TW201100995A - Maximum power tracking system and tracking method for solar cell - Google Patents

Maximum power tracking system and tracking method for solar cell Download PDF

Info

Publication number
TW201100995A
TW201100995A TW98122016A TW98122016A TW201100995A TW 201100995 A TW201100995 A TW 201100995A TW 98122016 A TW98122016 A TW 98122016A TW 98122016 A TW98122016 A TW 98122016A TW 201100995 A TW201100995 A TW 201100995A
Authority
TW
Taiwan
Prior art keywords
pulse width
solar cell
output
power
new
Prior art date
Application number
TW98122016A
Other languages
Chinese (zh)
Other versions
TWI409611B (en
Inventor
Ru-Min Zhao
Shi-Hong Ke
Tai-Sheng Li
Fu-Sheng Bai
Original Assignee
Univ Nat Cheng Kung
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ Nat Cheng Kung filed Critical Univ Nat Cheng Kung
Priority to TW98122016A priority Critical patent/TWI409611B/en
Publication of TW201100995A publication Critical patent/TW201100995A/en
Application granted granted Critical
Publication of TWI409611B publication Critical patent/TWI409611B/en

Links

Landscapes

  • Control Of Electrical Variables (AREA)

Abstract

Disclosed is a maximum power tracking system and tracking method for solar cell, suitable for transmitting an output power of solar cell to a load, wherein the maximum power tracking system for solar cell including: a conversion unit electrically connecting between the solar cell and the load, a measuring unit for measuring an output voltage and output current, and a control unit for controlling the conversion unit according to the measuring result of the measuring unit. By utilization of a low pass filter of the measuring unit and a digital low pass filter of the control unit to filter noises and average the data, and a binomial extreme value for tracking and cooperating with a novel pulse-width ratio modulation method, thereby reducing computation load of the control unit, greatly improving the performance of a controller, preventing noises from interfering the tracking processes, speeding up the tracking speed, and enhancing the tracking efficiency of the maximum tracking power.

Description

201100995 六、發明說明: 【發明所屬之技術領域】 本發明是有關於一種追蹤系統,特別是指—種追蹤太 ~能電池之最大輸出功率的追縱系統。 【先前技術】 Ο201100995 VI. Description of the Invention: [Technical Field] The present invention relates to a tracking system, and more particularly to a tracking system for tracking the maximum output power of a battery. [Prior Art] Ο

未來能源之應用主要是以能夠減少環境污染及提高使 用效率為主要目標,而太陽能不僅能解決部分消耗性能源 的問題,同時對環境保護也有助益。 麥閲圖 股使用太陽能電池11時,是將所述太陽 能電池11之輸出電源經由一轉換單元12降低或提升直流電 壓值並輸出至-負冑13,轉換單元12是由—控制器^輸 出之脈寬調變訊號控制,脈寬調變訊號之脈寬比改變時太 陽能電池11之輸出電流與電壓亦改變。 由於太陽能電池11的特性,在不同照度與不同溫度下 ,皆有不同的功率輸出‘點,也就是最佳工作點往往隨著周 圍曰照環境而改變’所以,為求得最佳工作點就利用上述 之脈寬調變訊號調整轉換單元12之工作週期,使用太陽能 電池U騎太陽能發電時,隨時依據環境改變而改變脈寬 調變系統之工作,轉得最A輸出功率。 其中大多數之最大功率追縱方法是直接量測太陽能電 池η之輸出電流與輸出電壓至該控制器14巾,控制器14 再執行訊號處理與追縱演笪太、、土 _ α ^ 臾鼻方法’而目前追蹤方法中,是 追縱方法之追蹤效果較佳,以下說明請同時 參閱圖2〜4,上述追蹤方法包含以下步驟·· 3 201100995 (A) 設定三初始之脈寬調變訊妒, 號之脈寬比由小而大依序為第_第"〃 Γ、調變訊 、D2、D3); 、第二、第三脈寬比(D1 (B) 分別量取太陽能電池u於第一 '第二 寬比下之輸出電流與輸出電壓值,並計算出 -:; 分別於第一、第二、第三脈寬比下之輸出功率, 為第-、第二、第三輸出功率(P1、P2、p”; " (C) 利用上述三個輸出功率與脈寬比的工The application of future energy is mainly aimed at reducing environmental pollution and improving the efficiency of use. Solar energy can not only solve some of the problems of consumable energy, but also contribute to environmental protection. When the solar cell 11 is used, the output power of the solar cell 11 is reduced or boosted by a conversion unit 12 and output to the -negative voltage, and the conversion unit 12 is output by the controller. The pulse width modulation signal control changes the output current and voltage of the solar cell 11 when the pulse width ratio of the pulse width modulation signal changes. Due to the characteristics of the solar cell 11, there are different power output 'points at different illuminances and different temperatures, that is, the optimal working point often changes with the surrounding environment. Therefore, in order to find the best working point By using the above-mentioned pulse width modulation signal to adjust the duty cycle of the conversion unit 12, when the solar battery U is used to ride solar power, the operation of the pulse width modulation system is changed according to the environmental change, and the most A output power is converted. Most of the maximum power tracking methods are to directly measure the output current and output voltage of the solar cell η to the controller 14 towel, and the controller 14 performs signal processing and tracking, and the soil _ α ^ 臾 nose Method 'In the current tracking method, the tracking effect of the tracking method is better. Please refer to Figure 2~4 for the following description. The above tracking method includes the following steps. · 3 201100995 (A) Set three initial pulse width modulation妒, the pulse width ratio of the number is small and large in order to the first _th " 〃 Γ, modulation, D2, D3); second, third pulse width ratio (D1 (B) respectively measure solar cells u the output current and the output voltage value at the first 'second width ratio, and calculate the output power of -:; respectively at the first, second, and third pulse width ratios, which are -, second, and Three output power (P1, P2, p"; " (C) using the above three output power and pulse width ratio

