TWI410641B - Solar power supply system maximum power tracker verification platform - Google Patents

Solar power supply system maximum power tracker verification platform Download PDF

Info

Publication number
TWI410641B
TWI410641B TW100105372A TW100105372A TWI410641B TW I410641 B TWI410641 B TW I410641B TW 100105372 A TW100105372 A TW 100105372A TW 100105372 A TW100105372 A TW 100105372A TW I410641 B TWI410641 B TW I410641B
Authority
TW
Taiwan
Prior art keywords
maximum power
load
solar
computer
verification platform
Prior art date
Application number
TW100105372A
Other languages
Chinese (zh)
Other versions
TW201235669A (en
Original Assignee
Univ Lunghwa Sci & Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ Lunghwa Sci & Technology filed Critical Univ Lunghwa Sci & Technology
Priority to TW100105372A priority Critical patent/TWI410641B/en
Publication of TW201235669A publication Critical patent/TW201235669A/en
Application granted granted Critical
Publication of TWI410641B publication Critical patent/TWI410641B/en

Links

Landscapes

  • Control Of Electrical Variables (AREA)

Abstract

A maximal power tracker validation platform of solar power supply system comprises: a computer having a graphic man-machine interface for user's operation; a testing platform for receiving a solar energy module and providing an illuminance and a temperature; a programmable environment state generation source for driving the testing platform to generate the illuminance and temperature according to a command from the computer; a variable load unit having a programmable load and a maximal power tracker, wherein the variable load unit is used to make the programmable load as the load of the solar energy module or make the serial assembly of the maximal power tracker and the programmable load as the load of the solar energy module; and a multifunctional digital electric meter for measuring the current and voltage of the programmable load and transmitting the current and voltage values to the computer.

Description

太陽能供電系統最大功率追蹤器驗證平台Solar power system maximum power tracker verification platform

本發明係有關於太陽能供電系統,特別是關於一種太陽能供電系統最大功率追蹤器驗證平台,其可驗證一最大功率追蹤器─用以使一太陽能模組之輸出功率極大化─之工作效能。The present invention relates to solar power systems, and more particularly to a solar power system maximum power tracker verification platform that verifies the performance of a maximum power tracker - to maximize the output power of a solar module.

為了地球的永續經營,如何找到具環保、經濟特性的替代能源已成為本世紀人類非常重要的議題。替代能源基本上是指煤、石油、天然氣、核能以外的能源,其包括風、太陽、地熱、水力、潮汐、生質能、及燃料電池。For the sustainable operation of the earth, how to find alternative energy sources with environmental protection and economic characteristics has become a very important issue for human beings in this century. Alternative energy basically refers to energy other than coal, oil, natural gas, and nuclear energy, including wind, sun, geothermal, hydraulic, tidal, biomass, and fuel cells.

在所述替代能源中,太陽能比較不會受到地形環境的限制,也不像燃料電池與生質能,需要特定的方式生產或是到定點補充燃料。太陽能發電系統主要的電力來源為太陽能電池,而單一的太陽能電池並不能直接拿來使用,必須由許多太陽能電池串、並聯以構成一太陽能模組,再依照所需系統規格來設計、排列複數個太陽能模組以構成一太陽能陣列,方能提供足夠的電壓與電流。In the alternative energy source, solar energy is not limited by the terrain environment, and unlike fuel cells and biomass, it needs to be produced in a specific way or to refuel at a fixed point. The main source of electricity for solar power systems is solar cells, and a single solar cell cannot be used directly. Many solar cells must be connected in series to form a solar module. Then, multiple solar cells are designed and arranged according to the required system specifications. The solar modules form a solar array to provide sufficient voltage and current.

對太陽能系統而言,其發電效率是非常重要的,目前除了積極開發光電轉換效率更高的太陽能電池之外,提升太陽能電池的工作效率也是重點之一。太陽能電池的輸出功率取決於由太陽光照度及太陽能電池本身溫度等構成之環境狀態。在一特定環境狀態下,太陽能電池會有一對應的最佳工作點(I,V)OPTIMAL ─其可提供一對應的最大輸出功率,且不同的環境狀態往往會對應到不同的最佳工作點。為了提升太陽能電池的工作效率,必須使用最大功率追蹤器依據外在環境變化來調整太陽能電池的工作點。而關於太陽能電池的最大功率工作點追蹤,有許多文獻提出各種不同的方法,不過目前較常見的是擾動觀察法(perturbation and observation algorithm)跟增量電導法(incremental conductance algorithm)。For solar energy systems, the power generation efficiency is very important. In addition to actively developing solar cells with higher photoelectric conversion efficiency, it is also one of the key points to improve the efficiency of solar cells. The output power of a solar cell depends on the environmental state consisting of the solar illuminance and the temperature of the solar cell itself. In a particular environmental state, the solar cell will have a corresponding optimal operating point (I, V) OPTIMAL - which provides a corresponding maximum output power, and different environmental conditions will often correspond to different optimal operating points. In order to improve the efficiency of solar cells, the maximum power tracker must be used to adjust the operating point of the solar cell according to external environmental changes. Regarding the maximum power operating point tracking of solar cells, there are many literatures suggesting various methods, but the more common ones are the perturbation and observation algorithm and the incremental conductance algorithm.

為驗證最大功率追蹤器之效能,一般乃將所實現的最大功率追蹤器置於一太陽能發電系統內,再以各種不同的日照條件測試該太陽能發電系統是否可輸出各對應的最大功率。然而,在實際測試時吾人並無法控制太陽光照度、傾斜角度、與太陽能模組溫度等環境參數,以致於測試條件不明確,且最大功率追蹤器是否有真正追蹤到最大功率點也令人存疑。在此情況下,便無法對所使用的最大功率點追蹤演算法作不同環境參數條件下的性能評估,也無法比較各種最大功率追蹤演算法之優劣,以研發或找出最適用於一太陽能發電系統之最大功率追蹤演算法。In order to verify the performance of the maximum power tracker, the maximum power tracker implemented is generally placed in a solar power generation system, and then the solar power generation system can output the corresponding maximum power in various sunshine conditions. However, in actual testing, we are unable to control environmental parameters such as solar illuminance, tilt angle, and solar module temperature, so that the test conditions are not clear, and whether the maximum power tracker actually tracks the maximum power point is also questionable. In this case, it is impossible to evaluate the performance of the maximum power point tracking algorithm under different environmental parameters, and to compare the advantages and disadvantages of various maximum power tracking algorithms to develop or find the most suitable for a solar power generation. The system's maximum power tracking algorithm.

本發明之主要目的在於提供一最大功率追蹤器驗證平台,其可:提供複數個環境狀態(各所述的環境狀態包含照度、傾斜角度、及太陽能模組溫度);直接量測一太陽能模組在各所述環境狀態下的電流-電壓特性曲線以分別產生各對應的最大功率工作點;以及量測該太陽能模組在一最大功率追蹤器的控制下,在各所述環境狀態下的功率輸出,並將所述的功率輸出與所述的最大功率工作點作比較,以驗證該最大功率追蹤器之工作效能。The main object of the present invention is to provide a maximum power tracker verification platform, which can: provide a plurality of environmental states (each of the environmental states include illumination, tilt angle, and solar module temperature); directly measure a solar module a current-voltage characteristic curve in each of the environmental states to respectively generate respective corresponding maximum power operating points; and measuring power of the solar module under each of the environmental states under the control of a maximum power tracker Outputting and comparing the power output to the maximum power operating point to verify the operating performance of the maximum power tracker.

