TWI514714B - Distributed solar power system and controlling method thereof - Google Patents

Distributed solar power system and controlling method thereof Download PDF

Info

Publication number
TWI514714B
TWI514714B TW103142871A TW103142871A TWI514714B TW I514714 B TWI514714 B TW I514714B TW 103142871 A TW103142871 A TW 103142871A TW 103142871 A TW103142871 A TW 103142871A TW I514714 B TWI514714 B TW I514714B
Authority
TW
Taiwan
Prior art keywords
mode
voltage
inverter
control circuit
central controller
Prior art date
Application number
TW103142871A
Other languages
Chinese (zh)
Other versions
TW201622287A (en
Inventor
Rumin Chao
Chenfeng Lo
Chihwei Hsieh
Original Assignee
Univ Nat Cheng Kung
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ Nat Cheng Kung filed Critical Univ Nat Cheng Kung
Priority to TW103142871A priority Critical patent/TWI514714B/en
Application granted granted Critical
Publication of TWI514714B publication Critical patent/TWI514714B/en
Publication of TW201622287A publication Critical patent/TW201622287A/en

Links

Landscapes

  • Dc-Dc Converters (AREA)
  • Control Of Electrical Variables (AREA)

Description

分散式太陽能發電系統與其控制方法Decentralized solar power generation system and control method thereof

本發明是有關於一種太陽能發電系統,且特別是有關於一種分散式太陽能發電系統與此系統的控制方法。The present invention relates to a solar power generation system, and more particularly to a distributed solar power generation system and a control method for the same.

一般來說,太陽能發電系統至少可以分為集中式與分散式。在集中式的太陽能發電系統中,所有的太陽能模組都耦接至一個直流轉換器,並由同一個控制器所控制。在這樣的限制下,所有的太陽能模組的特性需要盡量一致,但當有一個太陽能模組所接受到的太陽光被遮蔽了,即使只有10%的遮蔽情形,也會造成整個太陽能發電系統的效續降低許多。另一方面,在分散式太陽能發電系統中,每一個太陽能模組都耦接至一個直流轉換器,且每一個直流轉換器是由各自的控制器所控制,因此即使發生了遮蔽的現象,太陽能模組之間可以不受影響而發揮較大的發電效率。然而,由於設置了多個控制器,因此分散式太陽能發電系統的控制方法會更為複雜,如何提出一個有效的控制方法便是此領域技術人員所關心的議題。In general, solar power systems can be classified into at least centralized and decentralized. In a centralized solar power system, all solar modules are coupled to a DC converter and controlled by the same controller. Under such restrictions, the characteristics of all solar modules need to be as uniform as possible, but when the sunlight received by a solar module is obscured, even if only 10% of the shielding situation will cause the entire solar power system. The effect is much lower. On the other hand, in a distributed solar power system, each solar module is coupled to a DC converter, and each DC converter is controlled by a respective controller, so even if a shadowing phenomenon occurs, the solar energy Modules can be used to achieve greater power generation efficiency without being affected. However, since a plurality of controllers are provided, the control method of the distributed solar power generation system is more complicated, and how to propose an effective control method is an issue of concern to those skilled in the art.

為解決上述問題,本發明一實施例提出一種分散式太陽能發電系統,包括多個太陽能模組、多個直流轉換器、多個轉換控制電路與一個中央控制器。每一個直流轉換器具有升壓模式與降壓模式,每一個直流轉換器的輸入端耦接至其中一個太陽能模組,並且直流轉換器的輸出端彼此串聯以使太陽能模組與直流轉換器形成光伏串。轉換控制電路是分別耦接並控制直流轉換器,並且取得太陽能模組的多筆電力資訊。中央控制器接收來自轉換控制電路的電力資訊,執行分散式太陽能發電系統的開機程序與關機程序。在開機程序中,中央控制器控制轉換控制電路依序進入脈衝寬度調變模式、穩壓模式與最大功率點追蹤模式。在執行開機程序後,當第一直流轉換器的輸出電壓低於第一門檻值時,中央控制器控制第一直流轉換器所耦接的第一轉換控制電路從最大功率點追蹤模式切換至穩壓模式,用以固定第一直流轉換器的輸入電壓。當第一轉換控制電路處於穩壓模式,且第一直流轉換器的輸入電壓與輸出電壓之間的差距小於一差距門檻值時,中央控制器控制第一轉換控制電路從穩壓模式切換至脈衝寬度調變模式,使第一直流轉換器進入降壓模式。In order to solve the above problems, an embodiment of the present invention provides a distributed solar power generation system including a plurality of solar modules, a plurality of DC converters, a plurality of conversion control circuits, and a central controller. Each DC converter has a boost mode and a buck mode. The input of each DC converter is coupled to one of the solar modules, and the outputs of the DC converter are connected in series to form a solar module and a DC converter. Photovoltaic string. The conversion control circuit separately couples and controls the DC converter, and obtains multiple power information of the solar module. The central controller receives power information from the conversion control circuit and performs a boot process and a shutdown process of the distributed solar power system. In the booting process, the central controller controls the switching control circuit to sequentially enter the pulse width modulation mode, the voltage regulation mode, and the maximum power point tracking mode. After the booting process is executed, when the output voltage of the first DC converter is lower than the first threshold, the central controller controls the first switching control circuit coupled to the first DC converter to switch from the maximum power point tracking mode. To the voltage regulation mode, the input voltage of the first DC converter is fixed. When the first switching control circuit is in the voltage stabilizing mode, and the difference between the input voltage and the output voltage of the first DC converter is less than a threshold threshold, the central controller controls the first switching control circuit to switch from the voltage stabilizing mode to The pulse width modulation mode causes the first DC converter to enter the buck mode.

在一實施例中,上述的第一轉換控制電路從穩壓模式切換至脈衝寬度調變模式以後,中央控制器會設定查核週期。每經過查核週期,中央控制器將第一轉換控制電路從脈衝寬度調變模式切換至穩壓模式並判斷第一直流轉換器的輸入電壓與輸出電壓之間的差距是否大於等於 差距門檻值。若第一直流轉換器的輸入電壓與輸出電壓之間的差距大於等於差距門檻值,中央控制器在第一直流轉換器的輸出電壓大於等於第一門檻值以後將第一轉換控制電路切換至最大功率點追蹤模式。In an embodiment, after the first conversion control circuit is switched from the voltage stabilization mode to the pulse width modulation mode, the central controller sets the check cycle. The central controller switches the first switching control circuit from the pulse width modulation mode to the voltage stabilization mode and determines whether the difference between the input voltage and the output voltage of the first DC converter is greater than or equal to each other. The gap threshold. If the difference between the input voltage and the output voltage of the first DC converter is greater than or equal to the threshold threshold, the central controller switches the first conversion control circuit after the output voltage of the first DC converter is greater than or equal to the first threshold To the maximum power point tracking mode.

在一實施例中,上述的分散式太陽能發電系統更包括逆變器,其耦接至光伏串,用以將光伏串提供的直流電轉換為交流電。在開機程序中,中央控制器根據電力資訊判斷每一個太陽能模組的開路電壓是否大於開路電壓臨界值以計算出正常模組數目,此時逆變器處於確認模式。若正常模組數目大於一預設開機數目,中央控制器控制轉換控制電路進入脈衝寬度調變模式,並控制逆變器切換至等待模式。此外,中央控制器會判斷直流電壓的電位差是否大於電位差臨界值。若直流電壓的電位差大於電位差臨界值,中央控制器在等待一預設時間以後控制轉換控制電路以將直流電壓的電位差調整至預設發電電位差。In an embodiment, the above-described distributed solar power generation system further includes an inverter coupled to the photovoltaic string for converting the direct current power provided by the photovoltaic string into alternating current. In the booting process, the central controller determines whether the open circuit voltage of each solar module is greater than the open circuit voltage threshold according to the power information to calculate the normal number of modules, and the inverter is in the confirm mode. If the number of normal modules is greater than a preset number of power-on, the central controller controls the switching control circuit to enter the pulse width modulation mode, and controls the inverter to switch to the standby mode. In addition, the central controller determines whether the potential difference of the DC voltage is greater than the potential difference threshold. If the potential difference of the DC voltage is greater than the potential difference threshold, the central controller controls the switching control circuit to adjust the potential difference of the DC voltage to the preset power generation potential difference after waiting for a predetermined time.

在一實施例中,若直流電壓的電位差沒有被調整至預設發電電位差,中央控制器會執行關機程序。若直流電壓的電位差被調整至預設發電電位差,中央控制器控制逆變器進入工作模式,並且控制轉換控制電路進入穩壓模式。在穩壓模式中,中央控制器判斷轉換控制電路是否能根據至少一指令穩壓每一個太陽能模組的輸出電壓。若第二轉換控制電路不能根據指令穩壓所對應的太陽能模組的輸出電壓,中央控制器執行關機程序或將第二轉換控制電路設定為旁通操作模式。在旁通操作模式中,第二轉 換控制電路所對應的直流轉換器的輸出端為導通。若判斷轉換控制電路判斷能根據指令穩壓太陽能模組的輸出電壓,中央控制器控制轉換控制電路進入最大功率點追蹤模式。在最大功率點追蹤模式中,若逆變器的工作功率大於最低工作功率臨界值,中央控制器控制逆變器維持在工作模式。若逆變器的工作功率不大於最低工作功率臨界值,中央控制器執行關機程序。在一實施例中,中央控制器在逆變器的工作功率低於最低工作功率臨界值時、某一個直流轉換器的輸出電壓大於輸出電壓臨界值時、或者逆變器的工作電壓異常時執行關機程序。在關機程序中,中央控制器控制轉換控制電路進入至穩壓模式,接著控制轉換控制電路進入脈衝寬度調變模式以將直流轉換器的輸出電壓調整為零。在關機程序中,中央控制器在逆變器釋放電量以後將逆變器從工作模式切換至確認模式。In an embodiment, if the potential difference of the DC voltage is not adjusted to the preset power generation potential difference, the central controller performs a shutdown procedure. If the potential difference of the DC voltage is adjusted to the preset power generation potential difference, the central controller controls the inverter to enter the operation mode, and controls the switching control circuit to enter the voltage stabilization mode. In the regulated mode, the central controller determines whether the conversion control circuit can regulate the output voltage of each solar module according to at least one command. If the second conversion control circuit cannot according to the output voltage of the solar module corresponding to the command voltage regulation, the central controller performs a shutdown procedure or sets the second conversion control circuit to the bypass operation mode. In the bypass mode of operation, the second turn The output of the DC converter corresponding to the control circuit is turned on. If it is determined that the conversion control circuit determines that the output voltage of the solar module can be stabilized according to the command, the central controller controls the conversion control circuit to enter the maximum power point tracking mode. In the maximum power point tracking mode, if the operating power of the inverter is greater than the minimum operating power threshold, the central controller controls the inverter to remain in the operating mode. If the operating power of the inverter is not greater than the minimum operating power threshold, the central controller performs a shutdown procedure. In an embodiment, the central controller executes when the operating power of the inverter is lower than the minimum operating power threshold, when the output voltage of a DC converter is greater than the output voltage threshold, or when the operating voltage of the inverter is abnormal. Shutdown procedure. In the shutdown procedure, the central controller controls the switching control circuit to enter the regulated mode, and then controls the switching control circuit to enter the pulse width modulation mode to adjust the output voltage of the DC converter to zero. In the shutdown procedure, the central controller switches the inverter from the operating mode to the acknowledgment mode after the inverter releases the power.

本發明一實施例提出上述分散式太陽能發電系統的控制方法。此控制方法包括:接收來自轉換控制電路的電力資訊,執行分散式太陽能發電系統的開機程序以控制轉換控制電路依序進入脈衝寬度調變模式、穩壓模式與最大功率點追蹤模式;在執行開機程序以後,當直流轉換器中的第一直流轉換器的輸出電壓低於第一門檻值時,控制第一直流轉換器所耦接的第一轉換控制電路從最大功率點追蹤模式切換至穩壓模式,用以固定第一直流轉換器的輸入電壓;以及當第一轉換控制電路處於穩壓模式且第一直流轉換器的輸入電壓與輸出電壓之間的差距小於差距 門檻值時,控制第一轉換控制電路從穩壓模式切換至脈衝寬度調變模式,使第一直流轉換器進入降壓模式。An embodiment of the present invention provides a control method of the above-described distributed solar power generation system. The control method comprises: receiving power information from the conversion control circuit, executing a startup procedure of the distributed solar power generation system to control the conversion control circuit to sequentially enter the pulse width modulation mode, the voltage regulation mode and the maximum power point tracking mode; After the program, when the output voltage of the first DC converter in the DC converter is lower than the first threshold, the first conversion control circuit coupled to the first DC converter is controlled to switch from the maximum power point tracking mode to a voltage stabilizing mode for fixing an input voltage of the first DC converter; and when the first switching control circuit is in a voltage stabilizing mode and a difference between an input voltage and an output voltage of the first DC converter is less than a gap When the threshold is thresholded, the first switching control circuit is controlled to switch from the regulated mode to the pulse width modulation mode to cause the first DC converter to enter the buck mode.

為讓本發明的上述特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。The above described features and advantages of the invention will be apparent from the following description.

100‧‧‧分散式太陽能發電系統100‧‧‧Distributed solar power system

110、120‧‧‧光伏串110, 120‧‧‧ photovoltaic strings

111~113、141~143‧‧‧太陽能模組111~113, 141~143‧‧‧ solar modules

121~123、151~153‧‧‧直流轉換器121~123, 151~153‧‧‧ DC Converter

131~133、161~163‧‧‧轉換控制電路131~133, 161~163‧‧‧ conversion control circuit

170‧‧‧中央控制器170‧‧‧Central controller

180‧‧‧逆變器180‧‧‧Inverter

190‧‧‧市電電網190‧‧‧mains grid

201‧‧‧電壓感測器201‧‧‧Voltage sensor

202‧‧‧電流感測器202‧‧‧ Current Sensor

Q1~Q4‧‧‧電晶體Q1~Q4‧‧‧Optoelectronics

C1、C2‧‧‧電容C1, C2‧‧‧ capacitor

L‧‧‧電感L‧‧‧Inductance

D‧‧‧二極體D‧‧‧ diode

210‧‧‧穩壓控制器210‧‧‧ Voltage Controller

220‧‧‧驅動器220‧‧‧ drive

230‧‧‧調變器230‧‧‧ modulator

Vpv ‧‧‧電壓資訊V pv ‧‧‧Voltage information

Ipv ‧‧‧電流資訊I pv ‧‧‧current information

VRef ‧‧‧指令V Ref ‧‧‧ directive

301~319、401~408、801~811、901~905‧‧‧步驟301~319, 401~408, 801~811, 901~905‧‧‧ steps

510、610‧‧‧區域510, 610‧‧‧ areas

圖1是根據一實施例繪示分散式太陽能發電系統的示意圖;圖2是根據一實施例繪示直流轉換器的控制示意圖;圖3A與圖3B是根據一實施例繪示開機程序的流程示意圖;圖4是根據一實施例繪示特殊操作流程的示意流程圖;圖5是繪示沒有特殊操作流程時直流轉換器的電壓曲線圖;圖6是根據一實施例繪示有特殊操作流程時直流轉換器的電壓曲線圖;圖7是根據一實施例說明查核週期的示意圖;圖8是根據一實施例繪示關機程序的流程示意圖;以及圖9是根據一實施例繪示分散式太陽能發電系統的控制方法的流程示意圖。1 is a schematic diagram showing a distributed solar power generation system according to an embodiment; FIG. 2 is a schematic diagram showing control of a DC converter according to an embodiment; FIG. 3A and FIG. 3B are schematic diagrams showing a flow of a booting process according to an embodiment. 4 is a schematic flow chart showing a special operation flow according to an embodiment; FIG. 5 is a voltage curve diagram of a DC converter without a special operation flow; FIG. 6 is a diagram showing a special operation flow according to an embodiment; FIG. 7 is a schematic diagram showing a check cycle according to an embodiment; FIG. 8 is a schematic flow chart showing a shutdown procedure according to an embodiment; and FIG. 9 is a diagram illustrating distributed solar power generation according to an embodiment. Schematic diagram of the control method of the system.

圖1是根據一實施例繪示分散式太陽能發電系統的示意圖。請參照圖1,分散式太陽能發電系統100包括了太陽能模組111~113,其是用以將光能轉換為電能(以直流電的形式輸出)。太陽能模組111~113分別是耦接至直流轉換器121~123的輸入端。每一個直流轉換器121~123都具有升壓模式與降壓模式,用以提升或降低太陽能模組111~113輸出的電壓。在一些應用中,太陽能模組111~113輸出的電壓相對的較低,因此直流轉換器121~123的輸出端會彼此串聯,使得太陽能模組111~113與直流轉換器121~123形成光伏串110,用以提供一個電壓較大的直流電。然而,本發明並不限制光伏串110中太陽能模組的數目。1 is a schematic diagram showing a decentralized solar power generation system in accordance with an embodiment. Referring to FIG. 1, the distributed solar power generation system 100 includes solar modules 111-113 for converting light energy into electrical energy (outputted in the form of direct current). The solar modules 111-113 are respectively coupled to the input ends of the DC converters 121-123. Each of the DC converters 121-123 has a boost mode and a buck mode for boosting or reducing the voltage output by the solar modules 111-113. In some applications, the voltages output by the solar modules 111-113 are relatively low, so the outputs of the DC converters 121-123 are connected in series with each other, so that the solar modules 111-113 and the DC converters 121-123 form a photovoltaic string. 110, used to provide a large voltage DC. However, the invention does not limit the number of solar modules in the photovoltaic string 110.

直流轉換器121~123分別是耦接並且受控於轉換控制電路131~133。轉換控制電路131~133可以控制直流轉換器121~123的轉換比(輸出電壓與輸入電壓的比值),藉此也可以控制太陽能模組111~113的輸出功率。詳細來說,在相同的日照條件下,太陽能模組的輸出功率會跟太陽能模組輸出的電壓與電流有關。當一個太陽能模組的輸出功率最大時,當下的電壓與電流亦可被稱為最大功率點(Maximum Power Point)。為了讓每一個太陽能模組都盡量的操作在最大功率點,轉換控制電路131~133會取得太陽能模組111~113上的電力資訊,並把這些電力資訊例如可以採無線或有線傳輸的方式傳送給中央控制器170。這些電力資訊例如是電流、電壓、功率等,本發明並不在此限。 而中央控制器170會執行一個最大功率點追蹤演算法,並下達指令給轉換控制電路131~133。轉換控制電路131~133會再根據這些指令來控制直流轉換器121~123,如此一來可以盡量讓太陽能模組111~113都輸出最大的功率。The DC converters 121 to 123 are coupled and controlled by the switching control circuits 131 to 133, respectively. The conversion control circuits 131 to 133 can control the conversion ratios (the ratio of the output voltage to the input voltage) of the DC converters 121 to 123, whereby the output power of the solar modules 111 to 113 can also be controlled. In detail, under the same sunshine conditions, the output power of the solar module will be related to the voltage and current output by the solar module. When the output power of a solar module is the largest, the current voltage and current can also be referred to as the Maximum Power Point. In order to allow each solar module to operate at the maximum power point as much as possible, the conversion control circuits 131-133 obtain the power information on the solar modules 111-113, and transmit the power information, for example, by wireless or wired transmission. To the central controller 170. Such power information is, for example, current, voltage, power, etc., and the present invention is not limited thereto. The central controller 170 executes a maximum power point tracking algorithm and issues commands to the conversion control circuits 131-133. The conversion control circuits 131-133 will further control the DC converters 121-123 according to these commands, so that the solar modules 111-113 can output the maximum power as much as possible.

類似地,太陽能模組141~143與直流轉換器151~153也會形成光伏串120,並且直流轉換器151~153分別是由轉換控制電路161~163所控制。由於光伏串120與光伏串110內各裝置的操作都類似,以下不再重複贅述。在此,光伏串120與光伏串110之間是並聯,用以提供較大的電流。然而,圖1僅是一範例,本發明並不限制分散式太陽能發電系統100中光伏串的數目。Similarly, the solar modules 141-143 and the DC converters 151-153 also form the photovoltaic string 120, and the DC converters 151-153 are controlled by the switching control circuits 161-163, respectively. Since the operation of the photovoltaic string 120 and the devices in the photovoltaic string 110 are similar, the details are not repeated below. Here, the photovoltaic string 120 is connected in parallel with the photovoltaic string 110 to provide a large current. However, FIG. 1 is merely an example, and the present invention does not limit the number of photovoltaic strings in the distributed solar power generation system 100.

在圖1的實施例中,光伏串110、120會耦接至逆變器180。逆變器180是用以將光伏串110、120提供的直流電轉換為交流電,並把此交流電提供給市電電網(electricity grid)190。然而,在另一實施例中,光伏串110、120也可以耦接至一或多個電池,或者是其他電子元件,本發明並不限制光伏串110、120輸出的電力要做何用途。In the embodiment of FIG. 1, the photovoltaic strings 110, 120 are coupled to the inverter 180. The inverter 180 is configured to convert the direct current supplied from the photovoltaic strings 110, 120 into alternating current and provide the alternating current to a utility grid 190. However, in another embodiment, the photovoltaic strings 110, 120 may also be coupled to one or more batteries, or other electronic components, and the present invention does not limit the use of the power output by the photovoltaic strings 110, 120.

中央控制器170是用以執行分散式太陽能發電系統100的開機程序、關機程序、以及在開機之後的相關控制。在此實施例中,中央控制器170是以通用非同步收發傳輸器(Universal Asynchronous Receiver/Transmitter,UART)的通訊協定來與轉換控制電路131~133、161~163通訊,但在其他實施例中中央控制器170也可以用其他的無線/ 有線通訊協定,本發明並不在此限。以下將詳細說明中央控制器170的操作。The central controller 170 is a boot process for executing the distributed solar power system 100, a shutdown process, and related control after powering on. In this embodiment, the central controller 170 communicates with the conversion control circuits 131-133, 161-163 in a communication protocol of a Universal Asynchronous Receiver/Transmitter (UART), but in other embodiments The central controller 170 can also use other wireless/ Wired communication protocol, the invention is not limited thereto. The operation of the central controller 170 will be described in detail below.

圖2是根據一實施例繪示直流轉換器的控制示意圖。請參照圖2,在此以太陽能模組111、直流轉換器121與轉換控制電路131為例,而其他太陽能模組的設置也與圖2類似,以下不再贅述。太陽能模組111與直流轉換器121之間串連了電流感測器202,並且並聯了電壓感測器201。直流轉換器121包括了電晶體Q1~Q4、電容C1、C2、電感L、以及二極體D。在一實施例中,每一個電晶體Q1~Q4也可以再並聯一個蕭特基二極體(Schottky Diode)來減少電晶體的切換突波。透過電晶體Q1~Q4的導通與截止,直流轉換器121可以操作為降壓(buck)轉換器與升壓(boost)轉換器。然而,本領域具有通常知識者應可理解降壓轉換器與升壓轉換器的操作,在此不再贅述。2 is a schematic diagram of control of a DC converter according to an embodiment. Referring to FIG. 2 , the solar module 111 , the DC converter 121 and the conversion control circuit 131 are taken as an example, and the arrangement of other solar modules is similar to that of FIG. 2 , and details are not described below. A current sensor 202 is connected in series between the solar module 111 and the DC converter 121, and the voltage sensor 201 is connected in parallel. The DC converter 121 includes transistors Q1 to Q4, capacitors C1 and C2, an inductor L, and a diode D. In an embodiment, each of the transistors Q1 to Q4 may be further connected with a Schottky Diode to reduce the switching surge of the transistor. The DC converter 121 can operate as a buck converter and a boost converter through the on and off of the transistors Q1 to Q4. However, those skilled in the art should understand the operation of the buck converter and the boost converter, and will not be described herein.

轉換控制電路131會從電流感測器202取得電流資訊Ipv ,從電壓感測器201取得電壓資訊Vpv ,並將電流資訊Ipv 與電壓資訊Vpv 以無線的方式傳送給中央控制器170。中央控制器170在接受這些資訊以後,會計算出一個指令VRef ,並把這個指令傳送給轉換控制電路131。The conversion control circuit 131 obtains the current information I pv from the current sensor 202 , obtains the voltage information V pv from the voltage sensor 201 , and wirelessly transmits the current information I pv and the voltage information V pv to the central controller 170 . . After accepting the information, the central controller 170 calculates an instruction V Ref and transmits the command to the conversion control circuit 131.

轉換控制電路131包括了穩壓控制器210、驅動器220與調變器230。在此實施例中,轉換控制電路131具有四種操作模式,分別是旁通操作模式、脈衝寬度調變模式、穩壓模式與最大功率點追蹤模式。The conversion control circuit 131 includes a voltage regulator controller 210, a driver 220, and a modulator 230. In this embodiment, the conversion control circuit 131 has four operation modes, a bypass operation mode, a pulse width modulation mode, a voltage stabilization mode, and a maximum power point tracking mode.

在旁通操作模式中,轉換控制電路131會控制直流轉換器121的輸出端形成導通,等效的來說太陽能模組111會從所屬的光伏串中被移除。在太陽能模組111發生異常時,轉換控制電路131可能會進入旁通操作模式,用來避免太陽能模組111影響到了同一個光伏串上其他的太陽能模組。In the bypass mode of operation, the switching control circuit 131 controls the output of the DC converter 121 to become conductive, and equivalently, the solar module 111 is removed from the associated photovoltaic string. When an abnormality occurs in the solar module 111, the switching control circuit 131 may enter a bypass operation mode to prevent the solar module 111 from affecting other solar modules on the same photovoltaic string.

在脈衝寬度調變(Pulse Width Modulation,PWM)模式中,調變器230會根據指令VRef 來決定電晶體Q1~Q4的佔空比(duty cycle)而輸出脈衝寬度調變訊號給驅動器220,驅動器220會藉此控制電晶體Q1~Q4的導通與截止。In PWM (Pulse Width Modulation, PWM) mode, the modulator 230 may be determined according to an instruction transistors V Ref Q1 ~ Q4 duty ratio (duty cycle) to output the PWM signal to the driver 220, The driver 220 thereby controls the conduction and the turn-off of the transistors Q1 to Q4.

在穩壓模式中,轉換控制電路131會讓太陽能模組111輸出一個固定電壓。舉例來說,穩壓控制器210為比例-積分(Proportional-Integral,PI)控制器,用以將指令VRef 與電壓資訊Vpv 相減以取得一個誤差值。把此誤差值經過比例與積分的運算以後可以得到一個控制訊號。然而,本領域具有通常知識者應可理解PI控制器的運作,在此不再贅述。上述的控制訊號是用以指示電晶體Q1~Q4的佔空比,驅動器220會根據此控制訊號來控制電晶體Q1~Q4的導通與截止。在一實施例中,使用穩壓模式可以避免直接調變佔空比而造成多個直流轉換器之間的耦合現象。In the regulated mode, the conversion control circuit 131 causes the solar module 111 to output a fixed voltage. For example, the voltage regulator controller 210 is a Proportional-Integral (PI) controller for subtracting the command V Ref from the voltage information V pv to obtain an error value. After the error value is subjected to the operation of proportional and integral, a control signal can be obtained. However, those skilled in the art should understand the operation of the PI controller and will not repeat them here. The above control signal is used to indicate the duty ratio of the transistors Q1~Q4, and the driver 220 controls the conduction and the cutoff of the transistors Q1~Q4 according to the control signal. In an embodiment, the use of a voltage stabilizing mode can avoid direct coupling of the duty cycle to cause coupling between multiple DC converters.

值得注意的是,在脈衝寬度調變模式與穩壓模式中,指令VRef 的目的不是要讓太陽能模組111操作在最大功率點。然而,在最大功率點追蹤模式中,中央控制器170所計算出的指令VRef 便是要讓太陽能模組111操作 在最大功率點,但本發明並不限制中央控制器170使用何種演算法來計算出指令VRef 。在一實施例中,中央控制器170可以使用中華民國發明專利公開號第201100995號所提出的演算法,但本發明應不在此限。值得注意的是,在分散式太陽能發電系統100剛開機的初期,太陽能模組111的功率可能並不高或不穩定,因此轉換控制電路131並不適合直接進入穩壓模式或是最大功率點追蹤模式。因此,在開機程序中,中央控制器170是控制轉換控制電路131依序進入脈衝寬度調變模式、穩壓模式與最大功率點追蹤模式,以下將再詳細說明開機程序。It is worth noting that in the pulse width modulation mode and the voltage regulation mode, the purpose of the command V Ref is not to operate the solar module 111 at the maximum power point. However, in the maximum power point tracking mode, the command V Ref calculated by the central controller 170 is to allow the solar module 111 to operate at the maximum power point, but the present invention does not limit the algorithm used by the central controller 170. To calculate the instruction V Ref . In an embodiment, the central controller 170 may use the algorithm proposed by the Republic of China Invention Patent Publication No. 201100995, but the present invention should not be limited thereto. It is worth noting that the power of the solar module 111 may not be high or unstable at the beginning of the decentralized solar power system 100. Therefore, the conversion control circuit 131 is not suitable for directly entering the voltage regulation mode or the maximum power point tracking mode. . Therefore, in the booting process, the central controller 170 controls the switching control circuit 131 to sequentially enter the pulse width modulation mode, the voltage regulation mode, and the maximum power point tracking mode. The startup procedure will be described in detail below.

圖3A與圖3B是根據一實施例繪示開機程序的流程示意圖。請同時參照圖2、圖3A與圖3B,在此以逆變器180、轉換控制電路131與中央控制器170為例來說明開機程序,但圖3A與圖3B的流程也可以用在其他的轉換控制電路上。FIG. 3A and FIG. 3B are schematic diagrams showing the flow of a booting process according to an embodiment. Please refer to FIG. 2, FIG. 3A and FIG. 3B simultaneously. Here, the inverter 180, the conversion control circuit 131 and the central controller 170 are taken as an example to illustrate the booting procedure, but the flow of FIG. 3A and FIG. 3B can also be used in other On the conversion control circuit.

在步驟301中,逆變器180處於確認模式,此時逆變器180並不會將直流點轉換為交流電。同時在步驟302中,轉換控制電路131會從電壓感測器201取得電壓資訊Vpv ,判斷太陽能模組111的開路電壓是否大於一個開路電壓臨界值。例如,此開路電壓臨界值可以設定為32伏特(volt,V),但實作上可以依照不同的太陽能模組來設定不同的開路電壓臨界值。In step 301, the inverter 180 is in the acknowledgment mode, at which time the inverter 180 does not convert the DC point to AC power. At the same time, in step 302, the conversion control circuit 131 obtains the voltage information V pv from the voltage sensor 201 to determine whether the open circuit voltage of the solar module 111 is greater than an open circuit voltage threshold. For example, the open circuit voltage threshold can be set to 32 volts (volts, V), but in practice, different open circuit voltage thresholds can be set according to different solar modules.

在步驟303中,中央控制器170會計算出正常模組數目,此正常模組數目便表示有幾個太陽能模組的開 路電壓已經大於開路電壓臨界值。若正常模組數目大於一個預設開機數目,則會進入步驟305,設定PWM參數;若正常模組數目並不大於預設開機數目,則會回到步驟303,繼續等待。In step 303, the central controller 170 calculates the number of normal modules, and the number of normal modules indicates that several solar modules are open. The road voltage is already greater than the open circuit voltage threshold. If the number of normal modules is greater than a preset number of power-on, step 305 is entered to set the PWM parameters; if the number of normal modules is not greater than the preset number of power-on, then the process returns to step 303 and continues to wait.

在設定完PWM參數以後,在步驟306中,中央控制器170會傳送指令給轉換控制電路131,使得轉換控制電路131進入PWM模式。此時,轉換控制電路131便會控制直流轉換器121來提升或降低太陽能模組111的輸出電壓。在一實施例中,逆變器180的輸入為高電壓的直流電(例如在360V至400V之間),輸出的是220V的交流電,而太陽能模組111的輸出電壓約是在32V上下,並且一個光伏串中具有8個太陽能模組,因此多數的直流轉換器是處於升壓模式。After the PWM parameters are set, in step 306, the central controller 170 transmits an instruction to the conversion control circuit 131, causing the conversion control circuit 131 to enter the PWM mode. At this time, the switching control circuit 131 controls the DC converter 121 to raise or lower the output voltage of the solar module 111. In one embodiment, the input of the inverter 180 is a high voltage direct current (for example, between 360V and 400V), the output is 220V alternating current, and the output voltage of the solar module 111 is about 32V, and one There are 8 solar modules in the photovoltaic string, so most DC converters are in boost mode.

輸入至逆變器180的直流電的電位差大於某一數值(例如為100V)時,逆變器180會進入等待模式(步驟307),此時逆變器180還不會開始產生交流電。中央控制器170會判斷輸入至逆變器180的直流電的電位差是否大於一個電位差臨界值(例如為320V)。如果逆變器180上直流電的電位差已經大於320V,則中央控制器170會先等一個預設時間(例如為30秒),之後在步驟308與309中會控制光伏串上所有的轉換控制電路,使得直流電的電位差會調整至一個預設發電電位差(例如為360V)。When the potential difference of the direct current input to the inverter 180 is greater than a certain value (for example, 100 V), the inverter 180 enters a standby mode (step 307), at which time the inverter 180 does not start generating alternating current. The central controller 170 determines whether the potential difference of the direct current input to the inverter 180 is greater than a potential difference threshold (for example, 320 V). If the potential difference of the direct current on the inverter 180 is already greater than 320V, the central controller 170 waits for a preset time (for example, 30 seconds), and then controls all the conversion control circuits on the photovoltaic string in steps 308 and 309. The potential difference of the direct current is adjusted to a preset power generation potential difference (for example, 360V).

在步驟310中,中央控制器170會判斷逆變器180上直流電的電位差是否能成功地調整至預設發電電位 差。若可以,則逆變器180會進入工作模式(步驟311),此時逆變器180便會將直流電轉換為交流電。若步驟310的結果為否,則中央控制器170會執行關機程序(步驟312)。In step 310, the central controller 170 determines whether the potential difference of the direct current on the inverter 180 can be successfully adjusted to the preset power generation potential. difference. If so, the inverter 180 will enter the operational mode (step 311), at which point the inverter 180 will convert the direct current to alternating current. If the result of step 310 is no, the central controller 170 executes a shutdown procedure (step 312).

在逆變器180進入工作模式以後,步驟313中,中央控制器170會設定穩壓模式參數以傳送指令給轉換控制電路131。在步驟314中,轉換控制電路131會切換至穩壓模式。在步驟315中,中央控制器170會判斷轉換控制電路131是否可以根據指令來穩壓太陽能模組111的輸出電壓。若步驟315的結果為否,則中央控制器170會執行關機程序(步驟312)。在另一實施例中,若轉換控制電路131無法根據指令來穩壓太陽能模組111的輸出電壓,則中央控制器170會將該轉換控制電路131設定為旁通操作模式。在旁通操作模式中,直流轉換器121的輸出端為導通。如此一來,不會使得有一個太陽能模組異常就讓整個光伏串上其他的太陽能模組都不能運作。After the inverter 180 enters the operating mode, in step 313, the central controller 170 sets the steady-state mode parameter to transmit an instruction to the conversion control circuit 131. In step 314, the conversion control circuit 131 switches to the voltage regulation mode. In step 315, the central controller 170 determines whether the conversion control circuit 131 can regulate the output voltage of the solar module 111 according to the command. If the result of step 315 is no, the central controller 170 executes a shutdown procedure (step 312). In another embodiment, if the conversion control circuit 131 cannot regulate the output voltage of the solar module 111 according to the command, the central controller 170 sets the conversion control circuit 131 to the bypass operation mode. In the bypass mode of operation, the output of the DC converter 121 is conductive. As a result, there will not be a solar module abnormality that will make the other solar modules on the entire photovoltaic string inoperable.

若步驟315的結果為是,在步驟316中,中央控制器170會設定最大功率點追蹤模式的參數以傳送指令給轉換控制電路131。在步驟318中,轉換控制電路131便會切換至最大功率點追蹤模式。值得注意的是,在最大功率點追蹤模式中,轉換控制電路131依然可以使用穩壓控制器210的功能來控制太陽能模組111的輸出電壓。If the result of step 315 is yes, in step 316, the central controller 170 sets the parameters of the maximum power point tracking mode to transmit commands to the conversion control circuit 131. In step 318, the switching control circuit 131 switches to the maximum power point tracking mode. It should be noted that in the maximum power point tracking mode, the switching control circuit 131 can still use the function of the voltage regulator controller 210 to control the output voltage of the solar module 111.

接下來在步驟319中,中央控制器170會判斷逆變器180的一個工作功率是否大於一個功率臨界值。在此,逆變器180的工作功率可以是輸入功率或是輸出功 率。若逆變器180的工作功率大於功率臨界值,在步驟311中,逆變器180會維持在工作模式。若步驟319的結果為否,則中央控制器170會執行關機程序。Next, in step 319, the central controller 170 determines whether an operating power of the inverter 180 is greater than a power threshold. Here, the operating power of the inverter 180 can be input power or output power. rate. If the operating power of the inverter 180 is greater than the power threshold, the inverter 180 will remain in the operating mode in step 311. If the result of step 319 is no, the central controller 170 performs a shutdown procedure.

請參照回圖1,在執行完開機程序以後,逆變器180便會持續地把直流電轉換為交流電,在一般情形下直流轉換器121~123會處於升壓模式。然而,太陽能模組111~113的輸出功率可能會隨著天氣而改變,例如若有雲遮蔽了太陽光,則太陽能模組111~113的輸出功率可能會下降。假設太陽能模組111受到了遮蔽的影響,此時太陽能模組111的輸出功率會下降,但由於直流轉換器121~123之間是串聯在一起,若減少直流轉換器121輸出的電流也會減少光伏串110上的電流,進而會影響到太陽能模組111以外的太陽能模組。所以,在一般的情況下,中央控制器170會選擇降低直流轉換器121的輸出電壓。但如果直流轉換器121的輸出電壓持續的降低,則直流轉換器121的輸出電壓與輸入電壓會越來越接近。若直流轉換器121的轉換比接近1,則表示直流轉換器121會經常切換在升壓模式與降壓模式之間,此會造成異常的現象。因此,本實施例還提出一個特殊操作流程來解決此問題。Referring back to FIG. 1, after the booting process is completed, the inverter 180 continuously converts the direct current into alternating current. In the normal case, the direct current converters 121-123 are in the boost mode. However, the output power of the solar modules 111-113 may change with the weather. For example, if the cloud shields the sunlight, the output power of the solar modules 111-113 may decrease. It is assumed that the solar module 111 is affected by the shielding, and the output power of the solar module 111 is lowered. However, since the DC converters 121 to 123 are connected in series, the current output from the DC converter 121 is reduced. The current on the photovoltaic string 110, in turn, affects the solar modules outside of the solar module 111. Therefore, in the general case, the central controller 170 may choose to lower the output voltage of the DC converter 121. However, if the output voltage of the DC converter 121 continues to decrease, the output voltage of the DC converter 121 will be closer to the input voltage. If the conversion ratio of the DC converter 121 is close to 1, it means that the DC converter 121 frequently switches between the boost mode and the buck mode, which causes an abnormal phenomenon. Therefore, this embodiment also proposes a special operation flow to solve this problem.

圖4是根據一實施例繪示特殊操作流程的示意流程圖。請參照圖2與圖4,在步驟401中逆變器180處於工作模式,而同時在步驟402中轉換控制電路131是處於最大功率點追蹤模式。在步驟403中,中央控制器170會取得直流轉換器121的輸出電壓。在步驟404中,中央控制器 170會判斷直流轉換器121的輸出電壓是否小於一個第一門檻值(例如為30V)。若步驟404的結果為否,則在步驟405中,中央控制器170會將轉換控制電路131維持在最大功率點追蹤模式。4 is a schematic flow chart showing a special operation flow according to an embodiment. Referring to FIG. 2 and FIG. 4, the inverter 180 is in the operating mode in step 401, while the switching control circuit 131 is in the maximum power point tracking mode in step 402. In step 403, the central controller 170 obtains the output voltage of the DC converter 121. In step 404, the central controller 170 will determine if the output voltage of the DC converter 121 is less than a first threshold (for example, 30V). If the result of step 404 is no, then in step 405, central controller 170 maintains transition control circuit 131 in the maximum power point tracking mode.

另一方面,若直流轉換器121的輸出電壓低於第一門檻值,則在步驟406中,中央控制器170會將轉換控制電路131從最大功率點追蹤模式切換至穩壓模式,用以固定直流轉換器121的輸入電壓(即太陽能模組111的輸出電壓)。On the other hand, if the output voltage of the DC converter 121 is lower than the first threshold, in step 406, the central controller 170 switches the switching control circuit 131 from the maximum power point tracking mode to the voltage stabilization mode for fixing. The input voltage of the DC converter 121 (ie, the output voltage of the solar module 111).

在步驟407中,中央控制器170會判斷穩壓控制是否正常。在此實施例中,中央控制器170是控制轉換控制電路131,使得直流轉換器121的輸入電壓與輸出電壓會大於一個差距門檻值(例如為1V)。如果中央控制器170無法控制直流轉換器121的輸入電壓與輸出電壓之間差距大於此差距門檻值,則表示穩壓控制不正常,此時會進入步驟408。以另一個角度來說,中央控制器170也可以判斷控制轉換控制電路131是否能根據所接收到的指令來穩壓直流轉換器121的輸入電壓,若不行則表示穩壓控制不正常。In step 407, the central controller 170 determines if the regulation control is normal. In this embodiment, the central controller 170 is the control switching control circuit 131 such that the input voltage and output voltage of the DC converter 121 will be greater than a threshold threshold (eg, 1V). If the central controller 170 cannot control the difference between the input voltage and the output voltage of the DC converter 121 to be greater than the threshold value, it indicates that the voltage regulation control is abnormal, and the process proceeds to step 408. In another aspect, the central controller 170 can also determine whether the control switching control circuit 131 can regulate the input voltage of the DC converter 121 according to the received command. If not, the voltage regulation control is abnormal.

在步驟408中,中央控制器170將轉換控制電路131切換至PWM模式,並使直流轉換器121進入降壓模式。直流轉換器121進入降壓模式的用意是要讓直流轉換器121的輸入電壓與輸出電壓不要太接近。舉例來說,請參照圖5與圖6,圖5是繪示沒有特殊操作流程時直流轉換 器的電壓曲線圖,而圖6是根據一實施例繪示有特殊操作流程時直流轉換器的電壓曲線圖。在圖5中,由於遮蔽的影響,直流轉換器的輸出電壓一直下降,在區域510中輸入電壓會劇烈的震盪,這是由於直流轉換器頻繁地切換在升壓模式跟降壓模式之間。在圖6的區域610為穩壓模式,也就是說中央控制器會控制直流轉換器的輸出電壓與輸入電壓差距超過1V。但在區域610之後,直流轉換器的輸出電壓與輸入電壓已經小於1V,因此直流轉換器會被強制進入降壓模式,如此一來直流轉換器就不會頻繁地切換在升壓模式與降壓模式之間。In step 408, the central controller 170 switches the switching control circuit 131 to the PWM mode and causes the DC converter 121 to enter the buck mode. The purpose of the DC converter 121 to enter the buck mode is to keep the input voltage of the DC converter 121 from being too close to the output voltage. For example, please refer to FIG. 5 and FIG. 6. FIG. 5 is a diagram showing DC conversion without special operation flow. The voltage curve of the device, and FIG. 6 is a voltage graph of the DC converter when a special operation flow is illustrated according to an embodiment. In FIG. 5, the output voltage of the DC converter is always degraded due to the influence of the shadowing, and the input voltage is violently oscillated in the region 510 because the DC converter frequently switches between the boost mode and the buck mode. In the region 610 of Figure 6, the voltage regulation mode, that is, the central controller controls the output voltage of the DC converter to be more than 1V from the input voltage. However, after the region 610, the output voltage and input voltage of the DC converter are already less than 1V, so the DC converter will be forced into the buck mode, so that the DC converter will not frequently switch between the boost mode and the buck. Between modes.

請參照回圖4,在直流轉換器進入降壓模式以後,由於中央控制器170無法判斷太陽能模組是否因為功率上升而能輸出更高的電壓,因此中央控制器170會設定一個查核週期,並在每隔一段查核週期便把轉換控制電路131切換至穩壓模式。此查核週期例如是一分鐘,但在其他實施例中查核週期也可以更長或更短,本發明並不在此限。具體來說,在步驟408之後且等待查核週期以後,中央控制器170會回到步驟406,將轉換控制電路切換回穩壓模式。接下來在步驟407繼續判斷穩壓控制是否正常。若步驟407的結果為是,則回到步驟403與步驟404。若在步驟404中判斷直流轉換器121的輸出電壓大於等於第一門檻值,則進入步驟405,中央控制器170會將轉換控制電路131切換至最大功率點追蹤模式。相反的,若步驟407的結果為否,則會重新回到步驟408,繼續等待查核週期。請 參照圖7,圖7是根據一實施例說明查核週期的示意圖。從圖7可以看出,在進入降壓模式以後會持續一段時間,之後會再嘗試進入穩壓模式,若無法穩壓則會回到降壓模式。Referring back to FIG. 4, after the DC converter enters the buck mode, since the central controller 170 cannot determine whether the solar module can output a higher voltage due to the power increase, the central controller 170 sets a check cycle, and The switching control circuit 131 is switched to the voltage stabilizing mode every other check cycle. This check period is, for example, one minute, but in other embodiments the check period may be longer or shorter, and the present invention is not limited thereto. Specifically, after step 408 and after waiting for the check cycle, the central controller 170 returns to step 406 to switch the switch control circuit back to the voltage stabilizing mode. Next, in step 407, it is continued to determine whether the regulation control is normal. If the result of step 407 is YES, then return to step 403 and step 404. If it is determined in step 404 that the output voltage of the DC converter 121 is greater than or equal to the first threshold, then the process proceeds to step 405, and the central controller 170 switches the switching control circuit 131 to the maximum power point tracking mode. Conversely, if the result of step 407 is no, then it returns to step 408 and continues to wait for the check cycle. please Referring to Figure 7, Figure 7 is a schematic diagram illustrating a check cycle in accordance with an embodiment. As can be seen from Figure 7, it will continue for a while after entering the buck mode, and then try to enter the regulation mode again. If it is unable to regulate, it will return to the buck mode.

圖8是根據一實施例繪示關機程序的流程示意圖。請參照圖8,在步驟801中逆變器180處於工作模式,同時在步驟802中轉換控制電路131處於最大功率點追蹤模式。在一些情況下,在步驟803中會觸發關機程序。舉例來說,第一種情況是使用者透過電腦端下指令給中央控制器170來觸發關機程序。第二種情況,是逆變器180的工作功率(可為輸入功率或是輸出功率)太低而小於一個功率臨界值。第三種情況,是某一個直流轉換器的輸出電壓過高而大於一個輸出電壓臨界值,由於直流轉換器中的元件有耐壓的上限,因此為了避免此元件燒毀而必須執行關機程序。第四種情況,是逆變器180的工作電壓(可為輸入電壓或是輸出電壓)異常時,例如中央控制器170可以執行一個演算法來偵測分散式太陽能發電系統100是否發生了孤島效應(逆變器180的輸出電壓可能會大於市電電網190上的電壓)來判斷是否要執行關機程序。FIG. 8 is a flow chart showing a shutdown procedure according to an embodiment. Referring to FIG. 8, the inverter 180 is in the active mode in step 801, while the conversion control circuit 131 is in the maximum power point tracking mode in step 802. In some cases, a shutdown procedure is triggered in step 803. For example, in the first case, the user triggers a shutdown procedure by sending a command to the central controller 170 via a computer. In the second case, the operating power of the inverter 180 (which may be input power or output power) is too low to be less than a power threshold. In the third case, the output voltage of a DC converter is too high and is greater than an output voltage threshold. Since the components in the DC converter have an upper limit of withstand voltage, the shutdown procedure must be performed in order to avoid the component being burned. In the fourth case, when the operating voltage of the inverter 180 (which may be an input voltage or an output voltage) is abnormal, for example, the central controller 170 may perform an algorithm to detect whether the distributed solar power system 100 has an islanding effect. (The output voltage of the inverter 180 may be greater than the voltage on the mains grid 190) to determine if a shutdown procedure is to be performed.

若觸發了關機程序,在步驟804中,中央控制器170會先設定穩壓模式的參數,並且傳送指令給轉換控制電路131。在步驟805中,轉換控制電路131在接收到指令以後會切換至穩壓模式。此外,在步驟806中,中央控制器170還會設定PWM模式的參數,並傳送指令給轉換控制電路131。在步驟807中,轉換控制電路131會切換至 PWM模式,以將直流轉換器121的輸出電壓調整為零。在步驟808中,逆變器180仍然處於工作模式,但隨著光伏串上所有直流轉換器的輸出電壓都調整為零,逆變器180上直流電的電位差也會為零,中央控制器170會在逆變器180釋放電量以後把逆變器180切換至確認模式(步驟809)。另一方面,在步驟810中,中央控制器170會關機,此時在步驟811中轉換控制電路131會處於確認狀態(確認開路電壓)。If the shutdown procedure is triggered, in step 804, the central controller 170 first sets the parameters of the voltage regulation mode and transmits the command to the conversion control circuit 131. In step 805, the conversion control circuit 131 switches to the voltage stabilization mode after receiving the instruction. Further, in step 806, the central controller 170 also sets parameters of the PWM mode and transmits commands to the conversion control circuit 131. In step 807, the conversion control circuit 131 switches to The PWM mode is to adjust the output voltage of the DC converter 121 to zero. In step 808, the inverter 180 is still in the working mode, but as the output voltages of all the DC converters on the photovoltaic string are adjusted to zero, the potential difference of the direct current on the inverter 180 will also be zero, and the central controller 170 will The inverter 180 is switched to the confirm mode after the inverter 180 releases the power (step 809). On the other hand, in step 810, the central controller 170 will shut down, at which point the switch control circuit 131 will be in the acknowledgment state (confirm open circuit voltage) in step 811.

圖9是根據一實施例繪示分散式太陽能發電系統的控制方法的流程示意圖。請參照圖9,在步驟901中,接收來自轉換控制電路的電力資訊,執行開機程序以控制轉換控制電路依序進入脈衝寬度調變模式、穩壓模式與最大功率點追蹤模式。在步驟902中,判斷是否有直流轉換器的輸出電壓低於第一門檻值。若有直流轉換器(以下稱第一直流轉換器)中的輸出電壓低於第一門檻值,在步驟903中,控制第一直流轉換器所耦接的第一轉換控制電路從最大功率點追蹤模式切換至穩壓模式,用以固定直流轉換器的輸入電壓。在步驟904中,判斷第一直流轉換器的輸入電壓與輸出電壓之間的差距是否小於差距門檻值。若步驟904的結果為是,在步驟905中,控制第一轉換控制電路從穩壓模式切換至脈衝寬度調變模式,使第一直流轉換器進入降壓模式。FIG. 9 is a flow chart showing a control method of a distributed solar power generation system according to an embodiment. Referring to FIG. 9, in step 901, power information from the conversion control circuit is received, and a boot process is executed to control the conversion control circuit to sequentially enter the pulse width modulation mode, the voltage regulation mode, and the maximum power point tracking mode. In step 902, it is determined whether the output voltage of the DC converter is lower than the first threshold. If the output voltage in the DC converter (hereinafter referred to as the first DC converter) is lower than the first threshold, in step 903, the first conversion control circuit coupled to the first DC converter is controlled from the maximum power. The point tracking mode is switched to the regulation mode to fix the input voltage of the DC converter. In step 904, it is determined whether the difference between the input voltage and the output voltage of the first DC converter is less than the threshold threshold. If the result of step 904 is YES, in step 905, the first switching control circuit is controlled to switch from the regulated mode to the pulse width modulation mode to cause the first DC converter to enter the buck mode.

然而,圖9中各步驟已詳細說明如上,在此便不再贅述。值得注意的是,圖9中各步驟可以實作為多個程 式碼或是電路,本發明並不在此限。此外,圖9的方法可以搭配以上實施例使用,也可以單獨使用。例如,若步驟904的結果為否,則也可以依照圖4的流程再判斷是否要將第一轉換控制電路切換回最大功率點追蹤模式,本發明並不在此限。However, the steps in FIG. 9 have been described in detail above, and will not be described again here. It is worth noting that the steps in Figure 9 can be implemented as multiple steps. The code or circuit, the invention is not limited thereto. In addition, the method of FIG. 9 can be used in conjunction with the above embodiments, or can be used alone. For example, if the result of step 904 is no, it may be further determined according to the flow of FIG. 4 whether the first conversion control circuit is to be switched back to the maximum power point tracking mode, and the present invention is not limited thereto.

雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明的精神和範圍內,當可作些許的更動與潤飾,故本發明的保護範圍當視後附的申請專利範圍所界定者為準。Although the present invention has been disclosed in the above embodiments, it is not intended to limit the present invention, and any one of ordinary skill in the art can make some changes and refinements without departing from the spirit and scope of the present invention. The scope of the invention is defined by the scope of the appended claims.

901~905‧‧‧步驟901~905‧‧‧Steps

Claims (10)

一種分散式太陽能發電系統,包括:多個太陽能模組;多個直流轉換器,其中每一該些直流轉換器具有一升壓模式與一降壓模式,每一該些直流轉換器的輸入端耦接至該些太陽能模組的其中之一,該些直流轉換器的輸出端彼此串聯以使該些太陽能模組與該些直流轉換器形成一光伏串;多個轉換控制電路,分別耦接並控制該些直流轉換器,並且取得該些太陽能模組的多筆電力資訊;以及一中央控制器,接收來自該些轉換控制電路的該些電力資訊,執行該分散式太陽能發電系統的一開機程序與一關機程序,其中在該開機程序中,該中央控制器控制該些轉換控制電路依序進入一脈衝寬度調變模式、一穩壓模式與一最大功率點追蹤模式,在執行該開機程序後,當該些直流轉換器中的一第一直流轉換器的一輸出電壓低於一第一門檻值時,該中央控制器控制該第一直流轉換器所耦接的一第一轉換控制電路從該最大功率點追蹤模式切換至該穩壓模式,用以固定該第一直流轉換器的一輸入電壓,當該第一轉換控制電路處於該穩壓模式,且該第一直流轉換器的該輸入電壓與該輸出電壓之間的差距小於一差 距門檻值時,該中央控制器控制該第一轉換控制電路從該穩壓模式切換至該脈衝寬度調變模式,使該第一直流轉換器進入該降壓模式。A decentralized solar power generation system includes: a plurality of solar modules; a plurality of DC converters, wherein each of the DC converters has a boost mode and a buck mode, and the input ends of each of the DC converters are coupled Connected to one of the solar modules, the outputs of the DC converters are connected in series to each other such that the solar modules and the DC converters form a photovoltaic string; a plurality of conversion control circuits are respectively coupled and coupled Controlling the DC converters and obtaining a plurality of power information of the solar modules; and a central controller receiving the power information from the conversion control circuits to execute a booting procedure of the distributed solar power generation system And a shutdown program, wherein in the booting process, the central controller controls the conversion control circuits to sequentially enter a pulse width modulation mode, a voltage stabilization mode, and a maximum power point tracking mode, after executing the booting process When an output voltage of a first one of the DC converters is lower than a first threshold, the central controller controls the a first conversion control circuit coupled to the DC converter is switched from the maximum power point tracking mode to the voltage regulation mode for fixing an input voltage of the first DC converter, when the first conversion control circuit In the voltage regulation mode, the difference between the input voltage of the first DC converter and the output voltage is less than a difference When the threshold value is reached, the central controller controls the first switching control circuit to switch from the voltage stabilizing mode to the pulse width modulation mode, so that the first DC converter enters the buck mode. 如請求項1所述之分散式太陽能發電系統,其中在該第一轉換控制電路從該穩壓模式切換至該脈衝寬度調變模式以後,該中央控制器設定一查核週期,每經過該查核週期,該中央控制器將該第一轉換控制電路從該脈衝寬度調變模式切換至該穩壓模式並判斷該第一直流轉換器的該輸入電壓與該輸出電壓之間的差距是否大於等於該差距門檻值,若該第一直流轉換器的該輸入電壓與該輸出電壓之間的差距大於等於該差距門檻值,該中央控制器在該第一直流轉換器的該輸出電壓大於等於該第一門檻值以後將第一轉換控制電路切換至該最大功率點追蹤模式。The distributed solar power generation system of claim 1, wherein after the first switching control circuit switches from the voltage stabilizing mode to the pulse width modulation mode, the central controller sets a check cycle, each time the check cycle is passed The central controller switches the first conversion control circuit from the pulse width modulation mode to the voltage regulation mode and determines whether a difference between the input voltage of the first DC converter and the output voltage is greater than or equal to a threshold value, if the difference between the input voltage of the first DC converter and the output voltage is greater than or equal to the threshold value, the output voltage of the central controller at the first DC converter is greater than or equal to The first threshold control circuit switches the first switching control circuit to the maximum power point tracking mode. 如請求項1所述之分散式太陽能發電系統,更包括一逆變器,耦接至該光伏串,用以將該光伏串提供的一直流電轉換為一交流電,在該開機程序中,該中央控制器根據該些電力資訊判斷每一該些太陽能模組的一開路電壓是否大於一開路電壓臨界值以計算出一正常模組數目,其中該逆變器處於一確認模式, 若該正常模組數目大於一預設開機數目,該中央控制器控制該些轉換控制電路進入該脈衝寬度調變模式,並控制該逆變器切換至一等待模式,該中央控制器判斷該直流電壓的一電位差是否大於一電位差臨界值,若該直流電壓的該電位差大於該電位差臨界值,該中央控制器在等待一預設時間以後控制該些轉換控制電路以將該直流電壓的該電位差調整至一預設發電電位差。The decentralized solar power generation system of claim 1, further comprising an inverter coupled to the photovoltaic string for converting the direct current provided by the photovoltaic string into an alternating current, in the booting process, the central The controller determines, according to the power information, whether an open circuit voltage of each of the solar modules is greater than an open circuit voltage threshold to calculate a normal module number, wherein the inverter is in an acknowledge mode. If the number of the normal modules is greater than a preset number of power-on, the central controller controls the switching control circuits to enter the pulse width modulation mode, and controls the inverter to switch to a standby mode, and the central controller determines the DC Whether a potential difference of the voltage is greater than a potential difference threshold, if the potential difference of the DC voltage is greater than the potential difference threshold, the central controller controls the conversion control circuits to wait for a preset time to adjust the potential difference of the DC voltage Up to a preset power generation potential difference. 如請求項3所述之分散式太陽能發電系統,其中若該直流電壓的該電位差沒有被調整至該預設發電電位差,該中央控制器執行該關機程序,若該直流電壓的該電位差被調整至該預設發電電位差,該中央控制器控制該逆變器進入一工作模式,並且控制該些轉換控制電路進入該穩壓模式,在該穩壓模式中,該中央控制器判斷該些轉換控制電路是否能根據至少一指令穩壓每一該些太陽能模組的輸出電壓,若該些轉換控制電路中的一第二轉換控制電路不能根據該至少一指令穩壓所對應的該太陽能模組的該輸出電壓,該中央控制器執行該關機程序或將該第二轉換控制電路設定為一旁通操作模式,在該旁通操作模式中該第二轉換控制電路所對應的該直流轉換器的該輸出端為導通, 若判斷該些轉換控制電路判斷能根據該至少一指令穩壓該些太陽能模組的該些輸出電壓,該中央控制器控制該些轉換控制電路進入該最大功率點追蹤模式,在該最大功率點追蹤模式中,若該逆變器的一工作功率大於一最低工作功率臨界值,該中央控制器控制該逆變器維持在該工作模式,若該逆變器的該工作功率不大於該最低工作功率臨界值,該中央控制器執行該關機程序。The distributed solar power generation system of claim 3, wherein if the potential difference of the DC voltage is not adjusted to the preset power generation potential difference, the central controller performs the shutdown procedure, if the potential difference of the DC voltage is adjusted to The preset power generation potential difference, the central controller controls the inverter to enter an operating mode, and controls the switching control circuits to enter the voltage stabilizing mode, in the voltage stabilizing mode, the central controller determines the switching control circuits Whether the output voltage of each of the solar modules can be regulated according to at least one command, if a second conversion control circuit of the conversion control circuits is unable to regulate the solar module corresponding to the at least one command Outputting a voltage, the central controller executing the shutdown procedure or setting the second conversion control circuit to a bypass operation mode, wherein the output of the DC converter corresponding to the second conversion control circuit in the bypass operation mode To be conductive, If it is determined that the conversion control circuit determines that the output voltages of the solar modules can be stabilized according to the at least one command, the central controller controls the conversion control circuits to enter the maximum power point tracking mode, at the maximum power point In the tracking mode, if a working power of the inverter is greater than a minimum operating power threshold, the central controller controls the inverter to maintain the working mode, if the operating power of the inverter is not greater than the minimum operating The power threshold, the central controller performs the shutdown procedure. 如請求項4所述之分散式太陽能發電系統,其中該中央控制器在該逆變器的該工作功率低於該最低工作功率臨界值時、該些直流轉換器的其中之一的輸出電壓大於一輸出電壓臨界值時、或者該逆變器的該工作電壓異常時執行該關機程序,在該關機程序中,該中央控制器控制該些轉換控制電路進入至該穩壓模式,接著控制該些轉換控制電路進入該脈衝寬度調變模式以將該些直流轉換器的輸出電壓調整為零,在該關機程序中,該中央控制器在該逆變器釋放電量以後將該逆變器從該工作模式切換至該確認模式。The distributed solar power generation system of claim 4, wherein the central controller outputs an output voltage of one of the DC converters when the operating power of the inverter is lower than the minimum operating power threshold The shutdown program is executed when an output voltage threshold is abnormal or when the operating voltage of the inverter is abnormal. In the shutdown procedure, the central controller controls the conversion control circuits to enter the voltage stabilization mode, and then controls the The switching control circuit enters the pulse width modulation mode to adjust the output voltage of the DC converters to zero. In the shutdown procedure, the central controller takes the inverter from the work after the inverter releases the power The mode switches to this confirmation mode. 一種分散式太陽能發電系統的控制方法,其中該分散式太陽能發電系統包括多個太陽能模組、多個直 流轉換器與多個轉換控制電路,其中每一該些直流轉換器具有一升壓模式與一降壓模式,每一該些直流轉換器的輸入端耦接至該些太陽能模組的其中之一,該些直流轉換器的輸出端彼此串聯以使該些太陽能模組與該些直流轉換器形成一光伏串,該些轉換控制電路分別耦接並控制該些直流轉換器以取得該些太陽能模組的多筆電力資訊,該控制方法包括:接收來自該些轉換控制電路的該些電力資訊,執行該分散式太陽能發電系統的一開機程序以控制該些轉換控制電路依序進入一脈衝寬度調變模式、一穩壓模式與一最大功率點追蹤模式;在執行該開機程序以後,當該些直流轉換器中的一第一直流轉換器的輸出電壓低於一第一門檻值時,控制該第一直流轉換器所耦接的一第一轉換控制電路從該最大功率點追蹤模式切換至該穩壓模式,用以固定該第一直流轉換器的一輸入電壓;以及當該第一轉換控制電路處於該穩壓模式且該第一直流轉換器的該輸入電壓與該輸出電壓之間的差距小於一差距門檻值時,控制該第一轉換控制電路從該穩壓模式切換至該脈衝寬度調變模式,使該第一直流轉換器進入該降壓模式。A control method for a distributed solar power generation system, wherein the distributed solar power generation system includes a plurality of solar modules, and a plurality of straight And a plurality of conversion control circuits, wherein each of the DC converters has a boost mode and a buck mode, and an input end of each of the DC converters is coupled to one of the solar modules The output terminals of the DC converters are connected in series with each other to form a photovoltaic string with the DC converters, and the conversion control circuits respectively couple and control the DC converters to obtain the solar modules. The plurality of power information of the group includes: receiving the power information from the conversion control circuits, executing a booting process of the distributed solar power system to control the switching control circuits to sequentially enter a pulse width adjustment a variable mode, a voltage stabilizing mode, and a maximum power point tracking mode; after the booting process is executed, when an output voltage of a first DC converter of the DC converters is lower than a first threshold, the control A first switching control circuit coupled to the first DC converter switches from the maximum power point tracking mode to the voltage stabilizing mode for fixing the first DC conversion An input voltage of the device; and controlling the first when the first conversion control circuit is in the voltage regulation mode and the difference between the input voltage of the first DC converter and the output voltage is less than a threshold threshold The switching control circuit switches from the regulated mode to the pulse width modulation mode to cause the first DC converter to enter the buck mode. 如請求項6所述之控制方法,更包括: 在該第一轉換控制電路從該穩壓模式切換至該脈衝寬度調變模式以後,設定一查核週期;每經過該查核週期,將該第一轉換控制電路從該脈衝寬度調變模式切換至該穩壓模式並判斷該第一直流轉換器的該輸入電壓與該輸出電壓之間的差距是否大於等於該差距門檻值;以及若該第一直流轉換器的該輸入電壓與該輸出電壓之間的差距大於等於該差距門檻值,在該第一直流轉換器的該輸出電壓大於等於該第一門檻值以後將第一轉換控制電路切換至該最大功率點追蹤模式。The control method as claimed in claim 6 further includes: After the first switching control circuit switches from the voltage stabilizing mode to the pulse width modulation mode, setting a check cycle; switching the first switching control circuit from the pulse width modulation mode to the check cycle And determining whether the difference between the input voltage of the first DC converter and the output voltage is greater than or equal to the threshold threshold; and if the input voltage of the first DC converter and the output voltage are The difference between the gaps is greater than or equal to the threshold value, and the first switching control circuit is switched to the maximum power point tracking mode after the output voltage of the first DC converter is greater than or equal to the first threshold. 如請求項7所述之控制方法,其中該分散式太陽能發電系統更包括一逆變器,耦接至該光伏串,用以將該光伏串提供的一直流電轉換為一交流電,該控制方法更包括:在該開機程序中,根據該些電力資訊判斷每一該些太陽能模組的一開路電壓是否大於一開路電壓臨界值以計算出一正常模組數目,其中該逆變器處於一確認模式;若該正常模組數目大於一預設開機數目,控制該些轉換控制電路進入該脈衝寬度調變模式,並控制該逆變器切換至一等待模式;判斷該直流電壓的一電位差是否大於一電位差臨界值;以及 若該直流電壓的該電位差大於該電位差臨界值,在等待一預設時間以後控制該些轉換控制電路以將該直流電壓的該電位差調整至一預設發電電位差。The control method of claim 7, wherein the distributed solar power generation system further comprises an inverter coupled to the photovoltaic string for converting the direct current provided by the photovoltaic string into an alternating current, the control method further The method includes: determining, according to the power information, whether an open circuit voltage of each of the solar modules is greater than an open circuit voltage threshold to calculate a normal module number, wherein the inverter is in an acknowledge mode If the number of the normal modules is greater than a preset number of power-on, control the switching control circuits to enter the pulse width modulation mode, and control the inverter to switch to a standby mode; determine whether a potential difference of the DC voltage is greater than one Potential difference threshold; If the potential difference of the DC voltage is greater than the potential difference threshold, the switching control circuit is controlled to wait for a predetermined time to adjust the potential difference of the DC voltage to a predetermined power generation potential difference. 如請求項8所述之控制方法,更包括:若該直流電壓的該電位差沒有被調整至該預設發電電位差,執行該關機程序;若該直流電壓的該電位差被調整至該預設發電電位差,控制該逆變器進入一工作模式,並且控制該些轉換控制電路進入該穩壓模式;在該穩壓模式中,判斷該些轉換控制電路是否能根據至少一指令穩壓該每一該些太陽能模組的輸出電壓;若該些轉換控制電路中的一第二轉換控制電路不能根據該至少一指令穩壓所對應的該太陽能模組的該輸出電壓,執行該關機程序或將該第二轉換控制電路設定為一旁通操作模式,在該旁通操作模式中該第二轉換控制電路所對應的該直流轉換器的該輸出端為導通;若判斷該些轉換控制電路能根據該至少一指令穩壓該些太陽能模組的該些輸出電壓,控制該些轉換控制電路進入該最大功率點追蹤模式;在該最大功率點追蹤模式中,若該逆變器的一工作功率大於一最低工作功率臨界值,控制該逆變器維持在該工作模式;以及 若該逆變器的該工作功率不大於該最低工作功率臨界值,執行該關機程序。The control method of claim 8, further comprising: if the potential difference of the DC voltage is not adjusted to the preset power generation potential difference, performing the shutdown procedure; if the potential difference of the DC voltage is adjusted to the preset power generation potential difference Controlling the inverter to enter an operating mode, and controlling the switching control circuits to enter the voltage stabilizing mode; in the voltage stabilizing mode, determining whether the switching control circuits can stabilize each of the plurality of instructions according to at least one instruction An output voltage of the solar module; if a second conversion control circuit of the conversion control circuits is unable to perform the shutdown process or the second according to the output voltage of the solar module corresponding to the at least one command voltage regulation The switching control circuit is set to a bypass operation mode, in which the output end of the DC converter corresponding to the second conversion control circuit is turned on; if it is determined that the conversion control circuits can be based on the at least one instruction Regulating the output voltages of the solar modules to control the conversion control circuits to enter the maximum power point tracking mode; In the power point tracking mode, if an operating power of the inverter is greater than a minimum operating power threshold, controlling the inverter to maintain the operating mode; If the operating power of the inverter is not greater than the minimum operating power threshold, the shutdown procedure is performed. 如請求項9所述之控制方法,更包括:在該逆變器的該工作功率低於該最低工作功率臨界值時、該些直流轉換器的其中之一的輸出電壓大於一輸出電壓臨界值時、或者該逆變器的工作電壓異常時,執行該關機程序;在該關機程序中,控制該些轉換控制電路進入至該穩壓模式,接著控制該些轉換控制電路進入該脈衝寬度調變模式以將該些直流轉換器的該輸出電壓調整為零;在該關機程序中,在該逆變器釋放電量以後將該逆變器從該工作模式切換至該確認模式。The control method of claim 9, further comprising: when the operating power of the inverter is lower than the minimum operating power threshold, the output voltage of one of the DC converters is greater than an output voltage threshold And when the operating voltage of the inverter is abnormal, performing the shutdown procedure; in the shutdown procedure, controlling the conversion control circuits to enter the voltage stabilization mode, and then controlling the conversion control circuits to enter the pulse width modulation The mode is to adjust the output voltage of the DC converters to zero; in the shutdown procedure, the inverter is switched from the operating mode to the confirmation mode after the inverter releases the power.
TW103142871A 2014-12-09 2014-12-09 Distributed solar power system and controlling method thereof TWI514714B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW103142871A TWI514714B (en) 2014-12-09 2014-12-09 Distributed solar power system and controlling method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW103142871A TWI514714B (en) 2014-12-09 2014-12-09 Distributed solar power system and controlling method thereof

Publications (2)

Publication Number Publication Date
TWI514714B true TWI514714B (en) 2015-12-21
TW201622287A TW201622287A (en) 2016-06-16

Family

ID=55407913

Family Applications (1)

Application Number Title Priority Date Filing Date
TW103142871A TWI514714B (en) 2014-12-09 2014-12-09 Distributed solar power system and controlling method thereof

Country Status (1)

Country Link
TW (1) TWI514714B (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090283129A1 (en) * 2008-05-14 2009-11-19 National Semiconductor Corporation System and method for an array of intelligent inverters
TW201009534A (en) * 2008-05-14 2010-03-01 Nat Semiconductor Corp Method and system for selecting between centralized and distributed maximum power point tracking in an energy generating system
TW201013359A (en) * 2008-05-14 2010-04-01 Nat Semiconductor Corp Method and system for providing local converters to provide maximum power point tracking in an energy generating system
TW201100995A (en) * 2009-06-30 2011-01-01 Univ Nat Cheng Kung Maximum power tracking system and tracking method for solar cell
TW201306435A (en) * 2011-07-21 2013-02-01 Univ Nat Cheng Kung Photovoltaic power apparatus and photovoltaic power system
CN102013692B (en) * 2009-09-04 2013-06-05 中海阳新能源电力股份有限公司 Solar energy generating system and control method of header box thereof
CN103457303A (en) * 2012-05-30 2013-12-18 台达电子工业股份有限公司 Solar power generation system with power generation module and output power control method of solar power generation system
CN203406827U (en) * 2013-08-31 2014-01-22 深圳先进储能材料国家工程研究中心有限公司 Dual-mode solar photovoltaic power generation device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090283129A1 (en) * 2008-05-14 2009-11-19 National Semiconductor Corporation System and method for an array of intelligent inverters
TW201009534A (en) * 2008-05-14 2010-03-01 Nat Semiconductor Corp Method and system for selecting between centralized and distributed maximum power point tracking in an energy generating system
TW201013359A (en) * 2008-05-14 2010-04-01 Nat Semiconductor Corp Method and system for providing local converters to provide maximum power point tracking in an energy generating system
TW201100995A (en) * 2009-06-30 2011-01-01 Univ Nat Cheng Kung Maximum power tracking system and tracking method for solar cell
CN102013692B (en) * 2009-09-04 2013-06-05 中海阳新能源电力股份有限公司 Solar energy generating system and control method of header box thereof
TW201306435A (en) * 2011-07-21 2013-02-01 Univ Nat Cheng Kung Photovoltaic power apparatus and photovoltaic power system
CN103457303A (en) * 2012-05-30 2013-12-18 台达电子工业股份有限公司 Solar power generation system with power generation module and output power control method of solar power generation system
CN203406827U (en) * 2013-08-31 2014-01-22 深圳先进储能材料国家工程研究中心有限公司 Dual-mode solar photovoltaic power generation device

Also Published As

Publication number Publication date
TW201622287A (en) 2016-06-16

Similar Documents

Publication Publication Date Title
CN104713176B (en) Photovoltaic air conditioning system and control method thereof
US20180342874A1 (en) Device and Method for Global Maximum Power Point Tracking
TWI548192B (en) Inverter apparatus and control method thereof
US8139382B2 (en) System and method for integrating local maximum power point tracking into an energy generating system having centralized maximum power point tracking
CN203586455U (en) Photovoltaic air conditioning system
US20150115714A1 (en) Method and system for powering a load
JP6105733B2 (en) Solar energy utilization system
JP5349688B2 (en) Grid-connected inverter
JP6566355B2 (en) Power converter
CN104104112A (en) MPPT control method for photovoltaic grid-connected inverter of two-stage topology
TWI514714B (en) Distributed solar power system and controlling method thereof
JP2019144953A (en) Solar cell control system
Pichlík et al. Converter regulation of stand-alone photovoltaic system at low solar radiation
CN113746170A (en) Energy storage system and off-grid overload protection method thereof
JP6907796B2 (en) Power generation system
KR101305634B1 (en) Photovoltaic power generation system and control method thereof
JP5922438B2 (en) Photovoltaic power generation system, control method therefor, and voltage control unit
KR101349479B1 (en) Photovoltaic power generation system and control method thereof
CN111800085A (en) Photovoltaic system PID effect repairing method and device and photovoltaic system
JP5837454B2 (en) Control device
JP6197700B2 (en) Power converter
JP2015154517A (en) PV power conditioner
CN111969945B (en) quasi-MPPT novel photovoltaic panel tracking method, equipment and storage medium
KR101360539B1 (en) Photovoltaic power generation system and control method thereof
TWI674724B (en) Power generation system and boost unit

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees