 300 mm wafer requires approximately twice the flow rate for a 200 mm wafer system of the same duration to maintain comparable throughput. In one embodiment, hydrogen can be used as a carrier gas, a purge gas, and/or a reactant gas to reduce halogen contamination of the deposited material. Precursors containing elemental atoms (e.g., HfCl4, SiCl4, and Si2Cl6) tend to contaminate the deposited dielectric material. Hydrogen is a reducing agent and can produce hydrogenated hydrogen (e.g., HCl) as a volatile and removable by-product. Therefore, when hydrogen is combined with a precursor compound (e.g., helium, neon, or oxygen precursor), hydrogen can act as a carrier gas or reactant gas, and can include another carrier gas (e.g., argon or nitrogen). In one example, a water/hydrogen mixture at a temperature of from about 10 ° C to about 500 ° C can be used to reduce the concentration of halogen and increase the oxygen concentration of the deposited material. In one example, the water/hydrogen mixture can be produced by injecting an excess of hydrogen source gas into the WVG system to form hydrogen-rich hydrogen. In one embodiment, the ruthenium precursor can be dispensed into the process chamber 202 by introducing a carrier gas through the containment vessel 206 containing the ruthenium precursor, as shown in Figure 2A. The temperature of the tank 206 can be maintained, for example, at a temperature of from about 20 ° C to about 300 ° C, depending on the ruthenium precursor therein. In one embodiment, the tank 206 is comprised of HfCl4 at a temperature of from about 150 °C to about 200 °C. A tank 206 containing a liquid precursor (e.g., TDEAH, TDMAH, TDMAS, or Tris-DMAS) can be pressurized to deliver a liquid precursor to the syringe valve system 20. Typically, the tank 206 containing the liquid precursor can be pressurized to a pressure of from about 138 kPa (about 20 psi) to about 414 kPa (about 60 psi) and can be heated to a temperature of about 100 ° C or less. In one embodiment, 23 200822191 this temperature is from about 20 ° C to about 60 ° C. The syringe wide system 210 combines the liquid precursor with the carrier gas to form a precursor vapor that is injected into the process chamber 202. The carrier gas can include nitrogen, argon, helium, hydrogen, or combinations thereof, and the carrier gas can be preheated to a temperature of from about 85 t to about 150 °C.

含水蒸氣之氧化氣體係以約2 0 s c c m至約1 0 0 0 s c c m 之流速被導入至製程腔室 2 0 2。在一實施例中,此流速係 約5 0 s c c m至約2 0 0 s c c m。氧化氣體係以約0.1秒至約1 0 秒之率(視特定製程條件以及所沉積含铪材料之欲求組成 而定)被脈衝化地導入至製程腔室 202。在一實施例中, 氧化氣體係以約1秒至約3秒之率(例如約1 · 7秒)被脈 衝化地導入。在另一實施例中,氧化氣體係以約0 · 1秒至 約1秒之率(例如約0 · 5秒)被脈衝化地導入。 氧化氣體可以由WVG系統204產生,WVG系統204 藉由導管214流體連通於製程腔室202。氫源氣體(例如 H2 )與氧源氣體(例如02 )之各者係以約20 seem至約300 s c c m之流速獨立地流入W V G系統2 0 4。氧源氣體之流速 可以比氫源氣體之流速更高。在一實例中,氫源氣體可以 具有約 1 0 0 s c c m之流速,並且氧源氣體可以具有約1 2 0 seem之流速,以使水蒸氣富含有氧。 在一些實施例中,一替代性的氧化氣體(例如傳統的 氧化劑)可以用來取代從WVG系統形成之含水蒸氣之氧 化氣體。可以從含水之氧源(非從WVG系統產生)被導 入至製程腔室内之替代性氧化氣體係包括氧、臭氧、原子 氧、過氧化氫、一氧化二氮、一氧化氮、五氧化二氮、二 24 200822191 氧化氮、其衍生物、或其組合物。雖然本發明之實施例提 供了可以從WV G系統產生之含水蒸氣之氧化氣體受益的 製程’其他實施例在本文敘述的沉積製程期間形成含铪材 料與其他介電質材料時提供了利用替代性氧化氣體或傳統 氧化劑的製程。 ΟThe oxidizing gas system containing water vapor is introduced into the process chamber 2020 at a flow rate of from about 20 s c c m to about 1 00 s c c m . In one embodiment, the flow rate is from about 50 s c c m to about 200 s c c m. The oxidizing gas system is pulsed into the process chamber 202 at a rate of from about 0.1 second to about 10 seconds, depending on the particular process conditions and the desired composition of the deposited ruthenium containing material. In one embodiment, the oxidizing gas system is pulsed in at a rate of from about 1 second to about 3 seconds (e.g., about 1.7 seconds). In another embodiment, the oxidizing gas system is pulsed in at a rate of from about 0. 1 second to about 1 second (e.g., about 0.5 seconds). Oxidizing gas may be generated by WVG system 204, which is in fluid communication with process chamber 202 via conduit 214. Each of the hydrogen source gas (e.g., H2) and the oxygen source gas (e.g., 02) flows independently into the W V G system 220 at a flow rate of from about 20 seem to about 300 s c c m . The flow rate of the oxygen source gas can be higher than the flow rate of the hydrogen source gas. In one example, the hydrogen source gas can have a flow rate of about 10 s c c m and the oxygen source gas can have a flow rate of about 1 20,000 seem to enrich the water vapor with oxygen. In some embodiments, an alternative oxidizing gas (e.g., a conventional oxidizing agent) can be used to replace the oxidizing gas of the aqueous vapor formed from the WVG system. Alternative oxidizing gas systems that can be introduced into the process chamber from an aqueous oxygen source (not produced from a WVG system) include oxygen, ozone, atomic oxygen, hydrogen peroxide, nitrous oxide, nitric oxide, and nitrous oxide , 2 24 200822191 Nitric oxide, derivatives thereof, or combinations thereof. While embodiments of the present invention provide a process that can benefit from the oxidizing gas of water vapor generated by the WV G system, other embodiments provide an alternative to the formation of germanium-containing materials and other dielectric materials during the deposition processes described herein. Process for oxidizing gases or traditional oxidants. Ο

示範性的铪前驅物包括含配位基之铪化合物,配位基 係例如画化物、烷基胺、環戊二烯基、烷基、烷氧化物、 其衍生物、或其組合。可以用作為銓前驅物之铪鹵化物化 合物(hafnium halide compound )包括 HfCl4、Hfl4、HfBr4。 可以用作為铪前驅物之給烧基胺化合物(hafnium alky 1 amino compound)包括(RR’N)4Hf,其中 R 或 R’為氫、 甲基、乙基、丙基、或丁基。適於沉積含铪材料的铪前驅 物包括(Et2N)4Hf 、 (Me2N)4Hf 、 (MeEtN)4Hf 、 (ιΒιι(:5Η4)2ΗΜ12 、 (C5H5)2HfCl2 、 (EtC5H4)2HfCl2 、 (Me5C5)2HfCl2 、 (Me5C5)HfCl3 、 (iPrC5H4)2HfCl2 ' (iprCsDHfCh、(acac)4Hf、(hfac)4Hf、 (tfac)4Hf、(thd)4Hf、(N03)4Hf、CBuOhHf、(ipr〇)4Hf、 (EtO)4Hf、(MeO)4Hf、或其衍生物。在一實施例中,在沉 積製程期間使用的铪前驅物係包括HfCl4、(Et2N)4Hf或 (Me2N)4Hf。 適於沉積含矽材料的示範性矽前驅物包括矽烷、烷基 胺矽烷、矽醇、或烷氧基矽烷,例如矽前驅物可以包括 (Me2N)4Si、(Me2N)3SiH、(Me2N)2SiH2、(Me2N)SiH3、 (Et2N)4Si 、(Et2N)3SiH、(MeEtN)4Si 、(MeEtN)3SiH、 25 200822191Exemplary ruthenium precursors include ruthenium containing ligands such as, for example, an image, an alkylamine, a cyclopentadienyl group, an alkyl group, an alkoxide, a derivative thereof, or a combination thereof. The hafnium halide compound which can be used as a ruthenium precursor includes HfCl4, Hfl4, HfBr4. The hafnium alky 1 amino compound which can be used as a ruthenium precursor includes (RR'N)4Hf, wherein R or R' is hydrogen, methyl, ethyl, propyl or butyl. The ruthenium precursor suitable for depositing ruthenium-containing material includes (Et2N)4Hf, (Me2N)4Hf, (MeEtN)4Hf, (ιΒιι(:5Η4)2ΗΜ12, (C5H5)2HfCl2, (EtC5H4)2HfCl2, (Me5C5)2HfCl2, ( Me5C5)HfCl3, (iPrC5H4)2HfCl2 ' (iprCsDHfCh, (acac)4Hf, (hfac)4Hf, (tfac)4Hf, (thd)4Hf, (N03)4Hf, CBuOhHf, (ipr〇)4Hf, (EtO)4Hf, (MeO) 4Hf, or a derivative thereof. In one embodiment, the ruthenium precursor system used during the deposition process includes HfCl4, (Et2N)4Hf or (Me2N)4Hf. An exemplary ruthenium precursor suitable for depositing ruthenium containing materials The material includes decane, alkylamine decane, decyl alcohol, or alkoxy decane. For example, the ruthenium precursor may include (Me2N)4Si, (Me2N)3SiH, (Me2N)2SiH2, (Me2N)SiH3, (Et2N)4Si, ( Et2N)3SiH, (MeEtN)4Si, (MeEtN)3SiH, 25 200822191

Si(NCO)4、MeSi(NCO)3、SiH4、Si2H6、SiCl4、Si2Cl6、 MeSiCh、HSiCl3、Me2SiCl2、H2SiCl2、MeSi(OH)3、 Me2Si(OH)2、(MeO)4Si、(EtO)4Si、或其衍生物。其他可以 用作為矽前驅物之烷基胺矽烷化合物包括 (RR’N)4_nSiHn,其中R或R’為氫、甲基、乙基、丙基、或 丁基,並且n=0-3。其他烷氧基矽烷可以由一般化學通式 (RO)4-nSiLn來表不’其中R為氣、甲基、乙基、丙基、或 丁基,並且L為H、OH、F、Cl、Br或I,以及其混合物。 此外,更高的矽烷在本發明之一些實施例中被用作為矽前 驅物。更高的矽烷係揭示於共同受讓的美國專利公開號 2 0 04/0 2240 89中,其在此被併入本文以作為參考。在一實 施例中,沉積製程期間使用的矽前驅物包括(Me2N)3SiH、 (Et2N)3SiH、(Me2N)4Si、(Et2N)4Si 或 SiH4。 示範性的氮前驅物可以包括:NH3、N2、聯胺(例如 N2H4 或 MeN2H3)、胺類(例如 Me3N、Me2NH 或 MeNH2)、 苯胺類(例如C^HsNH2 )、有機疊氮化物(例如MeN3或 Me3SiN3 )、無機疊氮化物(例如NaN3或Cp2CoN3 )、自由 基氮化合物(例如N 3、N 2、N、N Η或N Η 2 )、其衍生物、 或其組合。自由基氮化合物可以透過熱、熱電線或電装來 產生。 在一實施例中,前驅物為液體。液體前驅物可以藉由 直接注射方法被輸送至腔室100。一些有用的前驅物包括 可燃前驅物、引火前驅物(pyrophoric precursor)、與有毒 前驅物。合適的可燃前驅物包括 HfCU、La(THD)2、 26 200822191Si(NCO)4, MeSi(NCO)3, SiH4, Si2H6, SiCl4, Si2Cl6, MeSiCh, HSiCl3, Me2SiCl2, H2SiCl2, MeSi(OH)3, Me2Si(OH)2, (MeO)4Si, (EtO)4Si, Or a derivative thereof. Other alkylamine decane compounds which can be used as the ruthenium precursor include (RR'N)4_nSiHn wherein R or R' is hydrogen, methyl, ethyl, propyl or butyl, and n = 0-3. Other alkoxydecanes may be represented by the general chemical formula (RO) 4-nSiLn where R is a gas, methyl, ethyl, propyl or butyl group, and L is H, OH, F, Cl, Br or I, and mixtures thereof. In addition, higher decane is used as a ruthenium precursor in some embodiments of the invention. A higher decane series is disclosed in commonly assigned U.S. Patent Publication No. 2 0 04/0 2,240, the disclosure of which is incorporated herein by reference. In one embodiment, the hafnium precursor used during the deposition process comprises (Me2N)3SiH, (Et2N)3SiH, (Me2N)4Si, (Et2N)4Si or SiH4. Exemplary nitrogen precursors can include: NH3, N2, a hydrazine (eg, N2H4 or MeN2H3), an amine (eg, Me3N, Me2NH, or MeNH2), an aniline (eg, C^HsNH2), an organic azide (eg, MeN3 or Me3SiN3), an inorganic azide (for example, NaN3 or Cp2CoN3), a radical nitrogen compound (for example, N 3 , N 2 , N, N Η or N Η 2 ), a derivative thereof, or a combination thereof. Free radical nitrogen compounds can be produced by heat, hot wires or electrical equipment. In an embodiment, the precursor is a liquid. The liquid precursor can be delivered to the chamber 100 by a direct injection method. Some useful precursors include flammable precursors, pyrophoric precursors, and toxic precursors. Suitable flammable precursors include HfCU, La(THD)2, 26 200822191

Pr(THD)3 、 Pr(N(SiMe3)2)3 、 La(N(SiMe3)2)3) 、Pr(THD)3, Pr(N(SiMe3)2)3, La(N(SiMe3)2)3),

La(i-Pr-AMD)3、TAETO、TDMAH、DMAH 與 TMAI 作為固 體前驅物。可燃的液體前驅物包括 TDEAHf、TDEAZr、 TEMAHf、TEMAZr、4-DMAS、3-DMAS、TBTDET、TBTEMT、 IPTDET、IPTEMT、DMEEDMAA、EBDA、TDEAS、TEMAS 與BTBAS。合適的黏稠及引火前驅物包括Me3A1、Me2AlH 與其他有機鋁化合物。合適的有毒或引火或反應性氣體前La(i-Pr-AMD)3, TAETO, TDMAH, DMAH and TMAI are used as solid precursors. Combustible liquid precursors include TDEAHf, TDEAZr, TEMAHf, TEMAZr, 4-DMAS, 3-DMAS, TBTDET, TBTEMT, IPTDET, IPTEMT, DMEEDMAA, EBDA, TDEAS, TEMAS and BTBAS. Suitable viscous and pyrophoric precursors include Me3A1, Me2AlH and other organoaluminum compounds. Suitable for toxic or pyrophoric or reactive gases

Ο 驅物包括 AsH3、GeH4、SiH4、NH3、PH3、Si2H6、B2H6、 NO、二氯矽烷、六氯矽烷、與NW。這些前驅物得以在室 溫至約3 00 °C下藉由形成泡泡或透過液體輸送系統來輸 送。可以藉由將前驅物源覆蓋有加熱器帶或加熱器套而來 加熱固體前驅物’以確保前驅物維持液體形式。加熱器套 或帶可以裝設在固體前驅物源之頂部上,以防止前驅物茂 漏且接觸於加熱器套。 當使用有毒、可燃或引火的前驅物時,利用一排出系 統以確保有害氣體不會在腔室構件内累積是有益的。例 如’當技術員必須維護氣體面盤208肖,前驅物氣體可能 已經浪漏至面盤内。由於腔室100之高溫,前驅物有可能 會點燃,並且因而使技術員或他人辱在 m , 八又傷。因此,一排出導 管22可以耦接於氣體面盤208。排ψ拔# ^ 娜®導官222可以具有一 閥226,閥226在開啟時可以使翕辦 1之乳體面盤排氣。排氣口可 以耦接至一排出風扇。 206需要維護時 。一排出導管 同樣地,當容箱 的有害氣體是有益的 ’移除任何已經累積 224可以耦接於容箱 27 200822191 206,以將有害氣體排出容箱206之外。排出導管224可 可以具有一閥226與其連接,閥226在開啟時可以將有 氣體排出。 在另一實施例中,水蒸氣產生器系統204可以具有 排出導管228,其經由一開啟的閥226來排氣。耦接於 蒸氣產生器系統204之排出導管228可以使已經洩漏的 體排出。 藉由提供排出導管222、2 24、228,腔室100能夠 安全且有效率的方式來處理可燃、有毒與引火的前驅物 雖然前述說明係著重在本發明之實施例,本發明之 他與進一步實施例可以在不脫離本發明基本範圍下被構 出,並且本發明之範圍係由隨附申請專利範圍來決定。 【圖式簡單說明】 本發明之前述特徵可以藉由參照實施例而更加瞭解 其中一些實施例係繪示在附圖中。然而,應當注意的是 附圖僅繪示出本發明的典型實施例,且因此不會縣市本 明範圍,本發明可以允許其他等效實施例。 第1圖係繪示根據本發明實施例之一設備的截面圖 第2A與2B圖係為根據本發明實施例之一處理系統 示意圖。 第3圖為根據本發明另一實施例之一處理系統的示 圖0 以 害 水 氣 以 〇 其 想 發 的 意 28 200822191The ruthenium precursor includes AsH3, GeH4, SiH4, NH3, PH3, Si2H6, B2H6, NO, dichlorodecane, hexachlorodecane, and NW. These precursors can be delivered at room temperature to about 300 ° C by bubble formation or through a liquid delivery system. The solid precursor can be heated by covering the precursor source with a heater strip or heater jacket to ensure that the precursor maintains the liquid form. A heater jacket or belt can be placed on top of the solid precursor source to prevent leakage of the precursor and contact with the heater jacket. When using toxic, flammable or ignited precursors, it is beneficial to utilize a venting system to ensure that harmful gases do not accumulate within the chamber components. For example, when the technician must maintain the gas disk 208, the precursor gas may have leaked into the faceplate. Due to the high temperature of the chamber 100, the precursor may ignite, and thus the technician or others may be humiliated. Therefore, a discharge conduit 22 can be coupled to the gas faceplate 208. The ® ψ # ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ 222 222 222 222 222 222 222 222 222 222 222 222 222 222 222 222 222 222 222 222 The exhaust port can be coupled to a discharge fan. 206 when maintenance is required. A discharge conduit Similarly, when the hazardous gases of the tank are beneficial, the removal of any accumulated 224 can be coupled to the tank 27 200822191 206 to discharge the hazardous gases out of the tank 206. The exhaust conduit 224 may have a valve 226 connected thereto, and the valve 226 may discharge gas when it is opened. In another embodiment, the water vapor generator system 204 can have a discharge conduit 228 that is vented via an open valve 226. A discharge conduit 228 coupled to the steam generator system 204 can vent the leaked body. By providing the exhaust conduits 222, 24, 228, the chamber 100 can handle combustible, toxic, and pyrophoric precursors in a safe and efficient manner. While the foregoing description focuses on embodiments of the present invention, the present invention and further The embodiments can be constructed without departing from the basic scope of the invention, and the scope of the invention is determined by the scope of the appended claims. BRIEF DESCRIPTION OF THE DRAWINGS The foregoing features of the invention may be further understood by reference to the exemplary embodiments. It is to be understood, however, that the appended claims BRIEF DESCRIPTION OF THE DRAWINGS Figure 1 is a cross-sectional view showing an apparatus according to an embodiment of the present invention. Figures 2A and 2B are schematic views of a processing system in accordance with an embodiment of the present invention. Figure 3 is a diagram of a processing system according to another embodiment of the present invention, which is intended to be harmful to water and gas. 28 200822191

【主要元件符號說明】 100 製 程 腔 室 102 源 104 水 蒸 氣 產 生 器系統 106 氣 體 面 盤 108 導 管 系 統 110 導 管 系 統 112 閥 114 氣 體 入 〇 116 擴 張 通 道 118 梢 120 蓋 子 122 漏 斗 襯 裡 124 突 出 面 126 固 定 件 128 固 持 環 襯 裡 130 淨 化 線 132 上 製 程 襯 裡 134 狹 缝 闊 埠 136 狹 缝 閥 襯 裡 140 壁 表 面 142 熱 堵 塞 板 146 入 π 148 腔 室 本 體 150 真 空 系 統 152 渴 輪 分 子 幫 浦 154 排 出 轉 接頭 156 堵 塞 間 隙 160 真 空 埠 162 下 製 程 襯 裡 164 基 板 支 撐載座 166 基 板 168 轉 接 頭 170 熱 絕 緣 物 172 罩 部 174 加 熱 器 桿 176 加 熱 器 桿 202 製 程 腔 室 204 WVG系統 206 容 箱 208 氣 體 面 盤 210 注 射 器 閥 系 統 212 接 頭 配 件 214 導 管 216 接 頭 配 件 218 導 管 220 距 離 29 200822191 222 排 出 導 管 224 排 出 導 管 226 閥 228 排 出 導 管 230 氣 體 過 渡 器 232 氣 體 感 測 器 234 接 點 236 催 化 劑 反 應β 238 氣 體 過 濾 器 240 氣 體 輸 入 π 242 導 管 系 統 244 氫 源 246 載 氣 源 248 氧 源[Major component symbol description] 100 Process chamber 102 Source 104 Water vapor generator system 106 Gas panel 108 Catheter system 110 Catheter system 112 Valve 114 Gas inlet 116 Expansion channel 118 Tip 120 Cover 122 Funnel lining 124 Protruding surface 126 Fixings 128 retaining ring lining 130 purification line 132 upper process lining 134 slit wide 136 slit valve lining 140 wall surface 142 heat blocking plate 146 into π 148 chamber body 150 vacuum system 152 thirsty wheel molecular pump 154 discharge adapter 156 Clogged gap 160 vacuum 埠 162 lower process lining 164 substrate support carrier 166 substrate 168 adapter 170 thermal insulation 172 hood 174 heater 176 heater bar 202 process chamber 204 WVG system 206 tank 208 gas panel 210 Syringe valve system 212 fitting fitting 214 conduit 216 fitting fitting 218 conduit 220 distance 29 200822191 222 discharge conduit 22 4 discharge conduit 226 valve 228 discharge conduit 230 gas turbine 232 gas sensor 234 contact 236 catalyst reaction β 238 gas filter 240 gas input π 242 conduit system 244 hydrogen source 246 carrier gas source 248 oxygen source

3030

Claims (1)

200822191 十、申請專利範圍: 1. 一種氣相沉積設備,其至少包含: 一液體前驅物或固體前驅物輸送櫃,其具有一排出 線與其耦接; • 一氣體面盤,其具有一排出線與其耦接; . 一水蒸氣產生器系統,其具有一排出線與其耦接; 以及 f) 一或多種有毒、可燃或引火的前驅物源。 2. 如申請專利範圍第1項所述之設備,更包含多個加熱器 桿,其耦接於該設備之一蓋子。 3·如申請專利範圍第1項所述之設備,更包含一渦輪分子 幫浦,其耦接於該設備。 ; 4 ·如申請專利範圍第1項所述之設備,更包含一腔室,該 腔具有一襯裡與其耦接。 4 5 ·如申請專利範圍第4項所述之設備,其中該襯裡包含不 銹鋼、石英、銘、藍寶石(sapphire)'石墨、或陶瓷材料。 6.如申請專利範圍第5項所述之設備,其中該襯裡被塗覆 PBN、SiC、石英、或鋁。 31 200822191 7. 如申請專利範圍第1項所述之設備,其中該設備為一原 子層沉積設備。 8. 如申請專利範圍第1項所述之設備,其中該設備為一化 學氣相沉積設備。 9. 如申請專利範圍第1項所述之設備,更包含一熱交換 器,其耦接於該設備。 1 〇.如申請專利範圍第1項所述之設備,更包含一雙區塊 經加熱的載座,其轉接於該設備。 11. 一種氣相沉積方法,其至少包含:200822191 X. Patent Application Range: 1. A vapor deposition apparatus comprising at least: a liquid precursor or solid precursor delivery cabinet having a discharge line coupled thereto; • a gas face plate having a discharge line Coupled thereto; a water vapor generator system having a discharge line coupled thereto; and f) one or more toxic, flammable or ignited precursor sources. 2. The device of claim 1, further comprising a plurality of heater bars coupled to a cover of the device. 3. The apparatus of claim 1, further comprising a turbo molecular pump coupled to the device. 4. The apparatus of claim 1, further comprising a chamber having a liner coupled thereto. 4 5. The apparatus of claim 4, wherein the lining comprises stainless steel, quartz, inscription, sapphire 'graphite, or ceramic material. 6. The apparatus of claim 5, wherein the liner is coated with PBN, SiC, quartz, or aluminum. The apparatus of claim 1, wherein the apparatus is an atomic layer deposition apparatus. 8. The apparatus of claim 1, wherein the apparatus is a chemical vapor deposition apparatus. 9. The device of claim 1, further comprising a heat exchanger coupled to the device. 1 〇. The device of claim 1, further comprising a pair of blocks of heated carriers that are transferred to the device. 11. A vapor deposition method comprising at least: 導入至少一前驅物至一設備,該設備具有一液體前 驅物或固體前驅物輸送櫃、一氣體面盤及一水蒸氣產生器 系統,該前驅物係選自從有毒前驅物、可燃前驅物與引火 前驅物構成的群組; 將前驅物氣體從該液體輸送櫃、該氣體面盤或該水 蒸氣產生器系統的至少一者排出;以及 在一基板上沉積一層。 12.如申請專利範圍第11項所述之方法,其中該有毒前驅 32 200822191 物係選自從 ASH3、GeH4、SiH4、NH3、PH3、Si2H6、B2H6、 NO、二氯矽烷、六氯矽烷、與Νπ構成的群組。 1 3 ·如申請專利範圍第11項所述之方法,其中該可燃前驅 物係選自從 HfCl4、La(THD)2、Pr(THD)3、Pr(N(SiMe3)2)3、 La(N(SiMe3)2)3)、La(i-Pr-AMD)3、TAETO、TDMAH、 DMAH、與TMAI構成的群組。 1 4 ·如申請專利範圍第1 1項所述之方法,其中該可燃前驅 物係選自從 TDEAHf、TDEAZr、TEMAHf、TEMAZr、 4-DMAS、3-DMAS、TBTDET、TBTEMT、IPTDET、IPTEMT、 DMEEDMAA、EBDA、TDEAS、TEMAS、與 BTBAS 構成的 群組。 15.如申請專利範圍第11項所述之方法,其中該引火前驅 物係選自從Me3Ah Me2AlH與有機鋁化合物構成的群組。 16·如申請專利範圍第11項所述之方法,其中該前驅物為 液體前驅物,且該方法更包含直接地注入該液體前驅物。 1 7 ·如申請專利範圍第1 1項所述之方法,其中該層藉由原 子層沉積法來沉積。 33 200822191 1 8 ·如申請專利範圍第1 1項所述之方法,其中該層藉由化 學氣相沉積法來沉積。 1 9 ·如申請專利範圍第11項所述之方法,其中經沉積之該 層為一高k介電質層或一金屬閘極層。 20.如申請專利範圍第1 1項所述之方法,其中經沉積之該 層包含給。 U 34Introducing at least one precursor to a device having a liquid precursor or solid precursor delivery cabinet, a gas faceplate, and a water vapor generator system selected from the group consisting of toxic precursors, flammable precursors, and igniting a group of precursors; expelling precursor gases from at least one of the liquid delivery cabinet, the gas faceplate, or the water vapor generator system; and depositing a layer on a substrate. 12. The method of claim 11, wherein the toxic precursor 32 200822191 is selected from the group consisting of ASH3, GeH4, SiH4, NH3, PH3, Si2H6, B2H6, NO, dichloromethane, hexachloroantane, and Νπ The group that is formed. The method of claim 11, wherein the flammable precursor is selected from the group consisting of HfCl4, La(THD)2, Pr(THD)3, Pr(N(SiMe3)2)3, La(N) (SiMe3) 2) 3), La(i-Pr-AMD) 3, TAETO, TDMAH, DMAH, and TMAI. The method of claim 11, wherein the flammable precursor is selected from the group consisting of TDEAHf, TDEAZr, TEMAHf, TEMAZr, 4-DMAS, 3-DMAS, TBTDET, TBTEMT, IPTDET, IPTEMT, DMEEDMAA, EBDA, TDEAS, TEMAS, and BTBAS groups. 15. The method of claim 11, wherein the pyrophoric precursor is selected from the group consisting of Me3Ah Me2AlH and an organoaluminum compound. The method of claim 11, wherein the precursor is a liquid precursor, and the method further comprises directly injecting the liquid precursor. The method of claim 11, wherein the layer is deposited by an atomic layer deposition method. 33. The method of claim 11, wherein the layer is deposited by chemical vapor deposition. The method of claim 11, wherein the deposited layer is a high-k dielectric layer or a metal gate layer. 20. The method of claim 11, wherein the deposited layer comprises a layer. U 34
TW96132094A 2006-08-30 2007-08-29 Precursors and hardware for CVD and ALD TW200822191A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US82403706P 2006-08-30 2006-08-30

Publications (1)

Publication Number Publication Date
TW200822191A true TW200822191A (en) 2008-05-16

Family

ID=44770713

Family Applications (1)

Application Number Title Priority Date Filing Date
TW96132094A TW200822191A (en) 2006-08-30 2007-08-29 Precursors and hardware for CVD and ALD

Country Status (1)

Country Link
TW (1) TW200822191A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9443924B2 (en) 2014-07-17 2016-09-13 National Tsing Hua University Substrate with crystallized silicon film and manufacturing method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9443924B2 (en) 2014-07-17 2016-09-13 National Tsing Hua University Substrate with crystallized silicon film and manufacturing method thereof
US9640393B2 (en) 2014-07-17 2017-05-02 National Tsing Hua University Substrate with crystallized silicon film and manufacturing method thereof

Similar Documents

Publication Publication Date Title
US20080063798A1 (en) Precursors and hardware for cvd and ald
JP5053079B2 (en) Apparatus and method for atomic layer deposition of hafnium-containing high dielectric constant dielectric materials
CN104737275B (en) The method for depositing the conformal tungsten of free-floride/carbon
TWI521084B (en) Method for tuning a deposition rate during an atomic layer deposition process
JP6189350B2 (en) In situ chamber processing and deposition processes
JP5019430B2 (en) A method of forming a metal layer using an intermittent precursor gas flow process.
TWI271803B (en) Low-temperature plasma-enhanced chemical vapor deposition of silicon-nitrogen-containing films
TWI758363B (en) Ruthenium precursors for ald and cvd thin film deposition and uses thereof
TW201213589A (en) Methods for forming tungsten-containing layers
WO2012012026A2 (en) Metal film deposition
JP2006506811A (en) Method and apparatus for providing a universal metal delivery source (GMDS) and integrating the universal metal delivery source with atomic layer deposition (ALD)
US20050069641A1 (en) Method for depositing metal layers using sequential flow deposition
CN102586760B (en) Vortex chamber lids for ald
KR101304395B1 (en) APPARATUSES AND METHODS FOR ATOMIC LAYER DEPOSITION OF HAFNIUM-CONTAINING HIGH-k DIELECTRIC MATERIALS
TW200822191A (en) Precursors and hardware for CVD and ALD
TW201204860A (en) Metal film deposition