為達成前述之目的,本發明乃提出一太陽能供電系統最大功率追蹤器驗證平台,其包括一測試平台、一電腦、一可程式環境狀態產生源、一可變負載單元、一多功能數位電表、以及一攝影機。其中,該測試平台係用以容置一太陽能模組且其係依該可程式環境狀態產生源之命令以設定一照度和一溫度;該電腦具有一圖形化人機界面供使用者操作;該可程式環境狀態產生源可依該電腦之命令驅動該測試平台以產生所述的照度和溫度;該可變負載單元係與該太陽能模組及該電腦耦接且其具有一開關電路、一可程式負載、及一最大功率追蹤器,其中該開關電路係用以使該太陽能模組直接和該可程式負載耦接,或使該太陽能模組和該最大功率追蹤器與該可程式負載的串接組合耦接;該多功能數位電表係用以量測該可程式負載的電流和電壓,及將該電流和電壓的數值傳至該電腦;以及該攝影機係用以將該驗證平台的畫面傳至該電腦以方便使用者監控整個驗證平台的運作情形。To achieve the foregoing objectives, the present invention provides a solar power system maximum power tracker verification platform including a test platform, a computer, a programmable environment state generation source, a variable load unit, a multi-function digital meter, And a camera. The test platform is configured to receive a solar module and generate a source according to the command of the programmable environment state to set an illuminance and a temperature; the computer has a graphical human-machine interface for the user to operate; The programmable environment state generating source can drive the test platform to generate the illuminance and temperature according to the command of the computer; the variable load unit is coupled to the solar module and the computer and has a switch circuit and a a program load, and a maximum power tracker, wherein the switch circuit is configured to couple the solar module directly to the programmable load, or to cause the solar module and the maximum power tracker to be coupled with the programmable load Connected to the combination; the multi-function digital meter is used to measure the current and voltage of the programmable load, and transmit the current and voltage values to the computer; and the camera is used to transmit the image of the verification platform To the computer to facilitate the user to monitor the operation of the entire verification platform.

於運作時,使用者可:藉由該圖形化人機界面設定該太陽能模組所處的環境狀態及該可程式負載的負載值;透過該開關電路切換該太陽能模組的負載─其可為該可程式負載或該最大功率追蹤器與該可程式負載的串接組合;以及利用該多功能數位電表量測該可程式負載的電流和電壓,以分別獲得該太陽能模組在各環境狀態下的最大功率工作點,及該太陽能模組在該最大功率追蹤器的控制下,在各所述環境狀態下的功率輸出,以驗證該最大功率追蹤控制法則的可行性和精確度,並可據以比較不同最大功率追蹤控制法則之性能,以研究出最佳化之最大功率追蹤控制法則。During operation, the user can: set the environmental state of the solar module and the load value of the programmable load by using the graphical human-machine interface; and switch the load of the solar module through the switch circuit - Combining the programmable load or the maximum power tracker with the programmable load; and measuring the current and voltage of the programmable load by using the multi-function digital meter to obtain the solar module in each environmental state respectively a maximum power operating point, and a power output of the solar module under the control of the maximum power tracker in each of the environmental states to verify the feasibility and accuracy of the maximum power tracking control law, and To compare the performance of different maximum power tracking control rules to study the optimal maximum power tracking control law.

為使 貴審查委員能進一步瞭解本發明之結構、特徵及其目的,茲附以圖式及較佳具體實施例之詳細說明如后。The detailed description of the drawings and the preferred embodiments are set forth in the accompanying drawings.

請參照圖1,其繪示本發明太陽能供電系統最大功率追蹤器驗證平台一較佳實施例之示意圖。如圖1所示,該驗證平台包括:一機架10、一電腦20、一馬達30、一可程式環境狀態產生源40、至少一燈源50、至少一感測裝置60、一可程式負載70、一多功能數位電表(DMM)90、一攝影機100、一資料擷取卡110、一最大功率追蹤器120、以及開關121、122。Please refer to FIG. 1 , which is a schematic diagram of a preferred embodiment of a maximum power tracker verification platform for a solar power supply system according to the present invention. As shown in FIG. 1 , the verification platform includes: a rack 10 , a computer 20 , a motor 30 , a programmable environment state generating source 40 , at least one light source 50 , at least one sensing device 60 , and a programmable load 70. A multi-function digital meter (DMM) 90, a camera 100, a data capture card 110, a maximum power tracker 120, and switches 121, 122.

其中,該機架10其具有一平台11,例如但不限於為一二軸測試平台,可供放置至少一待測太陽能電池模組80,且該機架10進一步具有若干支架12,且每一支架12下方具有一滑輪13,以方便該機架10之移動。該平台11係可接受該馬達30之控制而成縱向轉動。此外,該機架10為根據該太陽能電池模組80之尺寸特別訂作,可作三軸控制,包含光源高度、太陽能電池模組傾斜角、與方位角等。The rack 10 has a platform 11 such as, but not limited to, a two-axis test platform for placing at least one solar cell module 80 to be tested, and the rack 10 further has a plurality of brackets 12, and each A pulley 13 is provided below the bracket 12 to facilitate the movement of the frame 10. The platform 11 is longitudinally rotatable by control of the motor 30. In addition, the rack 10 is specially designed according to the size of the solar cell module 80, and can be controlled by three axes, including the height of the light source, the tilt angle of the solar cell module, and the azimuth angle.

該電腦20例如但不限於為一個人電腦(PC),其上具有一人機界面軟體21,為整個控制系統之大腦,與人機界面軟體21配合以控制整個系統之運作。在軟體規劃下,該電腦20控制資料流程、指揮系統中儀器之操作、接收量測資料、執行計算與分析、驗證量測讀值是否有效、作資料儲存管理、以及將測試結果顯示在螢幕或輸出至其他周邊裝置。此外,該電腦20進一步具有一GPIB介面及RS-232介面(兩者皆未示於圖1中)。The computer 20 is, for example but not limited to, a personal computer (PC) having a human interface software 21 thereon, which is the brain of the entire control system, and cooperates with the human interface software 21 to control the operation of the entire system. Under software planning, the computer 20 controls the data flow, the operation of the instrument in the command system, receives the measurement data, performs calculations and analysis, verifies whether the measurement reading is valid, performs data storage management, and displays the test results on the screen or Output to other peripheral devices. In addition, the computer 20 further has a GPIB interface and an RS-232 interface (both not shown in FIG. 1).

該馬達30例如但不限於為一步進馬達,耦接至該電腦20,以接受該電腦20之驅動而執行該機架10之三軸控制。The motor 30 is coupled to the computer 20, such as but not limited to a stepping motor, to perform the three-axis control of the frame 10 by receiving the driving of the computer 20.

該可程式環境狀態產生源40係用以產生所需之人造環境測試源,例如但不限於為照度、溫度、傾斜角與方位角等影響太陽能電池輸出特性之主要環境因素。該可程式環境狀態產生源40包含:一燈源調光電路41;一溫度控制電路42;以及一驅動電路43。 其中,該燈源調光電路41係耦接至該電腦20以接受該電腦20送來之照度命令,並根據照度命令來調整該驅動電路之輸出功率及該燈源50之輸出照度;該溫度控制電路42,耦接至該電腦20,係用以協同該驅動電路43,以調控該燈源50之高度做溫度之增減控制;以及該驅動電路43,耦接至該電腦20,除可執行Z軸方向之控制外,亦接受傾斜角、方位角命令來控制該馬達30,以調整整個測試機架10之傾斜角與方位角。The programmable environmental state generation source 40 is used to generate a desired artificial environmental test source such as, but not limited to, major environmental factors affecting solar cell output characteristics such as illuminance, temperature, tilt angle, and azimuth. The programmable environment state generating source 40 includes: a light source dimming circuit 41; a temperature control circuit 42; and a driving circuit 43. The light source dimming circuit 41 is coupled to the computer 20 to receive the illuminance command sent by the computer 20, and adjusts the output power of the driving circuit and the output illuminance of the light source 50 according to the illuminance command; The control circuit 42 is coupled to the computer 20 for cooperating with the driving circuit 43 to adjust the height of the light source 50 for temperature increase and decrease control; and the driving circuit 43 is coupled to the computer 20, except In addition to the control of the Z-axis direction, the tilt angle and azimuth commands are also accepted to control the motor 30 to adjust the tilt angle and azimuth of the entire test rack 10.

該燈源50,置於該機架10上,係受該電腦20之控制而輸出不同照度之光源至該待測太陽能電池模組80。The light source 50 is placed on the frame 10 and is controlled by the computer 20 to output light sources of different illumination to the solar battery module 80 to be tested.

該感測裝置60,置於該機架10上且耦接至該電腦20,係用以感測該燈源50所產生之照度,以及目前測試環境之溫度。該感測裝置60例如但不限於為一照度計或紅外線熱像儀。The sensing device 60 is disposed on the frame 10 and coupled to the computer 20 for sensing the illumination produced by the light source 50 and the temperature of the current test environment. The sensing device 60 is, for example but not limited to, an illuminometer or an infrared camera.

該可程式負載70,例如但不限於為一電子負載,具有一GPIB介面(圖未示),且係透過該GPIB介面與該電腦20連接。利用程式設定方式,可自動化改變該可程式負載70之負荷值,以提供不同 負載給該太陽能電池模組80,如此便可連續測得特性曲線上之不同工作點之電壓與電流。The programmable load 70, such as but not limited to an electronic load, has a GPIB interface (not shown) and is coupled to the computer 20 via the GPIB interface. Using the programming method, the load value of the programmable load 70 can be automatically changed to provide different The solar cell module 80 is loaded so that the voltage and current at different operating points on the characteristic curve can be continuously measured.

該多功能數位電表90,經由一GPIB介面(圖未示)耦接至該電腦20,係用以量測該太陽能電池模組80在不同負載下之輸出電壓與電流以及將所量到的輸出電壓與電流值送回該電腦20儲存。在做完所有測試點後,依所儲存之讀值數據,即可畫出該太陽能電池模組80之工作曲線,例如但不限於為一I-V特性曲線、P-V特性曲線、不同角度之特性曲線與部分遮蔭特性曲線,以找出各種工作環境下的最佳工作點。The multi-function digital meter 90 is coupled to the computer 20 via a GPIB interface (not shown) for measuring the output voltage and current of the solar cell module 80 under different loads and the output to be measured. The voltage and current values are sent back to the computer 20 for storage. After all the test points are completed, the working curve of the solar cell module 80 can be drawn according to the stored reading data, such as but not limited to an IV characteristic curve, a PV characteristic curve, and a characteristic curve of different angles. Part of the shading characteristic curve to find the best working point in various working environments.

該攝影機100,經由一網路(圖未示)耦接至該電腦20,係用以監控整個驗證平台之硬體設備是否正常運作。當有突發狀況產生時,使用者從該電腦20之畫面上即可作緊急處理,以免發生災害,另外,該攝影機100亦可檢測出瑕疵產品。The camera 100 is coupled to the computer 20 via a network (not shown) for monitoring whether the hardware device of the entire verification platform is operating normally. When a sudden situation occurs, the user can perform emergency processing from the screen of the computer 20 to avoid disaster, and the camera 100 can also detect the defective product.

該資料擷取卡110,係該多功能數位電表90及該攝影機100與該電腦20聯繫溝通之橋樑,不同儀器設備雖所附通訊介面不一樣,但只要瞭解其通訊協定,或是儀器所提供之軟體驅動程式,則透過所撰寫之人機界面軟體21,即可操控每台儀器設備。The data capture card 110 is a bridge between the multi-function digital meter 90 and the camera 100 and the computer 20. The communication interface of different instruments and equipment is different, but as long as the communication protocol is known, or provided by the instrument The software driver can control each instrument through the written human interface software 21.

該最大功率追蹤器120係用以使該太陽能電池模組80在各種工作環境下的輸出功率極大化,而其工作效能可在該驗證平台內獲得評估-其使該太陽能電池模組80在各種工作環境下的輸出功率可與先前所量到的各個最佳工作點做比較以驗證其性能。The maximum power tracker 120 is used to maximize the output power of the solar cell module 80 under various working environments, and the performance of the solar cell module 80 can be evaluated in the verification platform - the solar cell module 80 is in various The output power in the working environment can be compared to the best operating points previously measured to verify its performance.

開關121、122係用以切換該太陽能電池模組80的負載-其可為該可程式負載70或該最大功率追蹤器120與該可程式負載70的串接組合。The switches 121, 122 are used to switch the load of the solar cell module 80 - which may be a serial combination of the programmable load 70 or the maximum power tracker 120 and the programmable load 70.

於運作時,先將該太陽能電池模組80置於該平台11上,接著是所要測試之環境條件設定,包含照度、溫度、與角度之設定;測試程序設定好後,可程式環境狀態產生源40就會根據命令產生所要的測試源,若所產生之測試源是不正確的,需重新作校準以修正到測試源準確為止。設定開關121、122使該太陽能電池模組80的負載為該可程式負載70。短暫延遲使太陽能電池模組80輸出響應穩定後,接著就可一點一點的量測輸出電壓與電流,最後就可畫出該設定照度、角度、溫度下之I-V特性曲線、P-V特性曲線、不同角度之特性曲線與部分遮蔭特性曲線,以找出各種工作環境下的最佳工作點並在人機界面軟體21上作顯示或儲存列印。In operation, the solar cell module 80 is first placed on the platform 11, followed by the environmental condition setting to be tested, including the illumination, temperature, and angle settings; after the test program is set, the programmable environment state generation source 40 will generate the desired test source according to the command. If the generated test source is incorrect, it needs to be recalibrated to correct until the test source is accurate. The switches 121 and 122 set the load of the solar battery module 80 to the programmable load 70. After a short delay to stabilize the output response of the solar cell module 80, the output voltage and current can be measured little by little, and finally the IV characteristic curve, the PV characteristic curve, the PV characteristic curve, the set illumination, the angle, the temperature, and the Characteristic curves of different angles and partial shading characteristic curves to find the optimal working point in various working environments and display or store printing on the human-machine interface software 21.

接著設定開關121、122使該太陽能電池模組80的負載為該最大功率追蹤器120與該可程式負載70的串接組合,並藉由該多功能數位電表90量測該太陽能電池模組80的負載輸出功率。該最大功率追蹤器120在各種工作環境下的輸出功率即可與先前所量到的各個最佳工作點做比較以驗證其性能。Then, the switches 121 and 122 are set such that the load of the solar battery module 80 is a serial combination of the maximum power tracker 120 and the programmable load 70, and the solar battery module 80 is measured by the multi-function digital meter 90. Load output power. The output power of the maximum power tracker 120 in various operating environments can be compared to previously optimized operating points to verify its performance.

請參照圖2,其繪示圖1驗證平台之操作流程圖。如圖2所示,該操作流程包含:初始化與自我測試(步驟a);設定測試程序(步驟b);產生測試環境(步驟c);量測特性曲線(步驟d);測試最大功率追蹤器(步驟e);以及計算最大功率追蹤器準確率(步驟f)。Please refer to FIG. 2 , which is a flow chart of the operation of the verification platform of FIG. 1 . As shown in FIG. 2, the operation flow includes: initialization and self-test (step a); setting a test program (step b); generating a test environment (step c); measuring a characteristic curve (step d); testing a maximum power tracker (Step e); and calculate the maximum power tracker accuracy (step f).

在步驟a,為確保量測資料的可靠度與準確性,必需等到系統內所有儀器設備檢測完成後,才能進入步驟b。In step a, in order to ensure the reliability and accuracy of the measurement data, it is necessary to wait until all instruments and equipment in the system have been tested before proceeding to step b.

在步驟b,係藉由在人機界面上設定測試程序,包含測試點數量之設定,不同特性曲線量測設定,主要有兩類:I-V特性曲線與P-V特性曲線,接著是所要求測試之環境條件設定,包含照度、溫度與角度的設定。In step b, by setting the test program on the man-machine interface, including the setting of the number of test points, and the measurement settings of different characteristic curves, there are mainly two types: IV characteristic curve and PV characteristic curve, followed by the required test environment. Condition setting, including illuminance, temperature and angle settings.

在步驟c,可程式環境狀態產生源40就會根據程式設定產生所要的測試環境,若所產生之測試環境是不正確的,需重新作計算再一次作修正到測試環境準確為止。In step c, the programmable environment state generation source 40 generates a desired test environment according to the program settings. If the generated test environment is incorrect, it is necessary to recalculate and correct the test environment until the test environment is accurate.

在步驟d,短暫延遲使太陽能電池模組80輸出響應穩定後,接著就可量測輸出電壓與電流,最後就可畫出該設定照度、角度、溫度下之I-V特性曲線、P-V特性曲線,並在人機界面上作顯示或儲存列印。In step d, after the short delay is used to stabilize the output response of the solar cell module 80, the output voltage and current can be measured, and finally the IV characteristic curve and the PV characteristic curve of the set illumination, angle, temperature, and the curve can be drawn. Display or save prints on the display unit.

在步驟e,必須使用與測試太陽能電池模組80相同環境才能確保輸出結果正確。In step e, the same environment as the test solar cell module 80 must be used to ensure that the output is correct.

在步驟f,從步驟d所得之量測結果儲存中找出最大功率點並將其與步驟e之量測結果比較以計算出最大功率追蹤器的準確率。其結果同樣可在人機界面上作顯示或儲存列印。In step f, the maximum power point is found from the measurement result storage obtained in step d and compared with the measurement result of step e to calculate the accuracy of the maximum power tracker. The result can also be displayed or stored on the human machine interface for printing.

太陽能電池之特性參數建模方面,在大部分的應用場合,使用單一二極體模型的等效電路已足夠,但較精確的等效電路模型可更精確描述太陽能電池之電氣特性,特別是要研究大範圍的操作情況下。在實際的太陽能電池中其電荷載子(charge carriers)會在半導體接面與外部接觸路徑上造成一壓降,可用一串聯電阻RS 來描述此一壓降效應,另外,可用一並聯電阻RP 來描述太陽能電池邊緣之漏電流(leakage current)效應。圖3所示為包含此兩電阻之等效電路模型,RS 在實際的太陽能電池中約為幾個mΩ,而RP 通常有較高的值。In the modeling of characteristic parameters of solar cells, in most applications, the equivalent circuit using a single diode model is sufficient, but the more accurate equivalent circuit model can more accurately describe the electrical characteristics of solar cells, especially To study a wide range of operating conditions. In actual solar cells, the charge carriers cause a voltage drop between the semiconductor junction and the external contact path. A series resistor R S can be used to describe the voltage drop effect. In addition, a parallel resistor R can be used. P describes the leakage current effect at the edge of the solar cell. Figure 3 shows an equivalent circuit model containing the two resistors. R S is about a few mΩ in an actual solar cell, and R P usually has a higher value.

由圖3根據克希荷夫電流定律可得Iph -ID -IP -I=0,其中IP =VD /RP =(V+IRS )/RPFrom Figure 3, according to Kirchhoff's current law, I ph - I D - I P - I = 0, where I P = V D / R P = (V + IR S ) / R P ,

ID =IS (EXP[(V+IRS )/nVT ]-1),亦即I=Iph -IS(EXP[(V+IRS )/nVT ]-1)-(V+IRS )/RP  (1)I D =I S (EXP[(V+IR S )/nV T ]-1), ie I=I ph -IS(EXP[(V+IR S )/nV T ]-1)-(V+ IR S )/R P (1)

其中,RS :矽內部電阻與電極電阻等之串聯等效電阻,RS 阻值越大,輸出的短路電流會越小,但幾乎不會對輸出的開路電壓造成影響;RP :各種原因所造成而呈現接面不完全的並聯等效電阻,而RP 阻值越大,輸出的開路電壓會越小,但不會影響到輸出的短路電流。要利用(1)式來描述太陽能電池特性,必須要知道其中五個重要參數,即Iph ,IS ,n,RP ,和RS ,利用本發明所提出之太陽能電池特性自動化量測系統,來估測五個重要參數之步驟如圖4所示:Among them, R S : 串联 internal resistance and electrode resistance and other series equivalent resistance, the larger the R S resistance, the smaller the output short-circuit current, but almost no impact on the open circuit voltage of the output; R P : various reasons The parallel equivalent resistance is caused by the incomplete connection, and the larger the R P resistance, the smaller the open circuit voltage of the output will not affect the short circuit current of the output. To describe the solar cell characteristics using equation (1), it is necessary to know five important parameters, namely I ph , I S , n, R P , and R S , using the solar cell characteristic automatic measurement system proposed by the present invention. The steps to estimate the five important parameters are shown in Figure 4:

1.)在所要操作的照度、溫度條件下,個人電腦20控制可程式環境狀態產生源40以產生輸入命令所需之測試源,經由本套量測系統測試該操作條件下之電壓、電流(I-V)特性曲線,如圖5所示。1.) Under the illuminance and temperature conditions to be operated, the personal computer 20 controls the programmable environment state generating source 40 to generate a test source required for inputting the command, and tests the voltage and current under the operating condition through the set of measuring system ( IV) Characteristic curve, as shown in Figure 5.

2.)由曲線中取出特定5點如圖5所示,短路電流點Psc (Isc ,0),Voc /2點Pi (Ii ,Vi ),最大功率點Pmp (Imp ,Vmp ),Pk (Ik ,Vk )點,開路電壓點Poc (O,Voc ),其中2.) Take out the specific 5 points from the curve as shown in Figure 5. Short-circuit current point P sc (I sc , 0), V oc /2 point P i (I i , V i ), maximum power point P mp (I Mp , V mp ), P k (I k , V k ) point, open circuit voltage point P oc (O, V oc ), where

Vi =Voc /2 (2)V i =V oc /2 (2)

Vk =(Vmp +Voc )/2 (3)V k =(V mp +V oc )/2 (3)

並利用五個特定點計算該操作情況下之單一二極體數學模型(方程式(1))之五個參數為And use five specific points to calculate the five parameters of the single diode mathematical model (equation (1)) for this operation.

Iph ≒Isc I ph ≒I sc

RS =(Voc -Vk )/Ik =(Voc -Vmp )/2Ik R S =(V oc -V k )/I k =(V oc -V mp )/2I k

RP =Vi /(Isc -Ii )=Voc /2(Isc -Ii )R P =V i /(I sc -I i )=V oc /2(I sc -I i )

IS =(Isc -Voc /RP )/(EXP[Voc /nNs VT ]-1)I S =(I sc -V oc /R P )/(EXP[V oc /nN s V T ]-1)

n=ki Iph +kc =-0.229Iph +2.275 (4)n=k i I ph +k c =-0.229I ph +2.275 (4)

其中,Is 為二極體飽和電流,Ns 為PV模組cell串聯個數,n為二極體理想因數(ideality factor),理想因數與光電流Iph (≒Isc )有關,就所用來測試之太陽能模組(SANYO HIP-210NHE1)而言,其n,Iph 關係如圖6所示,其關係式常數ki 和kc 如方程式(4)所示。Where I s is the diode saturation current, N s is the PV module cell series number, n is the diode ideality factor, and the ideal factor is related to the photocurrent I ph (≒I sc ). For the solar module tested (SANYO HIP-210NHE1), the n, I ph relationship is shown in Fig. 6, and the relationship constants k i and k c are as shown in equation (4).

3.)在得到該操作情況下之五個參數(Iph ,RS ,RP ,Is ,n)後,即可代到方程式(1),以得到PV模組之單一二極體數學模型。3.) After obtaining the five parameters (I ph , R S , R P , I s , n) in the case of the operation, equation (1) can be substituted to obtain a single diode of the PV module. mathematical model.

在線性系統電氣設備中,為使負載獲得最大功率通常要進行適當的負載匹配,使負載電阻等於供電系統的內阻,此時負載就可以獲得最大功率。考慮圖7為系統簡化的電路,假設太陽能模組的輸出阻抗為Rpv ,負載端之等效阻抗為RLIn linear system electrical equipment, in order to obtain maximum power for the load, proper load matching is usually performed so that the load resistance is equal to the internal resistance of the power supply system, and the load can obtain the maximum power. Consider Figure 7 for a simplified circuit of the system, assuming that the output impedance of the solar module is R pv and the equivalent impedance of the load is R L .

因為負載功率PLBecause the load power P L is

PL =I2 RL =VS 2 RL /(Rpv +RL )2  (5)P L =I 2 R L =V S 2 R L /(R pv +R L ) 2 (5)

輸出功率最大時會發生在PL /RL =0,即Will occur when the output power is maximum P L / R L =0, ie

PL /RL =VS 2 (Rpv -RL )/(Rpv +RL )3 =0 (6) P L / R L =V S 2 (R pv -R L )/(R pv +R L ) 3 =0 (6)

所以由方程式(6)可知,當Rpv =RL 時,輸出功率會最大。但對於太陽能電池而言,由於太陽能電池的輸出功率取決於太陽光照度強度及太陽能電池本身溫度影響等條件,不會固定在同一點上,而是隨時在改變的,加上輸出的負載阻抗在系統設計時就已固定,若直接將太陽能電池跟負載相連接,一定不能得到太陽能電池的最大效率,而造成部份能量損失。因此我們設計一個直流轉換器來轉換太陽能電池的最大功率給負載端使用。在此,我們設計一升壓式轉換器(boost converter),與太陽能模組連接,藉著調整工作週期(duty ratio,D),來達到改變轉換器輸入阻抗的目的,使得太陽能模組能夠工作在最大功率點,進而得到太陽能模組上的最大功率。Therefore, from equation (6), when R pv = R L , the output power will be the largest. However, for solar cells, since the output power of the solar cell depends on the intensity of the solar illuminance and the temperature of the solar cell itself, it is not fixed at the same point, but is changed at any time, plus the output load impedance in the system. It is fixed at the time of design. If the solar cell is directly connected to the load, the maximum efficiency of the solar cell must not be obtained, resulting in partial energy loss. So we designed a DC converter to convert the maximum power of the solar cell to the load end. Here, we design a boost converter to connect with the solar module. By adjusting the duty ratio (D), we can change the input impedance of the converter to make the solar module work. At the maximum power point, the maximum power on the solar module is obtained.

圖8所示為升壓型dc-dc轉換器,當操作於連續電流模式(CCM)時,其輸出入電壓關係根據電感伏秒乘積平衡原理,可得Figure 8 shows a step-up dc-dc converter. When operating in continuous current mode (CCM), its input-input voltage relationship is based on the principle of the volt-second product balance of the inductor.

Vo /Vg =1/(1-D) (7)V o /V g =1/(1-D) (7)

假設轉換器無任何的功率損失,則輸入功率等於輸出功率Pin =Po ,則可得到電壓與電流和責任週期之關係為Assuming that the converter has no power loss, the input power is equal to the output power P in =P o , then the relationship between voltage and current and duty cycle is obtained.

Io /Iin =Vg /Vo =1-D (8)I o /I in =V g /V o =1-D (8)

對太陽能最大功率追蹤系統而言,若Rin 為太陽能電池端之阻抗,RL 為固定之負載阻抗,則經由改變工作週期D後可得For the solar maximum power tracking system, if R in is the impedance of the solar cell terminal and R L is a fixed load impedance, it can be obtained by changing the duty cycle D.

Rin =Vg /Iin =Vo (1-D)/[Io /(1-D)]=RL (1-D)2  (9)R in =V g /I in =V o (1-D)/[I o /(1-D)]=R L (1-D) 2 (9)

故由方程式(9)可得知,欲得到太陽電池的最大功率輸出,只需要調整電晶體Q 的工作週期D,就可改變太陽能電池的輸入阻抗等於負載電阻,便可使太陽能電池操作在最大功率點。但對昇壓型轉換器而言,實際工作時由於電感、電容、開關及二極體之寄生元件所造成的損失效應,使得當D趨近於1時,Vo /Vg 將下降,且在高責任週期時,開關之利用率相當低。Therefore, it can be known from equation (9) that in order to obtain the maximum power output of the solar cell, it is only necessary to adjust the duty cycle D of the transistor Q , and the input impedance of the solar cell can be changed to be equal to the load resistance, so that the solar cell can operate at the maximum. Power point. However, for a boost converter, due to the loss effect caused by the inductance, capacitance, switch and parasitic components of the diode during operation, V o /V g will decrease when D approaches 1 and In the high duty cycle, the utilization of the switch is quite low.