Pli、(D2,P2)、(D3,P3)帶人二項次極值追蹤方法中,求取 出一最大之功率與對應之脈寬比(newDnew杓。 (D) 將上述四工作點中,輪出功率最低之工作 m川刪除’以另三工作點帶入步驟c中,求取另一最大 輸出功率,直到求出之最大輸出功率與原最大輸出功率之 差值小於-定之誤差(如1% ),就求出最大之輸出功率。 (E) 如果第一、第二、第三輸出功率是如圖3所示之 依序遞增時,也就是三組量測脈寬比可能同時位於最大功 率點之左側時,就進行脈寬比操作點調變(PWM Duty 而將將三組操作點同時向右移動△〇,使得第二輸 出功率為最大功率數據⑺<P2且p2>p3),再進行步驟 /、步驟D,直到最大之輸出功率收斂為止。如果第一、第 一第二輸出功率是依序遞減時,其操作點往左調變方式 大致相同,以下不再多做說明。 但上述硬體設備與方法在應用上仍有若干不足之處·· J如所使用之硬軟體架構,對於雜訊干擾相當敏感,因而 201100995 導致追蹤結果容易發散。另外在追蹤演算過程中所採用 的Duty Shifting方法,其中的參數需要針對所使用的太陽 b板力率進行最佳化,而一旦太陽能板的輸出功率發生較 大的變化時,追蹤的效能即容易受到影響。且在實際測試 的條件下,追蹤過程由於輸出電壓與輸出電流值擷取與處 理過程花費過多時間,無法顯現實務上的需求。 【發明内容】 〇 因此,本發明之目的即在提供一種可以避免雜訊干擾 、提升追蹤效能且追蹤速度較快之太陽能電池最大功率追 蹤系統。 本發明之另一目的即在提供一種可以避免雜訊干擾、 提升追蹤效能且追蹤速度較快之太陽能電池最大功率追蹤 方法。 於是,本發明太陽能電池最大功率追蹤系統適用於傳 遞一太陽能電池之輸出電源至一負載,太陽能電池最大功 Ο 率追蹤系統包含:一電連接於所述太陽能電池與所述負載 間之轉換單元、一量測輸出電壓與輸出電流之量測單元, 及一依據量測單元之量測結果控制轉換單元之控制單元。 β亥轉換單元具有串接於所述太陽能電池與負載間之一 切換開關與一儲能元件,及一與所述負載並聯之穩壓元件 ,該切換開關受一脈寬調變訊號而觸發導通與開路,以供 儲能元件充電與放電,而改變輸出至所述負載之電壓。 該量測單元具有一量測太陽能電池之輸出電流並輸出 一電流訊號之電流感測器,及一濾除電流訊號中之雜訊的 5 201100995 低通濾波器。 該控制單元具有一接收該量測單元之電流訊號並接收 該太陽能電池之輸出電壓值的輸入介面、一濾除上述電流 訊號與輸出電壓值之雜訊的低通數位濾波器、一計算出太 陽能電池之輸出功率的控制器,及一受該控制器驅動而輸 出上述脈寬調變訊號之脈寬調變模組,該控制器演算出該 脈寬調變訊號之脈寬比與輸出功率之關係,並追蹤最大輸 出功率時該脈寬調變訊號之脈寬比。 忒光耦合單元光耦合該控制單元之脈寬調變模組並 將脈寬調變模組輸出之脈寬調變訊號以光耦合方式傳遞至 該轉換單元之切換開關。 本發明太陽能電池最大功率追蹤方法中,所述太陽能 電池之輸出電源是經由一轉換單元改變直流電壓值並輸出 至一負載,轉換單元是由一脈寬調變訊號控制,脈寬調變 訊號之脈寬比改變時太陽能電池之輸出電流與電壓亦改變 ,最大功率追蹤方法包含以下步驟: (A) 設定三初始之脈寬調變訊號,且該等脈寬調變訊 號之脈寬比由小而大依序為第一、第二、第三脈寬比,並 傳送至轉換單元; (B) 分別量取太陽能電池於第一、第二、第三脈寬比 下之輸出電流與輸出電壓值; C c)計算出太陽能電池分別於第一、第二、第三脈寬 比下之輸出功率,並分別令為第一、第二、第三輸出功率 201100995 (D)如果第一、第_ 一 取一脈寬間隔值,並八 第一輸出功率依序遞增,則求 第三脈寬比成為新第二::脈寬:成為新第-脈寬比,令 隔值成為新第三脈甯 見比’令第二脈寬比加上脈寬間 複步驟Β’· 冑比’以新第-、第二、第三脈寬比重 (Ε)如果第一、鬼一 _ Ο Ο 取-脈寬間隔值,並八;輸出功率依序遞減’則求 第一脈寬比成為新第1脈;脈寬比成為新第三脈寬比,令 隔值成為新第-脈寬’令第—脈寬比減該脈寬間 狐見比,以新第一、筮— 複步驟—、第二脈寬比重 (F)如果第二輪出 一 出功率也大於第三輸出^ 第輸出功率、且第二輸 势f电 一輸出功率,則以二項次曲線公式求取新 第寬比,並量測計算新第二輸出功率; 大於5)如/巾新第二輪出功率與原第二輸出功率間之差值 大=輸出功率之預定比例,則以新第二脈寬比帶入 一項- 人曲線公式求取另—新第二脈寬比 二輸出功率,重複步驟F;及 十算新第 ⑴如果新第二輸出功率與原第二輸出功率間之 小於新第二輸出功率夕猫m 大輪出功率。 預疋比例,則新第二輸出功率為最 本發明之功效在於利用系統中之低通遽波器與數位低 通遽波器滤除雜訊與平均數據’並以新的脈寬調變技術改 變系統最大功率追縱及收傲速度,而可減少控制器之運算 工作’大幅提昇控制器之效能,且可避免雜訊對於追礙過 7 201100995 程的干擾’加快追蹤速度,可以較短之時間到達太陽能電 池最大功率輸出點,提升整體光伏轉換效率。 【實施方式】 有關本發明之前述及其他技術内容、特點與功效,在 以下配合參考圖式之—個較佳實施例的詳細說明中,將可 清楚的呈現。 參閱圖5與® 6,本發明太陽能電池最大功率追縱系統 之較佳實施例適用於傳遞一太陽能電池4之輸出電源至— 負載5,太陽能電池最大功率追蹤系統包含:一電連接於所 述太陽能電池4與所述負載5間之轉換單元6、一量測太陽 能電池4的輸出電壓與輸出電流之量測單元7、一依據量測 翠το 7之量測、结果控制轉換單元6之控制單元8,及一將控 制單元8輸出之控制訊號傳送至該轉換單元6之光耦合單 元9。本實施例中所述負載5具有一蓄電池51與一直流馬 達52,以使本發明可運用於船隻或其他載具之動力系統中 〇 该轉換單元6具有串接於所述太陽能電池4與負載5 間一切換開關61與一儲能元件62、一與所述負載5並聯之 穩壓兀件63,及一與切換開關61與所述太陽能電池4並聯 之回路二極體64。本實施例中該切換開關61是一金屬氧化 半導場效電晶體(MOSFET),該儲能元件62是一儲能電感 ’穩壓元件63是一穩壓電容。 該切換開關61受一脈寬調變訊號而觸發導通 與開路,當切換開關61被切換而導通時,所述太陽能電池 201100995 4輸出電流經切換開關61,同時流經該儲能元件並加以 儲能,同時輸出至所述負冑5之蓄電池51充電並驅動直流 馬達52運轉。當切換開關61被切換而斷路時,所述太陽 i電Ή停止輸出電流’該儲能元件62釋放出内部之儲存 電能’使電流流至所述負載5之蓄電池51充電並驅動直流 =達52繼續運轉,且上述電流經回路二極體64流回至儲 t元件62 ’也藉由儲能元件62充電與放電過程降低或提 〇 南輸出至所述負載5之直流電麼。 忒量測單元7具有一量測太陽能電池4之輸出電流並 輸出-電流訊號之電流感測器7卜及一濾除電流訊號中之 雜訊的低通濾波器72。本實施例中該電流感測器71是一電 流轉導器(CUrrent Transducer, CT,LEM 生產之 LYi〇p) ,主要是利用霍爾效應(Hall Effeet)之電磁感應原理將所 述太陽能電池4之輪出電流轉換為電壓形式之電流訊號, 該電流感測器71非本發明之特徵以下不再多做說明。參閱 〇 目7,該低通渡波器72是-Sauen-Key主動式瀘'波平均電 路八主要疋利用傅立葉轉換將輸出電流的方波訊號取出 並予以平均„十算,以電路處理方式直接平均出平均電流值 ’以濾除兩頻雜訊。 參閱圖5與圖6 ’該控制單元8具有-接收該量測單元 7之電流訊號並同時接收該太陽能電池4之輪出電壓值的輸 入介面81、一濾除上述電流訊號與輸出電壓值之雜訊的低 通數位滤波器82、-計算出太陽能電池4之輸出功率之控 制器83及支該控制器83驅動而輸出上述脈寬調變訊號 9 201100995 之脈寬調變模組84。本實施例中該控制單元8是以美商國 家儀器公司出產之可程式化控制器模組(c〇mpact RI〇In Pli, (D2, P2), (D3, P3) with the binomial secondary extremum tracking method, find the maximum power and the corresponding pulse width ratio (newDnew杓. (D) Among the above four operating points, The work with the lowest round-off power is deleted, and the other three operating points are brought into step c to obtain another maximum output power until the difference between the maximum output power and the original maximum output power is less than -determined (eg 1%), the maximum output power is obtained. (E) If the first, second, and third output powers are sequentially incremented as shown in FIG. 3, that is, the three sets of measurement pulse width ratios may be simultaneously located. When the maximum power point is to the left, the pulse width ratio operation point modulation is performed (PWM Duty will move the three sets of operation points to the right simultaneously Δ〇, so that the second output power is the maximum power data (7) < P2 and p2 > p3) Then, step /, step D is performed until the maximum output power converges. If the first, first, and second output powers are sequentially decremented, the operating point to the left is substantially the same, and the following is not explained. However, the above hardware devices and methods still have applications. Inadequacies·· If the hardware and software architecture used is very sensitive to noise interference, 201100995 will cause the tracking results to be easily diverged. In addition, the Duty Shifting method used in the tracking calculation needs to be used for the parameters. The solar b-plate force rate is optimized, and once the output power of the solar panel changes greatly, the tracking performance is easily affected. Under the actual test conditions, the tracking process is due to the output voltage and the output current value. The process of taking and processing takes too much time to display the actual demand. [Invention] Therefore, the object of the present invention is to provide a maximum power tracking of a solar cell that can avoid noise interference, improve tracking performance, and track faster. Another object of the present invention is to provide a solar cell maximum power tracking method that can avoid noise interference, improve tracking performance, and has a faster tracking speed. Thus, the solar cell maximum power tracking system of the present invention is suitable for transmitting a solar cell. Output power to a load, too The battery maximum power rate tracking system comprises: a conversion unit electrically connected between the solar battery and the load, a measuring unit for measuring the output voltage and the output current, and a measuring result according to the measuring unit. Controlling the control unit of the conversion unit. The β-Hui conversion unit has a switching switch and an energy storage component connected in series between the solar cell and the load, and a voltage stabilizing component connected in parallel with the load, the switching switch is subjected to a pulse Widely changing the signal to trigger the conduction and the open circuit for charging and discharging the energy storage element, and changing the voltage output to the load. The measuring unit has a current sense of measuring the output current of the solar battery and outputting a current signal. The detector, and a 5 201100995 low-pass filter that filters out noise in the current signal. The control unit has an input interface for receiving the current signal of the measuring unit and receiving the output voltage value of the solar cell, a low-pass digital filter for filtering noise of the current signal and the output voltage value, and a solar energy calculation a controller for outputting power of the battery, and a pulse width modulation module driven by the controller to output the pulse width modulation signal, wherein the controller calculates a pulse width ratio and an output power of the pulse width modulation signal Relationship and track the pulse width ratio of the pulse width modulation signal at the maximum output power. The light-coupled coupling unit optically couples the pulse width modulation module of the control unit and transmits the pulse width modulation signal outputted by the pulse width modulation module to the switch of the conversion unit in an optical coupling manner. In the solar cell maximum power tracking method of the present invention, the output power of the solar cell is changed by a conversion unit and outputted to a load, and the conversion unit is controlled by a pulse width modulation signal, and the pulse width modulation signal is used. When the pulse width ratio changes, the output current and voltage of the solar cell also change. The maximum power tracking method includes the following steps: (A) setting three initial pulse width modulation signals, and the pulse width ratio of the pulse width modulation signals is small. The large order is the first, second, and third pulse width ratios, and is transmitted to the conversion unit; (B) respectively measuring the output current and output voltage of the solar cell at the first, second, and third pulse width ratios Value; C c) calculate the output power of the solar cell at the first, second, and third pulse width ratios, and respectively make the first, second, and third output powers 201100995 (D) if the first, the first _ Take a pulse width interval value, and the first output power of the eight is sequentially increased, then the third pulse width ratio becomes the new second:: Pulse width: becomes the new first-pulse width ratio, so that the interval becomes the new third Ning Ning sees 'the second pulse More than the pulse width between the steps Β '· 胄 ' ' with the new first, second, third pulse width (Ε) if the first, ghost one _ Ο 取 take - pulse width interval value, and eight; output The power is sequentially decreased by 'the first pulse width ratio becomes the new first pulse; the pulse width ratio becomes the new third pulse width ratio, so that the interval becomes the new first-pulse width', the first-pulse width ratio is reduced between the pulse widths Fox sees the ratio, the new first, the 筮-re-step - the second pulse width (F) if the second round of output power is also greater than the third output ^ the output power, and the second transmission f electricity one output For power, the new aspect ratio is obtained by the second-order curve formula, and the new second output power is calculated and calculated; greater than 5) if the difference between the new second round output power and the original second output power is larger = The predetermined ratio of the output power is taken in a new second pulse width ratio - a human curve formula to obtain another - new second pulse width ratio two output power, repeating step F; and ten counting new (1) if new second The output power is less than the new second output power between the output power and the original second output power. Pre-ratio, the new second output power is the most effective in the invention. It uses the low-pass chopper and digital low-pass chopper in the system to filter out the noise and average data' and adopts the new pulse width modulation technology. Change the system's maximum power tracking and arrogance speed, and reduce the controller's computing work's greatly improve the performance of the controller, and can avoid the interference of noise to track the process of 201110995. Time reaches the maximum power output point of the solar cell, improving the overall photovoltaic conversion efficiency. The above and other technical contents, features, and advantages of the present invention will be apparent from the following detailed description of the preferred embodiments. Referring to Figures 5 and 6, a preferred embodiment of the solar cell maximum power tracking system of the present invention is adapted to deliver an output power of a solar cell 4 to a load 5, the solar cell maximum power tracking system comprising: an electrical connection to the a conversion unit 6 between the solar cell 4 and the load 5, a measurement unit 7 for measuring the output voltage and output current of the solar cell 4, a measurement according to the measurement amount, and a result control control unit 6 The unit 8, and a control signal output from the control unit 8 are transmitted to the optical coupling unit 9 of the conversion unit 6. In the embodiment, the load 5 has a battery 51 and a DC motor 52, so that the present invention can be applied to a power system of a ship or other vehicle. The conversion unit 6 has a series connection with the solar battery 4 and the load. 5 switchgear 61 and an energy storage component 62, a voltage regulator element 63 connected in parallel with the load 5, and a circuit diode 64 connected in parallel with the solar cell 4 of the changeover switch 61. In this embodiment, the switch 61 is a metal oxide semi-conductive field effect transistor (MOSFET), and the energy storage element 62 is a storage inductor. The voltage regulator element 63 is a voltage stabilizing capacitor. The switch 61 is triggered to be turned on and off by a pulse width modulation signal. When the switch 61 is switched and turned on, the solar cell 201100995 4 outputs current through the switch 61 while flowing through the energy storage element and storing The battery 51 outputted to the negative cymbal 5 at the same time is charged and drives the DC motor 52 to operate. When the switch 61 is switched to be open, the solar cell stops outputting current 'the energy storage element 62 releases the internal stored power' to charge the battery 51 to the load 5 and drive the DC = 52 The operation continues, and the current flows back to the t-storage element 62' via the return diode 64. Also, the charge and discharge process of the energy storage element 62 reduces or boosts the direct current output to the load 5. The measurement unit 7 has a current sensor 7 for measuring the output current of the solar cell 4 and outputting a current signal, and a low pass filter 72 for filtering out the noise in the current signal. In this embodiment, the current sensor 71 is a current transducer (CUrrent Transducer, CT, LYi〇p produced by LEM), and the solar cell 4 is mainly used by the Hall Effeet electromagnetic induction principle. The current output of the wheel is converted into a current signal in the form of a voltage. The current sensor 71 is not described in the following description of the present invention. Referring to Item 7, the low-pass waver 72 is a -Sauen-Key active 泸'wave averaging circuit. The main 疋 疋 傅 疋 疋 疋 疋 傅 傅 取出 取出 取出 取出 取出 取出 取出 取出 取出 取出 取出 取出 取出 取出 取出 取出 取出 取出 取出 取出 取出 取出 取出 取出 取出 取出 取出 取出 取出 取出 取出 取出The average current value is used to filter out the two-frequency noise. Referring to FIG. 5 and FIG. 6 'The control unit 8 has an input interface for receiving the current signal of the measuring unit 7 and simultaneously receiving the voltage of the solar cell 4 81. A low-pass digital filter 82 for filtering noise of the current signal and the output voltage value, a controller 83 for calculating the output power of the solar battery 4, and a controller 83 for driving to output the pulse width modulation. The signal width modulation module 84 of the signal 9 201100995. In the embodiment, the control unit 8 is a programmable controller module (c〇mpact RI〇) produced by the American National Instruments Corporation.

ReC〇nfigurable I/O)實施,但實施範圍不以控制單元8之型 式為限。 該輸入介面81接收該量測單元7之低通濾波器72輸 出之電流訊號,同時接收所述太陽能電池4之輸出電壓, 由於該轉換單元6是以脈寬調變訊號控制,且電流訊號也 已經低通濾波器72取得平均值,但輸入介面81擷取之電 壓與電流訊號仍具有雜訊,為了確保功率量測的訊號品質 ,该輸入介面81將電壓訊號與電流訊號擷取進來後,還是 需要經過該低通數位濾波器82進行基本的訊號處理。該輸 入介面81是以cri〇-9221模組實施。 本實施例中該低通數位濾波器82是以一可程式閘陣列 日曰片(FPGA )組成,且内部寫入Butterworth四階低通數位 濾波的程式,使其具有Butterw〇nh四階低通數位濾波器Μ 的功能,以將電壓訊號與電流訊號進行數位濾波,致使求 取出之輸出功率更加穩定’圖8與圖9是量測27瓦之太陽 能電池時,電壓訊號與電流訊號分別經過低通數位濾波器 82處理前與處理後所計算出之輸出功率’由上述二圖比較 即可瞭解經過處理之訊號穩定性更佳。 ^忒控制器83演算出該脈寬調變訊號之脈寬比與輸出功 率之關係’並演算追蹤最大輸出功率與該脈寬調變訊號之 脈寬比。本實施例中該控制器83是—可即時運算之處理器 (cRI〇-9〇〇2) 〇 10 201100995 該脈寬調變模組84受該控制器83之驅動而輸出不同 脈寬比之脈寬調變訊號至該轉換單元6之切換開關61,以 驅動切換開關61導通或斷路。 該光耦合單元9光耦合該脈寬調變模組84,並接收該 脈寬調變模組84輪出之脈寬調變訊號並傳遞至該 6之切換開關61,本實施例中該光耦合單元9是採用 Toshiba所生產之TLp25〇光耦合器。該光耦合單元9之主 ❹ I功用在於疋利用光耦合方式減少共地效應可能造成的 擾。 藉此,藉由該量測單元7之低通濾波器72與控制單元 8之低通數位濾波器82,以減低所述太陽能電池*之輸出 電流與輸出電壓之訊號雜訊,使該控制單元8之控制器Μ 的功能單純化,而可專注於執行追蹤最大功率之演算過程 ,提升演算效率,而可於曰照環境改變時,可以較短之時 間到達太陽能電池4最大功率輸出點,提升整體光伏轉換 D 效率。 、 參閱圖5、圖6與圖1〇,以下繼續說明本發明太陽能 電池4之最大功率追蹤方法之最佳實施例,該追蹤方法包 含以下步驟: 〇 (Α)設定三初始之脈寬調變訊號,且該等脈寬調變訊 號之脈寬比由小而大依序為第―、第三、第三脈寬比 、D2、D3),並以光麵合方式將第一、第二、第三脈寬比之 脈寬調變訊號傳送至轉換單元6。 (B)分別量取太陽能電池4於第一、第二、 11 201100995 輪出電流與輸出電壓值’並於取得電流值後,以該 :波H 72分職除第…第二、第三脈寬比下之各輸 出電^的雜訊。本實施例中取得電流值後是以—㈣⑶-一 主動式據波平均電路分別平均出第―、第二、第三比 :之各輸出電流的平均值,Φ即藉由取平均值方式,遽除 尚頻雜訊。 (c)以低通數位濾波器82濾除輸出電壓 流之平均值内之高頻雜訊。本實施例是以一細㈣⑽四 階低通數㈣波H 82濾、除輸出電隸與輸㈣流之平均值 内之局頻雜訊。 (D) 計算出太陽能電池4分別於第一、第二、第三脈 寬比(D1、D2、D3)下之輸出功率,並分別令為第一、第 二、第三輸出功率(p i、P2、p3 ); (E) 判斷第二輸出功率是否大於第一輸出功率、同時 大於第三輸出功率(P1<P2且p2>p3),如是則至步驟Η ’如否則進行步驟F或步驟G。 (F) 參閱圖10與圖u,如果第一、第二、第三輸出 功率依序遞增(P1<P2<P3),則求取_脈寬間隔值(^) ,並令第二脈寬比成為新第一脈寬比(newDl = D2 ),令第 二脈寬比成為新第二脈寬比(newD2 = D3 ),令第三脈寬比 加上一脈寬間隔值成為新第三脈寬比(newD3二D3 + △ D ), 以新第一、第二 '第三脈寬比重複步驟B,本實施例中該脈 寬間隔值是該原第三脈寬比與原第一脈寬比之差值 D3-D1),也就是如圖11中之箭頭所示地將最左側之點往右 12 201100995 移到P3之右側。 (G) 參閱圖1〇與圖12,如果第一、第二、第三輸出 功率依序遞減(P1>P2>P3),則求取一脈寬間隔值(Δ〇) ’並令第一脈寬比成為新第三脈寬卜匕(newD3 = ,令第 -脈寬比成為新第二脈寬比(newD2=Di),令第一脈寬比 減該脈寬間隔值成為新第—脈寬比(newDi = Di_AD),以ReC〇nfigurable I/O) is implemented, but the scope of implementation is not limited to the type of control unit 8. The input interface 81 receives the current signal output by the low pass filter 72 of the measuring unit 7, and simultaneously receives the output voltage of the solar cell 4, since the conversion unit 6 is controlled by a pulse width modulation signal, and the current signal is also The average value of the low-pass filter 72 has been obtained, but the voltage and current signals captured by the input interface 81 still have noise. To ensure the signal quality of the power measurement, the input interface 81 extracts the voltage signal and the current signal. Basic signal processing is still required via the low pass digital filter 82. The input interface 81 is implemented as a cri〇-9221 module. In the embodiment, the low-pass digital filter 82 is composed of a programmable gate array (FPGA) and internally written by Butterworth's fourth-order low-pass digital filtering to have a Butterw〇nh fourth-order low-pass. The function of the digital filter , is to digitally filter the voltage signal and the current signal, so that the output power to be taken out is more stable. Figure 8 and Figure 9 show that the voltage signal and the current signal are low when measuring the 27 watt solar cell. By comparing the output power calculated before and after processing by the bit filter 82, it can be understood that the processed signal is more stable by comparison with the above two figures. The controller 83 calculates the relationship between the pulse width ratio of the pulse width modulation signal and the output power and calculates the ratio of the maximum output power to the pulse width modulation signal. In this embodiment, the controller 83 is a processor capable of real-time operation (cRI〇-9〇〇2) 〇10 201100995. The pulse width modulation module 84 is driven by the controller 83 to output different pulse width ratios. The pulse width modulation signal is sent to the switch 61 of the conversion unit 6 to drive the switch 61 to be turned on or off. The light coupling unit 9 is optically coupled to the pulse width modulation module 84, and receives the pulse width modulation signal that is rotated by the pulse width modulation module 84 and is transmitted to the switch switch 61. In the embodiment, the light is The coupling unit 9 is a TLp25 diaphragm coupler manufactured by Toshiba. The main function of the optical coupling unit 9 is to reduce the interference caused by the common ground effect by means of optical coupling. Thereby, the control unit is reduced by the low-pass filter 72 of the measuring unit 7 and the low-pass digital filter 82 of the control unit 8 to reduce the signal noise of the output current and the output voltage of the solar cell*. The controller of 8 is simplistic, and can focus on performing the calculation process of tracking the maximum power, improving the calculation efficiency, and reaching the maximum power output point of the solar cell 4 in a shorter time when the environment is changed. Overall PV conversion D efficiency. Referring to FIG. 5, FIG. 6, and FIG. 1 , a preferred embodiment of the maximum power tracking method for the solar cell 4 of the present invention will be further described below. The tracking method includes the following steps: 〇 (Α) setting three initial pulse width modulations Signal, and the pulse width ratio of the pulse width modulation signals is small, and the order is the first, third, and third pulse width ratios, D2, D3), and the first and second are performed in a glossy manner. The pulse width modulation signal of the third pulse width ratio is transmitted to the conversion unit 6. (B) separately measure the current and output voltage value of the solar cell 4 in the first, second, and 11 201100995 and after obtaining the current value, the wave: H 72 is divided into the second and third pulses. The noise of each output power under the width ratio. In the present embodiment, after obtaining the current value, the average value of each of the output currents of the first, second, and third ratios is averaged by the -(4)(3)-active magnetic averaging circuit, and Φ is averaged. Eliminate the frequency noise. (c) Filtering high frequency noise within the average of the output voltage stream with low pass digital filter 82. In this embodiment, a fine (four) (10) fourth-order low-pass (four)-wave H 82 filter is used, except for the local frequency noise in the average of the output electric and output (four) flows. (D) Calculating the output power of the solar cell 4 under the first, second, and third pulse width ratios (D1, D2, and D3), respectively, and making the first, second, and third output powers (pi, respectively) P2, p3); (E) determining whether the second output power is greater than the first output power and greater than the third output power (P1 < P2 and p2 > p3), if yes, proceeding to step Η 'if otherwise proceeding to step F or step G . (F) Referring to FIG. 10 and FIG. 9 , if the first, second, and third output powers are sequentially incremented (P1 < P2 < P3), the _ pulse width interval value (^) is obtained, and the second pulse width is obtained. The ratio becomes the new first pulse width ratio (newDl = D2), making the second pulse width ratio the new second pulse width ratio (newD2 = D3), making the third pulse width ratio plus a pulse width interval value the new third The pulse width ratio (newD3 two D3 + Δ D ), repeating step B with the new first and second 'third pulse width ratios. In this embodiment, the pulse width interval value is the original third pulse width ratio and the original first The difference in pulse width ratio D3-D1), that is, the leftmost point to the right 12 201100995 to the right of P3 as indicated by the arrow in FIG. (G) Referring to FIG. 1A and FIG. 12, if the first, second, and third output powers are sequentially decreased (P1 > P2 > P3), a pulse width interval value (Δ〇) is obtained and the first The pulse width ratio becomes the new third pulse width divination (newD3 = , so that the first-pulse width ratio becomes the new second pulse width ratio (newD2=Di), so that the first pulse width ratio minus the pulse width interval value becomes the new first- Pulse width ratio (newDi = Di_AD) to

新第 '第一、第二脈寬比重複步驟B,也就是如圖12中 之箭頭所示地將最右侧之點往左移到ρι之左侧。 (H) 如果第_輸出功率大於第—輸出功率、且第二輸 出力率也大於第二輸出功率(ρι<ρ2纟Μ〉”),則以二 曲線a式求取新第二脈寬比(_叫,並量測計算新 第一輸出功率(newP2 )。 如果新第二輸出功率與原第二輸出功率 -Jl· ^ ,,,,、1、不一调山切千间I左值 二輸出功率之預定比例(newP2_P2>1%膽 二脈寬比,«^4’|項次曲線公式求取另一新第 施例中,該新第一浐出苐一輸出功率’重複步驟卜本實 與新第二輪出二::::原第二輸出功率間之紐 ),則新第二輪屮# “ P2< 1% xnewP2 為最大輸出d於:敲’新第二輪出功率數值 之脈寬調變訊坷弟一脈寬比(newD2) 维持於最大輪:功草該轉換單元6運作’使太陽能電池4 :出功率’提升太陽能電池4之輸。 13 201100995 Β ’以隨時應變不 功率’提升輸出效 ’但實際實施時可 (K)等待30秒後,重新執行步驟 同曰照環境變化,求出當時之最大輸出 率。本實施例是以等待30秒為例做說明 依據^時之日照狀況調整設定等待時間。 以下續針對本發明功率追蹤系統與方法進行測試,測 試過程中是以-可程式化的電源供應器模擬㈣胃^ & 受日照時之輸出電壓與電流變化,上述可程式化的電源供 應器是採用 Agilent E4351B s〇lar 〜si_〇r ^㈣, 並以可程式化的電源供應器分別模擬18瓦、27瓦與利瓦 三種不同輸出功率之太陽能電池4。 ' /於模擬18瓦太陽能電池4之測試過程中是以習知追縱 糸統配合習知追蹤方法、本發明之追縱系統配合習知追礙The new 'first and second pulse width ratios' repeat step B, that is, the rightmost point is shifted to the left to the left of ρι as indicated by the arrow in FIG. (H) If the _th output power is greater than the first-output power and the second output force rate is greater than the second output power (ρι<ρ2纟Μ>"), the new second pulse width ratio is obtained by the two-curve a formula (_call, and measure the new first output power (newP2). If the new second output power and the original second output power -Jl· ^, ,,, 1, do not adjust the mountain cut thousands of I left value The predetermined ratio of the two output powers (newP2_P2>1% biliary pulse width ratio, «^4'|term curve formula is obtained in another new embodiment, the new first output 输出 output power 'repetition step With the new second round out of the second:::: the original second output power between the new), then the new second round 屮 # " P2 < 1% xnewP2 for the maximum output d: knock 'new second round of power output value The pulse width modulation is a pulse width ratio (newD2) maintained at the maximum round: the grass conversion unit 6 operates 'to make solar cell 4: output power' to increase the loss of solar cell 4. 13 201100995 Β ' Power 'improve the output effect', but in actual implementation, you can wait for 30 seconds after (K), re-execute the steps and take the environmental changes, The maximum output rate at that time is the same. This embodiment is to wait for 30 seconds as an example to explain the setting of the waiting time according to the sunshine condition of the time. The following continues to test the power tracking system and method of the present invention, and the test process is - Stylized power supply simulation (4) stomach ^ & changes in output voltage and current during sunlight, the above programmable power supply is Agilent E4351B s〇lar ~si_〇r ^ (4), and can be programmed The power supply simulates three solar cells of different output powers of 18 watts, 27 watts and Liwa. 4 / In the test of the simulated 18 watt solar battery 4, the conventional tracking method is used in accordance with the conventional tracking method. The tracking system of the present invention cooperates with the conventional knowledge

方法,及本發明之追縱系統配合本發明之追縱方法等三個 比較例實施比較,且合g丨丨jtM. r~ r±L ^ 刀別δ己錄反應過程時間與反應數據, 果H13、目14與圖15 ’由上面三個測試比較例的結 果可以發現,本發明最大功率追蹤系統與習知例之最大追 縱系統比較(圖13與圖14社罢 〃圖14果比較)’追蹤穩定性大幅地 使得在追縱技術上減少—半的次數(㈣, 需:時間也由職邮減少至彻阳,在時間上的精簡, =明顯。另-方面’習知例之最大追縱方法由於在 用固定的擾動量,故當太陽能板的最大輸出功 2二夺自演算法追蹒的效果即跟著變差。而採用本發明 2 =方法之後(圖15之結果),可以發現演算結 果在1始即迅速向最大功率操作點_,其追 14 201100995 度增加,可以較短之時間到達太陽能電池4最大功率輸出 點,提升整體光伏轉換效率。 β圖16與圖17是追蹤模擬27瓦之過程,圖18與圖19 是f蹤模擬5G瓦之太陽能電池4之測試過程,上述二過程 中疋以本發明之追縱系統配合習知追縱方法,及本發明之 =蹤系統配合本發明之追蹤方法兩個比較例測試比較,且 分別記錄反應過程時間與反應數據。由上述之數據圖可發 Ο ❹ 現,以本發明最大出功率追蹤方法實施時(圖17與圖19 之測試結果),追縱時間並不隨著太陽能板最大輸出功率增 加,且大體而言不論太陽能板的輸出功率是多少、,都只^ 要約20次的功率量測及追蹤演算,追蹤時間約為毫秒 ’即可到達太陽能電池4最大功率輸出點,提升整體光伏 轉換效率。 最後,針對當太陽能板輸出功率發生變動的情況進行 實^如圖20,-開始我們先令可程式化的電源供應器模 撻輪出卿,之後再切換至27W輸出,然後切換回卿的 輪出。由圖20之數據圖可瞭解每次變換所耗費的追 僅需要230〜26〇ms,證明本發明追縱系統與追縱方法不 因功率改變而影響追蹤速度。 經由上述之說明與各比較例之實驗數據可清楚看出 =明最大功率追蹤系統與方法配合時,可大幅降低雜訊 ^系統之影響,也藉由低通較器72與數位低職波器^ 4除雜讯與平均數據,而可減少控制器83之運w 幅提昇控制器83之效能,可以較短之時間到達=電: 15 201100995 4最大功率輸出點,提升整體光伏轉換效率。故確實能達成 本發明之目的。 惟以上所述者,僅為本發明之較佳實施例而已,當不 能以此限定本發明實施之範圍,即大凡依本發明申請專利 範圍及發明說明内容所作之簡單的等效變化與修飾,皆仍 屬本發明專利涵蓋之範圍内。 【圖式簡單說明】 圖1是習知太陽能電池最大功率追蹤系統之方塊示意The method and the tracking system of the present invention are compared with the three comparison examples of the tracking method of the present invention, and the time and reaction data of the reaction process are combined with g丨丨jtM.r~r±L^. H13, Item 14 and Figure 15 'By comparing the results of the above three test comparison examples, it can be found that the maximum power tracking system of the present invention is compared with the maximum tracking system of the conventional example (Fig. 13 and Fig. 14 compare with Fig. 14) 'Trace stability greatly reduces the number of times in tracking technology - half (4), need: time is also reduced from post to post to the sun, in the streamlined time, = obvious. Another - aspect of the largest example Since the tracking method uses a fixed amount of disturbance, the effect of the maximum output power of the solar panel is two, and the effect of tracking the algorithm is followed by the deterioration. However, after the method of the invention 2 = (the result of Fig. 15), it can be found The calculation result is quickly increased to the maximum power operation point _, which increases by 201100995 degrees, and can reach the maximum power output point of the solar cell 4 in a short time, improving the overall photovoltaic conversion efficiency. β Figure 16 and Figure 17 are tracking simulations. 27 watts 18 and FIG. 19 are the test procedures of the solar cell 4 simulating 5G watts. In the above two processes, the tracking system of the present invention is combined with the conventional tracking method, and the tracking system of the present invention cooperates with the present invention. The tracking method compares the two comparative examples and records the reaction process time and the reaction data separately. The above data graph can be used to realize the implementation of the maximum power tracking method of the present invention (the test results of Figs. 17 and 19). The tracking time does not increase with the maximum output power of the solar panel, and generally, regardless of the output power of the solar panel, only about 20 power measurements and tracking calculations are required, and the tracking time is about milliseconds. The maximum power output point of the solar cell 4 can be reached to improve the overall photovoltaic conversion efficiency. Finally, for the case where the output power of the solar panel changes, as shown in Fig. 20, - start our stipulated programmable power supply model wheel After clearing, then switch to 27W output, then switch back to Qing's turn. From the data graph of Figure 20, you can see that the cost of each conversion only needs 230~26〇 Ms, it is proved that the tracking system and the tracking method of the present invention do not affect the tracking speed due to the power change. Through the above description and the experimental data of each comparative example, it can be clearly seen that the maximum power tracking system and the method can be greatly reduced when combined with the method. The influence of the noise system is also reduced by the low-pass comparator 72 and the digital low-level wave device 4 to reduce the noise and the average data, thereby reducing the performance of the controller 83. Time arrival = electricity: 15 201100995 4 maximum power output point, improve the overall photovoltaic conversion efficiency. Therefore, the object of the present invention can be achieved. However, the above is only the preferred embodiment of the present invention, when it is not possible The scope of the present invention is defined by the scope of the invention, and the equivalent equivalents and modifications of the present invention are still within the scope of the invention. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a block diagram of a conventional solar cell maximum power tracking system.

El · 圖, 圖2是習知太陽能電池最大功率追蹤方法設定三個不 同之脈寬比的脈寬調變訊號下,不同輸出功率的預測曲線 圖; 圖3是習知追蹤方法下執行脈寬比移位之曲線圖; 圖4是圖3中脈寬比移位後各工作點之位置圖; 圖5疋本發明太陽能電池最大功率追蹤系統之較佳實 施例的方塊示意圖; 圖6是該較佳實施例的電路示意圖; 圖7疋s亥較佳實施例的一低通濾波器之電路圖; 圖8是該較佳實施例的低通濾波器之輸入訊號曲線圖 ,說明太陽能電池之輸出電流與輪出電壓值之乘積曲線; 圖9是該較佳實施例的低通濾波器之輸出訊號曲線圖 ,說明太陽月b電池之輸出電流與輸出電壓值經過濾除雜訊 後之乘積曲線; 圖10是本發明太陽能電池最大功率追蹤方法之較佳實 16 201100995 施例的流程圖; 圖u是該較佳實施例中三個輸出功率依序遞增時其中 一工作點往右移位之曲線圖; 圖12是該較佳實施例中三個輸出功率依序遞減時其中 一工作點往左移位之曲線圖; 圖13是該較佳實施例測試過程之一比較例的測試結果 數據圖,說明以習知系統與習知方法模擬測試追蹤Μ瓦太 陽能電池之結果; ^圖14是類似於圖13之視圖,說明以本發明太陽能電 池最大功率追蹤系統之較佳實施例與習知方法模擬測試追 蹤18瓦太陽能電池之結果; …圖15是類似於圖13之視圖,說明以本發明太陽能電 池最大功率追蹤系統之較佳實施例與本發明太陽能電池最 大功率追蹤方法之較佳實施例模擬測試追蹤18瓦太陽能電 池之結果; …圖16是類似於圖13之視圖,說明以本發明太陽能電 池最大功率追㈣統之較佳實施例與習知方法模擬測試追 縱27瓦太陽能電池之結果; '圖Π是類似於圖13之視圖,說明以本發明太陽能電 池最大功率追縱系統之較佳實施例與本發明太陽能電池最 大功率追蹤方法之較佳實施例模擬測試追蹤27瓦太陽能電 池之結果; p圖18疋類似於圖13之視圖’說明以本發明太陽能電 最大力率追蹤系統之較佳實施例與習知方法模擬測試追 17 201100995 蹤50瓦太陽能電池之結果; 圖19是類似於圖13之視圖,說明以本發明太陽能電 池最大功率追縱系統之較佳實施例與本發明太陽能電池最 大功率追蹤方法之較佳實施例模擬測試追蹤5〇瓦太陽能電 池之結果;及 圖20是本發明太陽能電池最大功率追蹤系統之較佳實 施例與本發明太陽能電池最大功率追蹤方法之較佳實施例 測試不同瓦數之太陽能電池轉換之結果曲線圖。 18 201100995 【主要元件符號說明】 4 太陽能電池 7 量測單元 5 負載 71 電流感測器 51 蓄電池 72 低通滤波器 52 直流馬達 8 控制單元 6 轉換單元 81 輸入介面 61 切換開關 82 低通數位濾波器 62 儲能元件 83 控制器 63 穩壓元件 84 脈寬調變模組 64 回路二極體 9 光轉合單元 19El · Figure, Figure 2 is a conventional solar cell maximum power tracking method to set three different pulse width modulation pulse width modulation signal, the prediction curve of different output power; Figure 3 is the traditional tracking method to perform pulse width FIG. 4 is a block diagram showing the positions of the operating points after the pulse width ratio shift in FIG. 3; FIG. 5 is a block diagram showing a preferred embodiment of the solar cell maximum power tracking system of the present invention; FIG. 8 is a circuit diagram of a low pass filter of the preferred embodiment of the present invention; FIG. 8 is an input signal diagram of the low pass filter of the preferred embodiment, illustrating the output of the solar cell The product of the output voltage of the low-pass filter of the preferred embodiment shows the product curve of the output current and the output voltage of the solar cell b after filtering and removing the noise. 10 is a flow chart of a preferred embodiment of the solar cell maximum power tracking method of the present invention; FIG. 9 is a schematic diagram of the preferred embodiment of the present invention, wherein one of the operating points is shifted to the right when the three output powers are sequentially incremented. FIG. 12 is a graph showing one of the operating points shifted to the left when the three output powers are sequentially decreased in the preferred embodiment; FIG. 13 is a test result of a comparative example of the test procedure of the preferred embodiment. Data graph illustrating the results of a conventional system and a conventional method for simulating test tracking of solar cells; FIG. 14 is a view similar to FIG. 13 illustrating a preferred embodiment and practice of the solar cell maximum power tracking system of the present invention. The method simulation test tracks the results of the 18 watt solar cell; FIG. 15 is a view similar to FIG. 13 illustrating the preferred embodiment of the solar cell maximum power tracking system of the present invention and the solar cell maximum power tracking method of the present invention. The embodiment simulates the test to track the result of the 18 watt solar cell; FIG. 16 is a view similar to FIG. 13 illustrating the preferred embodiment of the solar cell maximum power chasing (four) system of the present invention and a conventional method for simulating the test to trace 27 watts of solar energy. The result of the battery; 'Fig. is a view similar to Fig. 13, illustrating a preferred embodiment of the solar cell maximum power tracking system of the present invention and A preferred embodiment of the solar cell maximum power tracking method of the present invention simulates the test to track the results of a 27 watt solar cell; p. FIG. 18A is similar to the view of FIG. 13 illustrating a preferred embodiment of the solar power maximum force rate tracking system of the present invention. Figure 19 is a view similar to Figure 13 illustrating a preferred embodiment of the solar cell maximum power tracking system of the present invention and the maximum power of the solar cell of the present invention, with a conventional method simulation test chasing 17 201100995 A preferred embodiment of the tracking method simulates the test to track the results of a 5 watt solar cell; and FIG. 20 is a preferred embodiment of the preferred embodiment of the solar cell maximum power tracking system of the present invention and the solar cell maximum power tracking method of the present invention. A graph of the results of solar cell conversion for different wattages. 18 201100995 [Explanation of main component symbols] 4 Solar cell 7 Measurement unit 5 Load 71 Current sensor 51 Battery 72 Low-pass filter 52 DC motor 8 Control unit 6 Conversion unit 81 Input interface 61 Switching switch 82 Low-pass digital filter 62 energy storage component 83 controller 63 voltage regulator component 84 pulse width modulation module 64 circuit diode 9 light conversion unit 19

Claims (1)

201100995 七、申請專利範圍: 1 · 一種太陽能電池最大功率追蹤系統’適用於傳遞一太陽 能電池之輸出電源至一負載’太陽能電池最大功率追蹤 系統包含: 一轉換單元,具有串接於所述太陽能電池與負載間 之一切換開關與一儲能元件,及一與所述負載並聯之穩 壓元件,該切換開關受一脈寬調變訊號而觸發導通與開 路’以供儲能元件充電與放電,而改變輸出至所述負載 之電壓; 一量測單元,具有一量測太陽能電池之輸出電流並 輸出一電流訊號之電流感測器,及一濾除電流訊號中之 雜訊的低通濾波器; 一控制單元,具有一接收該量測單元之電流訊號並 接收該太陽能電池之輸出電壓值的輸入介面、一濾除上 述電流訊號與輸出電壓值之雜訊的低通數位濾波器、一 計算出太陽能電池之輸出功率之控制器,及一受該控制 器驅動而輸出上述脈寬調變訊號之脈寬調變模組,該控 制器 >貝算出該脈寬調變訊號之脈寬比與輸出功率之關係 ’並追蹤最大輸出功率時該脈寬調變訊號之脈寬比;及 一光辆合單元’光耗合該控制單元之脈寬調變模組 ’並將脈寬調變模組輸出之脈寬調變訊號以光耦合方式 傳遞至該轉換單元之切換開關。 2.依據申請專利範圍第丨項所述之太陽能電池最大功率追 蹤系統,其中,該量測單元之低通濾波器是一 SaUen_ 20 201100995 Key主動式濾波平均電路。 3. 依據申請專利範圍第1項所述之太陽能電池最大功率追 蹤系統’其中,該控制單元之低通數位濾波器是一 Butterworth四階低通數位濾波器。 4. 依據申請專利範圍第3項所述之太陽能電池最大功率追 縱系統’其中,該控制單元之低通數位濾波器是以一可 程式閘陣列晶片組成。 〇 5_ —種太陽能電池最大功率追蹤方法,所述太陽能電池之 輸出電源經由一轉換單元改變直流電壓值並輸出至一負 載,轉換單元是由一脈寬調變訊號控制,脈寬調變訊號 之脈寬比改’^時太&此電池之輸出電流與電壓亦改變, 最大功率追蹤方法包含以下步驟: (A)設定三初始之脈寬調變訊號,且該等脈寬調 變訊號之脈寬比由小而大依序為第一 '第二、第三脈寬 比’並傳送至轉換單元; ◎ (B)分別量取太陽能電池於第一、第二、第三脈 寬比下之輸出電流與輸出電壓值; (C)叶算出太陽能電池分別於第一、第二、第三 脈寬比下之輪出功率’並分別令為第―、第二、第三輸 出功率; (D)如果第一、第二、第三輸出功率依序遞增, 則求取—脈寬㈣值,並令第二脈寬㈣為新第一脈寬 比’令第二脈寬比成為新第二脈寬比,令第三脈寬比加 上脈寬間隔值成為新第三脈寬比,以新第一、第二、第 21 201100995 三脈寬比重複步驟B ; (E)如果第一、第_ 則求取一脈寬間隔值,教A第二輪出功率依序遞減, 比,令第一脈寬比成為新一脈寬比成為新第三脈寬 ^ ^ Ϊ-Ι- 9 /v A*. 該脈寬間隔值成為新第〜 7第—脈寬比減 脲·寬比,l;i细 三脈寬比重複步驟B; 、第二、第 (F)如果第二輪出功率 輸出功率也大於第三輸出 ' ]功率、且第二 取新第二脈寬比,並量測計算新第二輸出功^ ⑹如果新第二輸出功率與原第二輸出功 差值大於新第二輸出劢农 掏出功率間之 « λ ^ ^ 力率之預定比例,則以新第二脈寬 !入二項次曲線公式求取另-新第二脈寬比,並量測 計异新第二輸出功率,重複步驟F;及 ⑴如果新第二輸出功率與原第二輪出功率間之差 值J於新第—輪出功率之預定比例,則新$ 為最大輸出功率。 力导' 6·依據中請專利範圍第5項所述之太陽能電池最大功率追 蹤方法,其中,於步驟Β中,取得電流值後並以平均電 路分別平均出第—、第二、第三脈寬比下之各輸出電流 的平均值。 7. 依據申請專利範圍第6項所述之太陽能電池最大功率追 縱方法其中,於步驟β後,濾除輸出電遷值舆輸出電 流之平均值内之高頻雜訊。 8. 依據申請專利範圍第$項所述之太陽能電池最大功率追 22 201100995 蹤方法,:M: i _ 一 再中,步驟D及步驟E中該脈寬間隔值是該第 三脈寬比與第一脈寬比之差值。 依據申明專利範圍第5項所述之太陽能電池最大功率追 赖έ·方法·,<4- 其中,步驟G及步驟I中’該新第二輸出功率 與原第二輪出功率間之差值是與新第二輪出功率之1% 相比較,亦即該預定比例是1% 。 依據申印專利範圍第6項所述之太陽能電池最大功率追 〇 蹤方法,於步驟Β中,取得電流值後是以一 Sallen_K:ey 主動式濾波平均電路分別平均出第一、第二、第三脈寬 比下之各輸出電流的平均值。 U•依據申請專利範圍第7項所述之太陽能電池最大功率追 蹤方法’其中,於步驟B後,是以一 Butterw〇nh四階 低通數位濾波器濾除輸出電壓值與輸出電流之平均值内 之高頻雜訊。 丨2.依據申請專利範圍第u項所述之太陽能電池最大功率追 〇 ♦方法’其中’冑Butterworth四階低通數位濾波器是 以一可程式閘陣列晶片組成。 13.依據申請專利範圍第5項所述之太陽能電池最大功率追 蹤方法,其中,於步驟A中是以光耦合方式將第—、第 二、第三脈寬比之脈寬調變訊號傳送至轉換單元。 23201100995 VII. Patent application scope: 1 · A solar cell maximum power tracking system 'suitable for transmitting the output power of a solar cell to a load' The solar cell maximum power tracking system comprises: a conversion unit having a serial connection to the solar cell a switching switch and an energy storage component between the load and a voltage stabilizing component connected in parallel with the load, the switch is triggered by a pulse width modulation signal to turn on and open 'for charging and discharging the energy storage component, And changing the voltage outputted to the load; a measuring unit having a current sensor for measuring the output current of the solar cell and outputting a current signal, and a low-pass filter for filtering noise in the current signal a control unit having an input interface for receiving a current signal of the measuring unit and receiving an output voltage value of the solar cell, a low-pass digital filter for filtering noise of the current signal and the output voltage value, and a calculation a controller for outputting power of the solar cell, and a pulse width modulation outputted by the controller The pulse width modulation module, the controller calculates the relationship between the pulse width ratio of the pulse width modulation signal and the output power and tracks the pulse width ratio of the pulse width modulation signal when the maximum output power is tracked; The light-width modulation module of the control unit is optically coupled to the switch of the conversion unit. 2. The solar cell maximum power tracking system according to the scope of the patent application scope, wherein the low pass filter of the measuring unit is a SaUen_ 20 201100995 Key active filter averaging circuit. 3. The solar cell maximum power tracking system according to claim 1 wherein the low pass digital filter of the control unit is a Butterworth fourth-order low-pass digital filter. 4. The solar cell maximum power chasing system according to claim 3, wherein the control unit low pass digital filter is composed of a programmable gate array wafer. 〇5_- a solar cell maximum power tracking method, the output power of the solar cell is changed by a conversion unit and outputted to a load, and the conversion unit is controlled by a pulse width modulation signal, and the pulse width modulation signal is The pulse width ratio is changed to '^时太& The output current and voltage of the battery also change. The maximum power tracking method includes the following steps: (A) setting three initial pulse width modulation signals, and the pulse width modulation signals are The pulse width ratio is small and large in order to be the first 'second and third pulse width ratio' and is transmitted to the conversion unit; ◎ (B) separately measuring the solar cells at the first, second, and third pulse width ratios The output current and the output voltage value; (C) the leaf calculates the wheel power of the solar cell at the first, second, and third pulse width ratios respectively, and respectively makes the first, second, and third output powers; D) If the first, second, and third output powers are sequentially incremented, then the pulse width (four) value is obtained, and the second pulse width (four) is the new first pulse width ratio 'the second pulse width ratio becomes the new number. Two pulse width ratio, the third pulse width ratio plus the pulse width interval value For the new third pulse width ratio, repeat step B with the new first, second, and 21st 201100995 three pulse width ratios; (E) if the first and the third are to obtain a pulse width interval value, teach A second round The output power is sequentially decreased, so that the first pulse width ratio becomes the new pulse width ratio becomes the new third pulse width ^ ^ Ϊ - Ι - 9 / v A*. The pulse width interval value becomes the new number ~ 7 - Pulse width ratio minus urea·width ratio, l; i fine three pulse width ratio repeat step B; second, (F) if the second round output power output is also greater than the third output '] power, and the second take The new second pulse width ratio is measured and the new second output power is calculated. (6) If the new second output power and the original second output power difference are greater than the new second output, the λ ^ ^ force rate For the predetermined ratio, the new second pulse width is entered into the second-order curve formula to obtain the other-new second pulse width ratio, and the second output power is measured, and step F is repeated; and (1) if new second The difference between the output power and the original second round of output power J is a predetermined ratio of the new first-round power, and the new $ is the maximum output power. According to the method of claim 5, the maximum power tracking method of the solar cell is as follows. In the step Β, the current value is obtained, and the first, second, and third pulses are averaged by the average circuit. The average value of each output current in the width ratio. 7. The solar power maximum power chasing method according to item 6 of the patent application scope, wherein after step β, the high frequency noise in the average value of the output electromigration value and the output current is filtered out. 8. According to the solar cell maximum power chase 22 201100995 trace method described in the scope of claim patent, M: i _ repeatedly, the pulse width interval value in step D and step E is the third pulse width ratio and the first The difference between a pulse width ratio. According to claim 5, the maximum power of the solar cell according to claim 5, <4- wherein, in step G and step I, the difference between the new second output power and the original second round output power The value is compared to 1% of the new second round of power, ie the predetermined ratio is 1%. According to the maximum power tracking method of the solar cell described in the sixth paragraph of the patent application scope, in step Β, after obtaining the current value, the first, second, and the first are respectively averaged by a Sallen_K:ey active filter averaging circuit. The average of the output currents at the three-pulse ratio. U• According to the solar cell maximum power tracking method described in item 7 of the patent application scope, after step B, the average value of the output voltage value and the output current is filtered by a Butterw〇nh fourth-order low-pass digital filter. High frequency noise inside.丨 2. The maximum power chasing of the solar cell according to the scope of the patent application ♦ ♦ The '胄 Butterworth fourth-order low-pass digital filter is composed of a programmable gate array wafer. 13. The solar cell maximum power tracking method according to claim 5, wherein in step A, the pulse width modulation signals of the first, second, and third pulse width ratios are transmitted to the optical coupling manner to Conversion unit. twenty three
TW98122016A 2009-06-30 2009-06-30 Maximum power tracking method for solar cells TWI409611B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW98122016A TWI409611B (en) 2009-06-30 2009-06-30 Maximum power tracking method for solar cells

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW98122016A TWI409611B (en) 2009-06-30 2009-06-30 Maximum power tracking method for solar cells

Publications (2)

Publication Number Publication Date
TW201100995A true TW201100995A (en) 2011-01-01
TWI409611B TWI409611B (en) 2013-09-21

Family

ID=44836818

Family Applications (1)

Application Number Title Priority Date Filing Date
TW98122016A TWI409611B (en) 2009-06-30 2009-06-30 Maximum power tracking method for solar cells

Country Status (1)

Country Link
TW (1) TWI409611B (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI410641B (en) * 2011-02-18 2013-10-01 Univ Lunghwa Sci & Technology Solar power supply system maximum power tracker verification platform
TWI426370B (en) * 2011-06-01 2014-02-11 Nat Univ Chin Yi Technology A maximum power point tracking method for photovoltaic module arrays
TWI447339B (en) * 2011-01-27 2014-08-01 Univ Nat Central Sun tracking method and sun tracking system
US8957643B2 (en) 2012-09-18 2015-02-17 National Taiwan University Method and device for maximum power point tracking of photovoltaic module systems
TWI481989B (en) * 2012-11-27 2015-04-21 Univ Nat Sun Yat Sen A system of solar power generator with power tracker
US9065336B2 (en) 2013-06-26 2015-06-23 Industrial Technology Research Institute Maximum power point tracking method and apparatus
TWI514714B (en) * 2014-12-09 2015-12-21 Univ Nat Cheng Kung Distributed solar power system and controlling method thereof
TWI635379B (en) * 2017-03-09 2018-09-11 財團法人工業技術研究院 Energy management apparatus and method
TWI727513B (en) * 2019-11-22 2021-05-11 盈正豫順電子股份有限公司 Power generation abnormality detection method and system suitable for offline photovoltaic panels
CN113467286A (en) * 2021-05-24 2021-10-01 中国电子科技集团公司第四十一研究所 FPGA-based I-V curve generation circuit and method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI553440B (en) * 2015-02-26 2016-10-11 國立中山大學 Maximum power point tracking method for photovoltaic generation

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI447339B (en) * 2011-01-27 2014-08-01 Univ Nat Central Sun tracking method and sun tracking system
TWI410641B (en) * 2011-02-18 2013-10-01 Univ Lunghwa Sci & Technology Solar power supply system maximum power tracker verification platform
TWI426370B (en) * 2011-06-01 2014-02-11 Nat Univ Chin Yi Technology A maximum power point tracking method for photovoltaic module arrays
US8957643B2 (en) 2012-09-18 2015-02-17 National Taiwan University Method and device for maximum power point tracking of photovoltaic module systems
TWI481989B (en) * 2012-11-27 2015-04-21 Univ Nat Sun Yat Sen A system of solar power generator with power tracker
US9065336B2 (en) 2013-06-26 2015-06-23 Industrial Technology Research Institute Maximum power point tracking method and apparatus
TWI514714B (en) * 2014-12-09 2015-12-21 Univ Nat Cheng Kung Distributed solar power system and controlling method thereof
TWI635379B (en) * 2017-03-09 2018-09-11 財團法人工業技術研究院 Energy management apparatus and method
TWI727513B (en) * 2019-11-22 2021-05-11 盈正豫順電子股份有限公司 Power generation abnormality detection method and system suitable for offline photovoltaic panels
CN113467286A (en) * 2021-05-24 2021-10-01 中国电子科技集团公司第四十一研究所 FPGA-based I-V curve generation circuit and method
CN113467286B (en) * 2021-05-24 2023-12-01 中国电子科技集团公司第四十一研究所 FPGA-based I-V curve generation circuit and method

Also Published As

Publication number Publication date
TWI409611B (en) 2013-09-21

Similar Documents

Publication Publication Date Title
TW201100995A (en) Maximum power tracking system and tracking method for solar cell
CN107768757B (en) A kind of fast charge method of single lithium battery internal resistance compensation
CN108512452B (en) Control system and control method for current of direct-current micro-grid-connected converter
CN102593862B (en) Photovoltaic grid-connected inverter and control method thereof
CN108631591A (en) A kind of control method of bidirectional DC-DC converter predicted current
CN102436285A (en) Method and device for tracking maximum power point of photovoltaic array
US20230208292A1 (en) Bidirectional digital switching power amplifier and multi-step current prediction control method thereof
CN207882790U (en) A kind of short circuit current MPPT maximum power point tracking circuit
Liu et al. Design of a solar powered battery charger
CN113938013A (en) Bidirectional buck-boost direct current converter and working parameter configuration method
CN108181967A (en) A kind of short circuit current MPPT maximum power point tracking circuit and its control method for thermoelectric generator
CN106200752A (en) A kind of photovoltaic array under local shadow maximal power tracing System with Sliding Mode Controller
CN103023464B (en) A kind of digitized triangular wave comparison method
CN103208940B (en) A kind of three-phase inverter based on SVPWM is without dead zone control method
CN102340259B (en) Novel instantaneous-current-direct-control-based pulse width modulation current tracking control method
CN116404975B (en) Photovoltaic controller cooperative control method applied to staggered BUCK topology
CN105045332B (en) A kind of MPPT control method being applicable to photovoltaic cell
JP5432937B2 (en) Solar cell characteristic acquisition circuit and solar cell control device
JP5601912B2 (en) Control device for power converter, and grid-connected inverter system using this control device
CN110912129A (en) Harmonic estimation-based photovoltaic inverter harmonic compensation method
CN206977316U (en) A kind of control device of LCC resonance DC DC converters
CN112600433B (en) Method for improving efficiency of energy router by using low-frequency intermittent technology
EP4293889A1 (en) Pfc fast dynamic response control method and system
CN111865085B (en) Control method and control device of combined isolation converter
CN114678943A (en) Photovoltaic power generation energy storage circuit, control method and control system

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees