TW201204860A - Metal film deposition - Google Patents

Metal film deposition Download PDF

Info

Publication number
TW201204860A
TW201204860A TW100118988A TW100118988A TW201204860A TW 201204860 A TW201204860 A TW 201204860A TW 100118988 A TW100118988 A TW 100118988A TW 100118988 A TW100118988 A TW 100118988A TW 201204860 A TW201204860 A TW 201204860A
Authority
TW
Taiwan
Prior art keywords
metal
temperature
reactor
containing precursor
substrate
Prior art date
Application number
TW100118988A
Other languages
Chinese (zh)
Inventor
Christian Dussarrat
Vincent M Omarjee
Original Assignee
Air Liquide
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Air Liquide filed Critical Air Liquide
Publication of TW201204860A publication Critical patent/TW201204860A/en

Links

Landscapes

  • Chemical Vapour Deposition (AREA)

Abstract

Disclosed are modified Atomic Layer Deposition processes used to deposit metal films on a substrate.

Description

201204860 六、發明說明: 相關申請案之交叉申請 本申請案主張2010年7月22曰由咬Λ u 日申h之美國臨時申請 案第61/366,810號及2011年3月3〇日由 日申凊之第61/469,522 號之權利,其全部内容以引用的方式併入本文中。 【先前技術】 原子層沉積(ALD)為用於在基板上沉積極薄膜之製 程。視特定沉積製程而$’典型膜厚度可為若干埃至數百 微米不等。 在標準ALD製程中,將前驅體之氣相引入反應器中, 在此該氣相與合適基板接觸。接著可藉由用惰性氣體沖洗 及/或抽工反應器自反應器移除過量前驅體。將反應物(例 如〇3或NH3)引入反應器中,在此其與所吸收之前驅體以 自限制方式反應。II由用惰性氣體沖洗及/或抽空反應器自 反應器移除任何過量反應物。若所需膜為金屬冑,該兩步 製程可提供所需膜厚度或可經重複直至獲得具有所需厚度 之膜為止。 ^ 或者若所而臈為雙金屬膜,則可在以上兩步製程後 將第二含金屬前驅體之蒸氣引入反應器中。第二含金屬前 驅體將基於所沉積之雙金屬膜之性f選擇。在引入反應器 中後’第二含金屬前驅體與基板接觸。藉由沖洗及/或抽空 201204860 反應器自反應器移除任何過量第二含金屬前驅體。再一次 可將反應物引入反應器中與第二含金屬前驅體反應。藉由 沖洗及/或抽空反應器自反應器移除過量反應物。若已獲得 所需膜厚度,則可終止該电』姑. ι程。然而,若需要較厚膜,則 可重複整個四步製程。藉由交替提供含金屬前驅體、第二 含金屬前驅體及反應物,可沉積具有所需組成及厚度之膜。 不幸的是,迄今為止,標準ALD製程不能成功地沉積 製造半導體'光伏打、LCD_TFT或平板型裳置過程中的所 有相關膜。 O.Meara #人(電化學學會第21〇二欠會議⑺输^⑽㈣ Society 210th Meeting),摘要1〇64)提出改良sm沉積之分 子層沉積製程。使用二氣矽烷(DCS)e在標準CVD製程中, 使用DCS+NH3之SiN沉積不在低於6〇(rc之溫度下發生。 使用衍生自原子層沉積(ALD )之替代性方法,〇,Meara等 人證明使用DCS及氨在約500°C下生長薄SiN層可行。在 此替代性方法中’以高流動速率及相對較高壓力(約6托 (Torr) /800 Pa)單獨引入DCS,接著沖洗系統,隨後單獨 引入NH3 (亦為約6托/800 Pa)。使用長引入時間以使表面 餘和。顯示膜厚度隨循環次數線性增加。然而,每次循環 所需之時間大約為或為24分鐘,自製造觀點看來,其不具 有成本競爭性。測試較高溫度,但導致DCS分解及不均勻 膜生長。201204860 VI. INSTRUCTIONS: Cross-application for related applications This application claims to be filed on July 22, 2010 by U.S. U.S. Provisional Application No. 61/366,810 and March 3, 2011 The benefit of the present application is hereby incorporated by reference. [Prior Art] Atomic Layer Deposition (ALD) is a process for depositing a thin film on a substrate. The typical film thickness can vary from a few angstroms to hundreds of microns depending on the particular deposition process. In a standard ALD process, the gas phase of the precursor is introduced into a reactor where it is contacted with a suitable substrate. Excess precursor can then be removed from the reactor by flushing with an inert gas and/or pumping the reactor. A reactant (e.g., hydrazine 3 or NH3) is introduced into the reactor where it reacts with the absorbed precursor in a self-limiting manner. II remove any excess reactant from the reactor by flushing and/or evacuating the reactor with an inert gas. If the desired film is a metal crucible, the two-step process can provide the desired film thickness or can be repeated until a film having the desired thickness is obtained. ^ Or if it is a bimetallic film, the vapor of the second metal-containing precursor can be introduced into the reactor after the above two steps. The second metal-containing precursor will be selected based on the nature of the deposited bimetallic film f. After introduction into the reactor, the second metal-containing precursor is in contact with the substrate. Any excess second metal-containing precursor is removed from the reactor by flushing and/or evacuating the 201204860 reactor. Once again, the reactants can be introduced into the reactor to react with the second metal-containing precursor. Excess reactants are removed from the reactor by flushing and/or evacuating the reactor. If the desired film thickness has been obtained, the electricity can be terminated. However, if a thicker film is required, the entire four-step process can be repeated. A film having a desired composition and thickness can be deposited by alternately providing a metal-containing precursor, a second metal-containing precursor, and a reactant. Unfortunately, to date, standard ALD processes have not been successful in depositing all of the relevant films in a semiconductor 'photovoltaic, LCD_TFT or flat panel process. O.Meara #人(Electrochemical Society 21st 欠2 meeting (7), ^(10)(4) Society 210th Meeting), Abstract 1〇64) proposes a molecular layer deposition process for improving sm deposition. The use of dioxane (DCS)e in a standard CVD process, SiN deposition using DCS+NH3 does not occur at temperatures below 6 〇 (rc. Using an alternative method derived from atomic layer deposition (ALD), 〇, Meara It has been demonstrated that the use of DCS and ammonia to grow a thin SiN layer at about 500 ° C is feasible. In this alternative method, DCS is introduced separately at high flow rates and relatively high pressures (about 6 Torr / 800 Pa). The system is then rinsed, followed by NH3 alone (also about 6 Torr/800 Pa). Long lead times are used to make the surface dry. The film thickness is shown to increase linearly with the number of cycles. However, the time required for each cycle is approximately or For 24 minutes, it is not cost competitive from a manufacturing point of view. Testing for higher temperatures results in DCS decomposition and uneven film growth.

Nakajima 等人(Applied Physics Letters 79 (2001) 665 ) 描述一種概念上類似之方法。Nakajima等人改用375。(:及 201204860 200托(26,664 Pa)下之SiCl4脈衝,接著沖洗腔室,隨後 引入ΝΑ ’但基板溫度為約55(TC且壓力為5〇0托(66,661Nakajima et al. (Applied Physics Letters 79 (2001) 665) describe a conceptually similar approach. Nakajima et al. switched to 375. (: and 201204860 200 Torr (26,664 Pa) SiCl4 pulse, then rinse the chamber, then introduce ΝΑ ' but the substrate temperature is about 55 (TC and the pressure is 5 〇 0 Torr (66, 661

Pa )。一次完整循環耗時約1 〇分鐘。此製程形成絕緣氮化 矽層且需要使用共反應物。Pa). A full cycle takes about 1 minute. This process forms an insulating tantalum nitride layer and requires the use of a co-reactant.

Delabie等人之美國專利申請案2〇〇6/28681〇揭示表2 中之ALD循環,其包含300。(:下Hfcl2脈衝,升高溫度至 420 C歷時2分鐘接著冷卻溫度歷時4分鐘。即使未直接引 入to反應物(第0123段),所得膜仍為Hf〇2。假設氧源 為來自傳輸模組中之殘餘物之濕氣(第〇122段然而, 所得膜仍具有高C1含量(第〇123段)。 仍然需要在製造半導體、光伏打、LCD-TFT或平板型 裳置過程中沉積相關金屬膜之ALD製程。 【發明内容】 、揭示在一或多個基板上沉積金屬膜之方法。所揭示; G括》又疋含有至少一個基板之反應器中之溫度,將含^ 屬體脈衝引入反應器中,使該至少一個基板之表㈣ 古夕邛刀含金屬前驅體飽和及僅藉由使反應器溫度升高^ 兩於含金屬前驅體之分解溫度的溫度來移除該至少部分^ =前驅體之一部分以形成金屬層。所得金屬層中之以 2在約70原子百分比至約⑽原子百分比較佳約9 '、子百分比至約1〇〇原子百分比範圍内。 h或者’所揭不方法包括將含金屬前驅體脈衝引入其4 :::至少-個基板之反應器中,該反應器之溫度低於, 1則驅體之分解溫度,使該至少—個基板之表面經至少 201204860 部分含金屬前驅體飽和,及僅藉由使反應器溫度升高至高 於含金屬前驅體之分解溫度的溫度來在該至少一個基板上 形成金屬層。 在另替代例中,所揭示方法基本上由以下步驟組 成·設定含有至少一個基板之反應器中之溫度,將含金屬 前驅體脈衝弓丨入反應n +,使該至少一個基板之表面經至 >部分合金屬前驅體飽和,在沖洗循環期間藉由使反應器 溫度升尚至高於含金屬前驅體之分解溫度的溫度來移除該 至少部分含金屬前驅體之一部分以形成金屬層及重複該 等步驟直至獲得具有所需厚度之金屬膜為止。 在另—替代例中,所揭示方法基本上由以下步驟組 成··將含金屬前驅體脈衝引入其中安置有至少一個基板之 反應器中,該反應器之溫度低於含金屬前驅體之分解溫 度,使該至少一個基板之表面經至少部分含金屬前驅體飽 和,在沖洗循環期間藉由使反應器溫度升高至高於含金屬 前驅體之分解溫度的溫度來在該至少一個基板上形成金屬 層,及重複該等步驟直至獲得具有所需厚度之佘屬膜為止。 所揭示方法各包括一或多個以下態樣: •重複方法步驟; •金屬層中之金屬濃度在約70原子百分比至約1〇〇 原子百分比,較佳約90原子百分比至約1〇〇原子百分比 範圍内; •較低溫度在約20°C至約40(TC,較佳約50°C至約 300°C範圍内; 201204860 •較高溫度在約100°c至約600。〇範圍内; •藉由背面氣體冷卻或藉由高速流氣體冷卻使溫度 自較高溫度降低至較低溫度; •含金屬前驅體選自由Α1Η3·三級胺、A1H3.環胺、 A1H2(BH4)及A1H2(BH4):三級胺組成之群; •含金屬前驅體選自由A1H3. NMe2Et、A1H3.曱基吡 洛0定及AlH2(BH4):NMe3組成之群; •含金屬前驅體之金屬之氧化態為〇 ; •含金屬前驅體選自由以下組成之群:(三羰基)(苯) 鶴[W(Bz)(CO)3]、(三数基)(苯)钥[M〇(Bz)(c〇)3]、(甲 苯)(環己二烯)釕、(環己二稀)(三羰基)釕 [Ru(Chd)(CO)3]、Ru3(CO)丨2、(曱基環己二烯)(三羰基) 釕[Ru(Me-CHD)(CO)3]及雙(1,3,5_三甲苯)钽及雙(13 5_ 三甲苯)鈮; •金屬為貴金屬;及 •含金屬前驅體選自由以下組成之群:(甲笨X環己 二烯)釕、(環己二烯)(三羰基)釕[Ru(Chd)(c〇)3]、(曱基 環己二烯)(三羰基)釕[Ru(Me-CHD)(C〇)3]及 rU3(c〇)。 記號及命名法 12 以下描述及申請專利範圍中使用某些術語來指代特定 系統組分。 本、文中使用來自元素週期表之元素之標準縮寫。應理 解,可由該等縮寫指代元素(例如Ru指代釕,Ta指代‘组, Nb指代鈮等)。 201204860 如本文中所用’術語「獨立地」在用於描述R基團之 情形時應理解為表示所指R基團不僅相對於具有相同或不 同下彳示或上標之其他R基團獨立地選擇’且亦相對於任何 其他種類之相同R基團獨立地選擇。舉例而言,在式 MR^NR^R^G-x)中,其中乂為2或3’兩個或三個R丨基團 可能但無需彼此相同或與R2相同或與R3相同。此外應理 解,除非另有特定說明,否則當用於不同式中時R基團之 含義彼此獨立。 如本文中所用’術語「烷基」指僅含碳及氫原子之飽 和官能基。此外,術語「烷基」指直鏈、分支鏈或環狀烷 基。直鍵烧基之實例包括(但不限於)曱基、乙基 '丙基、 丁基等。分支鏈烷基之實例包括(但不限於)第三丁基。 環狀烷基之實例包括(但不限於)環丙基、環戊基、環己 基等。 如本文中所用,縮寫「Me」指甲基;縮寫r Et」指乙 基;縮寫「Pr」指丙基;縮寫「iPr」指異丙基;縮寫「Bu」 指丁基(正丁基);縮寫「tBu」指第三丁基;縮寫「sBu」 指第二丁基;縮寫「Cp」指環戊二烯基;縮寫「讣吣指環 已一烯基,縮寫「Bz」指苯;縮寫「C0(j」指環辛二稀基; 縮寫「acac」指乙醯基丙酮酸酯;縮寫r R_NacNac」指N_ 燒基雙酮二亞胺(N-alkyldiketiminate);縮寫「R_acNac」 指N-烷基雙酮單亞胺(N_alkyl ket〇mininate ),亦稱為烯胺 _ ( enaminoketonate );縮寫「hfac」指六氟乙醯基丙酮酸 酯基;縮寫「tmhd」指2,2,6,6-四甲基-3,5-庚二酮基;縮寫The ALD cycle of Table 2, which contains 300, is disclosed in U.S. Patent Application Serial No. 2/6,681, the entire disclosure of which is incorporated herein. (: Hfcl2 pulse is applied, the temperature is raised to 420 C for 2 minutes and then the cooling temperature is 4 minutes. Even if the to reactant is not directly introduced (paragraph 0123), the obtained film is still Hf〇2. It is assumed that the oxygen source is from the transfer mode. The moisture of the residue in the group (paragraph 122) However, the obtained film still has a high C1 content (paragraph 123). There is still a need to deposit deposition during the fabrication of semiconductor, photovoltaic, LCD-TFT or flat panel. ALD Process for Metal Films. SUMMARY OF THE INVENTION A method for depositing a metal film on one or more substrates is disclosed. The disclosure includes a temperature in a reactor containing at least one substrate, which will contain a pulse of a metal body. Introducing into the reactor such that the surface of the at least one substrate (4) is saturated with the metal precursor and the at least part is removed only by increasing the temperature of the reactor to a temperature at which the decomposition temperature of the metal-containing precursor is ^ = a portion of the precursor to form a metal layer. The resulting metal layer is in the range of from about 70 atomic percent to about (10) atomic percent, preferably from about 9', sub-percent to about 1 atomic percent. Uncover The method comprises introducing a metal-containing precursor pulse into a reactor of 4::: at least one substrate, wherein the temperature of the reactor is lower than a decomposition temperature of the substrate, so that the surface of the at least one substrate passes at least 201204860 The partially metal-containing precursor is saturated, and the metal layer is formed on the at least one substrate only by raising the temperature of the reactor to a temperature higher than the decomposition temperature of the metal-containing precursor. In another alternative, the disclosed method is basically Composed of the following steps: setting the temperature in the reactor containing at least one substrate, pulsing the metal-containing precursor into the reaction n +, causing the surface of the at least one substrate to pass to > the partial metal precursor to be saturated, in the rinsing Removing at least a portion of the at least a portion of the metal-containing precursor during the cycle by removing the temperature of the reactor above the decomposition temperature of the metal-containing precursor to form a metal layer and repeating the steps until a metal having a desired thickness is obtained In another alternative, the disclosed method consists essentially of the following steps: • introducing a metal-containing precursor pulse into which is placed at least In the reactor of the substrate, the temperature of the reactor is lower than the decomposition temperature of the metal-containing precursor, so that the surface of the at least one substrate is saturated with at least a portion of the metal-containing precursor, and the temperature of the reactor is raised during the flushing cycle. Forming a metal layer on the at least one substrate to a temperature higher than a decomposition temperature of the metal-containing precursor, and repeating the steps until a bismuth film having a desired thickness is obtained. The disclosed methods each include one or more of the following states Example: • Repeat the method step; • The metal concentration in the metal layer is in the range of about 70 atomic percent to about 1 atomic percent, preferably about 90 atomic percent to about 1 atomic percent; • the lower temperature is about 20 From °C to about 40 (TC, preferably from about 50 ° C to about 300 ° C; 201204860 • Higher temperatures from about 100 ° C to about 600. • Within the range of 〇; • Lowering the temperature from a higher temperature to a lower temperature by gas cooling on the back side or by high-speed flow gas cooling; • The metal-containing precursor is selected from the group consisting of Α1Η3· tertiary amine, A1H3. cyclic amine, A1H2 (BH4) And A1H2 (BH4): a group of tertiary amines; • a metal-containing precursor selected from the group consisting of A1H3. NMe2Et, A1H3. Mercaptopyridine and AlH2(BH4): NMe3; • Metal-containing precursors The oxidation state of the metal is ruthenium; • The metal-containing precursor is selected from the group consisting of: (tricarbonyl) (benzene) crane [W (Bz) (CO) 3], (trisyl) (benzene) key [M〇 (Bz)(c〇)3], (toluene) (cyclohexadiene) ruthenium, (cyclohexane) (tricarbonyl) ruthenium [Ru(Chd)(CO)3], Ru3(CO)丨2 (nonylcyclohexadiene) (tricarbonyl) ruthenium [Ru(Me-CHD)(CO)3] and bis(1,3,5-trimethylbenzene) ruthenium and bis(13 5_trimethylbenzene) ruthenium; a noble metal; and the metal-containing precursor is selected from the group consisting of (A stupid X-cyclohexadiene) ruthenium, (cyclohexadiene) (tricarbonyl) ruthenium [Ru(Chd)(c〇) 3], (nonylcyclohexadiene) (tricarbonyl) hydrazine [Ru(Me-CHD)(C〇)3] and rU3(c〇)Notation and Nomenclature 12 Certain terms are used in the following description and claims to refer to particular system components. This standard uses the standard abbreviations from the elements of the periodic table. It should be understood that elements may be referred to by such abbreviations (e.g., Ru refers to 钌, Ta refers to 'group, Nb refers to 铌, etc.). 201204860 The term 'independently' as used herein, when used to describe an R group, is understood to mean that the R group referred to is not only independent of other R groups having the same or different undercut or superscript. Select 'and also independently select with respect to any other species of the same R group. For example, in the formula MR^NR^R^G-x), wherein 乂 is 2 or 3' two or three R 丨 groups may, but need not be identical to, or identical to, or identical to R3. Further, it should be understood that the meaning of the R groups when used in the different formulas are independent of each other unless otherwise specified. The term "alkyl" as used herein refers to a saturated functional group containing only carbon and a hydrogen atom. Further, the term "alkyl" means a straight chain, a branched chain or a cyclic alkyl group. Examples of direct bond groups include, but are not limited to, fluorenyl, ethyl 'propyl, butyl, and the like. Examples of branched alkyl groups include, but are not limited to, a third butyl group. Examples of cyclic alkyl groups include, but are not limited to, cyclopropyl, cyclopentyl, cyclohexyl and the like. As used herein, the abbreviation "Me" means methyl; the abbreviation r Et" means ethyl; the abbreviation "Pr" means propyl; the abbreviation "iPr" means isopropyl; the abbreviation "Bu" means butyl (n-butyl) The abbreviation "tBu" means the third butyl group; the abbreviation "sBu" means the second butyl group; the abbreviation "Cp" means the cyclopentadienyl group; the abbreviation "the oxime ring has an alkenyl group, the abbreviation "Bz" means benzene; the abbreviation " C0(j) means cyclooctyl dibasic; the abbreviation "acac" means acetylpyruvate; the abbreviation r R_NacNac" means N-alkyldiketiminate; the abbreviation "R_acNac" means N-alkyl N-alkyl ket〇mininate, also known as enaminoketonate; the abbreviation "hfac" refers to hexafluoroacetoxypyruvate; the abbreviation "tmhd" refers to 2,2,6,6- Tetramethyl-3,5-heptanedione; abbreviation

S 8 201204860 〇d」才曰2,4_辛二嗣基;、缩寫「dmamp」指1-二甲基胺基_2· 甲基-2-丙醇酸醋;縮寫「_Μ」指2,6_二甲基·3,5庚二酮 基,且縮寫「ΜΑΒΟ」指κ二曱基胺基_2_甲基_2_丁氧基。 為了進-步理解本發明之性質及目標,應結合隨附圖 式參考以下詳細描述。 【實施方式】 揭示用於在基板上沉積金屬膜之經改良之原子層沉積 (ALD )方法。所揭示之方法可適用於製造半導體、光伏打、 LCD_TFT或平板型裝置。亦揭示適用於實踐所揭示之方法 的經改良之ALD反應器。 所揭不方法包括設定含有至少一個基板之反應器中之 溫度,將含金屬前驅體脈衝引入反應器中,使該至少一個 基板之表面經至少部分含金屬前驅體飽和及僅藉由使反應 器溫度升高至高於含金屬前驅體之分解溫度的溫度來移除 忒至少部分含金屬前驅體之一部分以形成金屬$。所得金 屬層中之金屬濃度在約7〇原子百分比至約1〇〇原子百分 比,較佳為約90原子百分比至約100原子百分比範圍内》 或者,所揭不方法包括將含金屬前驅體脈衝引入其中 安置有至少一個基板之反應器中,該反應器之溫度低於含 至屬别驅體之分解溫度,使該至少一個基板之表面經至少 邛刀含金屬則驅體飽和,及僅藉由使反應器溫度升高至高 於含金屬前驅體之分解溫度的溫度來在該至少一個基板上 形成金屬層。 術語「僅」意謂不使用其他步驟進行所述步驟。換言 201204860 之,僅升高溫度以移除該至少部分含金屬前驅體之一部分 或僅升高溫度以形成金屬層。所述步驟中無需使用反應物。 在另一替代例中,所揭示方法基本上由以下步驟組 成:設定含有至少一個基板之反應器中之溫度,將含金屬 前驅體脈衝引入反應器中,使該至少一個基板之表面經至 J部分含金屬前驅體飽和,在沖洗循環期間藉由使反應器 溫度升咼至咼於含金屬前驅體之分解溫度的溫度來移除該 至少部分含金屬前驅體之一部分以形成金屬層,及重複該 等步驟直至獲得具有所需厚度之金屬膜為止。 在另一替代例中’所揭示方法基本上由以下步驟組 成:將含金屬前驅體脈衝引入其中安置有至少一個基板之 反應器中’ S玄反應器之溫度低於含金屬前驅體之分解溫 度,使該至少一個基板之表面經至少部分含金屬前驅體飽 和,在沖洗循環期間藉由使反應器溫度升高至高於含金屬 前驅體之分解溫度的溫度來在該至少一個基板上形成金屬 層,及重複該等步驟直至獲得具有所需厚度之金屬膜為止。 片語「基本上由......組成」將所揭示方法限於指定步 驟加上任何不本質上影響所揭示方法之基本及新賴特性之 步驟》更特定言之,在-替代例巾,中請人意欲所主張方 法在不使用反應物之情況下產生金屬貞。然而,若進行其 他加工’諸如向金屬膜添加另一金屬以產生雙金屬膜,則 視需要可使用反應物來沉積其他金屬。在第二替代例中 該方法之範圍限於在不添加另一金屬之情況下產生金屬 膜0 10 201204860 合適含金屬前驅體包括含有選自週期表之帛3行至第 12 仃之金屬(a卜 Ga、In、T1、Ge、Sri 杠打士他 Ge Sn、Pb、Sb及Bi)的 :有機金屬前驅體。含金屬前驅體較佳含有貴金屬(亦 即 M、Rh、Pd、Ag、Re、0s、Ir、Pt、Ai^Hg)。 在-替代例中,含金屬前驅體之金屬之氧化態為〇。與 ”有較南氧化態之金屬相比,自金屬氧化態為〇之化入物 移除配位體較容易,因為金屬及配位體兩者均解離為;性 物質。申請人咸信金屬氧化態為〇之化合物之解離無需使 用反應物(諸> h2)而僅需加熱。申請人咸信金屬呈有較 高氧化態之-些化合物可能需要使用還原劑以形成金屬 膜。然而,視金屬及配位體而定,所揭示方法可適用於— 些氧化態高於0 4金屬。例示性含金屬前驅體(其中金屬 之氧化態為0 )包括(但不限於)(曱苯)(環己二烯)釕、 Ru3(c,o)12、(環己二烯)(三幾基)釕、(三幾基)(苯)鶴 [w(Bz)(co)3]、(三羰基)(苯)鉬[Mo(BZ)(co)3]、雙(13 5/ 曱苯)鈮及雙(1,3,5-三曱苯)鈕》Ru化合物之環己二烯基團; 獨立地經一或多個C!至C6烷基取代,例如Ru(Me_環己_ 烯)(CO)3。該等例示性含金屬前驅體可購得。 含金屬前驅體應具有適用於所揭示方法之合適分解w 度。一般熟習此項技術者將認識到分子分解不在某—特定 溫度下發生’而在一定溫度範圍内發生。所主張之分解、θ 度為容許自飽和表面飽和之最高溫度。適用於所揭示之方 法之例示性含金屬前驅體及其分解溫度提供於下表i中. 11 201204860S 8 201204860 〇d”曰2,4_辛二嗣基;, the abbreviation “dmamp” means 1-dimethylamino 2·methyl-2-propanol vinegar; the abbreviation “_Μ” means 2 , 6-dimethyl-3,5 heptanedione, and the abbreviation "ΜΑΒΟ" refers to κ-didecylamino-2-methyl-2-butoxy. In order to further understand the nature and objects of the present invention, reference should be made to the following detailed description. [Embodiment] An improved atomic layer deposition (ALD) method for depositing a metal film on a substrate is disclosed. The disclosed method can be applied to the fabrication of semiconductor, photovoltaic, LCD_TFT or flat panel devices. Improved ALD reactors suitable for practicing the disclosed methods are also disclosed. The method disclosed includes setting a temperature in a reactor containing at least one substrate, introducing a metal-containing precursor pulse into the reactor, saturating a surface of the at least one substrate with at least a portion of the metal-containing precursor, and merely by causing the reactor The temperature is raised to a temperature above the decomposition temperature of the metal-containing precursor to remove at least a portion of the ruthenium-containing precursor to form the metal $. The metal concentration in the resulting metal layer ranges from about 7 atomic percent to about 1 atomic percent, preferably from about 90 atomic percent to about 100 atomic percent. Alternatively, the method disclosed includes introducing a metal-containing precursor pulse. In the reactor in which at least one substrate is disposed, the temperature of the reactor is lower than the decomposition temperature to the sub-driver, so that the surface of the at least one substrate is saturated with at least the metal of the boring tool, and only by the A temperature of the reactor is raised to a temperature higher than a decomposition temperature of the metal-containing precursor to form a metal layer on the at least one substrate. The term "only" means that the steps are not performed using other steps. In other words, in 201204860, only the temperature is raised to remove a portion of the at least partially metal-containing precursor or only raise the temperature to form a metal layer. No reactants are required in the step. In another alternative, the disclosed method consists essentially of setting a temperature in a reactor containing at least one substrate, introducing a metal-containing precursor pulse into the reactor, and passing the surface of the at least one substrate to J Part of the metal-containing precursor is saturated, and a portion of the at least a portion of the metal-containing precursor is removed to form a metal layer by repeating the temperature of the reactor to a temperature at which the decomposition temperature of the metal-containing precursor is raised during the rinse cycle, and repeating These steps are until a metal film having a desired thickness is obtained. In another alternative, the disclosed method consists essentially of the following steps: introducing a metal-containing precursor pulse into a reactor in which at least one substrate is placed; the temperature of the S-thin reactor is lower than the decomposition temperature of the metal-containing precursor Forming a surface of the at least one substrate with at least a portion of the metal-containing precursor, forming a metal layer on the at least one substrate during a rinse cycle by raising the temperature of the reactor to a temperature above a decomposition temperature of the metal-containing precursor And repeating the steps until a metal film having a desired thickness is obtained. The phrase "consisting essentially of" limits the disclosed method to the specified steps, plus any steps that do not materially affect the basic and novel characteristics of the disclosed method. More specifically, in the alternative The method claimed by the applicant is to produce a metal ruthenium without using a reactant. However, if other processing is performed, such as adding another metal to the metal film to produce a bimetal film, the reactants may be used to deposit other metals as needed. In a second alternative, the scope of the method is limited to the production of a metal film without the addition of another metal. 0 10 201204860 Suitable metal-containing precursors include a metal containing from the 帛3 rows to the 12th 周期 of the periodic table (a Ga, In, T1, Ge, Sri Bars: Ge Sn, Pb, Sb, and Bi): Organometallic precursors. The metal-containing precursor preferably contains a noble metal (i.e., M, Rh, Pd, Ag, Re, 0s, Ir, Pt, Ai^Hg). In an alternative, the oxidation state of the metal containing the metal precursor is ruthenium. Compared with the metal with a more south oxidation state, it is easier to remove the ligand from the metal oxide state, because the metal and the ligand are both dissociated into; the substance. Applicant Xianxin Metal The dissociation of compounds in which the oxidation state is ruthenium does not require the use of reactants (the > h2) but only requires heating. Applicants have a higher oxidation state of the metal - some compounds may require the use of a reducing agent to form a metal film. Depending on the metal and the ligand, the disclosed method can be applied to some oxidation states above 0. 4. Exemplary metal-containing precursors (wherein the oxidation state of the metal is 0) include, but are not limited to, (nonyl) (cyclohexadiene) ruthenium, Ru3(c,o)12, (cyclohexadiene) (trisyl) fluorene, (trisyl) (phenyl) crane [w(Bz)(co)3], ( Tricarbonyl)(phenyl)molybdenum [Mo(BZ)(co)3], bis(13 5/nonphenyl)anthracene and bis(1,3,5-triphenylene) button "Ru compound cyclohexadienyl" Independently substituted by one or more C! to C6 alkyl groups, such as Ru(Me_cyclohexene) (CO) 3. These exemplary metal-containing precursors are commercially available. The metal-containing precursor should have Suitable for Explain the appropriate decomposition degree of the method. Those skilled in the art will recognize that molecular decomposition does not occur at a certain temperature and occurs within a certain temperature range. The claimed decomposition, θ is the highest allowable self-saturated surface saturation. Temperatures. Exemplary metal-containing precursors suitable for use in the disclosed methods and their decomposition temperatures are provided in Table i below. 11 201204860

前驅體 分解溫度 A1 A1H3三級胺 〜120°C A1H3環胺 ~120°C A1H2(BH4)及 A1H2(BH4):三級胺 ~120°C 三甲基鋁 >350〇C A1H3 ·甲基吡咯啶 ~130°C 氫化鋁:R3N:A1H3,其中R為烷基 ~120°C NMe3:AlH3 (TMAA) ~120°C Me2EtN:AlH3 (DMEAA) ~120°C A1H2(BH4)XN(CH3)3 (TMAAB) ~120°C Nb NbCl5 320〇C 雙(1,3,5-三甲苯)鈮 200°C Zn 二乙鋅 ~300°C 或 300°C 以上 Co Co(CO)2Cp <200°C 六羰基第三丁基乙炔二鈷(Co-CCTBA) <200。。 Ir Ir(acac)3 ~400°C Ni Ni(Et-NacNac)2 <~300°C Ni(RCp)-e比洛碳化二亞胺酸鹽(Ni(RCp)-pyrrolcarbodiminate), <~300°C R=烧基 Μη Mn(RCp) , R=烷基 >200°C Ru 雙(2,6,6-三曱基-環己二烯基)釕 <350〇C Ru〇4 <150°C Ru(Me-chd)(CO)3 ~225-250〇C Ru(Chd)(CO)3 ~225-250〇C Ru(EtCp)2 ~400°C Pt Pt(Me)3(MeCp) ~300°C Pt(Me)3(RCp) >200°C Cu Cu(R-NacNac)2,R=烷基 <200°C Cu(R-acNac)2,R=坑基 <200°C Cu(acac)(PR3)x,x=l-4,R=烧基 <250〇C Ti 肆(二曱基胺基)鈦(TDMAT) <275〇C 肆(乙基甲基胺基)鈦(TEMATi) <275〇C Ti_e2)(RCp),R=—或多個烷基 <325〇C Ti(OMe)3(RCp),R=—或多個烷基 <400°C 12 201204860 表1中列舉之結構中所包括之特定例示性含金屬前驅 體包括 AlH3-NMe2Et、A1H3-曱基吡咯啶、A1H2(BH4)、A1H2 (BH4):NMe3 及 Cu(acac)[P(CH3CH2CH2CH2)3]2。該等化合物 之胺基可獨立地經一或多個C!至C6烷基取代。該等例示性 含金屬前驅體可購得。 申請人咸信表2中之含金屬前驅體之分解溫度低於 500°C且可能低於400°C。因此,表2中之含金屬前驅體亦 可用於所揭示方法。該等含金屬前驅體可購得或可由文獻 中已知之方法合成。 前驅體 前驅體 Mn(RCp)(CO)3,烷某 Ir(EtCp)cod Ru(二甲基戊二烯基 Ir(tmhd)3 RU3(CO)l2· IrF6 (甲苯)(R-環己二稀)釕,r=烷基 雙(1-二甲基胺基-2-曱基-2- 丁氧基)鎳 (MABO-Ni) Ru(芳烴)(二烯) Ni(CO)4 Ru(芳烴)(降冰片二稀) 雙(1-二甲基胺基-2-甲基-2-丙醇酸)鎳 [Ni(dmamp)2] Ru(芳烴)(環辛二烯) NiCp2 Ru(芳烴)(丁二烯) Ni(EtCp)2 Ru(CO)2-烯丙基 Ni(MeCp)2 Ru(EtCp)(Me2Op) Ni(PF3)4 Ru(Me2Cp)2 NiCp(烯丙基) Ru(Me2〇p)2 Ni(烯丙基)(R-NacNac),R=烷基 Ru(MeCp)2 Ni(烯丙基)-R-吡咯碳化二亞胺酸鹽,R=烷基 Ru(od)3 Pd(Cp)COD Ru(tmhd)2(cod) Pd-烯丙基 Ru(Cp)2 Pd(Me-烯丙基)2 13 201204860 二硼烧 Pd(Cp)烯丙基 矽烷 Pd(acac)2 一矽烷 Pd(R-acNac)2,R=烷基 二曱基蹄__________ Pd(R-NacNac)2,R==烧基 二第二 丁基碲(DffiuTe) .... Pd(烯丙基)(R-NacNac),R=烷基 Sb(RO,R=Me 及/或 Et 及/ 或 iPr Au(R3P)C1,R=烷基 Te(R3),R=Me 及/或 Et 及/或 iPr 及/或 tBu Au(CO)Cl [TeMe]2 五(二曱基胺基)鈕[PDMAT或(Me2N)5Ta] GeHxRv,xa〇,,R=烷基 TiCl4 GeCl2:加合物(例如:二噁烷) 肆(二甲基胺基)釩[TDMAV或(Me2N)4V] M0CI5 TaCl5 Mo(CO)6 TaCl5'SEt2 MoFe 第三戊基亞胺基-參(二甲基胺基)鈕(ΤΑΙΜΑΤΑ) Mo(Bz)(CO)3 乙醇钽(ΤΑΕΤΟ) Nb Ta(NtBu)(Me2)Cp NbCls TaFs 雙(1,3,5-三甲苯)鈮 第三丁基亞胺基參-二乙基胺基鈕(TBTDET) 二甲基鋅 ... 雙(1,3,5-三甲苯)鈕 W(Bz)(CO)3 PtCp(烯丙基) wf6 Pt(PF3)4 WH2(RCp)2,R=烷基 Pt(acac)2 Co(EtCp)2 Pt(C02)Cl2 CoCp2 Pt(Me)3Cp Co(R-NacNac)2,R=烧基 Pt(嫦丙基)2 Co(RCp)(脒基),R=烷基 Pt(Me)2COD Co(R-acNac)2,R=烧基 Cu(hfac)(PMe3) Co(acac)2 胺基醇鋼 Co(MeCp)2 Cu(hfac)2 雙(2,6-二甲基-3,5-庚二酮基)銅(Cu(D1BM)2) 雙(1-二甲基胺基-2-甲基-2- 丁氧基)銅 (MABO-Cu)Precursor decomposition temperature A1 A1H3 tertiary amine ~120 °C A1H3 cyclic amine ~120 °C A1H2 (BH4) and A1H2 (BH4): tertiary amine ~120 ° C trimethyl aluminum > 350 〇 C A1H3 · methyl Pyrrolidine ~130 ° C Aluminum hydride: R3N: A1H3, where R is alkyl ~ 120 ° C NMe3: AlH3 (TMAA) ~ 120 ° C Me2EtN: AlH3 (DMEAA) ~ 120 ° C A1H2 (BH4) XN (CH3) 3 (TMAAB) ~120°C Nb NbCl5 320〇C bis(1,3,5-trimethylbenzene)铌200°C Zn Diethylzinc~300°C or above 300°C Co Co(CO)2Cp <200 °C Hexacarbonyld-butylacetylene dicobalt (Co-CCTBA) <200. . Ir Ir(acac)3 ~400°C Ni Ni(Et-NacNac)2 <~300°C Ni(RCp)-epirocarbodiimide (Ni(RCp)-pyrrolcarbodiminate), <~ 300°CR=alkyl Μη Mn(RCp) , R=alkyl>200°C Ru bis(2,6,6-trimethyl-cyclohexadienyl) 钌<350〇C Ru〇4 &lt ;150 °C Ru(Me-chd)(CO)3 ~225-250〇C Ru(Chd)(CO)3 ~225-250〇C Ru(EtCp)2 ~400°C Pt Pt(Me)3( MeCp) ~300°C Pt(Me)3(RCp) >200°C Cu Cu(R-NacNac)2, R=alkyl<200°C Cu(R-acNac)2, R=pit basis< 200 °C Cu(acac)(PR3)x, x=l-4, R=alkylate<250〇C Ti 肆(didecylamino)titanium (TDMAT) <275〇C 肆(ethyl Methylamino) titanium (TEMATi) < 275 〇C Ti_e2) (RCp), R = - or a plurality of alkyl groups < 325 〇 C Ti(OMe) 3 (RCp), R = - or a plurality of alkyl groups <400 ° C 12 201204860 The specific exemplary metal-containing precursors included in the structures listed in Table 1 include AlH3-NMe2Et, A1H3-decyl pyrrolidine, A1H2 (BH4), A1H2 (BH4): NMe3, and Cu ( Acac) [P(CH3CH2CH2CH2)3]2. The amine groups of the compounds can be independently substituted with one or more C! to C6 alkyl groups. Such exemplary metal-containing precursors are commercially available. The decomposition temperature of the metal-containing precursor in Table 2 of the applicant's letter is less than 500 ° C and may be lower than 400 ° C. Thus, the metal-containing precursors of Table 2 can also be used in the disclosed methods. The metal-containing precursors are commercially available or can be synthesized by methods known in the literature. Precursor precursor Mn(RCp)(CO)3, alkane Ir(EtCp)cod Ru(dimethylpentadienyl Ir(tmhd)3 RU3(CO)l2· IrF6 (toluene) (R-cyclohexane Rare) 钌,r=alkylbis(1-dimethylamino-2-mercapto-2-butoxy)nickel (MABO-Ni) Ru(aromatic)(diene) Ni(CO)4 Ru( Aromatic hydrocarbons (norborns) bis(1-dimethylamino-2-methyl-2-propanol) nickel [Ni(dmamp)2] Ru (aromatic) (cyclooctadiene) NiCp2 Ru( Aromatic hydrocarbons (butadiene) Ni(EtCp)2 Ru(CO)2-allyl Ni(MeCp)2 Ru(EtCp)(Me2Op) Ni(PF3)4 Ru(Me2Cp)2 NiCp(allyl) Ru (Me2〇p)2 Ni(allyl)(R-NacNac), R=alkyl Ru(MeCp)2 Ni(allyl)-R-pyrrolecarbodiimide, R=alkyl Ru( Od)3 Pd(Cp)COD Ru(tmhd)2(cod) Pd-allyl Ru(Cp)2 Pd(Me-allyl)2 13 201204860 Diborone Pd(Cp)allyl decane Pd ( Acac) 2 monodecane Pd(R-acNac) 2, R = alkyl diinthyl hoof __________ Pd(R-NacNac) 2, R = = alkyl dibutyl hydrazine (DffiuTe) .... Pd (Allyl) (R-NacNac), R = alkyl Sb (RO, R = Me and / or Et and / or iPr Au (R3P) C1, R = alkyl Te (R3), R = Me and / Or Et and / or iPr and / or tBu Au(CO)Cl [TeMe]2 penta(didecylamino) knob [PDMAT or (Me2N)5Ta] GeHxRv, xa〇,, R=alkylTiCl4 GeCl2: adduct (eg dioxane)肆(Dimethylamino)vanadium [TDMAV or (Me2N)4V] M0CI5 TaCl5 Mo(CO)6 TaCl5'SEt2 MoFe Third amyl imino-parade (dimethylamino) knob (ΤΑΙΜΑΤΑ) Mo ( Bz)(CO)3 Ethanol 钽(ΤΑΕΤΟ) Nb Ta(NtBu)(Me2)Cp NbCls TaFs Bis(1,3,5-trimethylbenzene) oxime tert-butylimido-diethylamine button TBTDET) Dimethylzinc... Bis(1,3,5-trimethylbenzene) button W(Bz)(CO)3 PtCp(allyl) wf6 Pt(PF3)4 WH2(RCp)2,R=alkane Pt(acac)2 Co(EtCp)2 Pt(C02)Cl2 CoCp2 Pt(Me)3Cp Co(R-NacNac)2, R=alkyl Pt(嫦propyl)2 Co(RCp)(脒基), R=alkyl Pt(Me)2COD Co(R-acNac)2, R=alkyl-based Cu(hfac)(PMe3) Co(acac)2 amine-alcohol steel Co(MeCp)2 Cu(hfac)2 double (2 ,6-Dimethyl-3,5-heptanedionyl) copper (Cu(D1BM)2) bis(1-dimethylamino-2-methyl-2-butoxy) copper (MABO-Cu )

14 201204860 _ t金屬前.驅體可以純形式或與合適溶齊!(諸如乙苯 一甲本、1’3,5_三甲苯、癸烷、十二烷)之摻合物形式供應 含金屬前驅體可以不同濃度存在於溶劑_。 △純或經摻合之前驅體以蒸氣形式藉由習知方法(諸如 管道及/或流量計)引入反應器中。蒸氣形式之前驅體可藉 由習知汽化步‘驟(諸如直接汽化、蒸館)或藉由鼓泡使純 或經摻合之前驅體溶液汽化來產生。純或經摻合之前驅體 :以液態饋入汽化器中,在此前驅體汽化,隨後引入反應 2。或者,純或經摻合之前驅體可藉由將載氣通入含有該 别驅體之合器或藉由使載氣鼓泡進人前驅體中來汽化。載 乳可包括(但不限於)Ar、He、A及其混合物。用載氣鼓 泡亦可移除純或經摻合之前驅體溶液中存在之任何溶解 氧。接著將載氣及前驅體以蒸氣形式引入反應器中。 若需要,可將含金屬前驅體之容器加熱至允許前驅體 呈其液相及具有足夠蒸氣壓力之溫度。可使容器維持於例 如約0 C至約15(Tc範圍内之溫度。熟習此項技術者認識到 可以已知方式調節容器溫度以控制汽化之前驅體量。 反應器可為其中實施沉積方法之裝置内的任何密閉室 或腔室,諸如(但不限於)平行板型反應器、冷壁型反應 器、熱壁型反應器、單晶圓反應器、多晶圓反應器或其他 類型之沉積系統。 通常’反應器含有一或多個上面將沉積薄膜之基板。 基板通常位於反應器内之基座或支撐基架上。或者基板可 位於反應器壁上’例如塔式反應器中。基座、支撐基架或 15 201204860 器可包括加熱及/或冷卻構件。合適加熱構件包括加熱 燈、雷射器、感應加熱器、機械加熱器(加熱板、加熱吸 盤)、紅外線加熱器、加熱爐、白熱加熱器、急驟退火器(fUsh annealei·)、瞬間退火器(spike anneaier)或其任何組合。 加熱構件可靠近基座、支撐基架或器壁或與其接觸。合適 冷卻方法包括背面氣體冷卻或高速流氣體冷卻。背面氣體 冷卻供應冷氣(諸如液氮、He等)至基板或基座之背面或 基座與晶圓之間《高速流氣體冷卻將冷惰性氣體(諸如He、14 201204860 _ t metal front. The body can be purely or in combination with the right! The blend of forms of metal (such as ethylbenzene monomethyl, 1'3,5-trimethylbenzene, decane, dodecane) can be present in different concentrations in the solvent. △ Pure or blended precursors are introduced into the reactor in vapor form by conventional methods such as piping and/or flow meters. The vapor form precursor can be produced by conventional vaporization steps such as direct vaporization, steaming, or by bubbling to vaporize the pure or blended precursor solution. Pure or blended precursor: is fed into the vaporizer in a liquid state, vaporized at the previous precursor, and then introduced into the reaction 2. Alternatively, the pure or blended precursor may be vaporized by passing a carrier gas through a coupler containing the precursor or by bubbling a carrier gas into a precursor. The milk may include, but is not limited to, Ar, He, A, and mixtures thereof. Any dissolved oxygen present in the pure or blended precursor solution can also be removed by bubbling with a carrier gas. The carrier gas and precursor are then introduced into the reactor as a vapor. If desired, the vessel containing the metal precursor can be heated to a temperature that allows the precursor to be in its liquid phase and have sufficient vapor pressure. The vessel can be maintained at a temperature in the range of, for example, from about 0 C to about 15 (Tc). Those skilled in the art recognize that the vessel temperature can be adjusted in a known manner to control the amount of precursor prior to vaporization. The reactor can be one in which the deposition method is practiced. Any closed chamber or chamber within the device, such as, but not limited to, a parallel plate reactor, a cold wall reactor, a hot wall reactor, a single wafer reactor, a multi wafer reactor, or other type of deposition Typically, the reactor contains one or more substrates on which the film will be deposited. The substrate is typically located on a susceptor or support pedestal within the reactor. Alternatively, the substrate may be located on the reactor wall, such as a column reactor. Seat, support pedestal or 15 201204860 can include heating and / or cooling components. Suitable heating components include heating lamps, lasers, induction heaters, mechanical heaters (heating plates, heating cups), infrared heaters, heating furnaces , a white heat heater, a flash anneal (fUsh annealei), a spike anneaier, or any combination thereof. The heating member can be close to the base, the support pedestal or the wall Contact with it. Suitable cooling methods include backside gas cooling or high velocity flow gas cooling. Backside gas cooling supplies cold air (such as liquid nitrogen, He, etc.) to the back of the substrate or susceptor or between the susceptor and the wafer. Cold inert gas (such as He,

Ar N2 4 )注入腔至中以冷卻基板且可能冷卻腔室。 適用於所揭示方法之例示性反應器包括美國專利第 5,879,459號中揭示之低輪廓緻密原子層沉積反應器,該專 利之内容以引用的方式併入本文中。該設備具有適於在加 工期間封閉基板之基板加工區域及可延伸至基板加工區域 之可伸縮支撐基架(申請專利範圍第丨項該設備進一步 包含適於加熱支撐基架上所支撐之基板的加熱器及用於傳 遞冷卻劑通過一部分反應器之冷卻管線(申請專利範圍第3 項)。 可經改良成用於所揭示方法之另—例示性反應器包括 美國專利第6,310,327號中揭示之快速熱製程反應器,該專 利之内容以引用的方式併入本文中。該設備具有快速熱製 程反應至、安裝於快速熱製程反應室内的可旋轉快速熱製 程基座及安裝於快速熱製程反應室外的快速熱製程輻射熱 源(申請專利範圍第1項)。反應室將需要改良成包括前驅 體入口。快速熱製程輻射熱源可為複數個燈組,其中各燈 201204860 乡且具有石英-鹵素燈(申請專利範圍第25及26項)。設備可 進一步包含安裝於快速熱製程反應室中可旋轉快速熱製程 基座下的加熱器,諸如電阻加熱器(申請專利範圍第2及3 項)。快速熱製程反應室可由具有水冷卻側壁、水冷卻底壁 及強制風冷卻頂壁之容器結合(申請專利範圍第23項)。 與輻射熱源安裝於反應器外不同,雷射器或燈陣列可 位於反應器内基座上。再循環冷卻器及溫度感測器可位於 基座内。該種例示性反應器揭示於美國專利第7,6〇丨,393號 之圖3及圖4中。 反應器可為具有垂直溫度梯度之鐘罩爐,其中鐘罩爐 頂部比鐘罩爐底部熱。一或多個晶圓可位於基座上,視加 工步驟而定,其可自鐘罩爐之暖區移動至冷區。 或‘者’反應器可包括兩個獨立腔室,其中將含金屬前 驅體引入溫度低'於前驅體之分解溫度的第一腔室且使基板 表面飽和,接著使飽和基板移動至溫度高於前驅體之分解 溫度的第二腔室。此替代例中,無需冷卻構件,因為兩個 腔室均可維持於所需溫度。 位於反應器内之基板可為任何適用於製造半導體、光 伏打、平板或LCD-TFT裝置之基板。合適基板之實例包括 (但不限於)梦基板、二氧化碎基板、氮化硬基板、氣氧化 石夕基板、僞基板或其組合。此外,可使用包含鶴或貴金屬 (例如或金)之基板。基板上亦可由先前製造步 驟沉積有一或多個不同材料層。 在所揭示方法中,根據ALD製程令之循環調節反應器 17 201204860 可藉由控制基座之溫度或如圖丨中描繪Ar N2 4 ) is injected into the chamber to cool the substrate and possibly cool the chamber. An exemplary reactor suitable for use in the disclosed method includes a low profile dense atomic layer deposition reactor as disclosed in U.S. Patent No. 5,879,459, the disclosure of which is incorporated herein by reference. The apparatus has a substrate processing area adapted to enclose a substrate during processing and a retractable support pedestal extendable to the substrate processing area (Application of the invention further includes a substrate adapted to heat the substrate supported on the support pedestal) A heater and a cooling line for passing a coolant through a portion of the reactor (Patent No. 3). Another exemplary reactor that can be modified for use in the disclosed method includes the rapid disclosure disclosed in U.S. Patent No. 6,310,327. A thermal process reactor, the contents of which are incorporated herein by reference. The apparatus has a rapid thermal process reaction, a rotatable rapid thermal process susceptor installed in a rapid thermal process chamber, and is installed in a rapid hot process reaction chamber. Rapid thermal process radiant heat source (patent application scope item 1). The reaction chamber will need to be modified to include the precursor inlet. The rapid thermal process radiant heat source can be a plurality of lamps, each of which has a quartz-halogen lamp in 201204860. Application for patents Nos. 25 and 26). Equipment may further include installation in a rapid thermal process chamber Heaters under a rotatable rapid thermal process base, such as electric resistance heaters (patent 2 and 3). Rapid thermal process chambers may have water-cooled side walls, water-cooled bottom walls, and forced air-cooled top walls. Container combination (patent application scope item 23.) Unlike the radiant heat source installed outside the reactor, the laser or lamp array can be located on the base of the reactor. The recirculation cooler and temperature sensor can be located in the base. An exemplary reactor is disclosed in Figures 3 and 4 of U.S. Patent No. 7,6,393. The reactor can be a bell furnace with a vertical temperature gradient, wherein the bell jar top is better than the bell jar furnace. Bottom heat. One or more wafers may be located on the susceptor depending on the processing steps, which may move from the warm zone of the bell furnace to the cold zone. The 'reactor' may include two separate chambers, Introducing the metal-containing precursor into the first chamber at a lower temperature than the decomposition temperature of the precursor and saturating the surface of the substrate, and then moving the saturated substrate to a second chamber having a temperature higher than the decomposition temperature of the precursor. In this alternative Without cooling Because both chambers can be maintained at the desired temperature. The substrate located in the reactor can be any substrate suitable for manufacturing semiconductor, photovoltaic, flat panel or LCD-TFT devices. Examples of suitable substrates include (but are not limited to) a dream substrate, a oxidized substrate, a nitrided hard substrate, a gas oxidized substrate, a dummy substrate, or a combination thereof. Further, a substrate containing a crane or a noble metal (for example, gold) may be used. The substrate may also be deposited by a prior manufacturing step. Or a plurality of different material layers. In the disclosed method, the cycle adjustment reactor 17 201204860 according to the ALD process can be controlled by the temperature of the susceptor or as depicted in FIG.

類似地,反應器中之溫度可保持於約2 〇與約 400°C之間,較佳於約5〇°c與約 300°C之間。如上所述,溫 内之溫度及壓力。 控制反應器壁(i 度應低於含金屬分子之分解溫度。舉例而言,對於分解溫 度為約120°C之AIH3三級胺,溫度可為1〇<rc。在另一實例 中,對於分解溫度為約30(TC之二乙鋅,溫度可為275〇c。 腔至内之條件允許至少部分含金屬前驅體沉積於基板 上或使基板飽和。申請人咸信在沉積期間,連接至金屬之 至少一個配位體可分離,釋出金屬以使其在稱為吸附/化學 吸附之製程中與基板表面結合。 接著可調卵反應器内之溫度且視情況調節壓力以使得 在稱為分解之製程中含金屬前驅體中之任何殘餘配位體分 裂’僅留存結合於基板之金屬。申请人咸信升高反應器内 之溫度超過含金屬前驅體之分解溫度為此分解步驟提供充 分條件。視反應器之加熱構件及導熱品質而定,可極快速 地升高溫度,可能短至幾毫秒。或者,可藉由使飽和基板 自反應器之一腔室轉移至另一腔室來調節溫度及壓力。 必須小心避免將反應器加熱至可引發含金屬前驅體之 剩餘部分間反應之溫度。該等條件可導致所得膜受不合需 要的雜質(諸如C、N或〇)污染。溫度可在約1〇〇。〇至約 18 201204860 l〇50°C,較佳約i〇0°c至約6〇0°C範圍内。如上所述,溫度 應高於含金屬分子之分解溫度。舉例而言,對於分解溫度 為約120°C之AIH3三級胺,溫度可為150〇c。在另一實例中, 對於分解溫度為約300°C之二乙鋅,溫度可為4〇〇°C。 亦可視情況調節反應器内之壓力以進一步促進分解。 例示性壓力在約〇.〇!托(丨3 Pa)至約2〇〇托(26,664 pa), 較佳約0.01托(1_3 pa)至約1〇托(1333 pa)範圍内。 分解步驟(亦即至少升高腔室溫度)可與自腔室沖洗 除去任何過量含金屬前驅體同時進行。沖洗步驟中,藉由 用Nr Kb、Ar、He或其混合物沖洗來自反應器移除任何過 量含金屬前驅體。或者,分解步驟可在沖洗後進行。在所 揭示方法中,在基板上形成金屬膜無需使用反應物。 若已獲得具有所需厚度之金屬膜’則製程完成。若未 獲得:,可重複製程直至獲得具有所需厚度之膜為止乂當重 複製程時,必須小心使晶圓暴露於自高於其分解溫度至低 於其分解溫度(亦即冷卻步驟)#溫度變化。必須限制冷 卻速率以使得晶圓及其上之膜不受熱應力的不良影響。將 視情況確定冷卻速率’至少視基板之組成、基板上二之數 目及所沉積之金屬膜而定。 在獲得所需臈厚度後,可對膜作進一步加 工 諸如爐 退火、快速熱退火、 次1:子束固化及/或電漿氣體暴露。 熟習此項技術者知曉用於進行該等其他加工步驟之系統及 方法。 ’~ 視所沉積之骐之類型而定 可將第二前驅體弓丨入反應 19 201204860 器中。第二前驅體包含另一金屬源,諸如卩m、Similarly, the temperature in the reactor can be maintained between about 2 Torr and about 400 ° C, preferably between about 5 ° C and about 300 ° C. As mentioned above, the temperature and pressure in the temperature. The reactor wall is controlled (i degree should be lower than the decomposition temperature of the metal-containing molecule. For example, for an AIH3 tertiary amine having a decomposition temperature of about 120 ° C, the temperature may be 1 〇 < rc. In another example, For a decomposition temperature of about 30 (TC of di-zinc, the temperature can be 275 ° C. The cavity-to-inner condition allows at least part of the metal-containing precursor to be deposited on the substrate or to saturate the substrate. Applicants believe that during deposition, the connection At least one ligand to the metal can be separated, and the metal is released to bind to the surface of the substrate in a process called adsorption/chemisorption. The temperature in the egg reactor is then adjusted and the pressure is adjusted as appropriate to make it The splitting of any residual ligand in the metal-containing precursor in the decomposition process only retains the metal bound to the substrate. Applicants believe that the temperature in the reactor is higher than the decomposition temperature of the metal-containing precursor. Sufficient conditions. Depending on the heating element of the reactor and the quality of the heat transfer, the temperature can be raised very quickly, possibly as short as a few milliseconds. Alternatively, the saturated substrate can be transferred from one chamber of the reactor to another. The chamber is used to adjust the temperature and pressure. Care must be taken to avoid heating the reactor to a temperature that will initiate a reaction between the remainder of the metal-containing precursor. These conditions can cause the resulting membrane to be exposed to undesirable impurities (such as C, N or hydrazine). Contamination. The temperature may be in the range of about 1 〇〇 〇 to about 18 201204860 l 〇 50 ° C, preferably about i 〇 0 ° c to about 6 〇 0 ° C. As mentioned above, the temperature should be higher than the metal containing molecules Decomposition temperature. For example, for an AIH3 tertiary amine having a decomposition temperature of about 120 ° C, the temperature may be 150 ° C. In another example, for a decomposition temperature of about 300 ° C, the temperature may be 4 〇〇 ° C. The pressure in the reactor can also be adjusted to further promote decomposition. The exemplary pressure is about 〇.〇! ((3 Pa) to about 2 〇〇 (26,664 pa), preferably about From 0.01 Torr (1_3 pa) to about 1 Torr (1333 Pa). The decomposition step (ie, at least raising the chamber temperature) can be performed simultaneously with the removal of any excess metal-containing precursor from the chamber. In the rinsing step, Remove any excess from the reactor by flushing with Nr Kb, Ar, He or a mixture thereof The metal precursor. Alternatively, the decomposition step can be carried out after rinsing. In the disclosed method, the formation of a metal film on the substrate does not require the use of a reactant. If a metal film having a desired thickness has been obtained, the process is completed. The process can be re-replicated until a film having the desired thickness is obtained. When the process is repeated, care must be taken to expose the wafer from above its decomposition temperature to below its decomposition temperature (ie, cooling step). The cooling rate is such that the wafer and the film thereon are not adversely affected by thermal stress. The cooling rate will be determined as appropriate, depending on at least the composition of the substrate, the number of two on the substrate, and the deposited metal film. After the thickness, the film can be further processed such as furnace annealing, rapid thermal annealing, sub-beam curing, and/or plasma gas exposure. Those skilled in the art are aware of systems and methods for performing such other processing steps. ‘~ Depending on the type of sediment deposited, the second precursor can be inserted into the reaction 19 201204860. The second precursor contains another metal source, such as 卩m,

Zr、Pb、Nb、Mg、A1、Ni、^ CU、Co、Fe、Mn、Ln 或其组 合》可能需要使用反應物(諸如H2、NH3、03、02等)、在 基板上沉積第二含金屬之金屬β當利用第二含金屬前驅體 時,沉積於基板上之所得膜可能含有至少兩種不同金屬類 型0 依序將I金屬#驅體及任何視情況選用之第二含金屬 前驅體及/或反應物引入反應室中。在引入前驅體及二情況 選用之反應物之間’可用惰性氣體(諸如H心、心 或其組合)沖洗反應室。 可依序脈衝式輪送經汽化前驅體及任何視情況選用之 第二含金屬前驅體及視情況選用之反應物。各前驅體脈衝 可持續約0.01秒至約10秒,或者約〇 3秒至約3秒或者 約0.5秒至约2秒範圍内之時段。亦可將視情況選用之反應 物脈衝式輸送至反應器中。各氣體之脈衝可持續約〇〇ι : 至約10秒,或者約0.3秒至約3秒,或者約〇 5秒至約^ 秒範圍内之時段》 *視特定製程參數而定,沉積可進行不同長度時間。通 常,沉積可持續產生具有必需性質之膜所需要或必需的時 間。沉積製程亦可進行獲得所需膜所必需之次數。 在-非限制性例示性ALD型製程中,將含金屬前驅體 之氣相引入溫度為200°C且壓力為2托(267 Pa )之反應器 中,在此其與合適基板接觸。接著可藉由用Ns、Ar、He或 其混合物沖洗及/或在0.5托(67 Pa)之壓力下抽空反應器 201204860 自反應器移除過量前驅體。在沖洗步驟期間或沖洗步驟 後,可將反應器溫度升至5〇〇t:且將壓力升至3托(_ ⑴。若所需膜為金屬膜,該兩步製程可提供所需膜厚 可重複該兩步製程直至獲得具有所需厚度之膜為止。 或者,若所需膜為雙金屬膜,則可在以上兩步製 將第二含金屬前驅體之蒸氣弓丨人溫度在約^至約 4〇(TC,較佳約HHTC至約35(rc範圍内且壓力可在約㈣ 托(1.3PO 至約 200 托( 26,664 Pa),較佳約 〇 〇1 托(1 3Zr, Pb, Nb, Mg, A1, Ni, ^CU, Co, Fe, Mn, Ln, or a combination thereof may require the use of reactants (such as H2, NH3, 03, 02, etc.) to deposit a second inclusion on the substrate. Metallic Metals β When using a second metal-containing precursor, the resulting film deposited on the substrate may contain at least two different metal types. 0. The I metal # drive and any second metal-containing precursor, optionally selected. And/or reactants are introduced into the reaction chamber. The reaction chamber may be flushed with an inert gas such as H core, core or a combination thereof between the introduction of the precursor and the reactants selected in the second case. The vaporized precursor can be sequentially pulsed and any second metal-containing precursor, optionally selected, and optionally selected reactants. Each precursor pulse may last from about 0.01 seconds to about 10 seconds, or a period of from about 3 seconds to about 3 seconds or from about 0.5 seconds to about 2 seconds. The reactants optionally used may also be pulsed into the reactor. The pulse of each gas may last for about 10 seconds, or about 0.3 seconds to about 3 seconds, or a period of about 5 seconds to about ^ seconds. *Depending on the specific process parameters, deposition may be performed. Different lengths of time. Generally, the time required to sustain the production of a film of the requisite nature is required. The deposition process can also be performed as often as necessary to obtain the desired film. In a non-limiting exemplary ALD type process, the gas phase of the metal-containing precursor is introduced into a reactor having a temperature of 200 ° C and a pressure of 2 Torr (267 Pa), where it is contacted with a suitable substrate. The excess precursor can then be removed from the reactor by rinsing with Ns, Ar, He or a mixture thereof and/or evacuating the reactor at a pressure of 0.5 Torr (67 Pa). During the rinsing step or after the rinsing step, the reactor temperature can be raised to 5 〇〇t: and the pressure is raised to 3 Torr (_ (1). If the desired film is a metal film, the two-step process provides the desired film thickness The two-step process can be repeated until a film having a desired thickness is obtained. Alternatively, if the desired film is a bimetal film, the vapor pressure of the second metal-containing precursor can be varied in the above two steps. Up to about 4 Torr (TC, preferably about HHTC to about 35 (in the range of rc and pressure can be in about (four) Torr (1.3 PO to about 200 Torr (26,664 Pa), preferably about 〇〇 1 Torr (1 3

Pa)至約10托(i,333 Pa)範圍内的反應器十。將基於所 沉積之雙金屬膜之性質選擇第二含金屬前驅體。在引入反 應器中後’第二含金屬前驅體與基板接觸。藉由沖洗及/或 抽空反應器自反應器移除任何過量第二含金屬前驅體。可 將反應物引入溫度在約300。〇至約600°C範圍内且壓力可在 約0.01托至約200托,較佳約〇.〇1托至約1〇托範圍内的 反應器中以與第二含金屬前驅體反應。藉由沖洗及/或抽空 反應器自反應器移除過量反應物。 若已獲得所需膜厚度,則可終止製程。然而,若需要 較厚膜,則可重複整個製程。藉由交替提供含金屬前驅體、 視情況選用之第二含金屬前驅體及視情況選用之反應物, 可沉積具有所需組成及厚度之膜。 當用電漿處理此例示性ALD製程中之視情況選用之反 應物時’該例示性ALD製程變為例示性PealD製程。視 情況選用之反應物可在引入腔室中之前或在引入腔室中之 後用電漿處理。 21 201204860 由上述製程產生之金屬膜或含雙金屬之層可包括純金 屬(M)或雙金屬(MWO膜,諸如金屬矽酸鹽(MekSih), 其中k及1為1至1〇範圍内之整數,包括1及一般熟 習此項技術者將認識到藉由正確選擇合適的所揭示前驅 體、視情況選用之第二含金屬前驅體及反應物,可獲得所 需膜組成物。 實施例 提供以下非限制性實施例以進一步說明本發明之具體 實例。然而’該等實施例不意欲包括所有且不意欲限制本 文所述發明之範疇。 預示性實施例1 具有式Ru(chd)(bz)之分子之ALD沉積需要與〇2反應 以產生膜。然而,02為後段製程(Back End Of the Line, BEOL)應用所不希望有的。 申請人咸信所揭示方法中使用具有式Ru(chd)(bz)之分 子將在不使用〇2之情況下產生膜。 預示性實施例2 具有式Ru(chd)(CO)3之分子之ALD沉積需要與〇2反 應以產生膜。然而’ 〇2為後段製程(BE0L )應用所不希望 有的。 申請人咸信所揭示方法中使用具有式Ru(chd)(CO)3之 分子將在不使用〇2之情況下產生膜。 預示性實施例3 A1分子之CVD沉積已為吾人所熟知。使用所揭示方 22 201204860 法,可在不使用反應物之情況下使用含A1化合物(諸如 AlH3.NMe2Et、A1H3.甲基吡咯啶及 AlH2(BH4):NMe3)進行 A1膜之沉積。更特定言之,可將含A1前驅體引入溫度為約 50°C之反應器中。可藉由用N2沖洗自反應器移除過量前驅 體。接著可使反應器溫度升至150°C。申請人咸信該製程將 在基板上產生A1膜。 實施例4 將Ru(Me-chd)(CO)3置放於鼓泡器中。用50 sccm之 A載氣流量確保前驅體傳遞,維持鼓泡器壓力為5〇托 (6,666 Pa )及室溫。反應器(6〇 cm長熱壁腔室)維持於約 0.7托(93 Pa)之恆壓下且具有恆定比流量以助於維持穩 疋壓力,增強氣體流動及沖洗。用於沉積之反應器之示意 圖描繪於圖1中。TaN及Ru基板安置於腔室/爐中。 在引入Ru(Me-chd)(CO)3期間,反應器溫度固定為 2〇〇 c。在經足夠長以確保表面飽和之時間引入 (co)3後(經長達!分鐘引入前驅體),用流沖洗腔室。 沖洗期間,將反應器溫度升至5〇〇〇c。在5〇(rc下ι分 鐘後’將反應器溫度降至2〇(rc。 重複循環以生長出確定厚度之膜。 在不同基板(TaN及Ru)上進行Ru(me_chd)(c〇)^ 入時間不同的相同實驗。循環次數亦不同。藉由橢圓對稱 法量測膜厚度。 在6〇秒則驅體引入下在TaN上獲得高達約0.3A/循環 速率Ru上獲得約0.6A/循環。在僅30秒前驅體引 23 201204860 入下發現稍微較低的生長速率,指示表面飽和不完全《應 瞭解’可藉由增加前驅體流量及改良反應器設計以獲得較 快表面飽和來縮短引入時間。 儘管已展示並描述本發明之具體實例,但熟習此項技 術者可在不偏離本發明之精神或教示的情況下對其進行修 改。本文中所描述之具體實例僅為例示性且不為限制性。 對組成物及方法之許多變化及修改可行且屬於本發明之範 圍。因此,保護範圍不限於本文中所描述之具體實例,且 僅受以下中請專利範圍限制,其範圍應包括中請專利範圍 之標的物之所有等效物。 【圖式簡單說明】 圖1為說明 形;及Pa) to reactor ten in the range of about 10 Torr (i, 333 Pa). A second metal-containing precursor will be selected based on the nature of the deposited bimetallic film. After the introduction into the reactor, the second metal-containing precursor is in contact with the substrate. Any excess second metal-containing precursor is removed from the reactor by flushing and/or evacuating the reactor. The reactants can be introduced to a temperature of about 300. The reactor is reacted with a second metal-containing precursor in a reactor having a pressure in the range of about 600 ° C and a pressure in the range of from about 0.01 Torr to about 200 Torr, preferably from about Torr to about 1 Torr. Excess reactants are removed from the reactor by flushing and/or evacuating the reactor. If the desired film thickness has been obtained, the process can be terminated. However, if a thicker film is required, the entire process can be repeated. A film having a desired composition and thickness can be deposited by alternately providing a metal-containing precursor, optionally a second metal-containing precursor, and optionally a reactant. When the plasma is used to treat the optional reactants in this exemplary ALD process, the exemplary ALD process becomes an exemplary PealD process. The reactants optionally used may be treated with a plasma prior to introduction into the chamber or after introduction into the chamber. 21 201204860 The metal film or bimetallic-containing layer produced by the above process may comprise pure metal (M) or bimetal (MWO film, such as metal citrate (MekSih), wherein k and 1 are in the range of 1 to 1 〇 Integers, including 1 and those of ordinary skill in the art, will recognize that the desired film composition can be obtained by proper selection of the appropriate disclosed precursor, optionally a second metal-containing precursor, and reactants. The following non-limiting examples are intended to further illustrate the specific examples of the present invention. However, the examples are not intended to be inclusive and are not intended to limit the scope of the invention described herein. Predictive Example 1 has the formula Ru(chd)(bz) The ALD deposition of the molecules needs to react with 〇2 to produce a film. However, 02 is not desirable for the application of Back End Of the Line (BEOL). Applicants have used the formula Ru(chd) The molecule of (bz) will produce a film without the use of ruthenium 2. Predictive Example 2 ALD deposition of a molecule of the formula Ru(chd)(CO)3 requires reaction with 〇2 to produce a film. However, 〇 2 is the back-end process (BE0L) should The use of a molecule having the formula Ru(chd)(CO)3 in the method disclosed by the applicant's letter will produce a film without using ruthenium 2. Predictive Example 3 CVD deposition of A1 molecule has been It is well known to us that the A1 film can be carried out using the A1 compound (such as AlH3.NMe2Et, A1H3.methylpyrrolidine and AlH2(BH4):NMe3) without using the reactants using the disclosed method 22 201204860. More specifically, the A1-containing precursor can be introduced into a reactor at a temperature of about 50° C. The excess precursor can be removed from the reactor by flushing with N 2 . The reactor temperature can then be raised to 150°. C. Applicant believes that the process will produce an A1 film on the substrate. Example 4 Place Ru(Me-chd)(CO)3 in a bubbler. Ensure carrier transfer with 50 sccm of A carrier gas flow. Maintain a bubbler pressure of 5 Torr (6,666 Pa) and room temperature. The reactor (6 〇 cm long hot wall chamber) is maintained at a constant pressure of about 0.7 Torr (93 Pa) with a constant specific flow rate. To maintain a steady pressure, enhance gas flow and rinse. A schematic of the reactor for deposition is depicted in Figure 1. TaN and The Ru substrate is placed in the chamber/furnace. During the introduction of Ru(Me-chd)(CO)3, the reactor temperature is fixed at 2〇〇c. After (co)3 is introduced at a time long enough to ensure surface saturation. (Introducing the precursor over a minute!), flushing the chamber with a stream. During the rinse, raise the reactor temperature to 5 ° C. At 5 〇 (after 1.25 minutes, the reactor temperature is lowered to 2 〇) (rc. Repeat the cycle to grow a film of defined thickness. The same experiment in which Ru(me_chd)(c〇) was entered on different substrates (TaN and Ru). The number of cycles is also different. The film thickness was measured by an ellipsometry method. Approximately 0.6 A/cycle was obtained on Ru obtained up to about 0.3 A/cycle rate on TaN at 6 sec. A slightly lower growth rate was found in only 30 seconds of precursor introduction 23 201204860, indicating that the surface saturation is incomplete. "It should be understood that the introduction time can be shortened by increasing the precursor flow rate and improving the reactor design to achieve faster surface saturation." . While the invention has been shown and described with respect to the specific embodiments of the present invention, it may be modified by those skilled in the art without departing from the spirit of the invention. The specific examples described herein are illustrative only and not limiting. Many variations and modifications of the compositions and methods are possible and are within the scope of the invention. Therefore, the scope of protection is not limited to the specific examples described herein, and is only limited by the scope of the following claims. [Simple description of the drawing] Fig. 1 is an explanatory form;

TaN基板上釕膜厚度與循環 之關係的圖 之關係的圖形。 圖2為說明釕基板上釕膜厚度與循環 【主要元件符號說明】 無 24A graph of the relationship between the thickness of the tantalum film and the pattern of the cycle on the TaN substrate. Figure 2 is a diagram showing the thickness and circulation of the ruthenium film on the ruthenium substrate.

Claims (1)

201204860 七、申請專利範圍: 1. 一種在一或多個基板上沉積金屬層之方法,其包含以 下步驟: (a)將含金屬前驅體脈衝引入其中安置有至少一個基 板的反應器中,該反應器之溫度低於該含金屬前驅體之 分解溫度; (b )使5亥至少一個基板之表面經至少部分該含金屬 前驅體飽和;及 (c )僅藉由使該反應器之溫度升高至高於該含金屬前 驅體之分解溫度的溫度來在該至少一個基板上形成金屬 層。 , 2. 如申請專利範圍第丨項之方法,其中該含金屬前驅體 之金屬之氧化態為〇。 3. 如申請專利範圍第1項或第2項中任一項之方法,其 中該含金屬前驅體選自由以下組成之群:(三幾基)(苯)鶴 [W(Bz)(CO)3]、(二艘基)(苯)铜[m〇(bz)(c〇)3]、(甲苯)(環己 二烯)釕、(環己二烯)(三羰基)釕[Ru(Chd)(c〇)3]、 (CO)丨2、(曱基裱己二烯)(三羰基)釕[Ru(MeCHD)(c〇)3]及雙 (1,3,5-二甲苯)钽及雙(n%三曱苯)鈮。 4. 如申請專利範圍第丨項或第2項中任一項之方法,其 進一步包含重複步驟(a)至(c)。 5. 如申請專利範圍第1項或第2項中任一項之方法,其 進-步包含(d)使該反應器之溫度降低至低於該含金屬前 驅體之分解溫度的溫度。 25 201204860 6.如申請專利範圍第5項之方法,其中藉由背面氣體冷 卻或藉由高速流氣體冷卻來降低該溫度。 7· —種金屬層ALD方法,該方法包含: (a )設定反應器之溫度,該反應器含有至少一個基 板; (b )將含金屬前驅體脈衝引入該反應器中; (c )使该至少一個基板之表面經至少部分該含金屬前 驅體飽和;及 (d)僅藉由使該反應器之溫度升高至高於該含金屬 前驅體之分解溫度的溫度來移除該至少部分含金屬前驅 體之一部分以在該基板上形成金屬層,其中該金屬層中 之金屬濃度大於約70原子百分比,較佳大於90原子百 分比。 8 ·如申§青專利氣圍第7項之方法,其中該含金屬前驅體 之金屬之氧化態為0。 9. 如申請專利範圍第7項或第8項中任一項之方法,其 中該含金屬前驅體選自由以下組成之群:(三羰基)(苯)鶴 [W(Bz)(CO)3]、(三羰基)(苯)鉬[Mo(Bz)(CO)3]、(甲苯)(環己 二烯)釕、(環己二烯)(三羰基)釕[Ru(Chd)(CO)3]、Ru3 (CO)丨2、(甲基環己二烯)(三羰基)釕[Ru(Me-CHD)(CO)3]及雙 (1,3,5-三曱苯)鈕及雙(l,3,5-三甲苯)鈮。 10. 如申請專利範圍第7項或第8項中任一項之方法’ 其進一步包含重複步驟(a)至(d)。 11. 如申請專利範圍第11項之方法,其中藉由背面氣體 26 S 201204860 冷卻或藉由高速流氣體冷卻自步驟(d )至步驟(a )降低該 溫度。 八、圖式: (如次頁) 27201204860 VII. Patent Application Range: 1. A method for depositing a metal layer on one or more substrates, comprising the steps of: (a) introducing a metal-containing precursor pulse into a reactor in which at least one substrate is disposed, The temperature of the reactor is lower than the decomposition temperature of the metal-containing precursor; (b) saturating at least a portion of the surface of at least one of the substrates by at least a portion of the metal-containing precursor; and (c) raising the temperature of the reactor only A metal layer is formed on the at least one substrate up to a temperature higher than a decomposition temperature of the metal-containing precursor. 2. The method of claim 2, wherein the metal of the metal-containing precursor has an oxidation state of ruthenium. 3. The method of any one of the preceding claims, wherein the metal-containing precursor is selected from the group consisting of: (trisyl) (phenyl) crane [W (Bz) (CO) 3], (two bases) (phenyl) copper [m〇(bz)(c〇)3], (toluene) (cyclohexadiene) ruthenium, (cyclohexadiene) (tricarbonyl) ruthenium [Ru ( Chd)(c〇)3], (CO)丨2, (fluorenyl hexadiene) (tricarbonyl) ruthenium [Ru(MeCHD)(c〇)3] and bis(1,3,5-xylene ) 钽 and double (n% triterpenoid) 铌. 4. The method of any one of claims 2 or 2, further comprising repeating steps (a) through (c). 5. The method of any one of claims 1 or 2, further comprising (d) lowering the temperature of the reactor to a temperature below the decomposition temperature of the metal-containing precursor. The method of claim 5, wherein the temperature is lowered by cooling the back side gas or by high-speed flow gas cooling. 7. A metal layer ALD method, the method comprising: (a) setting a temperature of a reactor, the reactor comprising at least one substrate; (b) introducing a metal-containing precursor pulse into the reactor; (c) The surface of at least one of the substrates is saturated with at least a portion of the metal-containing precursor; and (d) removing at least a portion of the metal-containing metal only by raising the temperature of the reactor to a temperature above a decomposition temperature of the metal-containing precursor One portion of the precursor forms a metal layer on the substrate, wherein the metal concentration in the metal layer is greater than about 70 atomic percent, preferably greater than 90 atomic percent. 8. The method of claim 7, wherein the metal of the metal-containing precursor has an oxidation state of zero. 9. The method of any one of clauses 7 or 8, wherein the metal-containing precursor is selected from the group consisting of: (tricarbonyl) (phenyl) crane [W (Bz) (CO) 3 ], (tricarbonyl) (phenyl) molybdenum [Mo(Bz)(CO)3], (toluene) (cyclohexadiene) ruthenium, (cyclohexadiene) (tricarbonyl) ruthenium [Ru(Chd) (CO 3], Ru3 (CO) 丨 2, (methylcyclohexadiene) (tricarbonyl) ruthenium [Ru(Me-CHD) (CO) 3] and bis (1,3,5-triphenylene) button And bis (l,3,5-trimethylbenzene) oxime. 10. The method of claim 7 or claim 8 further comprising repeating steps (a) through (d). 11. The method of claim 11, wherein the temperature is lowered from step (d) to step (a) by cooling of the back gas 26 S 201204860 or by high-speed flow gas cooling. Eight, the pattern: (such as the next page) 27
TW100118988A 2010-07-22 2011-05-31 Metal film deposition TW201204860A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US36681010P 2010-07-22 2010-07-22
US46952211P 2011-03-30 2011-03-30

Publications (1)

Publication Number Publication Date
TW201204860A true TW201204860A (en) 2012-02-01

Family

ID=46761394

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100118988A TW201204860A (en) 2010-07-22 2011-05-31 Metal film deposition

Country Status (1)

Country Link
TW (1) TW201204860A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115838919A (en) * 2023-02-17 2023-03-24 矿冶科技集团有限公司 Inorganic non-metal particle coating material and regulation and control method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115838919A (en) * 2023-02-17 2023-03-24 矿冶科技集团有限公司 Inorganic non-metal particle coating material and regulation and control method thereof

Similar Documents

Publication Publication Date Title
US10297462B2 (en) Methods of etching films comprising transition metals
US9716012B2 (en) Methods of selective layer deposition
JP2013539501A (en) Metal film deposition
TWI521084B (en) Method for tuning a deposition rate during an atomic layer deposition process
JP2021503547A (en) Methods for ALD of metal oxides on metal surfaces
TWI449803B (en) In-situ chamber treatment and deposition process
TWI470107B (en) Cyclopentadienyl transition metal precursors for deposition of transition metal containing films
US9416443B2 (en) Method for the deposition of a ruthenium containing film using arene diazadiene ruthenium(0) precursors
JP6193260B2 (en) Nickel allyl amidinate precursor for nickel-containing film deposition
US8349738B2 (en) Metal precursors for deposition of metal-containing films
US20150162191A1 (en) Substituted Silacyclopropane Precursors And Their Use For The Deposition Of Silicon-Containing Films
US8686138B2 (en) Heteroleptic pyrrolecarbaldimine precursors
WO2014197803A1 (en) Methods for the deposition of manganese-containing films using diazabutadiene-based precursors
TW200925314A (en) Neutral ligand containing precursors and methods for deposition of a metal containing film
JP2016508497A (en) Manganese-containing compounds, their synthesis and their use in the deposition of manganese-containing films
TW201204860A (en) Metal film deposition
US9236467B2 (en) Atomic layer deposition of hafnium or zirconium alloy films
JP2016513087A (en) Manganese-containing compounds, their synthesis and their use in the deposition of manganese-containing films
JP2016513085A (en) Cobalt-containing compounds, their synthesis and their use in the deposition of cobalt-containing films
JP2024511271A (en) Reducing agent for atomic layer deposition
TWI791586B (en) Ge-CONTAINING Co-FILM FORMING MATERIAL, Ge-CONTAINING Co FILM AND FILM FORMING METHOD THEREOF
US11293093B2 (en) Water assisted highly pure ruthenium thin film deposition
TW200822191A (en) Precursors and hardware for CVD and ALD
US20180195170A1 (en) ALD Process For NiO Film With Tunable Carbon Content