圖9為最大功率追蹤器120一實施例之方塊圖,其包含一數位訊號控制器dsPIC30F4011 1201、一MOSFET驅動隔離電路1202、一直流電壓轉換器1203、一負載電流回授電路1204、以及一負載電壓回授電路1205。9 is a block diagram of an embodiment of a maximum power tracker 120 including a digital signal controller dsPIC30F4011 1201, a MOSFET drive isolation circuit 1202, a DC voltage converter 1203, a load current feedback circuit 1204, and a load. Voltage feedback circuit 1205.

數位訊號控制器dsPIC30F4011 1201係依負載電流回授電路1204以及負載電壓回授電路1205所回授之電流及電壓決定一PWM信號的工作週期並將其輸出至MOSFET驅動隔離電路1202。The digital signal controller dsPIC30F4011 1201 determines the duty cycle of a PWM signal according to the current and voltage fed back by the load current feedback circuit 1204 and the load voltage feedback circuit 1205 and outputs it to the MOSFET drive isolation circuit 1202.

MOSFET驅動隔離電路1202,耦接於數位訊號控制器dsPIC30F4011 1201與直流電壓轉換器1203之間,係用以提升驅動能力同時避免共同接地所產生的短路問題。The MOSFET driving isolation circuit 1202 is coupled between the digital signal controller dsPIC30F4011 1201 and the DC voltage converter 1203 to improve the driving capability while avoiding the short circuit problem caused by the common grounding.

直流電壓轉換器1203係一升壓直流轉換器,用以調變太陽能電池模組80的工作點。The DC voltage converter 1203 is a boost DC converter for modulating the operating point of the solar cell module 80.

負載電流回授電路1204以及負載電壓回授電路1205係用以回授可程式負載70的電流及電壓。The load current feedback circuit 1204 and the load voltage feedback circuit 1205 are used to feedback the current and voltage of the programmable load 70.

圖9之最大功率追蹤器120係採用擾動觀察法,以進行最大功率點追蹤─其係藉由數位訊號控制器dsPIC30F4011的內建A/D模組來擷取負載電壓及負載電流做為功率的判斷,使用PWM模組產生PWM信號驅動直流電壓轉換器1203,並依據功率大小來調整工作週期。圖10所示為擾動觀察法程式流程圖,該流程包含:初始化(步驟1);設定工作週期(DUTY)=20%及輸出一PWM信號(步驟2);讀取電壓、電流並將其設為V0 、I0 (步驟3);計算P0 =V0 *I0 (步驟4);將DUTY增加0.5%(步驟5);讀取電壓、電流並將其設為V1 、I1 (步驟6);計算P1 =V1 *I1 (步驟7);以及動態調整DUTY(步驟8)。The maximum power tracker 120 of Figure 9 uses a perturbation observation method for maximum power point tracking - it uses the built-in A/D module of the digital signal controller dsPIC30F4011 to extract the load voltage and load current as power. It is judged that the PWM module is used to generate the PWM signal to drive the DC voltage converter 1203, and the duty cycle is adjusted according to the power level. Figure 10 shows the flow chart of the disturbance observation program, which includes: initialization (step 1); setting the duty cycle (DUTY) = 20% and outputting a PWM signal (step 2); reading the voltage and current and setting it Is V 0 , I 0 (step 3); calculate P 0 =V 0 *I 0 (step 4); increase DUTY by 0.5% (step 5); read voltage and current and set it to V 1 , I 1 (Step 6); calculate P 1 = V 1 * I 1 (Step 7); and dynamically adjust DUTY (Step 8).

於操作時,最大功率追蹤器120係藉著不斷增加或減少DUTY的大小,以改變太陽能電池的輸出電壓及輸出電流,並量測、比較DUTY變動前後的輸出功率的大小,以決定下一步的動作。假設變動後輸出功率比原本輸出功率大,則將DUTY繼續朝同一方向變動;若輸出功率比變動前小,則表示需要改變DUTY變動的方向。如此重覆地擾動、量測及比較,使太陽能電池模組80輸出到達最大功率點。In operation, the maximum power tracker 120 changes the output voltage and output current of the solar cell by continuously increasing or decreasing the DUTY size, and measures and compares the output power before and after the DUTY change to determine the next step. action. Assuming that the output power after the change is larger than the original output power, the DUTY continues to fluctuate in the same direction; if the output power is smaller than before the change, it means that the direction of the DUTY change needs to be changed. The disturbance, measurement and comparison are repeated in such a way that the output of the solar cell module 80 reaches the maximum power point.

為讓使用者能快速上手,兼具人性化與現代化的操作界面是必備的。本發明使用LabVIEW來撰寫系統控制程式與人機界面。LabVIEW使用工程學相似的專門術語,其內容和想法都很類似專業的模擬程式,程式流程採用"資料流"之概念打破傳統之思維模式,使得程式設計者在流程圖構思完畢的同時也完成了程式的撰寫,可以在短時間完成系統的建立。在LabVIEW環境中可輕易建立基於虛擬儀表(Virtual Instrument,簡稱VI)概念之使用者人機界面,LabVIEW也整合了所有的硬體通訊界面,其中包含了GPIB、RS-232、RS-485、USB、TCP、DAQ卡等。In order to enable users to get started quickly, a user-friendly and modern operation interface is a must. The present invention uses LabVIEW to write system control programs and human-machine interfaces. LabVIEW uses engineering-specific terminology, and its content and ideas are similar to professional simulation programs. The program flow uses the concept of "data flow" to break the traditional thinking mode, which allows the programmer to complete the flow chart concept. The writing of the program can complete the establishment of the system in a short time. In the LabVIEW environment, the user interface of the Virtual Instrument (VI) concept can be easily established. LabVIEW also integrates all hardware communication interfaces, including GPIB, RS-232, RS-485, and USB. , TCP, DAQ card, etc.

圖11所示為本系統之操作設定主頁面,主要分為五個人機界面,分別為設定頁面、測量頁面、溫度補償頁面、讀取頁面、以及追蹤器頁面。使用者透過畫面上方的五個按鈕,即可切換不同的頁面。在設定頁面部分,包含了系統時間、現場畫面、儲存實驗資料相關設定、環境產生源相關設定與所使用儀器的相關通訊設定;在系統測量頁面,其包含可輸入待測模組型號與相關資料、量測系統相關環境參數、特性曲線與量測結果及相關計算數值的呈現;溫度補償頁面的功能是利用原廠給的太陽能電池模組參數,去計算因溫度上升所造成的參數變動;使用者可在讀取頁面將所儲存的實驗資料直接顯示在螢幕上,而不需重新再做一次實驗。最後是追蹤器頁面,其包含了所追蹤的最大功率與最大功率追蹤器的準確度。依本發明所採的視覺化人機界面,操作人員可清楚的了解系統中之各種功能,從而快速、輕易的進行操作。Figure 11 shows the main page of the operation setting of the system, which is mainly divided into five human-machine interfaces, which are a setting page, a measurement page, a temperature compensation page, a reading page, and a tracker page. Users can switch between different pages through the five buttons at the top of the screen. In the setting page section, it includes system time, live screen, storage experiment data related settings, environment generation source related settings and related communication settings of the instrument used; in the system measurement page, it can input the model type and related data of the module to be tested. The measurement system related environmental parameters, characteristic curves and measurement results and the calculation of related calculation values; the function of the temperature compensation page is to use the parameters of the solar cell module given by the factory to calculate the parameter changes caused by the temperature rise; The stored experimental data can be directly displayed on the screen on the reading page without having to perform another experiment. Finally, the tracker page contains the maximum power tracked and the accuracy of the maximum power tracker. According to the visual human-machine interface adopted by the invention, the operator can clearly understand various functions in the system, thereby performing operations quickly and easily.

本案所揭示者,乃較佳實施例,舉凡局部之變更或修飾而源於本案之技術思想而為熟習該項技藝之人所易於推知者,俱不脫本案之專利權範疇。The disclosure of the present invention is a preferred embodiment. Any change or modification of the present invention originating from the technical idea of the present invention and being easily inferred by those skilled in the art will not deviate from the scope of patent rights of the present invention.

綜上所陳,本案無論就目的、手段與功效,在在顯示其迥異於習知之技術特徵,且其首先發明合於實用,亦在在符合發明之專利要件,懇請 貴審查委員明察,並祈早日賜予專利,俾嘉惠社會,實感德便。In summary, this case, regardless of its purpose, means and efficacy, is showing its technical characteristics that are different from the conventional ones, and its first invention is practical and practical, and it is also in compliance with the patent requirements of the invention. I will be granted a patent at an early date.

10...機架10. . . frame

11...平台11. . . platform

12...支架12. . . support

13...滑輪13. . . pulley

20...電腦20. . . computer

21...人機界面軟體twenty one. . . Human machine interface software

30...馬達30. . . motor

40...可程式環境狀態產生源40. . . Programmable environment state generation source

41...燈源調光電路41. . . Light source dimming circuit

42...溫度控制電路42. . . Temperature control circuit

43...驅動電路43. . . Drive circuit

50...燈源50. . . Light source

60...感測裝置60. . . Sensing device

70...可程式負載70. . . Programmable load

80...太陽能電池模組80. . . Solar battery module

90...多功能數位電表90. . . Multi-function digital meter

100...攝影機100. . . camera

110...資料擷取卡110. . . Data capture card

120...最大功率追蹤器120. . . Maximum power tracker

121、122...開關121, 122. . . switch

1201...數位訊號控制器dsPIC30F40111201. . . Digital signal controller dsPIC30F4011

1202...MOSFET驅動隔離電路1202. . . MOSFET drive isolation circuit

1203...直流電壓轉換器1203. . . DC voltage converter

1204...負載電流回授電路1204. . . Load current feedback circuit

1205...負載電壓回授電路1205. . . Load voltage feedback circuit

圖1繪示本發明太陽能系統最大功率追蹤器驗證平台一較佳實施例之示意圖。1 is a schematic diagram of a preferred embodiment of a solar power system maximum power tracker verification platform of the present invention.

圖2繪示圖1驗證平台之操作流程圖。2 is a flow chart showing the operation of the verification platform of FIG. 1.

圖3繪示包含二電阻之等效電路模型。FIG. 3 illustrates an equivalent circuit model including two resistors.

圖4繪示太陽能模組特性參數之建模架構。Figure 4 illustrates the modeling architecture of the solar module's characteristic parameters.

圖5繪示一I-V特性曲線。FIG. 5 illustrates an I-V characteristic curve.

圖6繪示一n-Iph 關係曲線。Figure 6 shows an nI ph relationship.

圖7繪示系統之簡化模型。Figure 7 shows a simplified model of the system.

圖8繪示升壓型dc-dc轉換器之電路圖。FIG. 8 is a circuit diagram of a boost type dc-dc converter.

圖9繪示一最大功率追蹤器系統方塊圖。Figure 9 is a block diagram of a maximum power tracker system.

圖10繪示一擾動觀察演算法之流程圖。FIG. 10 is a flow chart showing a disturbance observation algorithm.

圖11繪示本發明系統操作、設定之主頁面。Figure 11 is a diagram showing the main page of the operation and setting of the system of the present invention.

10...機架10. . . frame

11...平台11. . . platform

12...支架12. . . support

13...滑輪13. . . pulley

20...電腦20. . . computer

21...人機界面軟體twenty one. . . Human machine interface software

30...馬達30. . . motor

40...可程式環境狀態產生源40. . . Programmable environment state generation source

41...燈源調光電路41. . . Light source dimming circuit

42...溫度控制電路42. . . Temperature control circuit

43...驅動電路43. . . Drive circuit

50...燈源50. . . Light source

60...感測裝置60. . . Sensing device

70...可程式負載70. . . Programmable load

80...太陽能電池模組80. . . Solar battery module

90...多功能數位電表90. . . Multi-function digital meter

100...攝影機100. . . camera

110...資料擷取卡110. . . Data capture card

120...最大功率追蹤器120. . . Maximum power tracker

121、122...開關121, 122. . . switch

Claims (9)

一種太陽能供電系統最大功率追蹤器驗證平台,其具有:一電腦,其具有一圖形化人機界面供使用者操作;一測試平台,用以容置一太陽能模組及提供一照度和一溫度;一可程式環境狀態產生源,用以依該電腦之命令驅動該測試平台以產生所述的照度和溫度;一可變負載單元,與該太陽能模組及該電腦耦接,具有一開關電路、一可程式負載、及一最大功率追蹤器,其中該開關電路係用以使該可程式負載成為該太陽能模組的第一負載,或使該最大功率追蹤器與該可程式負載的串接組合成為該太陽能模組的第二負載;以及一多功能數位電表,用以量測該可程式負載的電流和電壓,及將該電流和電壓的數值傳至該電腦,以找出該太陽能模組在所述照度和溫度下耦接所述第一負載時所對應的第一最佳工作點,及該太陽能模組在所述照度和溫度下耦接所述第二負載時所對應的第二最佳工作點,以及依所述第一最佳工作點和所述第二最佳工作點之差異驗證該最大功率追蹤器之性能。 A solar power supply system maximum power tracker verification platform, comprising: a computer having a graphical human-machine interface for user operation; a test platform for accommodating a solar module and providing an illumination and a temperature; a programmable environment state generating source for driving the test platform to generate the illuminance and temperature according to a command of the computer; a variable load unit coupled to the solar module and the computer, having a switch circuit, a programmable load and a maximum power tracker, wherein the switch circuit is configured to make the programmable load a first load of the solar module or to combine the maximum power tracker with the programmable load a second load of the solar module; and a multi-function digital meter for measuring the current and voltage of the programmable load, and transmitting the current and voltage values to the computer to find the solar module a first optimal operating point corresponding to the first load coupled to the illuminance and temperature, and the solar module is coupled to the first illuminance and temperature Second optimal operating point corresponding to the load, and to verify the performance of the maximum power point tracking control by the difference of said first and said second optimum operating point of optimum operating point. 如申請專利範圍第1項所述之太陽能供電系統最大功率追蹤器驗證平台,其中該電腦進一步具有一資料擷取卡。 The solar power supply system maximum power tracker verification platform according to claim 1, wherein the computer further has a data capture card. 如申請專利範圍第1項所述之太陽能供電系統最大功率追蹤器驗證平台,其中該測試平台具有一馬達、一燈源、以及一感測裝置。 The solar power system maximum power tracker verification platform according to claim 1, wherein the test platform has a motor, a light source, and a sensing device. 如申請專利範圍第3項所述之太陽能供電系統最大功率追蹤器驗證平台,其中該馬達係一步進馬達。 The solar power supply system maximum power tracker verification platform according to claim 3, wherein the motor is a stepping motor. 如申請專利範圍第3項所述之太陽能供電系統最大功率追蹤器驗證平台,其中該感測裝置係一照度計或一紅外線熱像儀。 The solar power supply system maximum power tracker verification platform according to claim 3, wherein the sensing device is an illuminometer or an infrared camera. 如申請專利範圍第1項所述之太陽能供電系統最大功率追蹤器驗證平台,其中該可程式環境狀態產生源具有一燈源調光電 路、一溫度控制電路、以及一馬達驅動電路。 The solar power supply system maximum power tracker verification platform according to claim 1, wherein the programmable environment state generating source has a light source dimming A circuit, a temperature control circuit, and a motor drive circuit. 如申請專利範圍第1項所述之太陽能供電系統最大功率追蹤器驗證平台,其進一步具有一攝影機,其係用以將該驗證平台的畫面傳至該電腦以方便使用者監控整個驗證平台的運作情形。 The solar power supply system maximum power tracker verification platform according to claim 1, further comprising a camera for transmitting the image of the verification platform to the computer for the user to monitor the operation of the entire verification platform. situation. 如申請專利範圍第1項所述之太陽能供電系統最大功率追蹤器驗證平台,其中該圖形化人機界面係一LabVIEW程式。 For example, the solar power supply system maximum power tracker verification platform described in claim 1 is wherein the graphical human-machine interface is a LabVIEW program. 如申請專利範圍第1項所述之太陽能供電系統最大功率追蹤器驗證平台,其中該電腦的通信界面係GPIB、RS-232、RS-485、USB、TCP、或DAQ卡。 For example, the solar power supply system maximum power tracker verification platform described in claim 1 is wherein the communication interface of the computer is GPIB, RS-232, RS-485, USB, TCP, or DAQ card.
TW100105372A 2011-02-18 2011-02-18 Solar power supply system maximum power tracker verification platform TWI410641B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW100105372A TWI410641B (en) 2011-02-18 2011-02-18 Solar power supply system maximum power tracker verification platform

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW100105372A TWI410641B (en) 2011-02-18 2011-02-18 Solar power supply system maximum power tracker verification platform

Publications (2)

Publication Number Publication Date
TW201235669A TW201235669A (en) 2012-09-01
TWI410641B true TWI410641B (en) 2013-10-01

Family

ID=47222667

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100105372A TWI410641B (en) 2011-02-18 2011-02-18 Solar power supply system maximum power tracker verification platform

Country Status (1)

Country Link
TW (1) TWI410641B (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI677182B (en) * 2018-05-30 2019-11-11 俊麟 郭 Optimized input and output power control solar power supply device and equipment
TWI668955B (en) * 2018-09-20 2019-08-11 艾思特能源有限公司 Simulation performance detection method of solar photovoltaic module
TWI706261B (en) * 2019-07-31 2020-10-01 龍華科技大學 A method for tracking the global maximum power of solar cells
TWI727513B (en) * 2019-11-22 2021-05-11 盈正豫順電子股份有限公司 Power generation abnormality detection method and system suitable for offline photovoltaic panels

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101521477A (en) * 2007-12-04 2009-09-02 张玉良 Low-cost solar energy tracking and condensing power generation method
TW201003099A (en) * 2008-07-07 2010-01-16 Univ Lunghwa Sci & Technology Solar panel feature parameter auto-authentication and performance verification system and its method
TW201034234A (en) * 2009-02-04 2010-09-16 Applied Materials Inc Metrology and inspection suite for a solar production line
TW201100995A (en) * 2009-06-30 2011-01-01 Univ Nat Cheng Kung Maximum power tracking system and tracking method for solar cell

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101521477A (en) * 2007-12-04 2009-09-02 张玉良 Low-cost solar energy tracking and condensing power generation method
TW201003099A (en) * 2008-07-07 2010-01-16 Univ Lunghwa Sci & Technology Solar panel feature parameter auto-authentication and performance verification system and its method
TW201034234A (en) * 2009-02-04 2010-09-16 Applied Materials Inc Metrology and inspection suite for a solar production line
TW201100995A (en) * 2009-06-30 2011-01-01 Univ Nat Cheng Kung Maximum power tracking system and tracking method for solar cell

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
詹佳儒,"無人飛行載具機載電腦太陽能電力最大功率追蹤系統",淡江大學,2004/06 *

Also Published As

Publication number Publication date
TW201235669A (en) 2012-09-01

Similar Documents

Publication Publication Date Title
Olalla et al. Architectures and control of submodule integrated DC–DC converters for photovoltaic applications
Duran et al. A high-flexibility DC load for fuel cell and solar arrays power sources based on DC–DC converters
Durán et al. Determination of PV Generator IV/PV Characteristic Curves Using a DC‐DC Converter Controlled by a Virtual Instrument
TWI595744B (en) Power generation abnormality detection method and system for photovoltaic panels
CN104932603B (en) A kind of test system and method for photovoltaic controller MPPT maximum power point tracking precision
TWI410641B (en) Solar power supply system maximum power tracker verification platform
Sayyad et al. Design and development of low cost, portable, on-field IV curve tracer based on capacitor loading for high power rated solar photovoltaic modules
CN106779374A (en) Photovoltaic generation transmits peak power energy storage Optimization Modeling method
Soulatiantork et al. A tool for performance evaluation of MPPT algorithms for photovoltaic systems
Rachid Tracing current-voltage curve of solar panel Based on LabVIEW Arduino Interfacing
Henni et al. Design and implementation of a low-cost characterization system for photovoltaic solar panels
Kahoul et al. A comprehensive simulator for assessing the reliability of a photovoltaic panel peak power tracking system
CN108181966B (en) Photovoltaic multimodal MPP rapid tracking method based on voltage-power scanning
JP2018064360A (en) Solar power generation system and solar power generation control system
CN202206333U (en) Solar integration testing and control system
TWI747423B (en) Near open-circuit point power generation abnormality detection method and system for photovoltaic modules or module strings
EP2058669A1 (en) A dynamic electric power supply unit that simulates an electric power source
Bagci et al. Power profile measurement and system design analysis for a wearable photovoltaic application
Raeisi et al. Designing and construction of a solar panel simulator capable of simulating partial shading conditions
CN209432404U (en) A kind of solar simulator irradiation nonuniformity test device
Atia et al. Solar cell emulator and solar cell characteristics measurements in dark and illuminated conditions
CN109916593A (en) A kind of solar simulator irradiation nonuniformity test device
Faifer et al. Design of a converter for photovoltaic panels testing
Bandri et al. The application of perturb and observe algorithm to optimized of solar cell output
TWI730634B (en) Simplified power generation abnormality detection method and system for photovoltaic panels

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees