TW201235669A - Maximal power tracker validation platform of solar power supply system - Google Patents

Maximal power tracker validation platform of solar power supply system Download PDF

Info

Publication number
TW201235669A
TW201235669A TW100105372A TW100105372A TW201235669A TW 201235669 A TW201235669 A TW 201235669A TW 100105372 A TW100105372 A TW 100105372A TW 100105372 A TW100105372 A TW 100105372A TW 201235669 A TW201235669 A TW 201235669A
Authority
TW
Taiwan
Prior art keywords
load
solar
maximum power
tracker
computer
Prior art date
Application number
TW100105372A
Other languages
Chinese (zh)
Other versions
TWI410641B (en
Inventor
Shun-Zhong Wang
Original Assignee
Univ Lunghwa Sci & Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ Lunghwa Sci & Technology filed Critical Univ Lunghwa Sci & Technology
Priority to TW100105372A priority Critical patent/TWI410641B/en
Publication of TW201235669A publication Critical patent/TW201235669A/en
Application granted granted Critical
Publication of TWI410641B publication Critical patent/TWI410641B/en

Links

Landscapes

  • Control Of Electrical Variables (AREA)

Abstract

A maximal power tracker validation platform of solar power supply system comprises: a computer having a graphic man-machine interface for user's operation; a testing platform for receiving a solar energy module and providing an illuminance and a temperature; a programmable environment state generation source for driving the testing platform to generate the illuminance and temperature according to a command from the computer; a variable load unit having a programmable load and a maximal power tracker, wherein the variable load unit is used to make the programmable load as the load of the solar energy module or make the serial assembly of the maximal power tracker and the programmable load as the load of the solar energy module; and a multifunctional digital electric meter for measuring the current and voltage of the programmable load and transmitting the current and voltage values to the computer.

Description

201235669 六、發明說明: 【發明所屬之技術領域】 /本爹明係有關於太陽能供電系統,_是關於—種太陽能供 電系統最大功率追蹤器驗證平台,其可驗證一最大功率追縱器— 用以使一太陽能模組之輸出功率極大化—之工作效能。 °° 【先前技術】 為了地球的永續經營’如何找到具環保、經濟特性的替代能 源已成為本世紀人類非常重要的議題。替代能源基本上是指煤、 石油、天然氣、核能以外的能源,其包括風、太陽、地埶、水力、 • 潮汐、生質能、及燃料電池。 …、 在所述替代能源巾,太陽統較不會受到地形環境的限制, 也不像燃料電域生質能,需要特定的方式生產歧狀點補充 燃料。太陽能發電系齡要的電力來源為太陽能電池,而單一的 太陽能電池並不能直接拿來使用,必須由許多太陽能電池串、並 聯以構成-太陽能模組’再依照所需純規格來設計、排列複數 個太陽能模組以構成一太陽能陣列,方能提供足夠的電壓與電流。 對太陽能系統而言,其發電效率是非常重要的,目前除了積 赢·極開發光電轉換效率更高的太陽能電池之外,提升太陽能電池的 攀工作效率也是重點之一。太陽能電池的輸出功率取決於由太陽光 照度及太陽能f池本身溫度㈣成之環境雜。在—狀環境狀 態下’太陽能電池會有-對應的最佳工作點(i,v)〇ptimal—其可提 供一對應的最大輸出功率,且不同的環境狀態往往會對應到不同 的最佳工作點。為了提升太陽能電池的工作效率,必須使用最大 功率追蹤器依據外在環境變化來調整太陽能電池的工作點。而關 於太陽能電池的最大功率工作點追縱,有許多文獻提出各種不同 的方法,不過目前較常見的是擾動觀察法(perturbati〇n and observation algorUhm)跟增量電導法(incremental conductance algorithm) ° 201235669 為驗證最大功率追蹤器之效能,一般乃 追縱器置於-太陽能發電系統内,再以各種不同的曰見== 該太陽能發電系統是否可輸出各對應的最大功率^而、”, 測試時吾人並無法控制太陽光照度、傾斜 =際 度等環境參數,以致於測試條件不明確,;;力 有真正追縱到最大功率點也令人存疑。在此情況下 估’也無法比較各種最大功率翻演算法之優劣 最適用於-太陽能發電系統之最大功率追縱演算法。研發或找出 着【發明内容】201235669 VI. Description of the invention: [Technical field of invention] / This book is about solar power supply system, _ is about a solar power supply system maximum power tracker verification platform, which can verify a maximum power tracker - In order to maximize the output power of a solar module - the performance of the work. °° [Prior Art] For the sustainable operation of the earth, how to find alternative energy sources with environmental protection and economic characteristics has become a very important issue for human beings in this century. Alternative energy basically refers to energy sources other than coal, oil, natural gas, and nuclear energy, including wind, sun, mantle, water, tides, biomass, and fuel cells. ... In the alternative energy towel, the solar system is less restricted by the terrain environment, and unlike the fuel cell biomass, a specific way is needed to produce the fuel for the ambiguous point. The source of electricity for solar power generation is solar cells, and a single solar cell cannot be used directly. It must be composed of many solar cells, connected in parallel, to form a solar module, and then designed and arranged according to the required pure specifications. The solar modules form a solar array to provide sufficient voltage and current. For solar energy systems, the power generation efficiency is very important. In addition to the solar cells with higher photoelectric conversion efficiency, the improvement of solar cell climbing efficiency is also one of the key points. The output power of a solar cell depends on the ambient illuminance of the solar illuminance and the temperature of the solar energy pool (4). In the state of the environment - the solar cell will have a corresponding optimal operating point (i, v) 〇 ptimal - which can provide a corresponding maximum output power, and different environmental conditions will often correspond to different optimal work. point. In order to improve the efficiency of solar cells, the maximum power tracker must be used to adjust the operating point of the solar cell based on external environmental changes. Regarding the maximum power operating point of solar cells, there are many different methods proposed in the literature, but the more common ones are perturbati〇n and observation algorUhm and incremental conductance algorithm ° 201235669 In order to verify the performance of the maximum power tracker, it is generally placed in the - solar power system, and then in various ways == whether the solar power system can output the corresponding maximum power ^,", during testing We can't control the environmental parameters such as solar illuminance, tilt=interval, so that the test conditions are not clear;; it is also doubtful that the force has a true power point. In this case, it is impossible to compare various maximum powers. The advantages and disadvantages of the retreading algorithm are most suitable for the maximum power tracking algorithm of the solar power system. R & D or find out [invention content]

本發明之轉目的在補最切料織 ρ提供,數個環境狀態(各所述的環境狀態包含照度S J ς、及太%能模組溫度);直接量測—太陽能模組在各淨产 態下的電流-電壓雜曲線以分職生 ^兄狀 該太_模組在一最大功率追蹤器的控制下:在Ϊ 力率輸出’並將所述的功率輸出與所述的ίί 力率作點作比較,以驗證該最大功率追蹤器之工作效能。 率追縱;=目 ='ί 二變ΐ載單元、—多功能數位電表、以及 式環境狀離μ容置—太陽能模組且其係依該可程 圖形定;溫度;該電腦具有- 驅動該測試平台以產生所述的照度和溫度 可亥太陽能模组及該電_接且其具有—開關電路一 *二==接其:該_路係用以使該 追敗讀该可程式負載的串接組合輪接;該多功能數位電 201235669 :係用以,測該可程式負載的電流和電壓,及將該電流和電壓的 /值,至戎電腦;以及該攝影機係用以將該驗證平台的晝面傳至 遠電腦以方便使用者監控整個驗證平台的運作情形。 於運巧時’使用者可:藉由該圖形化人機界面言支定該太陽能模 ,、且所處=環境雜及該可程式貞載的貞載值;透過該開關電路切 ,該太陽能模_貞載—其可為該可程式㈣或該最大功率追縱 益與該可程式負載㈣接組合;以及糊該多功能數位電表量測 该y程式貞載的電流和電壓,时別獲得該太雜模组在各環境 狀〜、下的最大功率工作點,及該太陽能模組在該最大功率追蹤器 的,制下,在各所述環境狀態下的功率輸出,以驗證該最大功^ ^蹤控制法則的可行性和精確度,並可據以比較不同最大功率追 蹤控制法狀性能,以研究出最佳化之最大功率追蹤控制法則。 $使貴審查委員能進一步瞭解本發明之結構、特徵及其目 的,茲附以圖式及較佳具體實施例之詳細說明如后。 【實施方式】 %請參照圖1,其繪示本發明太陽能供電系統最大功率追蹤器驗 °豆平σ較佳貫施例之示意圖。如圖1所示,該驗證平台包括·一 ,架10、-電腦20、-馬達30、-可程式環境狀態產生源4〇、至 少一燈源50、至少一感測裝置6〇、一可程式負載70、一多功能數 位電表(DMM)90、一攝影機1〇〇、一資料擷取卡11〇、一最大功率 蹤器120、以及開關丨21、122。 、、其中,該機架10其具有一平台11,例如但不限於為一二軸測 試平台,可供放置至少一待測太陽能電池模組8〇,且該機架1〇進 一步具有若干支架12,且每一支架12下方具有一滑輪13,以方便 該機架10之移動。該平台丨丨係可接受該馬達3〇之控制而成縱向轉 動。此外,該機架10為根據該太陽能電池模組8〇之尺寸特別訂作, 可作三軸控制,包含光源高度、太陽能電池模組傾斜角、盥方位 角等。 〃 201235669 界面:於為一個人電腦⑽,其上具有一人機 控制整個系i蚊運作I f統之大腦’與人機界面軟體21配合以 指揮系統中儀器之口料該:腦轉 量測讀值是否有效、測貝/4、執樹算與分析、驗證 幕或輸出至其他周邊;官;電=測=顯示在螢 面卿介面(兩者皆未二;)電細2°進-步具有-㈣介 該馬達_如但不限於為The purpose of the present invention is to provide a plurality of environmental states (each of the environmental states including illuminance SJ ς, and too% energy module temperature); the direct measurement - solar module in each net production The current-voltage curve in the state is divided into two generations. The module is under the control of a maximum power tracker: the output rate at the force rate and the output of the power is the stated force rate. A comparison is made to verify the performance of the maximum power tracker. Rate tracking; = mesh = 'ί two variable load cell, - multi-function digital meter, and environmentally-friendly environment - solar module and its system according to the programmable graphics; temperature; the computer has - drive The test platform is configured to generate the illuminance and temperature, and the switch has a switch circuit, and the switch circuit is used to make the program load Serial combination combination rotation; the multi-function digital power 201235669 is used to measure the current and voltage of the programmable load, and the current/voltage value to the computer; and the camera is used to The verification platform is transmitted to the remote computer to facilitate the user to monitor the operation of the entire verification platform. At the time of the operation, the user can: determine the solar mode by the graphical human-machine interface, and the environment is mixed with the load-carrying load value; the solar energy is cut through the switch circuit. Mode _ load - which can be combined with the programmable load (four) or the maximum power tracking benefit; and paste the multi-function digital meter to measure the current and voltage of the y program, do not obtain The maximum power operating point of the sub-module in each environment, and the power output of the solar module in the maximum power tracker under each of the environmental states to verify the maximum work ^ ^ The feasibility and accuracy of the tracking control law, and can be compared to different maximum power tracking control law performance to study the optimal maximum power tracking control law. The structure, features, and objects of the present invention will become more apparent from the following detailed description of the preferred embodiments. [Embodiment] Please refer to FIG. 1 for a schematic diagram of a preferred embodiment of the maximum power tracker of the solar power supply system of the present invention. As shown in FIG. 1 , the verification platform includes a shelf 10 , a computer 20 , a motor 30 , a programmable environment state generating source 4 , at least one light source 50 , at least one sensing device 6 , and one The program load 70, a multi-function digital meter (DMM) 90, a camera 1A, a data capture card 11A, a maximum power tracer 120, and switches 21, 122. The rack 10 has a platform 11 such as, but not limited to, a two-axis test platform for placing at least one solar cell module 8 to be tested, and the rack 1 further has a plurality of brackets 12 And a pulley 13 is disposed under each bracket 12 to facilitate the movement of the frame 10. The platform can be longitudinally rotated by the control of the motor. In addition, the frame 10 is specially designed according to the size of the solar cell module 8A, and can be controlled by three axes, including the height of the light source, the tilt angle of the solar cell module, the azimuth angle of the solar cell, and the like. 〃 201235669 Interface: A computer for a person (10), which has a human-machine control system for the whole system, and the brain of the computer system, which cooperates with the human-machine interface software 21 to command the instrument in the system. Whether it is effective, measuring shell / 4, tree calculation and analysis, verification screen or output to other peripherals; official; electricity = test = display in the face of the face of the face (both are not two;) electric fine 2 ° step-step - (d) the motor _ if not limited to

接受該電·之驅動而執行該機㈣之三軸ίί ^20以 =程式魏賴產生_個以產生所需之人造環境測試 /電、、也二出度、溫度、傾斜角與方位角等影響太陽能 ί °該可程式_«產生賴包 :燈源献電路41 ;—溫度控制電路42 ;以及—驅動電路43。 ^ 燈源調光電路41彳輪接至該電腦2⑽接受該電腦20送來 之照度》卩令’並根翻度命令來調整該驅動電路之輸出功率及該 燈源50之輸$照度;該溫度控制電賴,接至該電職,係用 以協同該驅動電路43 ’糊控該燈源5〇之高度做溫度之增減控 制;以及該驅動電路43 ’耗接至該電腦2〇,除可執行2軸方向之控 制外’亦接賴斜角、方位角命令來控繼馬達3Q,簡整整個 測試機架10之傾斜角與方位角。 該燈源50,置於該機架1()上,係受該電額之控制而輸出不 同照度之光源至該待測太陽能電池模組8〇。 該感測裝置60,置於該機架10上且耦接至該電腦2〇,係用以 感測該燈源50所產生之照度,以及目前測試環境之溫度。該感測 裝置6 0例如但不限於為一照度計或紅外線熱像儀。 該可程式負載70,例如但不限於為一電子負載,具有一GpiB 介面(圖未示),且係透過該GPIB介面與該電腦2〇連接。利用程式 設定方式,可自動化改變該電子負载70之負荷值,以提供不同負 201235669 載給該太陽能電池模組80,如此便可連續測得 工作點之電壓與電流。 矛/·生曲線上之不同 ο 該多功能數位電表90,經由-GPiB介面(圖 腦20,係用以量測該太陽能電池模細在不同負载下)^== ,流=及將所量到的輸出電壓與電流值送回該電儲存在 U凡所有測試點後,依所儲存之讀值數據 =組默X作轉,_但不歸 曲線、不同角度之雜曲線與部分遮祕性 作環境下的最佳卫作點。 4出各種工 該攝影機1GG,經由-轉(圖未示)_ 好台之硬體設備是否正常運作。當有“狀 時,使用者從該電之晝面上即可作緊急處理,以免發生災宝, 另外,邊攝影機100亦可檢測出瑕疲產品。 η亥=貝料擷取卡110 ’係各儀器設備9〇、1〇〇與該電腦如聯繫溝 =橋,’不同儀器設備雖所附通訊介面不一樣,但只要瞭解其 、訊協定,或是儀H所提供之軟體鶴程式 父 機界面軟體2卜即可操控每台儀器設備。 斤撰寫之人 & f最大功率追蹤器120係用以使該太陽能電池模組80在各種 2環境下的輸出功率極大化,而其工作效能可在該驗證平台内 ίΓ評估:其使該太陽能電池模組80在各種工作環境下的輸出功 率可與先前所量到的各個最佳卫作點做味峨證其性能。 開關121、122係用以切換該太陽能電池模組8〇的負載一其可 二°亥可耘式負載70或該最大功率追蹤器120與該可程式負載7〇的 串接組合。 、 Β於運作時’先將該太陽能電池模組80置於該平台11上,接著 =斤要測試之環境條件設定,包含照度、溫度、與角度之設定; =試程序=定好後,可程式環境狀紐生源微會根據命令產生 要的測試源’若所產生之測試源是不正確的,需重新作校準以 201235669 修正到測試源準確為止。設定開闕121 _負载為該可程式負載70。短暫延遲===電池模組 響應穩定後,接著就可一點一點電池模組80輸出 言錄定照度、減、溫度下之丨,㈣線:ρ= 曲線與部分遮_生曲線,以找出各種工作ί境 的最佳工作點並在人機界面軟難上伽示紐存 ,著奴關m、122使該讀能電賴蝴 大功率追糖2_亥可程式負的串接組合,並藉 • ί==陽二電池模組80的負載輸出功率。該最大: 各==:tr==㈣㈣絲所量到的 背:ΐΐ照圖2 ’其繪示圖1驗證平台之操作流程圖。如圖2所示, ==程包含:初始化與自我測試(步驟a);設定測試程序(步驟 率追(錄量測特性曲線(步驟d);測試最大功 器(乂驟幻,以及计鼻最大功率追蹤器準確率(步驟f)。 在步驟a,為確保量測資料的可靠度與準雜,必需等到 内所有儀器設備檢測完成後,才能進入步驟b。 ,、’ 旦f驟b ’係藉由在人機界面上設定測試程序,包含測試點數 疋’不同特性曲線量測設定,主要有兩類:Η特性曲線 〔、-V特性曲線,接著是所要求測試之環境條件設定,包含照产、 溫度與角度的設定。 ’、、又 在步,可程式環境狀態產生源40就會根據程式設定產生所 要的測試魏,若所產生之職環境是不的 再-次作修正_試環鮮確為止。 新作。十异 “在步驟d ’短暫延遲使太陽能電池模組8〇輸岭應穩定後,接 =就可量測輸出電壓與電流,最後就可晝出該設定照度、角度、 度下之I V特性曲線、p_y特性曲線,並在人機界面上作顯示 或儲存列印。 ” 8 201235669 保輸繼蝴嶋_境才能確 在步驟f,從步驟d所得之量測結果儲存 她之量測結果比較以計算出最大 率。其結果同樣可在人機界面上作顯示或儲存列印。 域躲參輯模方面,在切分喊用場合,使 ===電路已足夠,但較精峰的等效電路模型 作情^ 範圍的操Accept the drive of the electric machine and execute the three-axis ίί ^20 of the machine (4) to generate the required artificial environment test/electricity, the second output degree, the temperature, the tilt angle and the azimuth angle, etc. Affecting the solar energy ί ° The programmable _« generates a package: a light source circuit 41; a temperature control circuit 42; and a drive circuit 43. ^ The light source dimming circuit 41 is rotated to the computer 2 (10) to receive the illuminance sent by the computer 20 and the root turning command is used to adjust the output power of the driving circuit and the input illuminance of the light source 50; The temperature control circuit is connected to the electric power, and is used to cooperate with the driving circuit 43 to control the height of the light source 5〇 to increase or decrease the temperature; and the driving circuit 43' is connected to the computer. In addition to the control of the 2-axis direction, the angle of inclination and azimuth command are also used to control the motor 3Q, and the inclination angle and azimuth angle of the entire test frame 10 are simplified. The light source 50 is placed on the frame 1 (), and is controlled by the power to output a light source of different illumination to the solar battery module 8 to be tested. The sensing device 60 is disposed on the frame 10 and coupled to the computer 2 to sense the illumination produced by the light source 50 and the temperature of the current test environment. The sensing device 60 is, for example but not limited to, an illuminometer or an infrared camera. The programmable load 70, such as but not limited to an electronic load, has a GpiB interface (not shown) and is connected to the computer through the GPIB interface. By means of the program setting method, the load value of the electronic load 70 can be automatically changed to provide different negative 201235669 to the solar cell module 80, so that the voltage and current of the operating point can be continuously measured. The spear/·the difference in the curve ο The multi-function digital meter 90, via the -GPiB interface (Fig. 20, used to measure the solar cell module under different loads) ^== , flow = and will measure The output voltage and current value are sent back to the electrical storage. After all the test points are stored, according to the stored reading data = group X, the _ but not the curve, the different angles of the miscellaneous curve and the partial concealment The best health point in the environment. 4 out of all kinds of work The camera 1GG, via - turn (not shown) _ good Taiwan hardware device is working properly. When there is a "shape", the user can perform emergency treatment from the top of the electricity to avoid the occurrence of disasters. In addition, the side camera 100 can also detect the fatigue product. η海=贝料取取卡110' Each device and equipment 9〇, 1〇〇 and the computer such as contact ditch = bridge, 'different instruments and equipment, although the communication interface is not the same, but as long as they understand the protocol, or the software crane provided by the instrument H program The interface software 2 can control each instrument. The person who writes the & f maximum power tracker 120 is used to maximize the output power of the solar cell module 80 in various environments, and the working performance can be maximized. In the verification platform, the evaluation: the output power of the solar cell module 80 in various working environments can be compared with the best-average security points previously measured. The switches 121 and 122 are used. In order to switch the load of the solar cell module 8〇, a two-degree portable load 70 or a combination of the maximum power tracker 120 and the programmable load 7〇 can be combined. The solar cell module 80 is placed on the platform 11 On, then = kg to test the environmental conditions, including the illumination, temperature, and angle settings; = trial program = fixed, the program environment, the new source will generate the required test source according to the command 'if the test produced The source is incorrect. It needs to be recalibrated to correct the test source to 201235669. Set the opening 121 _ load to the programmable load 70. Short delay === After the battery module responds stably, then it can be one by one. Point battery module 80 outputs the illuminance, reduction, and temperature under the quotation, (4) line: ρ = curve and partial _ _ curve, to find the best working point of various working conditions and soft in the human-machine interface On the gamma, the slaves, m, 122, so that the reading can be powered by the high-power chasing sugar 2_Hai Ke program negative serial combination, and borrowed ί == Yang Er battery module 80 load output power. The maximum: Each ==:tr==(4) (4) The back of the wire is measured: Figure 2 shows the operation flow chart of the verification platform of Figure 1. As shown in Figure 2, the == process includes: initialization and self-test (Step a); setting the test procedure (step rate chase (recording characteristic curve (step d); Test the maximum power (the illusion, and the accuracy of the nose maximum power tracker (step f). In step a, in order to ensure the reliability and quasi-mixing of the measurement data, it is necessary to wait until all instruments and equipments have been tested. Go to step b. , ' f f b b ' by setting the test program on the man-machine interface, including the number of test points 疋 'different characteristic curve measurement settings, there are two main types: Η characteristic curve [, -V characteristics The curve, followed by the environmental conditions of the required test, including the setting of the production, temperature and angle. ', and in step, the programmable environment state generation source 40 will generate the desired test Wei according to the program settings, if generated The job environment is no longer - the second revision _ test ring is so clear. New work. Ten different "in step d" short delay so that the solar cell module 8 should be stabilized, then the output voltage and current can be measured, and finally the IV characteristic curve of the set illumination, angle and degree can be extracted. , p_y characteristic curve, and display or store printing on the man-machine interface." 8 201235669 Guaranteed to follow the butterfly 嶋 _ _ can be confirmed in step f, the measurement results obtained from step d to store her measurement results compared Calculate the maximum rate. The result can also be displayed or stored on the human machine interface for printing. In the field of hiding the parameters, in the case of splitting and shouting, the circuit of === is sufficient, but the equivalent circuit model of the fine peak is used.

Rs來描述此-壓降效應,另外,可用一並聯電 、 電池邊緣之漏電流ueakage 電阻之等效電路難,Rs在餅的太齡不為包含此兩 Rp通常有較高的值。—幾個™Ω,而 vD::::fR:荷夫電流定律可_^Rs is used to describe this-voltage drop effect. In addition, it is difficult to use a parallel circuit, the equivalent circuit of the leakage current ueakage resistance of the battery edge, and the Rs in the age of the cake does not contain the two Rp usually have higher values. - several TMΩ, and vD::::fR: the law of the current of the charge _^

Id = ls(EXP[(V+IRs)/nVT]-1),亦即 « = ^h-ISfEXPKV+IRsynVTMHV+IRsVRp ⑴ ^中/s W内部電阻與電極電阻等之串聯等效電阻' =輸=的短路電流會越小,但幾乎不會對輸出的開 , 而RP阻值越大,輸出的開路電壓會越小 阻, 路電流。要利用⑴式來描述太陽能電池特性不= 2要參數,即U,ls,n,Rp>Rs,利用本發明 中五 ς電池特性自動化制线,來估測五健要參數之步驟如之圖2 1.)在所要操作的照度、溫度條件下,個人 環境狀態產生源4〇以產生輸人命令所f之測試源,經 201235669 系統測試該操作條件下之電壓、電流(ι-ν)特性曲線,如圖5所示。 (2) (3) 極體數學模型(方 2.)由曲線中取出特定5點如圖5所示,短路電流點μ%(丨%,〇), Voc/2 點Pj(li, Vi),最大功率點Pmp(|mp,Vmp>,pk(|k,Vk)點,開路電 壓點Poc(0,Voc),其中 V, = Voc/2 Vk = (Vmp+ Voc)/2 並利用五個特定點計算該操作情況下之單— 程式(1))之五個參數為 ph *scId = ls(EXP[(V+IRs)/nVT]-1), that is, « = ^h-ISfEXPKV+IRsynVTMHV+IRsVRp (1) ^中/s W series resistance of the internal resistance and electrode resistance, etc. The short circuit current of = will be smaller, but the output will be hardly opened, and the larger the RP resistance, the smaller the open circuit voltage of the output will be. To use the formula (1) to describe the solar cell characteristics not = 2 parameters, namely U, ls, n, Rp > Rs, using the five-cell battery characteristics of the present invention to automatically make the line, to estimate the parameters of the five parameters to be as shown in the figure 2 1.) Under the illuminance and temperature conditions to be operated, the personal environment state generates the source 4 to generate the test source of the input command f, and the voltage and current (ι-ν) characteristics under the operating conditions are tested by the 201235669 system. The curve is shown in Figure 5. (2) (3) The polar body mathematical model (square 2.) takes a specific 5 points from the curve as shown in Fig. 5, the short-circuit current point μ% (丨%, 〇), Voc/2 point Pj(li, Vi) , the maximum power point Pmp (| mp, Vmp >, pk (| k, Vk) point, open circuit voltage point Poc (0, Voc), where V, = Voc / 2 Vk = (Vmp + Voc) / 2 and utilize five The specific parameter for calculating the single-program (1) in this case is ph *sc

Rs = (Voc - vk)/lk = (Voc - Vmp)/2lk Rp = Vi/(lsc - |j) = Voc/2(lsc - li)Rs = (Voc - vk) / lk = (Voc - Vmp) / 2lk Rp = Vi / (lsc - |j) = Voc / 2 (lsc - li)

Is = (lsc - Voc/ Rp)/(EXP|y〇c/nNsVT]-1) n ~ kjlph + kc = -0.229lPh+2.275 (4) 其中,ls為二極體飽和電流,IS^PV模組ceu串聯個數為 體理想因數(ideality factor),理想因數與光電流丨的(%''丨sc)有 關’就所用來測試之太陽能模組(SANY0 HIp_21〇NHE1)而言,, lph關係如圖6所示,其關係式常數ki和kc如方程式⑷所示: 3.)在得到該操作情況下之五個參數(丨的,Rs,Rp,丨s,n)後, 即可代到方程式(1),以得到PV模組之單一二極體數學模型。 私在線!·生系統電氣设備中,為使負載獲得最大功率通常要進行 ,當的,載匹配’使負載電阻等於供電系統的内阻,此時負載就 ϋ獲得最大功率。考慮圖7為系統簡化的電路,假社陽能模組 的輪出阻抗為RpV,負載端之等效阻抗為rl。 因為負載功率pL為 pL= I2Rl = Vs2RL/(Rpv+RL)2 ⑸ 輸出功率最大時會發生在3PL/3RL = ο,即 ^PL/aRL = vs2(rpv.rl)/(rpv+Rl)3 = 0 ⑹ 所以由方程式⑹可知,當RPV = Rl時,輸出功率會最大。但對於 201235669 太陽能電池而言,由於太陽能電池的輪 強度及太陽能電池本身溫度影響等條件 陽S度 而是隨時在改變的,加上輸出的負載阻 定,若直接將太陽能電池跟負載相連接 :二°十上已固 池的最大效率’而造成部份能量損失 到2 換器來轉換太陽能電池的最大功率給負載端 ,你=y rati。’ d) ’來達到改變轉換器輸入阻抗的目 參馳㈣讀在最切輕,糾制太陽能模 *所示為升壓型dc_dc轉換器,當操作於連續電流模式( 時’其輸出入電壓關係根據電感伏秒乘積平 v〇/vg = 1/(1-0) 肝㈣理,可付 ,設轉換器無任何的功率損失,則輸人功率等於(輸)出功机= P。,則可得到電壓與電流和責任週期之關係為 l〇/lin = Vg/V〇 = 1-D ⑻ ,太陽最大神追縱线而言,若Rin為太陽能電池端之阻抗, _ L為固定之負載阻抗,則經由改變工作週期D後可得Is = (lsc - Voc/ Rp)/(EXP|y〇c/nNsVT]-1) n ~ kjlph + kc = -0.229lPh+2.275 (4) where ls is the diode saturation current, IS^PV mode The number of sets of ceu series is the ideality factor, and the ideal factor is related to the photocurrent 丨(%''丨sc)'. For the solar module (SANY0 HIp_21〇NHE1) used for testing, lph relationship As shown in Fig. 6, the relational constants ki and kc are as shown in equation (4): 3.) After obtaining the five parameters (丨, Rs, Rp, 丨s, n) in the case of the operation, Go to equation (1) to get a single diode mathematical model of the PV module. Private online! In the electrical system of the raw system, in order to obtain the maximum power of the load, it is usually carried out. When the load is matched, the load resistance is equal to the internal resistance of the power supply system, and the load will obtain the maximum power. Consider Figure 7 for the simplified circuit of the system. The output impedance of the pseudo-positive solar module is RpV, and the equivalent impedance of the load is rl. Because the load power pL is pL= I2Rl = Vs2RL/(Rpv+RL)2 (5) The maximum output power will occur at 3PL/3RL = ο, ie ^PL/aRL = vs2(rpv.rl)/(rpv+Rl)3 = 0 (6) Therefore, as shown by equation (6), when RPV = Rl, the output power will be the largest. However, for the 201235669 solar cell, due to the condition of the solar cell's wheel strength and the temperature of the solar cell itself, it is changing at any time, plus the output load is blocked, if the solar cell is directly connected to the load: The maximum efficiency of the solid pool has been reduced by 2 ° and the partial energy loss to the 2 converter to convert the maximum power of the solar cell to the load end, you = y rati. 'd) 'to achieve the change of the converter input impedance of the head (4) read at the most light, the correction of the solar mode * shown as a boost dc_dc converter, when operating in continuous current mode (when its input and output voltage The relationship is based on the inductance volt-second product-flat v〇/vg = 1/(1-0) liver (four), can be paid, set the converter without any power loss, then the input power is equal to (transmission) power machine = P. Then the relationship between voltage and current and duty cycle is l〇/lin = Vg/V〇= 1-D (8). For the sun's largest god tracking line, if Rin is the impedance of the solar cell, _L is fixed. The load impedance is obtained by changing the duty cycle D.

Rin = Vg/Iin = V〇(1-D)/[l0/(1-D)] = Rl(1-D)2 (9) 故由方程式⑼可得知,欲得到太陽電池的最大功率輸出,只需要 调整電晶體㈣JL作週期D,就可改變太陽能電池的輸人阻抗等於 負載電阻’便可使太陽能電池操作在最大功率點。但對昇壓型轉 換态:言,實際工作時由於電感、電容、開關及二極體之寄生元 t所造成的損失效應,使得當D趨近於丨時,v〇A/g將下降,且在高 責任週期時,開關之利用率相當低。 η圖9為最大功率追蹤器12〇一實施例之方塊圖,其包含一數位 訊號控制器dsPIC30F4011 1201、一M0SFET驅動隔離電路1202、一 直流電壓轉換器12〇3、一負載電流回授電路1204、以及一負載電 11 201235669 壓回授電路1205。 數位§fL^虎控制dsPIC30F4011 1201係依負載電流回授電路 1204以及負載電壓回授電路1205所回授之電流及電壓決定一 PWM 信號的工作週期並將其輸出至MOSFET驅動隔離電路1202。 MOSFET驅動隔離電路1202 ’搞接於數位訊號控制器 dsPIC30F4011 1201與直流電壓轉換器1203之間,係用以提升驅動 能力同時避免共同接地所產生的短路問題。 直流電壓轉換器1203係一升壓直流轉換器,用以調變太陽能 電池模組80的工作點。Rin = Vg/Iin = V〇(1-D)/[l0/(1-D)] = Rl(1-D)2 (9) Therefore, it can be known from equation (9) that the maximum power output of the solar cell is obtained. Only need to adjust the transistor (4) JL for the period D, you can change the input impedance of the solar cell to equal the load resistance 'to enable the solar cell to operate at the maximum power point. However, for the boost-type switching state: in the actual operation, due to the loss effect caused by the inductance, capacitance, switch and the parasitic element t of the diode, v〇A/g will decrease when D approaches 丨. And in the high duty cycle, the utilization of the switch is quite low. FIG. 9 is a block diagram of a maximum power tracker 12, which includes a digital signal controller dsPIC30F4011 1201, a MOSFET driving isolation circuit 1202, a DC voltage converter 12〇3, and a load current feedback circuit 1204. And a load circuit 11 201235669 pressure feedback circuit 1205. The digital §fL^ tiger control dsPIC30F4011 1201 determines the duty cycle of a PWM signal according to the current and voltage fed back by the load current feedback circuit 1204 and the load voltage feedback circuit 1205 and outputs it to the MOSFET drive isolation circuit 1202. The MOSFET drive isolation circuit 1202 is coupled between the digital signal controller dsPIC30F4011 1201 and the DC voltage converter 1203 to improve the driving capability while avoiding short circuit problems caused by common grounding. The DC voltage converter 1203 is a boost DC converter for modulating the operating point of the solar cell module 80.

負載電流回授電路1204以及負載電壓回授電路1205係用以回 授可程式負載70的電流及電壓。 “圖9之最大功率追蹤器120係採用擾動觀察法,以進行最大功 率點追蹤一其係藉由數位訊號控制器dsPIC30F4011的内建A/D模 組來擷取貞载糕及貞載職做為功率關斷,使卿_植產生 PWM信號軸直流電壓轉換^,並依據功率大小_整工 期。圖騎示紐峨察法程式流侧,該流程包含:初 驟1);設定工作週期⑽τγ) = 20%及輸出一 PWM信號(步驟二 取電壓、電流並將其設為V。、!。(步驟3);計算p。调。(’♦: 增加請(娜);讀取電壓、電流並將其設為%、Μ步^將 δ十鼻Pi=Vi*Ii(步驟7);以及動態調整DUTY(步驟8)。 , 於操作時’最大功率追聰緖著 大小,以改變太陽能電池的輸出雜及輸出電流g贿Y的 DUTY變動前後的輸出功率的大小,以決打—步的 動後輸出功率比原本輸出功率大’則將〇 上二變 f 比變動前小,則表示需要改變順 擾動、量·比較’使太一 為讓使用者能快速上手,兼具人性化與現代化的操作界面是 12 201235669 必備的。本發明使用LabVIEW來撰寫系統控制程式與人機界面。 LabVIEW使用工程學相似的專門術語,其内容和想法都很類似專業 的模擬程式,程式流程採用"資料流"之概念打破傳統之思維模 式,使得程式設計者在流程圖構思完畢的同時也完成了程式的撰 寫,可以在短時間完成系統的建立。在LabvIEW環境中可輕易建立 基於虛擬儀表(Virtual lnstrument,簡稱VI)概念之使用者人機 界面,LabVIEW也整合了所有的硬體通訊界面,其中包含了⑶比、 RS-232、RS-485、USB、TCP、DAQ 卡等。The load current feedback circuit 1204 and the load voltage feedback circuit 1205 are used to feedback the current and voltage of the programmable load 70. “The maximum power tracker 120 in Figure 9 uses the perturbation observation method for maximum power point tracking. It uses the built-in A/D module of the digital signal controller dsPIC30F4011 to capture the load of the cake and the load. For power shutdown, the _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ ) = 20% and output a PWM signal (Step 2 takes the voltage and current and sets it to V., !. (Step 3); Calculate p. Adjust. ('♦: Increase please (Na); Read voltage, The current is set to %, Μ step ^ δ 鼻 nose Pi = Vi * Ii (step 7); and dynamically adjust DUTY (step 8). In operation, 'maximum power chasing the size of the smart to change the solar energy The output of the battery and the output current g. The output power before and after the DUTY change of the brigade Y is greater than the original output power after the step-by-step operation, and then the second variable f is smaller than the change before the change. Need to change the turbulence, quantity, and comparison 'to make Taiyi so that users can get started quickly and have people The modernization and modernization interface is mandatory for 2012.35. The invention uses LabVIEW to write system control programs and human-machine interfaces. LabVIEW uses engineering-specific terminology, and its content and ideas are similar to professional simulation programs. The concept of "data flow" breaks the traditional thinking mode, which allows the programmer to complete the writing of the program while completing the flow chart design, and complete the system establishment in a short time. It can be easily established based on the virtual in the LabvIEW environment. The user interface of the Virtual Instrument (VI) concept, LabVIEW also integrates all hardware communication interfaces, including (3) ratio, RS-232, RS-485, USB, TCP, DAQ card and so on.

圖11所示為本魏之操作設定主頁面,主要分為五個人機界 面,分別為設定頁面、測量頁面、溫度補償頁面、讀取頁面、以 及追縱器頁面。使用者透過畫面上方的五個按鈕,即可切換不同 的頁面。在設灯面部分,包含了系統時間、現場晝面、儲 t料i目境產生源相關設定與所使用儀11的相關通訊 在糸統测$頁面,其包含可輸入待測模組型號與相關資料、 =糸參數、特性曲線與量測結果及細計算數值的 i去r魏是湘原廠給的太陽能電池模組參 數去什鼻因>皿度上升所造成的參數變動;使用者可在讀 ^所,存的實驗資料直接顯示在螢幕上,而不f重 t。最後是猶H胃面,其包含了崎蹤賊 j =器的準確度。依本發明所採的視覺化人機界面,操d 統:之各種功能,從而快速、輕易的進行操作。 本案所揭轉,雜佳實_,軌局狀變 =====雜·徽藝之人«_知者:俱不脫 综上所陳’本案無論就目的、 於習知之技術特徵,且ιϋ功效’在在顯示其週異 專利要件,懇請貴審二亦在在符合發明之 社會,實感德便。_,並祈早日賜予專利,俾嘉惠 13 201235669 【圖式簡單說明】 圖1繪示本發明太陽能系統最大功率追 實施例之示意圖。 蹤器驗證平台一較佳 圖2綠示圖1驗證平台之操作流程圖。 圖3繪示包含二電阻之等效電路模型。 圖4繪示太陽能模組特性參數之建模 圖5%示一 I-V特性曲線。 、一 圖6繪示一 n-U關係曲線。 圖7繪示系統之簡化模型。Figure 11 shows the main operation setting page of Wei, which is divided into five human-machine interfaces, which are setting page, measurement page, temperature compensation page, reading page, and tracker page. Users can switch between different pages through the five buttons at the top of the screen. In the setting of the lamp surface, the system time, the surface of the site, the storage source, the source related setting and the related communication of the instrument 11 are included in the system, which includes the model of the module to be tested and Related data, =糸 parameter, characteristic curve and measurement result, and fine calculation value of i to r Wei is the parameter of the solar cell module given by Xiangyuan factory, and the parameter change caused by the rise of the dish degree; user The experimental data stored in the program can be directly displayed on the screen without f heavy t. Finally, it is the stomach surface of Jue H, which contains the accuracy of the thief j = device. According to the visual human-machine interface adopted by the invention, the various functions of the system are operated, so that the operation is fast and easy. The case was revealed, the miscellaneous good _, the track change ===== miscellaneous · Huiyi people «_ knower: are not inconsistent with the Chen's case, regardless of the purpose, the technical characteristics of the knowledge, and ϋ ϋ ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' _, and pray for an early patent, Yan Jiahui 13 201235669 [Schematic description of the drawings] Figure 1 shows a schematic diagram of the maximum power chasing embodiment of the solar energy system of the present invention. Tracer Verification Platform One is better. Figure 2 is a green flow chart of the verification platform of Figure 1. FIG. 3 illustrates an equivalent circuit model including two resistors. Figure 4 shows the modeling of solar module characteristic parameters. Figure 5% shows an I-V characteristic curve. Figure 6 shows an n-U relationship curve. Figure 7 shows a simplified model of the system.

圖8%示升壓型dc-dc轉換器之電路圖。 圖9繪示一最大功率追蹤器系統方塊圖。 圖10繪示一擾動觀察演算法之流程圖。 圖11續'示本發明系統操作、設定之主頁面。 【主要元件符號說明】 機架10 支架12 電腦20 馬達30 平台11 滑輪13 人機界面軟體21Figure 8% shows the circuit diagram of the boost dc-dc converter. Figure 9 is a block diagram of a maximum power tracker system. FIG. 10 is a flow chart showing a disturbance observation algorithm. Figure 11 is a continuation of the main page of the system operation and setting of the present invention. [Description of main component symbols] Rack 10 Bracket 12 Computer 20 Motor 30 Platform 11 Pulley 13 Human Machine Interface Software 21

可程式環境狀態產生源40 燈源調光電路41 驅動電路43 感測裝置60 太陽能電池模組8〇 攝影機100 最大功率追蹤器12〇 數位訊號控制器dsPIC30F4011 1201 MOSFET驅動隔離電路12〇2 直流電壓轉換器12〇3 溫度控制電路42 燈源50 可程式負載70 多功能數位電表90 資料擷取卡110 開關 121、122 14 201235669 負載電流回授電路1204 負載電壓回授電路1205Programmable environment state generation source 40 Light source dimming circuit 41 Drive circuit 43 Sensing device 60 Solar battery module 8〇 Camera 100 Maximum power tracker 12〇 Digital signal controller dsPIC30F4011 1201 MOSFET drive isolation circuit 12〇2 DC voltage conversion 12〇3 Temperature control circuit 42 Light source 50 Program load 70 Multi-function digital meter 90 Data capture card 110 Switch 121, 122 14 201235669 Load current feedback circuit 1204 Load voltage feedback circuit 1205

Claims (1)

201235669 七、申請專利範圍: ^一^太陽能供電系統最大功率追蹤器驗證平台,其具有·· 一電腦,其具有一圖形化人機界面供使用者操作; 一測試平台,用以容置一太陽能模組及提供一昭’ w +口以產生所述的照度和溫度; 可變負載單元,與該太陽能模組及該電縣接,且有一可 一最大功率追蹤器,其中該可變負載單元係用以使該 )成為該太&此模組的負載,或使該最大功率追縱器與 該可程,負載的串接組合成為該太陽能模組的負載;以及…、 ▲夕功ι數位電表’用以量測該可程式負載的電流和電壓, 及將該電流和電壓的數值傳至該電腦。 舰專利範圍第1項所述之太陽能供電純最大功率追 蹤為驗δ且平σ,其中該電腦進一步具有一資料擷取卡。 201235669 蹤器ΓΓΠ直其中該可變負載單元進一步具有-開關電路。 蹤圍第1項所述之太陽能供電祕最大功率追 t由1’击該圖形化人機界面係一 _IEW程式。 蹤器驗證;其之太·供電紐最大功率追 USB、TCP、或 _ 的勉界面係 GPIB、RS-232、RS—娜、201235669 VII. Patent application scope: ^一^ Solar power supply system maximum power tracker verification platform, which has a computer with a graphical human-machine interface for users to operate; a test platform for accommodating a solar energy a module and providing a display port to generate the illuminance and temperature; a variable load unit connected to the solar module and the electric county, and having a maximum power tracker, wherein the variable load unit Is used to make the load of the module too, or to combine the maximum power tracker with the series of load and load to become the load of the solar module; and..., ▲ 夕 功The digital meter 'measures the current and voltage of the programmable load, and transmits the current and voltage values to the computer. The solar power supply pure maximum power tracking described in item 1 of the ship patent scope is δ and σ, wherein the computer further has a data capture card. 201235669 The tracer is straightened wherein the variable load unit further has a -switch circuit. The maximum power chasing of the solar power supply mentioned in item 1 of the trace is 1 击 IEW program by the graphical human-machine interface. Tracer verification; its power supply maximum power chasing USB, TCP, or _ 勉 interface GPIB, RS-232, RS-Na, 1717
TW100105372A 2011-02-18 2011-02-18 Solar power supply system maximum power tracker verification platform TWI410641B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW100105372A TWI410641B (en) 2011-02-18 2011-02-18 Solar power supply system maximum power tracker verification platform

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW100105372A TWI410641B (en) 2011-02-18 2011-02-18 Solar power supply system maximum power tracker verification platform

Publications (2)

Publication Number Publication Date
TW201235669A true TW201235669A (en) 2012-09-01
TWI410641B TWI410641B (en) 2013-10-01

Family

ID=47222667

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100105372A TWI410641B (en) 2011-02-18 2011-02-18 Solar power supply system maximum power tracker verification platform

Country Status (1)

Country Link
TW (1) TWI410641B (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI668955B (en) * 2018-09-20 2019-08-11 艾思特能源有限公司 Simulation performance detection method of solar photovoltaic module
TWI677182B (en) * 2018-05-30 2019-11-11 俊麟 郭 Optimized input and output power control solar power supply device and equipment
TWI706261B (en) * 2019-07-31 2020-10-01 龍華科技大學 A method for tracking the global maximum power of solar cells
TWI727513B (en) * 2019-11-22 2021-05-11 盈正豫順電子股份有限公司 Power generation abnormality detection method and system suitable for offline photovoltaic panels

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101521477A (en) * 2007-12-04 2009-09-02 张玉良 Low-cost solar energy tracking and condensing power generation method
TW201003099A (en) * 2008-07-07 2010-01-16 Univ Lunghwa Sci & Technology Solar panel feature parameter auto-authentication and performance verification system and its method
WO2010091025A2 (en) * 2009-02-04 2010-08-12 Applied Materials, Inc. Metrology and inspection suite for a solar production line
TWI409611B (en) * 2009-06-30 2013-09-21 Univ Nat Cheng Kung Maximum power tracking method for solar cells

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI677182B (en) * 2018-05-30 2019-11-11 俊麟 郭 Optimized input and output power control solar power supply device and equipment
TWI668955B (en) * 2018-09-20 2019-08-11 艾思特能源有限公司 Simulation performance detection method of solar photovoltaic module
TWI706261B (en) * 2019-07-31 2020-10-01 龍華科技大學 A method for tracking the global maximum power of solar cells
TWI727513B (en) * 2019-11-22 2021-05-11 盈正豫順電子股份有限公司 Power generation abnormality detection method and system suitable for offline photovoltaic panels

Also Published As

Publication number Publication date
TWI410641B (en) 2013-10-01

Similar Documents

Publication Publication Date Title
TW201235669A (en) Maximal power tracker validation platform of solar power supply system
Çınar et al. On the Design of an Intelligent Battery Charge Controller for PV Panels.
CN201134767Y (en) Portable apparatus capable of displaying power supply efficiency of solar cell
CN104539170A (en) Three-level Cuk voltage regulation constant current source and operation method thereof
Bubovich The comparison of different types of DC-DC converters in terms of low-voltage implementation
CN103116118A (en) Digital photovoltaic array imitator system based on look-up table
CN102928249B (en) System and method for simulating output of solar cell array based on programmable power supply
CN104283490B (en) One kind interruption power termination angle of solar battery system and its performance prediction method
Kahoul et al. A comprehensive simulator for assessing the reliability of a photovoltaic panel peak power tracking system
Tiwari et al. Real time monitoring of solar power plant and automatic load control
CN105628771A (en) Solar battery-powered direct current chemical application system
CN105606235A (en) Solar overtemperature alarm
Ramli et al. Electrical Energy Monitoring System from Solar Panel
CN205105168U (en) Distributing type roof photovoltaic power generation intelligent monitoring system
CN107863935A (en) A kind of high emulation solar cell simulator
CN202836754U (en) Collecting device for daily radiation intensity and photovoltaic generating capacity
CN202043061U (en) Volt-ampere property simulation power source device for photovoltaic cells
CN102255541A (en) Single-phase inverter capable of performing instantaneous control under dq coordinate system and control method
TW201003099A (en) Solar panel feature parameter auto-authentication and performance verification system and its method
Petit et al. The Transistor based Direct and Reverse Mode model for photovoltaic strings and panels
CN202649336U (en) Portable photovoltaic power station comprehensive test instrument
Jassim et al. Implementation of solar energy tracking system
Zakaria et al. Modeling of photovoltaic power plants
Rahman et al. Construction and Design of Automatic Solar Tracker in Dual Axis
Irwanto et al. Hybrid charger controller based PV and wind turbine systems

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees