TW201009534A - Method and system for selecting between centralized and distributed maximum power point tracking in an energy generating system - Google Patents

Method and system for selecting between centralized and distributed maximum power point tracking in an energy generating system Download PDF

Info

Publication number
TW201009534A
TW201009534A TW098115860A TW98115860A TW201009534A TW 201009534 A TW201009534 A TW 201009534A TW 098115860 A TW098115860 A TW 098115860A TW 98115860 A TW98115860 A TW 98115860A TW 201009534 A TW201009534 A TW 201009534A
Authority
TW
Taiwan
Prior art keywords
energy generating
local
generating devices
controller
panel
Prior art date
Application number
TW098115860A
Other languages
Chinese (zh)
Other versions
TWI498705B (en
Inventor
jian-hui Zhang
Ali Djabbari
Gianpaolo Lisi
Original Assignee
Nat Semiconductor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US12/152,478 external-priority patent/US9077206B2/en
Priority claimed from US12/152,566 external-priority patent/US7991511B2/en
Application filed by Nat Semiconductor Corp filed Critical Nat Semiconductor Corp
Publication of TW201009534A publication Critical patent/TW201009534A/en
Application granted granted Critical
Publication of TWI498705B publication Critical patent/TWI498705B/en

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F1/00Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
    • G05F1/66Regulating electric power
    • G05F1/67Regulating electric power to the maximum power available from a generator, e.g. from solar cell
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/381Dispersed generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S50/00Monitoring or testing of PV systems, e.g. load balancing or fault identification
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/22The renewable source being solar energy
    • H02J2300/24The renewable source being solar energy of photovoltaic origin
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/22The renewable source being solar energy
    • H02J2300/24The renewable source being solar energy of photovoltaic origin
    • H02J2300/26The renewable source being solar energy of photovoltaic origin involving maximum power point tracking control for photovoltaic sources
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Automation & Control Theory (AREA)
  • Control Of Electrical Variables (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Dc-Dc Converters (AREA)

Abstract

A method for selecting between centralized and distributed maximum power point tracking in energy generating system is provided. The energy generating system includes a plurality of energy generating devices, each of which is coupled to a corresponding local converter. Each local converter includes a local controller for the corresponding energy generating device. The method includes determining whether the energy generating devices are operating under quasi-ideal conditions. The energy generating system is placed in a centralized maximum power point tracking (CMPPT) mode when the energy generating devices are operating under quasi-ideal conditions and is placed in a distributed maximum power point tracking (DMPPT) mode when the energy generating devices are not operating under quasi-ideal conditions.

Description

201009534 六、發明說明: 交互參照之相關申請案 本發明係有關於同時提出申請的以下申請案:名稱爲 「METHOD AND SYSTEM FOR PROVIDING CENTRAL CONTROL IN AN ENERGY GENERATING SYSTEM」的美 國專利申請案第___號(代理人案號第P07 1 66號),名稱 爲「METHOD AND SYSTEM FOR PROVIDING LOCAL φ CONVERTERS TO PROVIDE MAXIMUM POWER POINT TRACKING IN AN ENERGY GENERATING SYSTEM」的 美國專利申請案第___號(代理人案號第P07 1 68號),及 名稱爲「METHOD AND SYSTEM FOR ACTIVATING AND DEACTIVATING AN ENERGY GENERATING SYSTEM」的 美國專利申請案第___號(代理人案號第P071 69號)。在 該等專利申請案之各者中所揭示的標的物以參考方式與本 揭示內容合併,如同在此完整提出。 ❹ 【發明所屬之技術領域】 揭示內容大致上係有關於能量產生系統。更明確而言 ,揭示內容係有關於用以在能量產生系統中之集中式及分 散式最大功率點追蹤之間作選擇的方法及系統。 【先前技術】 相對於習知的非再生、會污染的能量來源(離如煤或 是石油)而言,太陽能及風力提供可再生且不會污染的能 -5- 201009534 量來源。因此,太陽能及風力已成爲日益重要的可轉換爲 電能的能量來源。對於太陽能而言,排列成陣列的光伏打 面板通常提供用以轉換太陽能爲電能的裝置。類似的陣列 可用於收集風力或是其他自然的能量來源。 在操作光伏打陣列時,通常使用最大功率點追蹤( MPPT )以自動地判定應在何種電壓或是電流操作該陣列 ,以在特定溫度及太陽輻射產生最大功率輸出。儘管當陣 列在理想條件(亦即,對於陣列中之各個面板有相同的輻 射、溫度及電性特徵)時,對於整體陣列而言’實施 MPPT相當簡單,但當有不匹配或是部份被遮蔽的情況下 ,對於整體陣列之MPPT則更爲複雜。在此情況中’因爲 不匹配的陣列的多峰功率對電壓特徵的相對最佳條件’ MPPT技術不能提供精確的結果。因此,該陣列面板中僅 有一些能理想地操作。因爲對於包含數排面板的陣列而言 ,最無效率的面板會決定整體面板的電流及效率,如此則 造成產生功率的劇烈下降。 因此,某些光伏打系統對陣列中的各面板提供一 DC-DC轉換器。各該DC-DC轉換器執行MPPT以搜尋其之對 應面板的最大功率點。然而,在此系統中的DC-DC轉換 器有可能被朦蔽而選擇局部最大點來操作其面板,而非選 擇面板的實際最大功率點。此外,在此系統中使用多個 DC-DC轉換器會造成操作轉換器引起的電損失,如此則 201009534 【發明內容】及【實施方式】 在此專利文件中’以下將討論的圖1到12及用於說 明本發明原理的各種實施例僅爲說明性的,不胃胃p艮 制本發明之範圍。熟知本技藝者當可了解,本發明的原理 可用於任何種類的適當設置的裝置或是系統。 圖1爲根據揭示內容之一實施例,顯示能爲集中式控 制的能量產生系統100。能量產生系統1〇〇包含多數個能 參 量產生裝置(EGD) 102,其各耦接至對應的—局部轉換 器104,並一起形成能量產生陣列1〇6。對於—特定實施 例而言,如揭示內容所述,能量產生系統1〇〇可包含光伏 打系統,且能量產生裝置102可包含光伏打(pv)面板 。然而,應了解者爲,能量產生系統100可包含任何合適 類型的能量產生系統,例如風力渦輪系統、燃料電池等。 對於此等實施例而言,能量產生裝置102可包含風力渦輪 、燃料電池等。 Ο 所述的光伏打系統100包含中央陣列控制器110,且 亦可包含DC-AC轉換器112或是其他合適的負載,以因 應系統100操作爲倂聯型系統的情況。然而,應了解者爲 ’系統100可藉由將陣列106耦接至電池充電器或是其他 合適的能量儲存裝置而非DC-AC轉換器112,而操作爲 獨立型系統。 陣列106中的PV面板102係設置於串1 14中。對於 所述實施例而言,陣列106包含兩個串114,各串114包 含三個面板102。然而,應了解者爲,陣列可包含任 201009534 意合適數目的串114’且各串114可包含任意合適數目的 面板102。且對於所述之實施例而言,各串114中之面板 102設置爲串聯連接。因此,各個局部轉換器1〇4之輸出 電壓仍然相近於其輸入電壓,而供給高電壓至DC·AC轉 換器112之輸入埠,對於某些實施例而言,其可操作在輸 入電壓爲150 V到500 V之間。因此,不需要以變壓器爲 基礎的轉換器(例如在並聯構造串中所使用者),產生實 現高效率及低成本的局部轉換器104的能力。 各PV面板102能將太陽能轉換爲電能。各局部轉換 器104耦接至其所對應的面板1〇2,且能重新塑造由面板 103提供的輸入的電壓對電流關係,使面板102所產生的 電能可爲陣列106的負載(未顯示於圖1中)利用。DC-AC轉換器112耦接至陣列106,且能將局部轉換器1〇4 所產生的直流(DC)轉換爲用於負載的交流(AC),負 載可耦接至DC-AC轉換器112。 最大功率點追蹤(MPPT)自動判定面板1〇2應操作 之電壓或是電流,以在特定溫度及太陽輻射產生最大的功 率輸出。當陣列在理想條件(亦即,對於陣列中之各個面 板有相同的輻射、溫度及電性特徵)時,對於整體陣列而 言,執行集中式MPPT相當簡單。然而,當有例如不匹配 或是部份被遮蔽的情形時,對於整體的陣列106執行 MPPT則更爲複雜。在此情況中,因爲不匹配的陣列1〇6 的多峰功率對電壓特性的相對最佳條件,Μ P P T技術不能 提供精確的結果。因此,該陣列106中僅有一些面板102 -8- 201009534 能理想地操作,使得產生能量急遽下降。因此,爲了解決 此問題,各個局部轉換器104可對其對應的面板102提供 局部MPPT。在此方式中,不論在理想的或是不匹配或是 被遮蔽的情況下,各個面板102皆可操作在其自有的最大 能量點(MPP )。對於其中能量產生裝置102包含風力渦 輪的實施例而言,MPPT可用於調整風力渦輪的葉片間距 。亦應了解者爲,MPPT可用於最佳化包含其他種類的能 φ 量產生裝置1〇2的系統100。 中央陣列控制器1 1 0耦接至陣列1 06,且能與陣列 106透過有線連接(例如串聯或是並聯匯流排)或是無線 連接通訊。中央陣列控制器110可包含診斷模組120及/ 或控制模組125。診斷模組120能監控光伏打系統100, 控制模組125能控制光伏打系統1〇〇。 診斷模組120能從陣列106中之各個局部轉換器104 接收用於局部轉換器104的局部轉換器資料及用於局部轉 Ο 換器1〇4對應的面板1〇2的裝置資料。此處所使用之「裝 置資料」表示面板102之輸出電壓、輸出電流、溫度、輻 射、輸出功率等。相似地,「局部轉換器資料」表示局部 轉換器輸出電壓、局部轉換器輸出電流、局部轉換器輸出 功率等。 診斷模組120亦能夠在系統1〇〇上產生報告,且提供 報告予操作者。舉例而言’診斷模組120能夠顯示裝置資 料及局部轉換器資料其中一些或是全部予操作者查看。此 外’診斷模組120能夠提供裝置資料及局部轉換器資料其 -9- 201009534 中一些或是全部予控制模組1 25。診斷模組1 20亦能夠以 任何合適的方式分析資料,並提供分析結果予操作者及/ 或控制模組1 25。例如,診斷模組1 20能夠根據任何合適 的時限,例如每小時、每天、每星期、或是每個月,判定 各個面板102的統計資料。 診斷模組120亦能夠對陣列106提供錯誤監控。根據 從局部轉換器104所接收的資料,診斷模組120可辨識一 個或更多個具有瑕疵的面板102,例如失敗的面板102、 失效的面板102、被遮蔽的面板102、髒污的面板102等 。當應更換、修復、或是清潔具有瑕疵的面板102時,診 斷模組1 20亦可通知操作者。 控制模組1 2 5能夠藉由傳送控制信號至一個或更多個 局部轉換器1 04而實際控制陣列1 06。例如,控制模組 125可傳送繞行控制信號至對應的面板102失效的特定局 部轉換器104。繞行控制信號使局部轉換器104繞過其之 面板102,有效地自陣列106移去面板102而不會影響在 相同串114中之其他面板102 (如同被繞過的面板102) 的操作。 此外,控制模組125能夠傳送控制信號至一個或更多 個局部轉換器104,其引導局部轉換器104調整其之輸出 電壓或是電流。對於某些實施例而言,局部轉換器104的 MPPT功能可移至中央陣列控制器1 1 〇。對於該等實施例 而言,控制模組125亦可校準各個面板102之MPP,及根 據校準而傳送轉換比例命令至各個局部轉換器104,以使 201009534 各個面板102操作於其自有的MPP,如控制模組125所判 定者。 控制模組1 25亦可自操作者接收指令並啓動指令。例 如,操作者可引導控制模組125系統100爲併聯型或是獨 立型,且控制模組125可藉由將系統100設爲倂聯型或是 將該系統1〇〇獨立而回應操作者。 因此,藉由利用中央陣列控制器1 1 0,光伏打系統 φ 100以每個面板爲基礎可提供更佳的利用。且,系統100 藉由可混合不同來源而增加彈性。中央陣列控制器1 1 0亦 對整個系統100提供較佳的保護及資料收集。 圖2爲根據揭示內容之一實施例,顯示局部轉換器 2 04。局部轉換器2 04可表示圖1中之局部轉換器104其 中之一個,然而,應了解者爲,局部轉換器2 04能在不脫 離揭示內容的範圍中,以任何合適的方式設於能量產生系 統中。此外,儘管所示者爲耦接至稱爲PV面板的能量產 φ 生裝置2 02,應了解者爲,局部轉換器204可耦接至PV 面板的單一電池或是光伏打陣列的面板子組合,或是耦接 至另一能量產生裝置202,例如風力渦輪、燃料電池等。 局部轉換器204包含功率級206及局部控制器208, 其更包含MPPT模組210及選用的通訊介面212。功率級 206可包含DC-DC轉換器,其能從PV面板2 02接收面板 電壓及電流做爲輸入,並重新塑造輸入的電壓對電流關係 ,以產生輸出電壓及電流。 局部控制器208的通訊介面212能提供局部轉換器 -11 - 201009534 2 04及中央陣列控制器(例如圖1中之中央陣列控制器 110)之間的通訊通道。然而,對於局部轉換器204不與 中央陣列控制器通訊的實施例而言,可以省略通訊介面 212 ° MPPT模組210能從面板202接收面板電壓及電流作 爲輸入,且若所使用的演算法有需要,可從功率級20 6接 收輸出電壓及電流。根據該等輸入,MPPT模組210能提 供信號以控制功率級206。在此方式中,局部控制器208 之MPPT模組210能對於PV面板202提供MPPT。 藉由提供MPPT,MPPT模組210將對應的面板202 保持於作用在實質上固定的操作點(亦即,對應於面板 202之最大功率點的固定電壓Vpan及電流Ipan )。因此, 對於給定的固定太陽輻射而言,在穩定狀態中,若局部轉 換器204對應於面板202之相對或是絕對最大功率點,則 局部轉換器 204 之輸入功率是固定的(亦即, Ppan = Vpan Ipa„)。此外,局部轉換器2 0 4具有相對高的效 能,因此,輸出功率幾乎等於輸入功率(亦即,Pout ^ P p a η )。 圖3爲根據揭示內容之一實施例,顯示局部轉換器 2 04之細部。對於此實施例而言,功率級20 6實現爲單一 電感、四開關同步升降切換調節器,且MPPT模組210包 含功率級調節器3 02、MPPT控制區塊304、及兩個類比 到數位轉換器(ADC) 3 06及3 08。 ADC 306能夠縮放及量子化類比面板電壓Vpan及類 201009534201009534 VI. RELATED APPLICATIONS: RELATED APPLICATIONS RELATED APPLICATIONS The present application is hereby incorporated by reference in its entirety in its entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire contents No. (Attorney Docket No. P07 1 66), US Patent Application No. ___ ("Agent Case" for "METHOD AND SYSTEM FOR PROVIDING LOCAL φ CONVERTERS TO PROVIDE MAXIMUM POWER POINT TRACKING IN AN ENERGY GENERATING SYSTEM" No. P07 1 68), and U.S. Patent Application No. ___ (Attorney Docket No. P071 69) entitled "METHOD AND SYSTEM FOR ACTIVATING AND DEACTIVATING AN ENERGY GENERATING SYSTEM". The subject matter disclosed in each of these patent applications is hereby incorporated by reference in its entirety in its entirety herein in its entirety herein in its entirety ❹ TECHNICAL FIELD OF THE INVENTION The disclosure is generally related to an energy generating system. More specifically, the disclosure relates to methods and systems for selecting between centralized and distributed maximum power point tracking in an energy generating system. [Prior Art] Solar energy and wind power provide renewable and non-polluting energy sources compared to conventional non-renewable, polluting sources of energy (such as coal or petroleum). As a result, solar and wind have become an increasingly important source of energy that can be converted into electricity. For solar energy, photovoltaic panels arranged in an array typically provide means for converting solar energy into electrical energy. Similar arrays can be used to collect wind or other natural sources of energy. When operating a photovoltaic array, maximum power point tracking (MPPT) is typically used to automatically determine at which voltage or current the array should be operated to produce maximum power output at a particular temperature and solar radiation. Although the implementation of MPPT is fairly straightforward for an overall array when the array is in ideal conditions (i.e., for the same radiation, temperature, and electrical characteristics of the various panels in the array), when there is a mismatch or a partial In the case of shadowing, the MPPT for the overall array is more complicated. In this case 'MPPT technology cannot provide accurate results because of the relatively optimal condition of multi-peak power versus voltage characteristics of unmatched arrays'. Therefore, only some of the array panels are ideal for operation. Because for an array containing several rows of panels, the most inefficient panel determines the current and efficiency of the overall panel, which results in a dramatic drop in power generation. Therefore, some photovoltaic systems provide a DC-DC converter for each panel in the array. Each of the DC-DC converters performs MPPT to find the maximum power point of its corresponding panel. However, the DC-DC converter in this system may be masked to select the local maximum point to operate its panel, rather than selecting the actual maximum power point of the panel. In addition, the use of multiple DC-DC converters in this system can cause electrical losses caused by operating the converter, so 201009534 [Invention] and [Embodiment] In this patent document, Figures 1 to 12, which will be discussed below, The various embodiments for illustrating the principles of the invention are illustrative only and are not intended to limit the scope of the invention. It will be apparent to those skilled in the art that the principles of the present invention can be applied to any type of suitably arranged device or system. 1 is an energy generating system 100 that can be centrally controlled, in accordance with an embodiment of the disclosure. The energy generating system 1 includes a plurality of energy generating devices (EGD) 102, each coupled to a corresponding local converter 104, and together forming an energy generating array 1〇6. For a particular embodiment, as disclosed, the energy generating system 1 can include a photovoltaic system, and the energy generating device 102 can include a photovoltaic (pv) panel. However, it should be appreciated that the energy generating system 100 can include any suitable type of energy generating system, such as a wind turbine system, a fuel cell, and the like. For such embodiments, energy generating device 102 can include a wind turbine, a fuel cell, and the like. The photovoltaic system 100 includes a central array controller 110 and may also include a DC-AC converter 112 or other suitable load to allow the system 100 to operate as a tandem system. However, it should be understood that the system 100 can operate as a stand-alone system by coupling the array 106 to a battery charger or other suitable energy storage device instead of the DC-AC converter 112. The PV panels 102 in the array 106 are disposed in the string 1 14 . For the illustrated embodiment, array 106 includes two strings 114, each string 114 including three panels 102. However, it should be understood that the array can include any suitable number of strings 114' of 201009534 and each string 114 can include any suitable number of panels 102. And for the illustrated embodiment, the panels 102 in each string 114 are arranged in series. Thus, the output voltage of each local converter 1〇4 is still close to its input voltage, while supplying a high voltage to the input DC of the DC·AC converter 112, which for some embodiments is operable at an input voltage of 150 V to 500 V. Therefore, transformer-based converters (e.g., users in a parallel configuration string) are not required to produce the ability to achieve high efficiency and low cost local converters 104. Each PV panel 102 is capable of converting solar energy into electrical energy. Each local converter 104 is coupled to its corresponding panel 1〇2 and is capable of reshaping the voltage-to-current relationship of the input provided by panel 103 such that the electrical energy generated by panel 102 can be the load of array 106 (not shown in Figure 1) utilized. The DC-AC converter 112 is coupled to the array 106 and can convert the direct current (DC) generated by the local converter 1〇4 into an alternating current (AC) for the load, and the load can be coupled to the DC-AC converter 112. . Maximum Power Point Tracking (MPPT) automatically determines the voltage or current that panel 1〇2 should operate to produce the maximum power output at a particular temperature and solar radiation. When the array is under ideal conditions (i.e., having the same radiation, temperature, and electrical characteristics for each panel in the array), performing a centralized MPPT is fairly straightforward for the overall array. However, performing MPPT for the overall array 106 is more complicated when there is, for example, a mismatch or a partial obscuration. In this case, the P P T technique does not provide accurate results because of the relatively optimal conditions of the multi-peak power versus voltage characteristics of the unmatched arrays 1〇6. Therefore, only some of the panels 102 -8 - 201009534 in the array 106 are ideally operated, resulting in a sharp drop in energy production. Therefore, to address this issue, each local converter 104 can provide a local MPPT to its corresponding panel 102. In this manner, each panel 102 can operate at its own maximum energy point (MPP), whether ideal or not matched or obscured. For embodiments in which the energy generating device 102 includes a wind turbine, the MPPT can be used to adjust the blade pitch of the wind turbine. It should also be appreciated that the MPPT can be used to optimize the system 100 that includes other types of energy production devices 1〇2. The central array controller 110 is coupled to the array 106 and can communicate with the array 106 via a wired connection (e.g., a series or parallel bus) or a wireless connection. The central array controller 110 can include a diagnostic module 120 and/or a control module 125. The diagnostic module 120 can monitor the photovoltaic system 100, and the control module 125 can control the photovoltaic system. The diagnostic module 120 can receive local converter data for the local converter 104 and device data for the panel 1〇2 corresponding to the local converter 〇4 from the respective local converters 104 in the array 106. The "device data" used herein indicates the output voltage, output current, temperature, radiation, output power, and the like of the panel 102. Similarly, "local converter data" indicates the local converter output voltage, local converter output current, local converter output power, and so on. The diagnostic module 120 is also capable of generating reports on the system 1 and providing reports to the operator. For example, the diagnostic module 120 can display some or all of the device data and local converter data for viewing by the operator. Further, the diagnostic module 120 can provide some or all of the device data and local converter data to the control module 125 in -9-201009534. The diagnostic module 120 can also analyze the data in any suitable manner and provide analysis results to the operator and/or control module 125. For example, the diagnostic module 120 can determine the statistics for each panel 102 based on any suitable time limit, such as hourly, daily, weekly, or monthly. The diagnostic module 120 is also capable of providing error monitoring to the array 106. Based on the information received from the local converter 104, the diagnostic module 120 can identify one or more panels 102 having defects, such as a failed panel 102, a failed panel 102, a shaded panel 102, a dirty panel 102. Wait. The diagnostic module 120 can also notify the operator when the defective panel 102 should be replaced, repaired, or cleaned. The control module 1 2 5 can actually control the array 106 by transmitting control signals to one or more local converters 104. For example, control module 125 can transmit a bypass control signal to a particular local converter 104 that corresponds to panel 102 failure. The bypass control signal causes the local converter 104 to bypass its panel 102, effectively removing the panel 102 from the array 106 without affecting the operation of other panels 102 (like the bypassed panel 102) in the same string 114. In addition, control module 125 can transmit control signals to one or more local converters 104 that direct local converters 104 to adjust their output voltages or currents. For some embodiments, the MPPT function of local converter 104 can be moved to central array controller 1 1 〇. For these embodiments, the control module 125 can also calibrate the MPP of each panel 102 and transmit a conversion ratio command to each local converter 104 according to the calibration so that the 201009534 panels 102 operate on their own MPPs. As determined by the control module 125. The control module 125 can also receive commands from the operator and initiate commands. For example, the operator can direct the control module 125 system 100 to be parallel or stand-alone, and the control module 125 can respond to the operator by setting the system 100 to be connected or independent of the system. Thus, by utilizing the central array controller 110, the photovoltaic system φ 100 provides better utilization on a per panel basis. Moreover, system 100 increases flexibility by mixing different sources. The central array controller 110 also provides better protection and data collection for the entire system 100. 2 is a diagram showing a local converter 204 in accordance with an embodiment of the disclosure. The local converter 206 can represent one of the local converters 104 of FIG. 1, however, it should be understood that the local converter 206 can be placed in any suitable manner for energy generation without departing from the scope of the disclosure. In the system. In addition, although shown as being coupled to an energy generating device 222 called a PV panel, it should be understood that the local converter 204 can be coupled to a single cell of a PV panel or a panel of a photovoltaic array. Combined, or coupled to another energy generating device 202, such as a wind turbine, a fuel cell, or the like. The local converter 204 includes a power stage 206 and a local controller 208, which further includes an MPPT module 210 and an optional communication interface 212. Power stage 206 can include a DC-DC converter that can receive panel voltage and current from PV panel 02 as an input and reshape the input voltage versus current relationship to produce an output voltage and current. The communication interface 212 of the local controller 208 can provide a communication path between the local converters -11 - 201009534 2 04 and a central array controller (such as the central array controller 110 of Figure 1). However, for embodiments in which local converter 204 is not in communication with the central array controller, the communication interface 212 ° may be omitted. MPPT module 210 can receive panel voltage and current from panel 202 as input, and if the algorithm used has The output voltage and current can be received from power stage 20 6 as needed. Based on the inputs, the MPPT module 210 can provide signals to control the power stage 206. In this manner, the MPPT module 210 of the local controller 208 can provide an MPPT for the PV panel 202. By providing an MPPT, the MPPT module 210 maintains the corresponding panel 202 at a substantially fixed operating point (i.e., a fixed voltage Vpan and current Ipan corresponding to the maximum power point of the panel 202). Thus, for a given fixed solar radiation, in a steady state, if local converter 204 corresponds to the relative or absolute maximum power point of panel 202, the input power of local converter 204 is fixed (ie, Ppan = Vpan Ipa „). In addition, the local converter 220 has a relatively high performance, and therefore, the output power is almost equal to the input power (ie, Pout ^ P pa η ). FIG. 3 is an embodiment according to the disclosure. , showing the details of the local converter 206. For this embodiment, the power stage 20 6 is implemented as a single inductor, four-switch synchronous up-and-down switching regulator, and the MPPT module 210 includes a power stage regulator 312, an MPPT control area. Block 304, and two analog to digital converters (ADC) 3 06 and 3 08. ADC 306 can scale and quantize analog panel voltage Vpan and class 201009534

比面板電流Ipan,以分別產生數位面板電壓及數位面板電 流。應了解者爲,儘管所述爲面板電壓及面板電流,對於 任何合適的能量產生裝置202 (例如風力渦輪、燃料電池 等)而言,vpan可爲輸出裝置電壓且Ipan可爲輸出裝置電 流。耦接至MPPT控制區塊3 04及通訊介面212的ADC 306亦能夠提供數位面板電壓及電流至MPPT控制區塊 3 04及通訊介面212。相似地,ADC 308能夠縮放及量子 φ 化類比輸出電壓及類比輸出電流,以分別產生數位輸出電 壓及數位輸出電流。亦耦接至MPPT控制區塊304及通訊 介面212的ADC 3 08能提供數位輸出電壓及電流信號至 MPPT控制區塊304及通訊介面212。通訊介面212能提 供 ADC 3 06所產生的數位面板電壓及電流信號及ADC 3 08所產生的數位輸出電壓及電流信號至中央陣列控制器 〇 耦接至功率級調節器302的MPPT控制區塊304能從 〇 ADC 3 06接收數位面板電壓及電流,並從ADC 3 08接收 數位輸出電壓及電流。根據該等數位信號其中至少一些。 MPPT控制區塊304能產生用於功率級調節器302的轉換 比例命令。轉換比例命令包含用於功率級調節器302的轉 換比例,以在操作功率級206時使用。對於其中MPPT控 制區塊3 04能根據數位面板電壓及電流(而非根據數位輸 出電壓及電流)而產生轉換命令的實施例而言,ADC 3 08 僅提供數位輸出電壓及電流至通訊介面212,而不會至 MPPT控制區塊304。 -13- 201009534 對於某些實施例而言,功率級調節器302包含升降模 式控制邏輯及數位脈衝寬度調節器。此功率級調節器302 能藉由根據MPPT控制區塊304所提供的轉換比例產生脈 衝寬度調變(PWM )信號,而在不同模式中操作功率級 206,MPPT控制區塊304可校準用於功率級206之PWM 信號的轉換比例。 功率級調節器302耦接至功率級206,且能藉由使用 工作週期及一模式來操作功率級206,而根據MPPT控制 區塊304所產生的轉換比例操作功率級206,工作週期及 一模式係根據轉換比例而判定。對於其中功率級206實現 爲升降轉換器之實施例而言,功率級206之可能模式包含 降級模式、升級模式、升降模式、旁通模式及停止模式。 對於此實施例而言,當轉換比例CR落在升降範圍內 時,功率級調節器3 02能在升降模式中操作功率級206 ; 當轉換比例CR小於升降範圍時,功率級調節器302能在 降級模式中操作功率級206 ;當轉換比例CR大於升降範 圍時,功率級調節器3 02能在升級模式中操作功率級206 。升降範圍包含實質上等於1的値。例如,對於一特定實 施例而言,升降範圍包含0.95到1.05。當功率級2 06爲 降級模式時,若CR小於最大降級轉換比例CRbuek^ax, 功率級調節器302能完全以降級構造操作功率級206。相 似地,若CR大於最小升級轉換比例CRb()t)St,min,功率級 調節器3 02能完全以升級構造操作功率級206。 最後’當轉換比例大於CRbuck,max且小於CRb〇〇st,min 201009534 時,功率級調節器3 02能交替地在降級構成及升級構成中 操作功率級206。在此情況中,功率級調節器302可實施 分時多工,以在降級構成及升級構成之間交替。因此,當 轉換比例較接近CRbud^ax時,功率級調節器3 02在降級 構成中操作功率級206較在升級構成中操作功率級206爲 頻繁。相似地,當轉換比例較接近CRbQ(3St,min時,功率級 調節器302在升級構成中操作功率級206較在降級構成中 操作功率級206爲頻繁。當轉換比例靠近及 CRbQt)St,min之間的中間點時,功率級調節器3 02在降級構 成中操作功率級206與在升級構成中操作功率級206的頻 率不相上下。例如,當功率級206爲在升降模式中時,功 率級調節器3 02可平均地在降級構成及升級構成中交替操 作功率級206。 對於所述實施例而言,功率級206包含四個開關 310a-d,及電感L及電容C。對於某些實施例而言,開關 φ 310可包含N-通道功率MOSFET。對於一特定實施例而言 ,該等電晶體可包含矽上的氮化鎵裝置。然而,應了解者 爲,在不脫離揭示內容範圍之內,開關310可爲其他適合 的方式實現。此外,功率級20 6可包含一個或更多個驅動 器(未顯示於圖3中),以驅動開關3 1 0 (例如電晶體之 閘極)。例如,對於一特定實施例而言,第一驅動器可耦 接至功率級調節器302與電晶體310a及310b之間,以驅 動電晶體310a及310b之閘極,第二驅動器可耦接至功率 級調節器302與電晶體310c及310d之間,以驅動電晶體 -15- 201009534 310c及310d之閘極。對此實施例而言,功率級調節器 3 02所產生之PWM信號供應至驅動器,根據該等信號, 分別驅動其個別的電晶體3 1 0之閘極。 對於所述之實施例而言,在操作功率級206中,功率 級調節器3 02能產生數位脈衝,以控制功率級206的開關 310。對於下述實施例而言,開關包含電晶體。對於降級 構成而言,功率級調節器302關閉電晶體310c並開啓電 晶體310d。然後,脈衝交替地開啓及關閉電晶體310a及 電晶體310b,使功率級206操作爲降級調節器。對此實 施例而言,電晶體310a之工作週期等於工作週期D,其 係包含於MPPT控制區塊304所產生的轉換比例命令中。 對於升級模式而言,功率級調節器302開啓電晶體310a 及關閉電晶體310b。脈衝交替地開啓及關閉電晶體310c 及電晶體310d,以使功率級206操作爲升級調節器。對 此實施例而言,電晶體310之工作週期等於1-D。 對於升降模式而言,功率級調節器3 02在降級及升級 構成之間執行分時多工,如上述。功率級調節器3 02產生 用於電晶體310a及310b的降級開關對的控制信號,及用 於電晶體3 1 0c及3 1 0d的升級開關對的控制信號。電晶體 3 10a的工作週期固定於對應CRbuek,max的工作週期,電晶 體310c的工作週期固定於對應CRb()()St,min的工作週期。 經過一段指定時間期間的降級構成及升級構成操作之間的 比例爲與D呈線性比例。 當輸出電壓接近面板電壓時,功率級206係操作於升 201009534 降模式中。在此情況中,對於所述實施例而言,電感電流 漣波及電壓切換造成的應力遠小於SEPIC及習知的升降 轉換器所具有者。且,相較於習知的升降轉換器,所述的 功率級206可達到更高的效能。 對於某些實施例而言,如以下將與圖4 一同詳細敘述 者,MPPT控制區塊304能操作在以下四個模式其中之一 個:休眠模式、追蹤模式、保持模式、及旁通模式。當面 φ 板電壓少於預定的初級臨限電壓時,MPPT控制區塊304 可操作於休眠模式中。在休眠模式中,MPPT控制區塊 3 04使電晶體3 10a-d關閉。例如,對於某些實施例而言, 當MPPT控制區塊3 04爲休眠模式時,MPPT控制區塊 3 04能產生轉換比例命令,其促使功率級調節器302關閉 電晶體3 1 Oa-d。因此,功率級206係在停止模式,且面板 202被繞過,如此則能有效地避免從使用面板202的光伏 打系統中之面板202。 〇 當面板電壓升高到高於初級臨限電壓時,MPPT控制 區塊3 04操作於追蹤模式。在此模式中,MPPT控制區塊 3 04對面板202執行最大功率點追蹤,以判定功率級調節 器3 02之最佳轉換比例。且在此模式中,功率級調節器 302會取決於目前產生的轉換比例命令,而將功率級206 置於降級模式、升級模式、或是升降模式中。 此外,對於某些實施例而言,MPPT控制區塊304亦 可包含停止暫存器,其可藉由系統之操作者或是任何合適 的控制程式(例如設於中央陣列控制器中之控制程式)修 -17- 201009534 改,以強制MPPT控制區塊304保持功率級206爲停止模 式。對於此實施例而言,除非(i)面板電壓超出初級臨 限電壓,及(ii)停止暫存器表示MPPT控制區塊304會 將功率級206移出停止模式,否則MPPT控制區塊304不 會開始操作於追蹤模式中。 當MPPT控制區塊304找出最佳轉換比例時,MPPT 控制區塊304可操作於保持模式一段預定期間的時間。在 此模式中,MPPT控制區塊304可繼續提供與在追蹤模式 中被判定爲最佳轉換比例相同的轉換比例予功率級調節器 3 02。且在此模式中,如在追蹤模式中,功率級206係取 決於轉換比例命令所提供的最佳轉換比例,而處於降級模 式、升級模式、或是升降模式中。在經過預定期間的時間 之後,MPPT控制區塊304可恢復爲追蹤模式,以確保最 佳的轉換比例不會改變,或是若面板202之條件改變,可 找出新的最佳轉換比例。 如連同圖5-8之以下更詳盡的說明,當光伏打陣列中 之各個面板(例如面板202 )被均勻照亮,且面板202之 間沒有不匹配時,中央陣列控制器可設置MPPT控制區塊 3 04與功率級206爲旁通模式。在旁通模式中,對於某些 實施例而言,電晶體310a及310d爲開啓,電晶體310b 及310c爲關閉,以使面板電壓等於输出電壓。對於其他 實施例而言,功率級206可包含選用的開關3 1 2,功率級 206可耦接輸入埠至輸出埠,以使輸出電壓等於面板電壓 。在此方式中,當不需要局部MPPT時,實質上可自系統 201009534 移除局部轉換器204,藉此藉由減少有關局部轉換器204 之損失,而最大化效能,並增加壽命。 因此,如上述,MPPT控制區塊304能操作於休眠模 式中,且將功率級206置於繞過面板2 02的停止模式中。 MPPT控制區塊304亦能操作於追蹤模式或是保持模式。 不論在何種模式中,MPPT控制區塊304能將功率級206 置於降級模式、升級模式、及升降模式其中一個模式中。 ❹ 最後,MPPT控制區塊304能操作於旁通模式中,且將功 率級206置於旁通模式中,在旁通模式中,會繞過局部轉 換器204,容許面板202直接耦接至陣列中的其他面板 202 ° 藉由以此種方式操作局部轉換器204,包含面板202 之該排面板的串電流與個別的面板電流無關。反之,係藉 由串電壓及總串功率來設定串電流。此外,沒有被遮蔽的 面板2 02可繼續操作於最高功率點,不用考慮串中之其他 Ο 面板的部份被遮蔽的條件。 對於一替換性實施例而言,當MPPT控制區塊304找 出最佳轉換比例時,當該最佳轉換比例對應於功率級206 的升降模式時,MPPT控制區塊304可不操作於保持模式 而是操作於旁通模式中。在升降模式中,輸出電壓接近面 板電壓。因此’面板202可藉由繞過局部轉換器204而操 作於接近其最大功率點,如此則增加效能。如前述之實施 例,MPPT控制區塊3 04定期地自旁通模式恢復爲追蹤模 式,以驗證最佳轉換比例是否落於升降模式範圍之內。 -19- 201009534 對於某些實施例而言,MPPT控制區塊304能逐漸調 整用於功率級調節器302之轉換比例,而非一般的階梯式 變化,以避免加諸於功率級2 06之電晶體、電感、及電容 的應力。對於某些實施例而言,ΜΡΡΤ控制區塊3 04能實 現不同的ΜΡΡΤ技術,以調整面板電壓或是傳導率,而非 調整轉換比例。此外,ΜΡΡΤ控制區塊304可調整參考電 壓,而非調整轉換比例,以用於動態的輸入電壓調節》 此外,ΜΡΡΤ控制區塊304可致能功率級206之停止 模式及其他模式之間的相對快速及順暢的轉換。ΜΡΡΤ控 制區塊3 04可包含非揮發性記憶體,其能儲存先前的最大 功率點狀態,例如轉換比例等。對於此實施例而言,當 ΜΡΡΤ控制區塊3 04轉換到休眠模式時,最大功率點狀態 係儲存於此非揮發性記憶體中。當ΜΡΡΤ控制區塊304其 後回歸到追蹤模式時,所儲存的最大功率點狀態可用作爲 初始的最大功率點狀態。在此方式中,對功率級2 06而言 ,停止及其他模式之間的轉換時間可明顯減少。 對於某些實施例而言,ΜΡΡΤ控制區塊304亦能對局 部轉換器204提供過功率且/或過電壓保護。因爲信號 Vpan及Ipan經由ADC 3 06前向饋入ΜΡΡΤ控制區塊304, ΜΡΡΤ控制方塊304嘗試擷取最大功率。若功率級206輸 出爲開路電路,則局部轉換器204之輸出電壓達到最大値 。因此,對於過功率保護而言,局部轉換器204之輸出電 流可用作爲開啓及關閉ΜΡΡΤ控制區塊304的信號。對此 實施例而言,若輸出電流下降到太低,則可由ΜΡΡΤ控制 201009534 區塊304設定轉換比例,以使面板電壓幾乎等於輸出電壓 〇 對於過電壓保護而言,MPPT控制區塊3 04可對轉換 比例命令具有MPPT控制區塊304不會超過的最大轉換比 例。因此,若轉換比例持續高於最大轉換比例,貝[j MPPT 控制區塊3 04將轉換比例限制於最大値。如此則能確保輸 出電壓不會增加到超過對應的最大値。最大轉換比例的値 φ 可爲固定性的或是適應性的。舉例而言,可藉由感應面板 電壓及根據功率級206的轉換比例來計算對應於轉換比例 的次一程式化値的輸出電壓的估計値,而達成適應性的轉 換比例限制。 此外,對於所述的實施例而言,功率級206包含選用 的單向開關314。當功率級206爲在停止模式中時,可包 含選用的開關314以容許面板202被繞過,藉此從陣列移 除面板2 02,並容許其他面板202繼續操作。對於特定的 Ο 實施例而言’單向開關314可包含二極體。然而,應了解 者爲,在不脫離揭示內容的範圍之內,單向開關314可包 含任何其他合適類型的單向開關。 圖4爲根據揭示內容之一實施例,顯示在局部轉換器 204中實現MPPT之方法400。方法400之實施例僅爲說 明性。可在不脫離揭示內容的範圍之內,實現方法40 0的 其他實施例。 方法400以MPPT控制區塊304操作在休眠模式中作 爲開始(步驟401)。例如,MPPT控制區塊304可產生 -21 - 201009534 轉換比例命令,以促使功率級調節器302關閉功率級206 之電晶體310a-d,藉此將功率級206置於停止模式,且繞 過面板202。 當在休眠模式中時,MPPT控制區塊304監控面板電 壓Vpan,並比較面板電壓與初級臨限電壓Vth (步驟402 )。例如,ADC 306可將面板電壓從類比信號轉換爲數位 信號,並將數位面板電壓提供至MPPT控制區塊3 04,其 儲存有初級臨限電壓,以與數位面板電壓作比較。 只要面板電壓保持在初級臨限電壓之下(步驟402 ) ,MPPT控制區塊3 04就持續操作於休眠模式中。此外, 如上述,當停止暫存器表示功率級2 06保持爲停止模式時 ,MPPT控制區塊304保持於休眠模式中。然而,一但面 板電壓超出初級臨限電壓(步驟402 ) ,MPPT控制區塊 3 04產生用以操作功率級206的轉換比例命令,轉換比例 命令包含初始的轉換比例(步驟403 )。例如,對於一實 施例而言,MPPT控制區塊304以轉換比例1作爲開始。 或者,MPPT控制區塊3 04能儲存在先前的追蹤模式中所 判定的最佳轉換比例。對於此實施例而言,MPPT控制區 塊3 〇4可將轉換比例初始化爲與先前判定的最佳轉換比例 相同。且,MPPT控制區塊304所產生的轉換比例命令供 應至功率級調節器3 02,其使用初始轉換比例操作功率級 206 ° 此時,MPPT控制區塊3 04監控面板電流Ipan及輸出 電流I〇ut,並比較面板電流及輸出電流與臨限電流Ith (步 -22- 201009534 驟4 04 )。例如,ADC 306可將面板電流從類比信號轉換 爲數位信號,並將數位面板電流供應至MPPT控制區塊 304,ADC 3 08可將輸出電流從類比信號轉換爲數位信號 ’且供應數位輸出電流至MPPT控制區塊304,其儲存用 以與數位面板電流及數位輸出電流作比較的臨限電流。只 要電流Ipan及I〇ut其中至少之一個仍維持低於臨限電流( 步驟404 ) ,MPPT控制區塊304就會持續監控電流位準 〇 。然而,一但該等電流皆超出臨限電流(步驟404 ),則 MPPT控制區塊3 04開始操作於追蹤模式中,其包含初始 化設定追蹤變數T爲1,且初始化一計數器(步驟406 ) 〇 儘管未示於圖4的方法400中,應了解者爲,在追蹤 模式中時,MPPT控制區塊304可繼續監控面板電壓,及 比較面板電壓與少於初級臨限電壓的次級臨限電壓。若面 板電壓減少到低於次級臨限電壓,貝!J MPPT控制區塊3 04 〇 恢復爲休眠模式。藉由使用少於初級臨限電壓的次級臨限 電壓,MPPT控制區塊3 04對雜訊免疫,如此則能避免 MPPT控制區塊304經常在休眠及追蹤模式之間切換。 在設定追蹤變數之値及初始化計數器之後,MPPT控 制區塊3 04計算面板202之初始功率(步驟408 )。例如 ,ADC 306可提供數位面板電流及面板電壓信號(Ipan及 Vpan )至MPPT控制區塊304 ’其後,MPPT控制區塊304 將此等信號相乘’以判定裝置(或是面板)功率( Ipan_vpan)的初始値。 -23- 201009534 在計算初始功率之後’ MPPT控制區塊304以第一方 向修改轉換比例,並產生包含修改過的轉換比例的轉換比 例命令(步驟 410)。例如,對於某些實施例而言, ΜΡΡΤ控制區塊304可增加轉換比例。對於其他實施例而 言,ΜΡΡΤ控制區塊304可減少轉換比例。在經過一段時 間使系統穩定之後,ΜΡΡΤ控制區塊3 04計算面板202的 目前功率(步驟412)。舉例而言,ADC 3 06可提供數位 面板電流及面板電壓信號至ΜΡΡΤ控制區塊304,其後, ΜΡΡΤ控制區塊304將此等信號相乘,以判定面板功率之 目前値。 然後,ΜΡΡΤ控制區塊304比較現在計算的功率與先 前計算的功率,其爲初始功率(步驟4 1 4 )。若目前功率 大於先前功率(步驟414 ),則ΜΡΡΤ控制區塊304以與 先前修改的相同方向修改轉換比例,並產生更新的轉換比 例命令(步驟416)。對於某些實施例而言,以等量增加 將轉換比例修改得更高或是更低。對於其他實施例而言, 轉換比例能以線性或是非線性增量而修改得更高或是更低 ,以最佳化系統響應。例如,對於某些系統而言,若轉換 比例與最佳値差距甚大,則隨著愈益靠近最佳値,較佳者 爲先使用較大的增量,然後再使用較小的增量。 ΜΡΡΤ控制區塊304亦判定追蹤變數Τ是否等於1, 表示因爲轉換比例在先前計算之前已經改變過,轉換比例 以與先前計算相同的方向改變(步驟418)。因此,當Τ 等於1時,面板功率增加,其與轉換比例的先前改變是相 201009534 同方向。在此情況中’在給系統一段時間使其穩定之後’ MPPT控制區塊304再次計算面板202之目前功率(步驟 412),並比較目前功率與先前功率(步驟414)。然而 ,若MPPT控制區塊3 04判定T不等於1,表示因爲轉換 比例在先前計算之前已經改變過’轉換比例以與先前計算 相反的方向改變(步驟4 1 8 )’則MPPT控制區塊304設 定T爲1,並增加計數器(步驟420 )。 φ 然後,MPPT控制區塊304判定計數器是否超出計數 器臨限値Cth (步驟422 )。若目前計數器之値未超出計 數器臨限値(步驟422 ),在給系統一段時間使其穩定之 後,MPPT控制區塊3 04再次計算面板202之目前功率( 步驟412),並比較目前功率與先前功率(步驟414), 以判定面板功率是增加中或是減少中。 若MPPT控制區塊3 04判定目前功率並未大於先前功 率(步驟414 ),則MPPT控制區塊304以與先前修改相 9 反的方向修改轉換比例,並產生更新的轉換比例命令(步 驟424 ) 。MPPT控制區塊304亦判定追蹤變數T是否等 於2,T若等於2則表示因爲轉換比例在先前計算之前已 經改變過,以與先前計算相反的方向修改轉換比例(步驟 426 )。在此情況中,在給系統一段時間使其穩定之後, MPPT控制區塊3 04再次計算面板202之目前功率(步驟 412),並比較目前功率與先前功率(步驟414)。 然而,若MPPT控制區塊304判定T不等於2,表示 因爲轉換比例在先前計算之前已經改變過,以與先前計算 -25- 201009534 相同的方向修改轉換比例(步驟426 ),貝lj MPPT控制區 塊設定Τ爲2,並增加計數器(步驟42 8 )。然後ΜΡΡΤ 控制區塊304判定計數器是否超出計數器臨限値Cth (步 驟4 2 2 ),如上述。 若計數器未超出計數器臨限値(步驟422 ),表示轉 換比例在第一方向及第二方向中已交替地改變數次,此次 數大於計數器臨限値,MPPT控制區塊304找出對應於面 板202之最大功率點的最佳轉換比例,且MPPT控制區塊 3 04開始操作於保持模式(步驟430)。 在保持模式中時,MPPT控制區塊304可設定計時器 並重新初始化計數器(步驟432 )。當計時器屆期(步驟 434) ’MPPT控制區塊304可恢復爲追蹤模式(步驟436 )’並計算目前功率(步驟412),以比較目前功率與 MPPT控制區塊3 04在追蹤模式中最後計算的功率(步驟 414)。以此方式,MPPT控制區塊304可確保不會改變 最佳轉換比例,或當面板202之條件改變時,可找出不同 的最佳轉換比例。 儘管圖4顯示用於追蹤能量產生裝置202之最大功率 點的方法400的範例,但可對方法400作出各種變更。例 如’儘管係參考光伏打面板而描述方法400,但方法4〇〇 可用於其他能量產生裝置202,例如風力渦輪、燃料電池 等。更進一步’儘管係參照圖3之MPPT控制區塊304而 描述方法400,但應了解者爲,在不脫離揭示內容的範圍 之內,方法400可用於任何合適地設置的MPPT控制區塊 -26- 201009534 。此外,對於某些實施例而言’在步驟430中,若ΜΡΡΤ 控制區塊3 04判定最佳轉換比例相當於功率級206的升降 模式,ΜΡΡΤ控制區塊304可操作於休眠模式而非保持模 式。對於該等實施例而言,休眠模式之後,計時器屆期的 時間與保持模式的計時器的時間可以相同或是不同。且, 儘管係以一連串的步驟顯示,但方法40 0中之步驟可以重 疊、平行發生、發生多次、或是以不同順序發生。 φ 圖5爲根據揭示內容之一實施例,顯示能量產生系統 5〇〇,能量產生系統500包含多數個能量產生裝置502及 中央陣列控制器5 1 0,中央陣列控制器5 1 0能對於能量產 生系統100選擇集中式或是分散式ΜΡΡΤ。對所述之實施 例而言,能量產生系統指的是光伏打系統500,光伏打系 統5 00包含光伏打面板502組成之陣列,光伏打面板502 各耦接至一對應的局部轉換器5 04 ^ 各個局部轉換器5 04包含一功率級506及一局部控制 • 器508。此外,對於某些實施例而言,可經由選用的內部 開關(例如開關312)繞過各個局部轉換器504。被繞過 時’局部轉換器5 04之輸出電壓實質上等於其輸入電壓。 以此方式,有關局部轉換器504之操作的損失可被最小化 甚至被消除(當不需要局部轉換器5 04時)。 除了中央陣列控制器5 1 0之外,系統5 00之實施例亦 包含轉換級512、方格514、及資料匯流排516。中央陣 列控制器510包含一診斷模組520、一控制模組5 25及一 選用的轉換級(CS )最佳化器53 0。此外,所述的實施例 -27- 201009534 對轉換級512設置全域控制器540。然而,應了解者爲, 全域控制器540可設於中央陣列控制器5 1 0中,而非設於 轉換級512中。且,CS最佳化器53 0可設於轉換級512 中,而非設於中央陣列控制器5 1 0中。 對於某些實施例而言,面板5 02及局部轉換器5 04代 表圖1之面板102及局部轉換器104且/或代表圖2或3 的面板202及局部轉換器204,中央陣列控制器5 10可代 表圖1之中央陣列控制器110,且/或轉換級512可代表圖 1之DC-AC轉換器112。此外,診斷模組520及控制模組 5 25可分別代表圖1之診斷模組120及控制模組125。然 而,應了解者爲,系統500之構件能以任何合適的方式實 現。轉換級512可包含DC-AC轉換器、電池充電器、或 其他能量儲存裝置,或任何其他合適的構件。方格514可 包含能夠根據光伏打系統500產生的能量而操作的任何合 適的負載。 各個局部控制器508能經由資料匯流排516或者經由 無線連接,提供對應的面板裝置之資料及局部轉換器資料 予中央陣列控制器5 1 0。根據該資料,診斷模組520能判 定面板502是否操作在準理想的條件下,亦即,面板502 不會不匹配,且被實質上均勻地照亮。在此情況中,診斷 模組5 20能促使控制模組5 25將系統500置於集中式 MPPT ( CMPPT )模式中。爲了要完成此種狀態,控制模 組525能經由資料匯流排516傳送停止信號至各個局部控 制器508,以藉由操作局部轉換器504於旁通模式中,停 201009534 止局部轉換器5 04。控制模組525亦能傳送致能信號至全 域控制器540。 在旁通模式中,局部控制器508不再實施MPPT,且 功率級506的輸出電壓實質上等於面板502之面板電壓。 因此’可以最小化有關於操作局部轉換器504之損失,並 能最大化系統5 00之效能。當局部轉換器504爲操作在旁 通模式中時,全域控制器540能對面板502組成的陣列實 φ 施 CMPPT。 診斷模組520亦能判定某些面板502是否被遮蔽或是 不匹配(亦即,與陣列中的其他面板502相比,某些面板 502具有不同特徵)。在此情況中,診斷模組52〇能促使 控制模組525將系統500置於分散式MPPT ( DMPPT)模 式中。爲了要完成此狀態,控制模組5 2 5能經由資料匯流 排516傳送致能信號至各個局部控制器508,以藉由容許 局部轉換器504之正規操作,而致能局部轉換器5〇4。控 ❿ 制模組525亦能傳送停止信號至全域控制器54〇。 當某些面板502被遮蔽時,診斷模組520亦能判定某 些被遮蔽的面板502爲部份被遮蔽。在此情況中,除了促 使控制模組525將系統500置於DMPPT模式中之外,診 斷模組410亦能對系統5 00實施完全診斷掃描,以確保部 份被遮蔽的面板502之局部控制器508可找到真正的最大 功率點,而非局部最大値。對於其中能量產生裝置502包 含風力渦輪的實施例而言,診斷模組520能判定是否因爲 改變風力圖案、丘陵、或是其他阻擋風的構造,或是其他 -29- 201009534 影響風力條件而造成某些風力渦輪「被遮蔽」。 在圖6及7A-C中說明光伏打系統500被部份遮蔽的 情況。圖6顯示在部份被遮蔽的情況下的光伏打陣列600 。圖7A-C爲顯示對應於圖6之三個光伏打面板的電壓對 功率特性的圖700、705、及710。 所述的陣列具有三個設有光伏打面板的串610。在串 610c中的三個面板被標示爲面板A、面板B、及面板C。 應了解者爲,此等面板可代表圖5之面板5 02或是在其他 任何合適地設置的光伏打系統中的面板。某些面板被遮蔽 區域620完全覆蓋或是部份覆蓋。 在所述之範例中,面板A被完全照亮,而面板B被 遮蔽區域620部份遮蔽,面板C被遮蔽區域620完全遮蔽 。圖7A中之圖700中的電壓對功率特性對應於面板a, 圖7B中之圖705的電壓對功率特性對應於面板B,且圖 7C中之圖710的電壓對功率特性對應於面板c。 因此’如圖705所示,被部份遮蔽的面板B具有與實 際最大功率點725不同的局部最大値720。中央陣列控制 器510之診斷模組520能判定面板b被部份遮蔽,並實施 完全診斷掃描’以確保面板B係爲其之局部控制器508在 其實際最大功率點725操作,而非局部最大點720。取代 操作在實際最大功率點(例如點725 ),而操作在局部最 大功率點(例如點720 )的面板502被稱爲「不足實施」 的面板502。 對於一特定實施例而言,診斷模組5 2〇可如下辨識被 201009534 部份遮蔽的面板5 02。首先,診斷模組520假設面板1、 ...、N爲所考慮陣列中之面板502之子組合,其具有相同 的特性,並假設Ppan,i爲屬於組合[1、…、N]的第i個面 板5 02的輸出功率。因此, ^ραη,παχ ^ ^panj ^ ^ραη,ηαπ / 參 其中Ppan,max爲最佳實施面板502之輸出功率’ Ppan,min爲 最差實施面板502之輸出功率。 診斷模組520亦藉由下式定義一變數必i : P,The panel current Ipan is used to generate digital panel voltage and digital panel current, respectively. It should be appreciated that while the panel voltage and panel current are described, for any suitable energy generating device 202 (e.g., wind turbine, fuel cell, etc.), the vpan can be the output device voltage and the Ipan can be the output device current. The ADC 306 coupled to the MPPT control block 304 and the communication interface 212 can also provide digital panel voltage and current to the MPPT control block 304 and the communication interface 212. Similarly, the ADC 308 can scale and quantum φ analog output voltages and analog output currents to produce digital output voltage and digital output current, respectively. The ADC 3 08, which is also coupled to the MPPT control block 304 and the communication interface 212, can provide digital output voltage and current signals to the MPPT control block 304 and the communication interface 212. The communication interface 212 can provide the digital panel voltage and current signals generated by the ADC 306 and the digital output voltage and current signals generated by the ADC 308 to the central array controller and coupled to the MPPT control block 304 of the power stage regulator 302. The digital panel voltage and current can be received from the 〇ADC 3 06 and the digital output voltage and current are received from the ADC 3 08. Based on at least some of the digital signals. The MPPT control block 304 can generate a conversion proportional command for the power stage regulator 302. The conversion ratio command includes a conversion ratio for the power stage regulator 302 for use in operating the power stage 206. For embodiments in which the MPPT control block 304 can generate a conversion command based on the digital panel voltage and current (rather than the digital output voltage and current), the ADC 3 08 provides only the digital output voltage and current to the communication interface 212. It does not go to the MPPT control block 304. -13- 201009534 For certain embodiments, power stage regulator 302 includes lift mode control logic and a digital pulse width adjuster. The power stage regulator 302 can operate the power stage 206 in a different mode by generating a pulse width modulation (PWM) signal according to the conversion ratio provided by the MPPT control block 304, and the MPPT control block 304 can be calibrated for power. The conversion ratio of the PWM signal of stage 206. The power stage regulator 302 is coupled to the power stage 206 and can operate the power stage 206 by using the duty cycle and a mode, and operates the power stage 206, the duty cycle, and a mode according to the conversion ratio generated by the MPPT control block 304. It is determined according to the conversion ratio. For embodiments in which power stage 206 is implemented as a buck converter, the possible modes of power stage 206 include a degraded mode, an upgrade mode, a lift mode, a bypass mode, and a stop mode. For this embodiment, when the conversion ratio CR falls within the lift range, the power stage regulator 302 can operate the power stage 206 in the lift mode; when the conversion ratio CR is less than the lift range, the power stage adjuster 302 can The power stage 206 is operated in the degraded mode; when the conversion ratio CR is greater than the lift range, the power stage regulator 302 can operate the power stage 206 in the upgrade mode. The lift range contains 値 that is substantially equal to one. For example, for a particular embodiment, the lift range includes 0.95 to 1.05. When the power stage 206 is in the degraded mode, if the CR is less than the maximum degraded conversion ratio CRbuek^ax, the power stage regulator 302 can operate the power stage 206 entirely in a degraded configuration. Similarly, if CR is greater than the minimum upgrade conversion ratio CRb() t) St, min, power stage regulator 302 can operate power stage 206 entirely in an upgrade configuration. Finally, when the conversion ratio is greater than CRbuck,max and less than CRb〇〇st,min 201009534, the power stage regulator 302 can alternately operate the power stage 206 in the degraded configuration and upgrade configuration. In this case, the power stage regulator 302 can implement time division multiplexing to alternate between the degraded configuration and the upgrade configuration. Therefore, when the conversion ratio is closer to CRbud^ax, the power stage regulator 322 operates the power stage 206 in the degraded configuration more frequently than the operating power level 206 in the upgrade configuration. Similarly, when the conversion ratio is closer to CRbQ (3St, min, the power stage regulator 302 operates the power stage 206 in the upgrade configuration more frequently than the operating power level 206 in the degraded configuration. When the conversion ratio is close and CRbQt) St, min At the intermediate point between, the power stage regulator 312 operates in a degraded configuration with a power level 206 that is comparable to the frequency at which the power stage 206 is operated in an upgrade configuration. For example, when the power stage 206 is in the up and down mode, the power stage regulator 302 can alternately operate the power stage 206 in a degraded configuration and upgrade configuration. For the illustrated embodiment, power stage 206 includes four switches 310a-d, and an inductor L and a capacitor C. For some embodiments, switch φ 310 can include an N-channel power MOSFET. For a particular embodiment, the transistors can include a gallium nitride device on the crucible. However, it is to be understood that switch 310 can be implemented in other suitable manners without departing from the scope of the disclosure. Additionally, power stage 206 may include one or more drivers (not shown in Figure 3) to drive switch 3 1 0 (e.g., the gate of the transistor). For example, for a particular embodiment, the first driver can be coupled between the power stage regulator 302 and the transistors 310a and 310b to drive the gates of the transistors 310a and 310b, and the second driver can be coupled to the power. The stage regulator 302 is connected between the transistors 310c and 310d to drive the gates of the transistors -15-201009534 310c and 310d. For this embodiment, the PWM signals generated by the power stage regulator 302 are supplied to the driver, and the gates of their respective transistors 3 10 are driven respectively based on the signals. For the illustrated embodiment, in operating power stage 206, power stage regulator 312 can generate digital pulses to control switch 310 of power stage 206. For the embodiments described below, the switch comprises a transistor. For the degraded configuration, the power stage regulator 302 turns off the transistor 310c and turns on the transistor 310d. Then, the pulses alternately turn on and off the transistor 310a and the transistor 310b, causing the power stage 206 to operate as a degrading regulator. For this embodiment, the duty cycle of transistor 310a is equal to duty cycle D, which is included in the conversion ratio command generated by MPPT control block 304. For the upgrade mode, the power stage regulator 302 turns on the transistor 310a and turns off the transistor 310b. The pulses alternately turn on and off transistor 310c and transistor 310d to operate power stage 206 as an upgrade regulator. For this embodiment, the duty cycle of transistor 310 is equal to 1-D. For the lift mode, the power stage regulator 302 performs time division multiplexing between the degradation and upgrade configurations, as described above. The power stage regulator 312 generates control signals for the degraded switch pairs of the transistors 310a and 310b, and control signals for the upgrade switch pairs of the transistors 3 1 0c and 3 10 0d. The duty cycle of the transistor 3 10a is fixed to the duty cycle corresponding to CRbuek,max, and the duty cycle of the transistor 310c is fixed to the duty cycle corresponding to CRb()() St, min. The ratio between the composition of the degradation and the operation of the upgrade over a specified period of time is linearly proportional to D. When the output voltage approaches the panel voltage, the power stage 206 operates in the up 201009534 drop mode. In this case, for the described embodiment, the stress caused by the inductor current ripple and voltage switching is much less than that of the SEPIC and conventional riser converters. Moreover, the power stage 206 can achieve higher performance than conventional lift converters. For some embodiments, as will be described in greater detail below with respect to Figure 4, MPPT control block 304 can operate in one of four modes: sleep mode, tracking mode, hold mode, and bypass mode. The MPPT control block 304 can operate in the sleep mode when the face φ plate voltage is less than the predetermined primary threshold voltage. In sleep mode, MPPT control block 304 turns transistors 3 10a-d off. For example, for some embodiments, when MPPT control block 304 is in sleep mode, MPPT control block 408 can generate a conversion ratio command that causes power stage regulator 302 to turn off transistor 3 1 Oa-d. Thus, power stage 206 is in stop mode and panel 202 is bypassed, thus effectively avoiding panel 202 from the photovoltaic system using panel 202. MP When the panel voltage rises above the primary threshold voltage, MPPT Control Block 304 operates in Tracking mode. In this mode, MPPT control block 308 performs maximum power point tracking on panel 202 to determine the optimal conversion ratio of power stage regulator 302. And in this mode, the power stage regulator 302 will place the power stage 206 in the degraded mode, the upgrade mode, or the lift mode depending on the currently generated conversion ratio command. In addition, for some embodiments, the MPPT control block 304 may also include a stop register, which may be operated by a system operator or any suitable control program (eg, a control program located in the central array controller). Amendment -17-201009534 to force the MPPT control block 304 to maintain the power stage 206 in the stop mode. For this embodiment, unless (i) the panel voltage exceeds the primary threshold voltage, and (ii) the stop register indicates that the MPPT control block 304 will move the power stage 206 out of the stop mode, the MPPT control block 304 will not Start working in tracking mode. When the MPPT control block 304 finds the optimal conversion ratio, the MPPT control block 304 can operate in the hold mode for a predetermined period of time. In this mode, MPPT control block 304 may continue to provide the same conversion ratio to power stage adjuster 322 as determined to be the optimal conversion ratio in the tracking mode. And in this mode, as in the tracking mode, the power stage 206 is in the degraded mode, the upgrade mode, or the lift mode depending on the optimum conversion ratio provided by the conversion ratio command. After a predetermined period of time has elapsed, the MPPT control block 304 can be restored to the tracking mode to ensure that the optimal conversion ratio does not change, or if the conditions of the panel 202 change, a new optimal conversion ratio can be found. As explained in greater detail below with respect to Figures 5-8, the central array controller can set the MPPT control area when the various panels in the photovoltaic array (e.g., panel 202) are uniformly illuminated and there is no mismatch between the panels 202. Block 3 04 and power stage 206 are in bypass mode. In the bypass mode, for some embodiments, transistors 310a and 310d are turned on and transistors 310b and 310c are turned off so that the panel voltage is equal to the output voltage. For other embodiments, power stage 206 can include an optional switch 3 1 2 that can couple input 埠 to output 以 such that the output voltage is equal to the panel voltage. In this manner, local converter 204 can be substantially removed from system 201009534 when local MPPT is not required, thereby maximizing performance and increasing lifetime by reducing losses associated with local converter 204. Thus, as described above, the MPPT control block 304 can operate in the sleep mode and place the power stage 206 in a stop mode that bypasses the panel 206. The MPPT control block 304 can also operate in either a tracking mode or a hold mode. Regardless of the mode, the MPPT control block 304 can place the power stage 206 in one of the degraded mode, the upgrade mode, and the lift mode. Finally, the MPPT control block 304 can operate in the bypass mode and place the power stage 206 in a bypass mode in which the local converter 204 is bypassed, allowing the panel 202 to be directly coupled to the array. Other Panels 202 ° By operating the local converter 204 in this manner, the string current of the row of panels comprising the panel 202 is independent of the individual panel currents. Conversely, the string current is set by the string voltage and the total string power. In addition, the unshielded panel 202 can continue to operate at the highest power point without regard to the condition in which portions of the other panels in the string are obscured. For an alternative embodiment, when the MPPT control block 304 finds the optimal conversion ratio, the MPPT control block 304 may not operate in the hold mode when the optimal conversion ratio corresponds to the lift mode of the power stage 206. It is operated in the bypass mode. In lift mode, the output voltage is close to the panel voltage. Thus, panel 202 can operate close to its maximum power point by bypassing local converter 204, thus increasing performance. As in the previous embodiment, the MPPT control block 304 periodically reverts from the bypass mode to the tracking mode to verify that the optimal conversion ratio falls within the lift mode range. -19- 201009534 For some embodiments, the MPPT control block 304 can gradually adjust the conversion ratio for the power stage regulator 302 instead of the general stepwise variation to avoid the power applied to the power stage 206. Crystal, inductance, and capacitance stress. For some embodiments, the control block 310 can implement different techniques to adjust the panel voltage or conductivity rather than adjusting the conversion ratio. In addition, the ΜΡΡΤ control block 304 can adjust the reference voltage instead of adjusting the conversion ratio for dynamic input voltage regulation. Furthermore, the ΜΡΡΤ control block 304 can enable the relative mode between the power mode 206 and other modes. Fast and smooth conversion. The control block 3 04 can include non-volatile memory that can store previous maximum power point states, such as conversion ratios. For this embodiment, when the control block 310 transitions to the sleep mode, the maximum power point state is stored in the non-volatile memory. When the control block 304 subsequently returns to the tracking mode, the stored maximum power point state can be used as the initial maximum power point state. In this manner, for power stage 206, the transition time between stop and other modes can be significantly reduced. For some embodiments, the ΜΡΡΤ control block 304 can also provide overpower and/or overvoltage protection to the local converter 204. Because the signals Vpan and Ipan are forwarded to the control block 304 via the ADC 306, the control block 304 attempts to draw the maximum power. If the power stage 206 is output as an open circuit, the output voltage of the local converter 204 reaches a maximum 値. Thus, for over power protection, the output current of local converter 204 can be used as a signal to turn on and off ΜΡΡΤ control block 304. For this embodiment, if the output current drops too low, the conversion ratio can be set by the ΜΡΡΤ control 201009534 block 304 so that the panel voltage is almost equal to the output voltage. For overvoltage protection, the MPPT control block 304 can The conversion ratio command has a maximum conversion ratio that the MPPT control block 304 does not exceed. Therefore, if the conversion ratio continues to be higher than the maximum conversion ratio, the [j MPPT control block 304 limits the conversion ratio to the maximum 値. This ensures that the output voltage does not increase beyond the corresponding maximum 値. The maximum conversion ratio 値 φ can be fixed or adaptive. For example, an estimate of the output voltage of the next stylized chirp corresponding to the conversion ratio can be calculated by sensing the panel voltage and the conversion ratio of the power stage 206 to achieve an adaptive conversion ratio limit. Moreover, for the described embodiment, power stage 206 includes an optional one-way switch 314. When the power stage 206 is in the stop mode, an optional switch 314 can be included to allow the panel 202 to be bypassed, thereby removing the panel 206 from the array and allowing the other panels 202 to continue operating. The unidirectional switch 314 can include a diode for a particular Ο embodiment. However, it should be understood that the unidirectional switch 314 can include any other suitable type of unidirectional switch, without departing from the scope of the disclosure. 4 is a diagram showing a method 400 of implementing MPPT in local converter 204, in accordance with an embodiment of the disclosure. The embodiment of method 400 is merely illustrative. Other embodiments of method 40 may be implemented without departing from the scope of the disclosure. The method 400 begins with the MPPT control block 304 operating in the sleep mode (step 401). For example, MPPT control block 304 may generate a-21 - 201009534 conversion ratio command to cause power stage regulator 302 to turn off transistors 310a-d of power stage 206, thereby placing power stage 206 in a stop mode and bypassing the panel. 202. While in the sleep mode, the MPPT control block 304 monitors the panel voltage Vpan and compares the panel voltage to the primary threshold voltage Vth (step 402). For example, ADC 306 can convert the panel voltage from an analog signal to a digital signal and provide the digital panel voltage to MPPT control block 304, which stores a primary threshold voltage for comparison with the digital panel voltage. As long as the panel voltage remains below the primary threshold voltage (step 402), the MPPT control block 304 continues to operate in the sleep mode. Further, as described above, when the stop register indicates that the power stage 206 remains in the stop mode, the MPPT control block 304 remains in the sleep mode. However, once the panel voltage exceeds the primary threshold voltage (step 402), the MPPT control block 408 generates a conversion scale command to operate the power stage 206, the conversion scale command including the initial conversion ratio (step 403). For example, for an embodiment, MPPT control block 304 begins with a conversion ratio of one. Alternatively, the MPPT Control Block 304 can store the optimal conversion ratio determined in the previous tracking mode. For this embodiment, MPPT control block 3 〇 4 can initialize the conversion ratio to be the same as the previously determined optimal conversion ratio. Moreover, the conversion ratio command generated by the MPPT control block 304 is supplied to the power stage regulator 302, which uses the initial conversion ratio to operate the power stage 206°. At this time, the MPPT control block 304 monitors the panel current Ipan and the output current I〇. Ut, and compare the panel current and output current with the threshold current Ith (step -22-201009534, step 4 04). For example, the ADC 306 can convert the panel current from an analog signal to a digital signal and supply the digital panel current to the MPPT control block 304. The ADC 3 08 can convert the output current from an analog signal to a digital signal' and supply the digital output current to The MPPT control block 304 stores a threshold current for comparison with the digital panel current and the digital output current. As long as at least one of the currents Ipan and I〇ut remains below the threshold current (step 404), the MPPT control block 304 continuously monitors the current level 〇. However, once the currents exceed the threshold current (step 404), the MPPT control block 304 begins operating in the tracking mode, which includes initial setting the tracking variable T to 1, and initializes a counter (step 406). Although not shown in the method 400 of FIG. 4, it should be appreciated that in the tracking mode, the MPPT control block 304 can continue to monitor the panel voltage and compare the panel voltage to a secondary threshold voltage that is less than the primary threshold voltage. . If the panel voltage is reduced below the secondary threshold voltage, Bay! J MPPT control block 3 04 〇 Restores to sleep mode. By using a secondary threshold voltage that is less than the primary threshold voltage, the MPPT control block 304 is immune to noise, thus preventing the MPPT control block 304 from frequently switching between sleep and tracking modes. After setting the tracking variable and initializing the counter, MPPT control block 304 calculates the initial power of panel 202 (step 408). For example, ADC 306 can provide digital panel current and panel voltage signals (Ipan and Vpan) to MPPT control block 304 'and thereafter, MPPT control block 304 multiplies these signals to determine device (or panel) power ( The initial error of Ipan_vpan). -23- 201009534 After calculating the initial power, the MPPT control block 304 modifies the conversion ratio in the first direction and generates a conversion ratio command including the modified conversion ratio (step 410). For example, for some embodiments, the control block 304 can increase the conversion ratio. For other embodiments, the control block 304 can reduce the conversion ratio. After the system has stabilized over a period of time, the control block 304 calculates the current power of the panel 202 (step 412). For example, ADC 3 06 can provide digital panel current and panel voltage signals to control block 304, after which control block 304 multiplies the signals to determine the current power of the panel. Then, the control block 304 compares the currently calculated power with the previously calculated power, which is the initial power (step 4 1 4). If the current power is greater than the previous power (step 414), then control block 304 modifies the conversion ratio in the same direction as the previous modification and generates an updated conversion ratio command (step 416). For some embodiments, the conversion ratio is modified to be higher or lower with an equal increase. For other embodiments, the conversion ratio can be modified to be higher or lower in linear or non-linear increments to optimize system response. For example, for some systems, if the conversion ratio is very different from the best, then as you get closer to the best, it is better to use larger increments first, then use smaller increments. The UI control block 304 also determines if the tracking variable Τ is equal to 1, indicating that since the conversion ratio has changed before the previous calculation, the conversion ratio is changed in the same direction as the previous calculation (step 418). Therefore, when Τ is equal to 1, the panel power increases, which is the same direction as the previous change of the conversion ratio 201009534. In this case 'after the system has been stabilized for a period of time' the MPPT control block 304 again calculates the current power of the panel 202 (step 412) and compares the current power with the previous power (step 414). However, if the MPPT control block 404 determines that T is not equal to 1, it indicates that the MPPT control block 304 is changed because the conversion ratio has changed the 'conversion ratio to change in the opposite direction from the previous calculation (step 4 1 8 )) before the previous calculation. Set T to 1, and increment the counter (step 420). φ Then, the MPPT control block 304 determines if the counter exceeds the counter threshold 値Cth (step 422). If the current counter does not exceed the counter threshold (step 422), after the system is stabilized for a period of time, the MPPT control block 304 again calculates the current power of the panel 202 (step 412) and compares the current power with the previous Power (step 414) to determine if the panel power is increasing or decreasing. If the MPPT control block 304 determines that the current power is not greater than the previous power (step 414), the MPPT control block 304 modifies the conversion ratio in the opposite direction to the previous modification and generates an updated conversion ratio command (step 424). . The MPPT control block 304 also determines if the tracking variable T is equal to 2, and if T is equal to 2, it indicates that the conversion ratio has been modified in the opposite direction to the previous calculation because the conversion ratio has been changed before the previous calculation (step 426). In this case, after the system has been stabilized for a period of time, the MPPT control block 304 again calculates the current power of the panel 202 (step 412) and compares the current power with the previous power (step 414). However, if MPPT control block 304 determines that T is not equal to 2, it indicates that since the conversion ratio has changed before the previous calculation, the conversion ratio is modified in the same direction as the previous calculation -25-201009534 (step 426), and the MP1 control area is modified. The block setting Τ is 2, and the counter is incremented (step 42 8). Then, control block 304 determines if the counter exceeds the counter threshold 値Cth (step 4 2 2 ), as described above. If the counter does not exceed the counter threshold 步骤 (step 422), it indicates that the conversion ratio has been changed several times in the first direction and the second direction, the number of times is greater than the counter threshold 値, and the MPPT control block 304 finds the corresponding panel. The optimal conversion ratio of the maximum power point of 202, and the MPPT control block 304 begins to operate in the hold mode (step 430). While in the hold mode, MPPT control block 304 can set a timer and reinitialize the counter (step 432). When the timer expires (step 434) 'MPPT control block 304 can be restored to tracking mode (step 436)' and current power is calculated (step 412) to compare current power with MPPT control block 304 in tracking mode. The calculated power (step 414). In this manner, MPPT control block 304 can ensure that the optimal conversion ratio is not changed, or that different optimal conversion ratios can be found when the conditions of panel 202 change. Although FIG. 4 shows an example of a method 400 for tracking the maximum power point of the energy generating device 202, various changes can be made to the method 400. For example, although method 400 is described with reference to a photovoltaic panel, method 4 can be used with other energy generating devices 202, such as wind turbines, fuel cells, and the like. Still further, although the method 400 is described with reference to the MPPT control block 304 of FIG. 3, it should be understood that the method 400 can be used with any suitably configured MPPT control block -26 without departing from the scope of the disclosure. - 201009534. Moreover, for some embodiments, in step 430, if the control block 304 determines that the optimal conversion ratio is equivalent to the lift mode of the power stage 206, the control block 304 can operate in a sleep mode rather than a hold mode. . For these embodiments, after the sleep mode, the time of the timer period may be the same as or different from the time of the timer of the hold mode. Moreover, although shown in a series of steps, the steps in method 40 can be repeated, occurring in parallel, occurring multiple times, or occurring in a different order. φ FIG. 5 is a display energy generating system 5 in accordance with an embodiment of the disclosure. The energy generating system 500 includes a plurality of energy generating devices 502 and a central array controller 510. The central array controller 510 can be used for energy. The production system 100 selects centralized or decentralized files. For the embodiment, the energy generating system refers to the photovoltaic system 500, the photovoltaic system 500 includes an array of photovoltaic panels 502, and the photovoltaic panels 502 are each coupled to a corresponding local converter. ^ Each local converter 504 includes a power stage 506 and a local control unit 508. Moreover, for some embodiments, each local converter 504 can be bypassed via an optional internal switch (e.g., switch 312). When bypassed, the output voltage of the local converter 504 is substantially equal to its input voltage. In this way, the loss associated with the operation of local converter 504 can be minimized or even eliminated (when local converter 504 is not needed). In addition to the central array controller 510, the embodiment of the system 500 also includes a conversion stage 512, a square 514, and a data bus 516. The central array controller 510 includes a diagnostic module 520, a control module 525, and an optional conversion stage (CS) optimizer 530. Furthermore, the described embodiment -27-201009534 sets the global domain controller 540 to the conversion stage 512. However, it should be appreciated that the global controller 540 can be located in the central array controller 510 instead of the conversion stage 512. Moreover, the CS optimizer 530 can be disposed in the conversion stage 512 instead of being disposed in the central array controller 510. For some embodiments, panel 502 and local converter 504 represent panel 102 and local converter 104 of FIG. 1 and/or panel 202 and local converter 204 of FIG. 2 or 3, central array controller 5 10 may represent the central array controller 110 of FIG. 1, and/or the conversion stage 512 may represent the DC-to-AC converter 112 of FIG. In addition, the diagnostic module 520 and the control module 520 can respectively represent the diagnostic module 120 and the control module 125 of FIG. However, it should be understood that the components of system 500 can be implemented in any suitable manner. The conversion stage 512 can include a DC-AC converter, a battery charger, or other energy storage device, or any other suitable component. The grid 514 can include any suitable load that can operate in accordance with the energy produced by the photovoltaic system 500. Each local controller 508 can provide data and local converter data for the corresponding panel device to the central array controller 510 via data bus 516 or via a wireless connection. Based on this information, the diagnostic module 520 can determine if the panel 502 is operating under quasi-ideal conditions, i.e., the panel 502 will not mismatch and will be substantially uniformly illuminated. In this case, the diagnostic module 520 can cause the control module 525 to place the system 500 in a centralized MPPT (CMPPT) mode. In order to accomplish this state, control module 525 can transmit a stop signal to each local controller 508 via data bus 516 to stop 201009534 local converter 504 by operating local converter 504 in bypass mode. Control module 525 can also transmit an enable signal to global controller 540. In the bypass mode, the local controller 508 no longer implements the MPPT, and the output voltage of the power stage 506 is substantially equal to the panel voltage of the panel 502. Thus, the loss associated with operating the local converter 504 can be minimized and the performance of the system 500 can be maximized. When the local converter 504 is operating in the bypass mode, the global controller 540 can apply CMPPT to the array of panels 502. Diagnostic module 520 can also determine if certain panels 502 are obscured or mismatched (i.e., certain panels 502 have different characteristics than other panels 502 in the array). In this case, the diagnostic module 52 can cause the control module 525 to place the system 500 in a decentralized MPPT (DMPPT) mode. In order to complete this state, the control module 552 can transmit an enable signal to each local controller 508 via the data bus 516 to enable the local converter 5〇4 by allowing normal operation of the local converter 504. . The control module 525 can also transmit a stop signal to the global controller 54A. When some of the panels 502 are obscured, the diagnostic module 520 can also determine that some of the shaded panels 502 are partially obscured. In this case, in addition to causing the control module 525 to place the system 500 in the DMPPT mode, the diagnostic module 410 can also perform a full diagnostic scan of the system 500 to ensure a partial controller of the partially shielded panel 502. 508 can find the true maximum power point, not the local maximum 値. For embodiments in which the energy generating device 502 includes a wind turbine, the diagnostic module 520 can determine whether a wind pattern, hill, or other wind blocking structure is changed, or other -29-201009534 affects wind conditions. These wind turbines are "shadowed". The case where the photovoltaic system 500 is partially shielded is illustrated in Figures 6 and 7A-C. Figure 6 shows a photovoltaic array 600 with portions partially obscured. Figures 7A-C are graphs 700, 705, and 710 showing voltage versus power characteristics corresponding to the three photovoltaic panels of Figure 6. The array has three strings 610 provided with photovoltaic panels. The three panels in string 610c are labeled Panel A, Panel B, and Panel C. It should be understood that such panels may represent panels 052 of Figure 5 or panels in any other suitably arranged photovoltaic system. Some of the panels are completely covered or partially covered by the obscured area 620. In the illustrated example, panel A is fully illuminated, panel B is partially obscured by masked area 620, and panel C is completely obscured by masked area 620. The voltage versus power characteristics in graph 700 of Figure 7A correspond to panel a, the voltage versus power characteristics of graph 705 in Figure 7B correspond to panel B, and the voltage versus power characteristics of graph 710 in Figure 7C correspond to panel c. Thus, as shown in FIG. 705, the partially masked panel B has a local maximum 値 720 that is different from the actual maximum power point 725. The diagnostic module 520 of the central array controller 510 can determine that the panel b is partially obscured and implement a full diagnostic scan 'to ensure that panel B is operating for its local controller 508 at its actual maximum power point 725 instead of local maximum Point 720. Instead of operating at the actual maximum power point (e.g., point 725), panel 502 operating at a local maximum power point (e.g., point 720) is referred to as a "under-implemented" panel 502. For a particular embodiment, the diagnostic module 52 can identify the panel 502 that is partially obscured by 201009534 as follows. First, the diagnostic module 520 assumes that the panels 1, ..., N are sub-combinations of the panels 502 in the array under consideration, which have the same characteristics, and assume that Ppan,i is the i-th of the combination [1, ..., N] The output power of panel 50 02. Therefore, ^ραη, πα χ ^ ^panj ^ ^ραη, ηαπ / where Ppan, max is the output power of the best implementation panel 502 'Ppan, min is the output power of the worst implementation panel 502. The diagnostic module 520 also defines a variable i: P by the following formula:

panmBX • Ppan l ^ραηχ 第i個面板502全部或是部份被遮蔽的機率可由下式 表示panmBX • Ppan l ^ραηχ The probability that all or part of the i-th panel 502 is obscured can be expressed by

Pi = k9i φ 其中,k爲少於或是等於1的常數。接著是: Pmin —Pi~ Pnm > 其中Pi = k9i φ where k is a constant less than or equal to 1. Then: Pmin —Pi~ Pnm >

Pmin · 且Pmin · and

Pxcax 診斷模組520亦定義p dmppt爲機率函數p max之最小 値,使DMPPT爲必須。因此,若p max大於p DMppT,則 會致能DMPPT。此外,將p diag定義爲機率函數01^之 最小値,以使診斷函數爲必須,其係用以判定未操作於 -31 - 201009534 MPP之被部份遮蔽的任何面板502。因此,若p max大於 P diag,則診斷模組5 20將面板502辨識爲被部份遮蔽, 且會對於辨識出的面板5 02實施掃描。 對於相對很小的面板502的不匹配而言,診斷模組 520依然可致能DMPPT,但對於更大的不匹配,診斷模組 5 20亦能實施完全診斷掃描。就本身而言, P DMPPT之値 通常小於P dUg之値。 因此,對於某些實施例而言,當 P max〈 P DMPPT 時, 診斷模組520能判定系統500應操作於CMPPT模式,當 P DMPPT&lt; /〇 max &lt; P diag 時,系統 500 應操作於 DMPPT 模 式中,且當pmax&gt; Pdug時,系統500應連同完全診斷掃 描操作於DMPPT模式中。 對於該等實施例而言,全診斷掃描可包含對於Pj&gt;p dug的各面板j的電壓對功率特性的完整掃描。診斷模組 5 20可個別地根據中央陣列控制器510所給定的時序而掃 描各面板5 02之特性。在此方式中,轉換級512可持續正 常地操作。 當系統500操作於DMPPT模式中時,CS最佳化器 530能最佳化轉換級512的操作點。對於一實施例而言, 轉換級512的操作點可設定爲常數。然而,對於使用CS 最佳化器530的實施例而言,可藉由CS最佳化器530最 佳化轉換級5 1 2的操作點。 對於一特定實施例而言’ CS最佳化器530能如下述 判定轉換級512之最佳化操作點。對於第i個功率級506 201009534 而言,將其工作週期定義爲Di,並將其轉換比例定義爲 M ( Di)。功率級506設計成具有標稱轉換比例M〇。因此 ’盡可能地接近於Mq而操作功率級506能夠提供較高的 效率,減少壓力,並減少輸出電壓飽和的可能性。對於包 含階式升降轉換器的功率級506而言,Μ〇可爲1。 因此,最佳化的原理可定義如下: Σ^(Α) /«1 , /The Pxcax diagnostic module 520 also defines p dmppt as the minimum 机 of the probability function p max , making DMPPT necessary. Therefore, if p max is greater than p DMppT, DMPPT will be enabled. In addition, p diag is defined as the minimum 机 of the probability function 01^, so that the diagnostic function is necessary to determine any panel 502 that is not partially obscured by the -31 - 201009534 MPP. Therefore, if p max is greater than P diag, the diagnostic module 520 recognizes the panel 502 as being partially obscured and performs scanning on the identified panel 502. Diagnostic module 520 can still enable DMPPT for a relatively small mismatch of panel 502, but for larger mismatches, diagnostic module 5 20 can also perform a full diagnostic scan. For its part, the P MP PMPPT is usually less than P dUg. Thus, for certain embodiments, when P max < P DMPPT , the diagnostic module 520 can determine that the system 500 should operate in the CMPPT mode, and when P DMPPT &lt; /〇max &lt; P diag , the system 500 should operate In DMPPT mode, and when pmax &gt; Pdug, system 500 should operate in DMPPT mode along with a full diagnostic scan. For these embodiments, the full diagnostic scan may include a full scan of the voltage versus power characteristics for each panel j of Pj &gt; p dug. The diagnostic module 5 20 can individually scan the characteristics of each panel 052 according to the timing given by the central array controller 510. In this manner, the conversion stage 512 can continue to operate normally. The CS optimizer 530 can optimize the operating point of the conversion stage 512 when the system 500 is operating in DMPPT mode. For an embodiment, the operating point of the conversion stage 512 can be set to a constant. However, for embodiments using CS optimizer 530, the operating point of conversion stage 5 1 2 can be optimized by CS optimizer 530. For a particular embodiment, the &apos;CS optimizer 530 can determine the optimized operating point of the conversion stage 512 as follows. For the ith power stage 506 201009534, its duty cycle is defined as Di and its conversion ratio is defined as M ( Di). Power stage 506 is designed to have a nominal conversion ratio M〇. Thus operating the power stage 506 as close as possible to Mq can provide higher efficiency, reduce stress, and reduce the likelihood of output voltage saturation. For a power stage 506 that includes a step-up and down converter, Μ〇 can be one. Therefore, the principle of optimization can be defined as follows: Σ^(Α) /«1 , /

其中’ Ipan,i是第i個功率級506的輸入電流,I〇ut&gt;i 是第i個功率級506的輸出電流,7? i是第i個功率級506 的效率,Iload是轉換級512的輸入電流。因此,最佳化 的原理可重新撰寫如下:Where 'Ipan,i is the input current of the i-th power stage 506, I〇ut>i is the output current of the i-th power stage 506, 7?i is the efficiency of the i-th power stage 506, and Iload is the conversion stage 512 Input current. Therefore, the principle of optimization can be rewritten as follows:

CS最佳化器530可藉由在轉換級512的輸入埠使用 標準電流模式控制技術而達成最佳化,使轉換級512的輸 入電流設定爲Iload。 圖8爲根據揭示內容之一實施例,顯示對於能量產生 系統5〇0選擇集中式MPPT或分散式MPPT的方法800。 方法800之實施例僅爲說明性。可在不脫離揭示內容的範 圍之內實現方法8 00的其他實施例。 -33- 201009534 方法800以診斷模組520設定計時器作爲開始(步驟 802 )。診斷模組520可使用計時器以循環方式而觸發方 法8 00的初始化。然後,診斷模組520分析系統500中的 能量產生裝置,例如面板502 (步驟804 )。例如,對於 某些實施例而言,診斷模組5 20可藉由計算各個面板5 02 的面板功率Ppan而分析面板502,然後根據Ppan的該等計 算値判定數個其他値,如以上有關圖5所述。舉例而言, 診斷模組520可判定計算値Ppan的最大値及最小値(分別 爲Ppan,max及Ppan,mu),接著使用該等最大値及最小値以 計算各面板5 0 2被完全遮蔽或是被部份遮蔽的機率(p ) 。診斷模組5 20亦可判定所計算的機率的最大値〇 max。 在分析面板502(步驟8 04 )之後,診斷模組5 20可 判定光伏打系統500是否操作於準理想的條件下(步驟 8 06 )。例如,對於某些實施例而言,診斷模組520可將 計算出的面板5 02被遮蔽的機率之最大値(Pmax)及預 定 DMPP( pdmppt)予以比較。若 Pmax 小於,Pdmppt, 則面板502之最大輸出功率及最小輸出功率夠接近,因此 ’可將面板502之間的不匹配視爲極小,且系統500可視 爲操作於準理想條件下。若p max不小於 P DMPPT *貝!]面板 502的最大輸出功率及最小輸出功率相差夠大,使得面板 5〇2之間的不匹配不能視爲極小,且系統500視爲沒有在 準理想條件下操作。 若診斷模組520判定系統500沒有操作於準理想條件 下(步驟806 ),則控制模組525致能局部控制器508 ( 201009534 步驟80 8 ),並停止全域控制器540 (步驟810),藉此 將系統500設於DMPPT模式中。因此,在此情況中,局 部控制器5 08對各個面板502實施MPPT。 因爲是對於面板5 02之間具有相對很小不匹配情況而 使用DMPPT模式,則即使當被遮蔽的面板502的機率爲 低(但不是極低)時,診斷模組520可判定系統500爲沒 有操作於準理想條件下。因此,在進入DMPPT模式之後 φ ,診斷模組52 0判定被遮蔽的面板502的機率是否爲高( 步驟812 )。例如,診斷模組520可將面板502被遮蔽的 最大機率(p max )及預定的診斷臨限値(p diag )予以比 較。若P max大於P dug,則面板5 02的最大輸出功率及最 小輸出功率相差夠大,使面板502之間的不匹配的機率視 爲相對之下極高,因此,至少一個面板502被遮蔽的機率 很高。 若面板502被遮蔽的機率很高(步驟812),則診斷 〇 模組520對於有可能被遮蔽的任何一個面板502實施全特 性掃描(步驟814)。例如,診斷模組520可藉由對於各 個面板502比較面板被遮蔽的機率(p )與診斷臨限値( P diag ),而辨識出可能被遮蔽的面板502。若特定面板 的P大於P diag,則特定面板502的輸出功率與系統500 中之一面板502之最大輸出功率相差夠大,則特定面板 5 02至少被部份遮蔽的機率相對很高。 在實施完全特性掃描時,診斷模組520可根據中央陣 列控制器510所提供之時序,對於有可能被遮蔽的各個面 -35- 201009534 板5 02個別地實施電壓對功率特性掃描。在此方式中,轉 換級512可繼續在掃描期間正常地操作。 若在實施任何完全特性掃描的期間中,診斷模組520 判定任一面板502爲不足實施(即,操作於局部最大功率 點(MPP ),例如局部MPP 720,而非實際的MPP,例如 MPP725 ),則控制模組525可對於該等不足實施的面板 5 02提供校正(步驟816)。 在此時,或是若面板5 02被遮蔽的機率不高(步驟 812),診斷模組520判定計時器是否屆期(步驟818) ,表示方法800必須再次被初始化。一但計時器屆期(步 驟818),診斷模組5 20即重設計時器(步驟820),並 開始再次分析面板5 02 (步驟8 04 )。 若診斷模組520判定系統5 00操作於準理想條件下( 步驟806 ),則控制模組5 25停止局部控制器5 08 (步驟 822 )並致能全域控制器540 (步驟824 ),藉此將系統 5〇〇設於CMPPT模式中。因此,在此情況中,全域控制 器540對整個系統500實施MPPT。 且在此時,診斷模組5 20判定計時器是否屆期(步驟 8 1 8 ),表示方法800必須再次被初始化。一但計時器屆 期(步驟818),診斷模組520即重設計時器(步驟820 )’並開始再次分析面板5 02 (步驟804 )。 儘管圖8已顯示在集中式及分散式MPPT之間作選擇 的方法800的範例,但可對於方法800作出各種變更。例 如,儘管係配合光伏打系統而描述方法800,但方法800 201009534 仍可用於其他能量產生系統500,例如風力渦輪系統、燃 料電池系統。更進一步,儘管係配合圖5之系統5 00而描 述方法800,應了解者爲,在不脫離揭示內容的範圍之內 ,方法8 00可用於任何合適地設置的能量產生系統。此外 ,儘管所示者爲一連串步驟,但方法8 00中之步驟可重疊 、平行發生、發生多次或是以不同順序發生。 圖9爲根據掲示內容之一實施例,顯示用以在能量產 φ 生系統中啓動及停止一局部轉換器904之局部控制器908 之系統900。系統900包含能量產生裝置902 (被稱爲光 伏打面板902 ),及局部轉換器904。局部轉換器904包 含功率級906、局部控制器908及啓動器910。 局部轉換器904可表示圖1中之局部轉換器104、圖 2或3中之局部轉換器204其中之一個,且/或圖5之局部 轉換器5 04其中之一個,然而,應了解者爲,在不脫離揭 示內容的範圍之內,局部轉換器9 04可實現在任何合適設 • 置能量產生系統中。因此,應了解者爲,系統900可串聯 耦接且/或是並聯耦接至其他類似的系統900,以形成能量 產生陣列。 對於所述實施例而言,啓動器910係耦接於面板902 及局部控制器908之間。對於某些實施例而言,啓動器 910能根據面板902的輸出電壓而啓動及停止局部控制器 908。當面板902的輸出電壓太低時,啓動器910能提供 實質上爲零的供給電壓至局部控制器908,藉此關閉局部 控制器908。當面板902的輸出電壓較高時’啓動器910 -37- 201009534 能提供非零的供給電壓至局部控制器908,以使局部控制 器908爲運作。 應了解者爲,除了提供供給電壓至局部控制器908之 外,啓動器910能以任何合適的方式啓動及停止局部控制 器9 08。例如,對於一替換性實施例而言,啓動器9 1 0可 設定局部控制器908的一個或更多個接腳,以啓動及停止 局部控制器908。對於另一替換性實施例而言,啓動器 910能將第一個預定値寫入局部控制器908中的第一個暫 @ 存器,以啓動局部控制器908,並將第二個預定値(根據 特定實施手段而可與第一個預定値相同或是不同)寫入局 部控制器908中的第一個暫存器或是第二個暫存器,以停 止局部控制器908。 因此,系統900不使用電池或是外部電源就能使局部 轉換器9 04自發性操作。當太陽輻射夠高時,輸出面板電 壓Vpan增加到使啓動器910開始產生非零的供給電壓Vcc 的位準。此時,局部控制器908且/或中央陣列控制器( ◎ 未顯示於圖9中)可開始實施啓動程序’例如暫存器的初 始化,面板902之間的初步電壓比較’類比到數位轉換器 校準,時脈同步或是時脈插入,功率級90 6的同步啓動等 。相似地,在停止系統900之前,可實施停止程序,例如 在單獨應用情況中,與備份單元的同步化,與功率級906 的同步停止等。在該等停止程序期間中’啓動器910仍能 保持本身爲啓動的。 此外,對於某些實施例而言’啓動器910能夠對局部 -38- 201009534 轉換器904提供過功率保護。如上述與圖3相關之說明, 爲局部控制器208的一部份的MPPT控制區塊304可提供 過功率保護。然而,作爲包含啓動器910之系統之替換性 實施例,反而是啓動器910能提供此種保護功能。因此, 對於此替換性實施例而言,若輸出電流下降到太低,則啓 動器910可能會關閉局部控制器908的MPPT功能,使面 板電壓Vpan幾乎等於輸出電壓V。^。 〇 圖10爲根據揭示內容之一實施例,顯示系統900之 裝置電壓隨著時間而改變的圖920。對於光伏打面板902 而言,在太陽輻射位準在啓動器910的電壓啓動位準(Vt-。1)附近震盪的情況中,使用相同的電壓啓動位準作爲電 壓停止位準(Vt_Qff)會產生不想要的系統900多次啓動及停 止。因此,如圖920所示,使用較低的電壓停止位準,以 避免此種現象。藉由使用較低的電壓停止位準,系統900 可維持一致的啓動,直到太陽輻射位準充分下降使得面板 Ο 電壓下降到低於電壓啓動位準爲止。因此,可避免頻繁的 啓動及停止,而對系統900提供雜訊免疫。 對於某些實施例而言,在面板電壓超出使局部控制器 90 8啓動的電壓啓動位準之後,若面板電壓下降至低於電 壓啓動位準,則局部控制器90 8開始停止程序,以能夠比 面板電壓持續下降到低於電壓停止位準時更快速地停止。 此外’對於某些實施例而言,在到達電壓停止位準之前, 在某些情況中,局部控制器908能關閉啓動器9 1 0及其本 身。 -39- 201009534 圖11爲根據揭示內容之一實施例,顯示啓動器910 。對此實施例而言,啓動器910包含電源930、多數個電 阻Rl、R2、R3及二極體D。電阻R1及R2串聯耦接至電 源930的輸入節點(IN )及地面之間。二極體及電阻r3 串聯耦接至電源930的輸出節點(OUT)及節點940之間 ,電阻器R1及R2在節點940耦接。此外,電源930的 停止節點(SD)亦耦接至節點940。 電源930能在輸入節點接收面板電壓Vpan,並在輸出 _ 節點產生對於局部控制器908之供應電壓Vcc。若電源 930之控制電路所判定的停止節點的電壓位準超出規定的 電壓VQ’則電源930的停止節點致能電源930的操作, 且若停止節點的電壓位準下降到低於規定的電壓VQ,則 停止節點停止電源930的操作。 當電源930關閉時,二極體不會導通,且停止節點的 電壓以下式表示= 當電壓VsDt-u超出値Vo時,二極體開始導通,且停 止節點的電壓變成: V. panThe CS optimizer 530 can be optimized by using the standard current mode control technique at the input of the conversion stage 512 to set the input current of the conversion stage 512 to Iload. 8 is a diagram showing a method 800 of selecting a centralized MPPT or a decentralized MPPT for an energy generating system 5〇0, in accordance with an embodiment of the disclosure. The embodiment of method 800 is merely illustrative. Other embodiments of method 800 can be implemented without departing from the scope of the disclosure. -33- 201009534 The method 800 begins with the diagnostic module 520 setting a timer (step 802). The diagnostic module 520 can trigger the initialization of the method 800 in a round-robin fashion using a timer. Diagnostic module 520 then analyzes the energy generating device in system 500, such as panel 502 (step 804). For example, for some embodiments, the diagnostic module 520 can analyze the panel 502 by calculating the panel power Ppan of each panel 502, and then determine a number of other defects based on the calculations of the Ppan, such as the above related figures. 5 stated. For example, the diagnostic module 520 can determine the maximum 値 and minimum 値 of the 値Ppan (Ppan, max and Ppan, mu, respectively), and then use the maximum 値 and minimum 値 to calculate that each panel 502 is completely obscured. Or the probability of being partially obscured (p). The diagnostic module 520 can also determine the maximum 値〇 max of the calculated probability. After analyzing panel 502 (step 804), diagnostic module 520 can determine if photovoltaic system 500 is operating under quasi-ideal conditions (step 806). For example, for some embodiments, the diagnostic module 520 can compare the calculated maximum 値 (Pmax) and the predetermined DMPP (pdmppt) of the panel 502 to be masked. If Pmax is less than Pdmppt, the maximum output power and minimum output power of panel 502 are close enough so that the mismatch between panels 502 can be considered to be minimal and system 500 can be considered to operate under quasi-ideal conditions. If p max is not less than P DMPPT * shell! The difference between the maximum output power and the minimum output power of panel 502 is large enough that the mismatch between panels 5〇2 cannot be considered to be minimal and system 500 is considered not operating under quasi-ideal conditions. If the diagnostic module 520 determines that the system 500 is not operating under a quasi-ideal condition (step 806), the control module 525 enables the local controller 508 (201009534 step 80 8) and stops the global controller 540 (step 810). This sets system 500 in DMPPT mode. Therefore, in this case, the local controller 508 implements MPPT for each panel 502. Since the DMPPT mode is used for a relatively small mismatch between the panels 502, the diagnostic module 520 can determine that the system 500 is not present even when the probability of the masked panel 502 is low (but not very low). Operate under quasi-ideal conditions. Therefore, after entering the DMPPT mode φ, the diagnostic module 52 0 determines whether the probability of the masked panel 502 is high (step 812). For example, the diagnostic module 520 can compare the maximum probability (p max ) at which the panel 502 is obscured with a predetermined diagnostic threshold p (p diag ). If P max is greater than P dug, the maximum output power and the minimum output power of the panel 502 are sufficiently different, so that the probability of mismatch between the panels 502 is considered to be extremely high, so that at least one panel 502 is shielded. The chances are high. If the probability of panel 502 being masked is high (step 812), then diagnostic 〇 module 520 performs a full-feature scan for any panel 502 that may be obscured (step 814). For example, the diagnostic module 520 can identify the panel 502 that may be obscured by comparing the probability (p) and diagnostic threshold (P diag ) that the panel is obscured for each panel 502. If the P of a particular panel is greater than P diag, then the output power of the particular panel 502 is sufficiently different from the maximum output power of one of the panels 502 in the system 500, and the probability that the particular panel 502 is at least partially masked is relatively high. When performing a full characteristic scan, the diagnostic module 520 can individually perform a voltage versus power characteristic scan for each of the faces 520 - 201009534 502 that may be masked according to the timing provided by the central array controller 510. In this manner, the transition stage 512 can continue to operate normally during the scan. If during the implementation of any full-feature scan, the diagnostic module 520 determines that any of the panels 502 are under-implemented (ie, operating at a local maximum power point (MPP), such as a local MPP 720, rather than an actual MPP, such as MPP725). The control module 525 can provide corrections for the less than implemented panels 502 (step 816). At this time, or if the probability of the panel 502 being masked is not high (step 812), the diagnostic module 520 determines if the timer has expired (step 818), indicating that the method 800 must be initialized again. Once the timer expires (step 818), the diagnostic module 520 resets the timer (step 820) and begins analyzing the panel 052 again (step 804). If the diagnostic module 520 determines that the system 500 is operating under a quasi-ideal condition (step 806), the control module 525 stops the local controller 508 (step 822) and enables the global controller 540 (step 824). The system 5 is set in the CMPPT mode. Therefore, in this case, the global controller 540 implements the MPPT for the entire system 500. At this time, the diagnostic module 520 determines whether the timer has expired (step 8 1 8), indicating that the method 800 must be initialized again. Once the timer expires (step 818), the diagnostic module 520 resets the timer (step 820)&apos; and begins analyzing the panel 052 again (step 804). Although FIG. 8 has shown an example of a method 800 for selecting between centralized and decentralized MPPTs, various changes can be made to method 800. For example, although method 800 is described in conjunction with a photovoltaic system, method 800 201009534 can be used with other energy generating systems 500, such as wind turbine systems, fuel cell systems. Still further, although the method 800 is described in conjunction with the system 500 of Figure 5, it should be understood that the method 800 can be used with any suitably arranged energy generating system without departing from the scope of the disclosure. Moreover, although shown as a series of steps, the steps in method 800 can occur in overlapping, parallel, multiple occurrences, or in a different order. 9 is a system 900 showing a local controller 908 for activating and deactivating a local converter 904 in an energy production system, in accordance with one embodiment of the present disclosure. System 900 includes an energy generating device 902 (referred to as a photovoltaic panel 902), and a local converter 904. Local converter 904 includes power stage 906, local controller 908, and initiator 910. Local converter 904 may represent one of local converter 104 of FIG. 1, local converter 204 of FIG. 2 or 3, and/or one of local converters 504 of FIG. 5, however, it should be understood that The local converter 904 can be implemented in any suitable energy generating system without departing from the scope of the disclosure. Accordingly, it should be appreciated that system 900 can be coupled in series and/or coupled in parallel to other similar systems 900 to form an energy generating array. For the embodiment, the initiator 910 is coupled between the panel 902 and the local controller 908. For some embodiments, the initiator 910 can activate and deactivate the local controller 908 based on the output voltage of the panel 902. When the output voltage of panel 902 is too low, initiator 910 can provide a substantially zero supply voltage to local controller 908, thereby turning off local controller 908. When the output voltage of panel 902 is high, starter 910-37-201009534 can provide a non-zero supply voltage to local controller 908 to cause local controller 908 to operate. It will be appreciated that in addition to providing a supply voltage to local controller 908, initiator 910 can activate and deactivate local controller 908 in any suitable manner. For example, for an alternative embodiment, the initiator 910 can set one or more pins of the local controller 908 to start and stop the local controller 908. For another alternative embodiment, the initiator 910 can write the first predetermined 値 to the first temporary register in the local controller 908 to activate the local controller 908 and place the second predetermined 値The first register or the second register in the local controller 908 can be written (either identical or different from the first predetermined 根据 according to a particular implementation) to stop the local controller 908. Thus, system 900 can cause local converter 904 to operate autonomously without the use of a battery or an external power source. When the solar radiation is high enough, the output panel voltage Vpan is increased to a level that causes the starter 910 to begin generating a non-zero supply voltage Vcc. At this time, the local controller 908 and/or the central array controller (not shown in FIG. 9) can begin to implement the startup program 'eg, the initialization of the scratchpad, the preliminary voltage comparison between the panels 902' analog to the digital converter. Calibration, clock synchronization or clock insertion, synchronous start of power stage 90 6 and so on. Similarly, a stop procedure can be implemented prior to stopping system 900, such as synchronization with a backup unit, synchronization with power stage 906, etc., in a single application scenario. During the stop procedure, the launcher 910 can still keep itself activated. Moreover, the enabler 910 can provide overpower protection for the local -38-201009534 converter 904 for certain embodiments. As described above in connection with FIG. 3, the MPPT control block 304, which is part of the local controller 208, can provide overpower protection. However, as an alternative embodiment of the system including the initiator 910, instead the initiator 910 can provide such protection. Thus, for this alternative embodiment, if the output current drops too low, the initiator 910 may turn off the MPPT function of the local controller 908 such that the panel voltage Vpan is nearly equal to the output voltage V. ^. FIG. 10 is a diagram 920 of the display system 900 device voltage as a function of time, in accordance with an embodiment of the disclosure. For the photovoltaic panel 902, in the case where the solar radiation level is oscillated near the voltage activation level (Vt - .1) of the initiator 910, the same voltage activation level is used as the voltage stop level (Vt_Qff). An unwanted system 900 is generated to start and stop multiple times. Therefore, as shown in Figure 920, a lower voltage stop level is used to avoid this phenomenon. By using a lower voltage stop level, system 900 can maintain a consistent start until the solar radiation level drops sufficiently that the panel Ο voltage drops below the voltage start level. Thus, frequent startups and stops can be avoided while the system 900 is provided with noise immunity. For some embodiments, after the panel voltage exceeds the voltage enable level at which the local controller 90 8 is activated, if the panel voltage drops below the voltage enable level, the local controller 90 8 begins to stop the program to enable Stops more quickly than when the panel voltage continues to drop below the voltage stop level. Further, for some embodiments, prior to reaching the voltage stop level, in some cases, local controller 908 can turn off initiator 9 1 0 and its body. -39- 201009534 Figure 11 is a display launcher 910 in accordance with an embodiment of the disclosure. For this embodiment, the initiator 910 includes a power supply 930, a plurality of resistors R1, R2, R3, and a diode D. Resistors R1 and R2 are coupled in series between the input node (IN) of power supply 930 and the ground. The diode and the resistor r3 are coupled in series between the output node (OUT) of the power supply 930 and the node 940, and the resistors R1 and R2 are coupled at the node 940. In addition, the stop node (SD) of the power supply 930 is also coupled to the node 940. The power supply 930 is capable of receiving the panel voltage Vpan at the input node and generating a supply voltage Vcc for the local controller 908 at the output_node. If the voltage level of the stop node determined by the control circuit of the power supply 930 exceeds the predetermined voltage VQ', the stop node of the power supply 930 enables the operation of the power supply 930, and if the voltage level of the stop node falls below the specified voltage VQ. Then, the node stops the operation of stopping the power supply 930. When the power supply 930 is turned off, the diode does not conduct, and the voltage of the stop node is expressed by the following equation = When the voltage VsDt-u exceeds 値Vo, the diode starts to conduct, and the voltage of the stop node becomes: V. pan

Jg2//Jt3 Λ,+Λ2//Λ3 RJIR^ 木 + i?| //Λ2 其中,Vd爲二極體壓降,且。當電壓vSD,t.off y 下降到低於ν〇時,電源93 0被關閉。因此可根據電阻R1 、R2及R3的電阻値判定開啓及關閉電壓臨限値。 -40- 201009534 圖12爲根據揭示內容之一實施例,顯示用以啓動及 停止局部轉換器904之方法1200。方法1 200之實施例僅 爲說明性。可在不脫離揭示內容的範圍內實現方法12 00 的其他實施例。 方法1 200以能量產生裝置或是面板902操作於開路 條件作爲開始(步驟1202 )。在此條件中,因爲面板902 輸出的面板電壓太低,·所以啓動器910並未啓動局部轉換 φ 器90 8。啓動器910監控面板電壓(Vpan)直到面板電壓 超出電壓啓動位準(Vt_on)爲止(步驟1 204 )。 一但啓動器910判定面板電壓已超出電壓啓動位準( 步驟1 204 ),則啓動器910藉由開啓局部控制器90 8開 始啓動局部轉換器904 (步驟1 206 )。例如,啓動器910 可藉由對於局部控制器908產生非零的供給電壓VCC,而 開始啓動局部轉換器904。對其他實施例而言,啓動器 91〇可藉由設定局部控制器908的一個或更多個接腳,或 φ 是藉由將第一個預定値寫入局部控制器908之第一個暫存 器中,而開始啓動局部轉換器904。然後局部控制器908 及/或中央陣列控制器對局部轉換器904實施啓動程序( 步驟1 208 )。例如,啓動程序可包含暫存器的初始化, 面板902之間的初步電壓比較,類比到數位轉換器校準, 時脈同步化或是插入,包含功率級906的一連串面板的同 步啓動等。 局部控制器908以預定的轉換比例操作功率級906 ( 步驟1210 ),直到操作串中的其他功率級906爲止(步 201009534 驟1212)。一但串中的各個面板902具有一操作中的功 率級906 (步驟1212),局部控制器908將面板電流( Ipan)及啓動電流位準(Imin)予以比較(步驟1214)。 若面板電流大於啓動電流位準(步驟1214),則局部控 制器908開始正常地操作(步驟1216 )。因此,局部控 制器908開始對於功率級906實施MPPT。 在此方式中,可自動同步化能量產生系統中的全部局 部控制器908的啓動。此外,若僅有光伏打系統中的面板 9 02之子組合產生高得足以啓動該啓動器910的電壓,則 可在各功率級906中包含單向開關(例如開關3 1 4 ),以 容許操作其餘的面板902。 局部控制器908持續比較面板電流與啓動電流位準( 步驟1218)。若面板電流少於啓動電流位準(步驟1218 ),則局部控制器908設定一停止計時器(步驟1 220 ) 。然後,局部控制器908重新以預定的轉換比例操作功率 級906(步驟1222)。然後局部控制器908及/或是中央 陣列控制器對於局部轉換器904實施停止程序(步驟 12 24 )。例如,停止程序可包含在單獨應用的情況中,與 備份單元的同步化,與功率級906之同步停止等。 然後局部控制器908判定停止計時器是否屆期(步驟 1 226 )。如此則容許面板電流上升到超過啓動電流位準的 時間。因此,局部控制器9 0 8爲停止預作準備,但等待以 確保應實際執行停止。 因此’只要停止計時器尙未屆期(步驟1226 ),局 -42- 201009534 部控制器908仍會將面板電流與啓動電流位準予以比較( 步驟1228)。若面板電流持續保持在少於啓動電流位準 (步驟1 228 ),則局部控制器908繼續等待停止計時器 屆期(步驟1 226 )。若在計時器屆期(步驟1 226 )之前 ,面板電流變成大於啓動電流位準(步驟1228),則局 部控制器908藉由對功率級906實施MPPT而能再次正常 地操作(步驟1 2 1 6 )。 φ 然而,若在面板電流少於啓動電流位準時(步驟 1228),停止計時器屆期(步驟1226),則局部控制器 908關閉功率級906及局部控制器908,且再次在開路條 件之下操作面板902 (步驟1 2 3 0 )。對於某些實施例而言 ,啓動器910可藉由產生零供應電壓Vcc予局部控制器 9〇8而完成局部轉換器9 04的停止。對於其他實施例而言 ’啓動器910可藉由設定局部控制器908的一個或更多個 接腳,或是藉由將第二個預定値寫入局部控制器908中的 第一個暫存器或是第二個暫存器,而完成局部轉換器904 的停止。在此時,啓動器910再次監控面板電壓,直到面 板電壓超出電壓啓動位準爲止(步驟1204),重新初始 化啓動處理。 儘管圖12顯示者爲用以啓動及停止局部轉換器9〇4 的方法1 200的範例,但可對方法1 200作出各種變更。例 如,儘管係以光伏打面板來說明方法1 200,但方法1200 可用於其他能量產生裝置902,例如風力渦輪、燃料電池 等。更進一步,儘管係參照圖9之局部控制器908及啓動 -43- 201009534 器910來說明方法1200,應了解者爲,在不脫離揭示內 容的範圔內,局部控制器908及啓動器910可用於任何合 適地配置的能量產生系統。且,儘管如圖所示者爲一連串 的步驟,但方法1 200中之步驟可以重叠,平行發生,發 生多次,或是以不同順序發生。 儘管上述說明係參照特定實施例,但應了解者爲,所 述之某些構件、系統及方法可用於水平電泳槽(sub-cell )、單一電池、面板(亦即,電池陣列)、面板陣列及/ 或是面板陣列組成的系統。舉例而言,儘管上述之局部轉 換器各連接於一面板,但相似的系統可實施爲一局部轉換 器連接於面板中之各個電池,或是一局部轉換器連接於各 排面板。此外,上述之某些構件、系統及方法可用於除了 光伏打裝置之外的其他能量產生裝置,例如風力渦輪、燃 料電池等。 有益者爲提出用於此份專利文件中之某些字詞及片語 的定義。「耦接」的術語及其衍生物指的是兩個或更多個 構件之間的直接或是間接通訊,無論該等構件是否爲彼此 實際接觸。「傳送」、「接收」、及「通訊」的術語及其 衍生物包含直接及間接通訊。「包括」及「包含」的術語 及其衍生物表示包含但不限於。「或是」的術語是包含性 的,表示及/或是。「各個」的術語表示所指的項目中之 至少一個子組合的其中每一個。「相關於」及「與其相關 」的片語及其衍生物表示用以包含、包含在內、與之互聯 、包含、包含在內、連接至或連接於、耦接至或耦接於、 -44- 201009534 與其通訊、與其協同合作、插入、並列、接近於、接合至 或接合於、具有、具有某種特性等。 儘管已利用特定實施例及相關的方法說明揭示內容, 但熟知本技藝者當可輕易了解對此等實施例及方法的代換 及組合。因此’上述例示性實施例之說明並不是用以界定 或是限制揭示內容。可在不脫離揭示內容的精神及範圍內 ,其他變更、取代、及輪替亦有可能,如後附之申請專利 φ 範圍所定義。 【圖式簡單說明】 爲了提供對揭示內容及其特徵之更透徹的了解,參考 伴隨附圖的以下說明,在附圖中: 圖1爲根據揭示內容之一實施例,顯示可爲集中式控 制的能量產生系統; 圖2爲根據揭示內容之一實施例,顯示圖1之局部轉 參換器; 圖3爲根據揭示內容之一實施例,顯示圖2之局部轉 換器之細部; 圖4爲根據揭示內容之一實施例,顯示在圖2的局部 轉換器中實現最大功率點追蹤(MPPT )的方法; 圖5爲根據揭示內容之一實施例’顯示包含一中央陣 列控制器之能量產生系統,該中央陣列控制器能在能量產 生系統中之集中式及分散式MPPT之間作選擇; 圖6爲根據揭示內容之一實施例,顯示圖5之陣列被 -45- 201009534 部份遮蔽的情形; 圖7 Α-C爲根據揭示內容之一實施例,顯示對應於圖 6的三個光伏打面板的電壓對功率特性; 圖8爲根據揭示內容之一實施例,顯示用以在圖5之 能量產生系統之集中式及分散式MPPT之間作選擇的方法 t 圖9爲根據揭示內容之一實施例,顯示用以啓動及停 止局部轉換器的系統; φ 圖10爲根據揭示內容之一實施例,顯示圖9之系統 的裝置電壓隨著時間變異的範例; 圖11爲根據揭示內容之一實施例,顯示圖9之啓動 器:及 圖12爲根據揭示內容之一實施例,顯示用以啓動及 停止圖9之局部轉換器的方法。 【主要元件符號說明】 © 1〇〇 :能量產生系統 102 :能量產生裝置 104 :局部轉換器 106 :能量產生陣列 1 1 0 :中央陣列控制器 1 12 : DC-AC轉換器 120 :診斷模組 125 :控制模組 -46- 201009534 2 02 :能量產生裝置 204 :局部轉換器 206 :功率級 208 :局部控制器 210 : Μ P P T 模組 2 1 2 :通訊介面 3 02 :功率級調節器 φ 304 : ΜΡΡΤ控制區塊 306 :類比到數位轉換器 3 08 :類比到數位轉換器 310、 310a-d:開關 3 1 4 :單向開關 400 :方法 500 :能量產生系統 502、502a~502d:能量產生裝置 φ 504、5 04a~504d :局部轉換器Jg2//Jt3 Λ, +Λ2//Λ3 RJIR^ wood + i?| //Λ2 where Vd is the diode drop and. When the voltage vSD, t.off y falls below ν〇, the power supply 93 0 is turned off. Therefore, the voltage threshold 开启 can be determined based on the resistances of the resistors R1, R2, and R3. -40- 201009534 Figure 12 is a diagram showing a method 1200 for activating and deactivating a local converter 904, in accordance with an embodiment of the disclosure. The embodiment of method 1 200 is merely illustrative. Other embodiments of method 12 can be implemented without departing from the scope of the disclosure. Method 1 200 begins with an energy generating device or panel 902 operating on an open circuit condition (step 1202). In this condition, since the panel voltage output from the panel 902 is too low, the initiator 910 does not activate the local conversion φ 90 8 . The initiator 910 monitors the panel voltage (Vpan) until the panel voltage exceeds the voltage enable level (Vt_on) (step 1 204). Once the initiator 910 determines that the panel voltage has exceeded the voltage enable level (step 1 204), the initiator 910 begins the local converter 904 by turning on the local controller 90 8 (step 1 206). For example, the initiator 910 can begin to activate the local converter 904 by generating a non-zero supply voltage VCC for the local controller 908. For other embodiments, the initiator 91 can be set by setting one or more pins of the local controller 908, or φ is written to the first of the local controllers 908 by writing the first predetermined chirp In the memory, the local converter 904 is started. The local controller 908 and/or the central array controller then implements a boot procedure for the local converter 904 (step 1 208). For example, the boot process may include initialization of the scratchpad, preliminary voltage comparison between panel 902, analog to digital converter calibration, clock synchronization or insertion, synchronous startup of a series of panels including power stage 906, and the like. The local controller 908 operates the power stage 906 at a predetermined conversion ratio (step 1210) until the other power levels 906 in the string are operated (step 201009534 step 1212). Once each panel 902 in the string has an operational power stage 906 (step 1212), the local controller 908 compares the panel current (Ipan) and the startup current level (Imin) (step 1214). If the panel current is greater than the startup current level (step 1214), local controller 908 begins normal operation (step 1216). Thus, local controller 908 begins to implement MPPT for power stage 906. In this manner, the activation of all of the local controllers 908 in the energy generating system can be automatically synchronized. In addition, if only the sub-combination of the panel 902 in the photovoltaic system produces a voltage high enough to activate the initiator 910, a unidirectional switch (eg, switch 3 1 4) may be included in each power stage 906 to allow operation. The remaining panels 902. The local controller 908 continues to compare the panel current to the startup current level (step 1218). If the panel current is less than the startup current level (step 1218), the local controller 908 sets a stop timer (step 1 220). The local controller 908 then operates the power stage 906 again at a predetermined conversion ratio (step 1222). The local controller 908 and/or the central array controller then implement a stop procedure for the local converter 904 (step 12 24). For example, the stop procedure can be included in the case of a separate application, synchronization with the backup unit, synchronization with the power stage 906, and the like. The local controller 908 then determines if the stop timer has expired (step 1 226). This allows the panel current to rise above the start current level. Therefore, the local controller 98 is ready to stop, but waits to ensure that the stop should actually be performed. Thus, as long as the timer is not expired (step 1226), the controller-908 controller 908 will still compare the panel current to the startup current level (step 1228). If the panel current continues to remain below the startup current level (step 1 228), the local controller 908 continues to wait for the stop timer to expire (step 1 226). If the panel current becomes greater than the startup current level before the timer period (step 1 226) (step 1228), the local controller 908 can again operate normally by performing MPPT on the power stage 906 (step 1 2 1 6). φ However, if the panel current is less than the startup current level (step 1228), the timer period is stopped (step 1226), then the local controller 908 turns off the power stage 906 and the local controller 908, and again under the open circuit condition. The operation panel 902 (step 1 2 3 0 ). For some embodiments, the initiator 910 can complete the stop of the local converter 94 by generating a zero supply voltage Vcc to the local controller 9A8. For other embodiments, the initiator 910 can be temporarily stored in the local controller 908 by setting one or more pins of the local controller 908 or by writing a second predetermined buffer. The device is either the second register and the local converter 904 is stopped. At this time, the initiator 910 monitors the panel voltage again until the panel voltage exceeds the voltage enable level (step 1204), and the initialization process is reinitialized. Although FIG. 12 shows an example of a method 1 200 for starting and stopping the local converter 9〇4, various changes can be made to the method 1 200. For example, although method 1 200 is illustrated with a photovoltaic panel, method 1200 can be used with other energy generating devices 902, such as wind turbines, fuel cells, and the like. Further, although the method 1200 is described with reference to the local controller 908 of FIG. 9 and the start-43-201009534 910, it should be appreciated that the local controller 908 and the initiator 910 are available without departing from the scope of the disclosure. Any suitably configured energy generating system. Also, although a series of steps are shown, the steps in method 1 200 may overlap, occur in parallel, occur multiple times, or occur in a different order. Although the above description refers to a particular embodiment, it should be appreciated that certain of the components, systems, and methods described herein can be used in horizontal sub-cells, single cells, panels (ie, battery arrays), panel arrays. And / or a system of panel arrays. For example, although the partial converters described above are each connected to a panel, a similar system can be implemented as a local converter connected to each battery in the panel, or a local converter connected to each row of panels. Moreover, some of the components, systems, and methods described above can be used with other energy generating devices other than photovoltaic devices, such as wind turbines, fuel cells, and the like. The beneficial person is to propose a definition of certain words and phrases used in this patent document. The term "coupled" and its derivatives refer to either direct or indirect communication between two or more components, whether or not such components are in actual contact with each other. The terms "transfer", "receive", and "communication" and their derivatives include both direct and indirect communication. The terms "including" and "including" and their derivatives are intended to include, but are not limited to. The term "or" is inclusive, expressed and / or. The term "each" means each of at least one of the sub-combinations of the indicated items. The words "related to" and "related to" are intended to be included, included, interconnected, included, included, connected to or connected to, coupled to, or coupled to - 44- 201009534 Communicate with, cooperate with, insert, juxtapose, approximate, join or join, have, have certain characteristics, etc. Although the disclosure has been described in terms of specific embodiments and related methods, those skilled in the art can readily appreciate the substitution and combinations of the embodiments and methods. Therefore, the description of the above exemplary embodiments is not intended to limit or limit the disclosure. Other changes, substitutions, and rotations are possible without departing from the spirit and scope of the disclosure, as defined by the scope of the appended patent φ. BRIEF DESCRIPTION OF THE DRAWINGS In order to provide a more complete understanding of the disclosure and its features, reference is made to the accompanying drawings in which: FIG. FIG. 2 is a partial conversion converter of FIG. 1 according to an embodiment of the disclosure; FIG. 3 is a detail of the local converter of FIG. 2 according to an embodiment of the disclosure; FIG. In accordance with an embodiment of the disclosure, a method of implementing maximum power point tracking (MPPT) in the local converter of FIG. 2 is shown; FIG. 5 is an illustration of an energy generating system including a central array controller in accordance with an embodiment of the disclosure The central array controller is capable of selecting between centralized and decentralized MPPTs in the energy generating system; FIG. 6 is a diagram showing the arrangement of the array of FIG. 5 partially blocked by -45-201009534, in accordance with an embodiment of the disclosure Figure 7 Α-C is a voltage versus power characteristic corresponding to the three photovoltaic panels of Figure 6 in accordance with one embodiment of the disclosure; Figure 8 is an embodiment in accordance with one embodiment of the disclosure, A method for selecting between a centralized and decentralized MPPT of the energy generating system of FIG. 5 is shown. FIG. 9 is a diagram showing a system for starting and stopping a local converter in accordance with an embodiment of the disclosure; An example of a device voltage variation over time of the system of FIG. 9 is shown in accordance with an embodiment of the disclosure; FIG. 11 is a diagram showing the initiator of FIG. 9 in accordance with an embodiment of the disclosure: and FIG. 12 is in accordance with the disclosure In one embodiment, a method for activating and stopping the local converter of Figure 9 is shown. [Main component symbol description] © 1〇〇: Energy generation system 102: Energy generating device 104: Local converter 106: Energy generating array 1 1 0: Central array controller 1 12: DC-AC converter 120: Diagnostic module 125: Control module-46-201009534 2 02: Energy generating device 204: Local converter 206: Power stage 208: Local controller 210: Μ PPT module 2 1 2: Communication interface 3 02: Power stage regulator φ 304 : ΜΡΡΤ Control Block 306: Analog to Digital Converter 3 08: Analog to Digital Converter 310, 310a-d: Switch 3 1 4: Unidirectional Switch 400: Method 500: Energy Generation System 502, 502a-502d: Energy Generation Device φ 504, 5 04a~504d: local converter

506 、 506a~506d:肯g# 產生陣歹 U 508、508 a〜508d:局部控制器 5 1 〇 :中央陣列控制器 512 :轉換級 5 1 4 :方格 5 1 6 :資料匯流排 520 :診斷模組 52 5 :控制模組 -47- 201009534 530:轉換級最佳化器 540 :全域控制器 6 0 0 :陣列 610 :串 6 2 0 :遮蔽區域 800 :方法 900 :能量產生系統 902 :能量產生裝置 904 :局部轉換器 9 0 6 :功率級 9 0 8 :局部控制器 910 :啓動器 9 3 0 :電源 940 :節點 1 2 0 0 :方法506, 506a~506d: Ken g# generate array U 508, 508 a~508d: local controller 5 1 〇: central array controller 512: conversion stage 5 1 4: square 5 1 6 : data bus 520: diagnosis Module 52 5 : Control Module - 47 - 201009534 530: Conversion Stage Optimizer 540 : Global Controller 6 0 0 : Array 610 : String 6 2 0 : Masking Area 800 : Method 900 : Energy Generation System 902 : Energy Generating means 904: local converter 9 0 6 : power stage 9 0 8 : local controller 910 : starter 9 3 0 : power supply 940 : node 1 2 0 0 : method

Claims (1)

201009534 七、申請專利範圍: 1. 一種在能量產生系統中之集中式與分散式最大功率 點追蹤間作選擇的方法,該能量產生系統包含多數個能量 產生裝置’各該等能量產生裝置耦接至一對應的局部轉換 器,各個該局部轉換器包含用於該對應的能量產生裝置的 一局部控制器,該方法包含: 判定該等能量產生裝置是否操作於準理想條件下; φ 當該等能量產生裝置操作於準理想條件下時,將該能 量產生系統設於一集中式最大功率點追蹤(CMPPT)模式 中;及 當該等能量產生裝置並非操作於準理想條件下時,將 該能量產生系統設於一分散式最大功率點追蹤(DMPPT) 模式中。 2. 如申請專利範圍第1項的方法,將該系統設於該 CMPPT模式中包含去能該等局部控制器及致能一全域控制 φ 器。 3. 如申請專利範圍第1項的方法,將該系統設於該 DMPPT模式中包含致能該等局部控制器及去能一全域控 制器。 4·如申請專利範圍第1項的方法,更包含當該系統爲 在該DMPPT模式中時,判定至少一個該等能量產生裝置 被遮蔽的機率是否高於一預定臨限値。 5 ·如申請專利範圍第4項的方法,更包含當判定至少 一個該等能量產生裝置被遮蔽的該機率高於該預定臨限値 -49- 201009534 時: 辨識至少一個有可能被遮蔽的能量產生裝置;及 對各個被辨識爲有可能被遮蔽的能量產生裝置執行一 完整特性掃描。 6. 如申請專利範圍第5項的方法,更包含: 根據該完整特性掃描辨識至少一個表現不足的能量產 生裝置;及 對各個被辨識爲表現不足的能量產生裝置提供一校正 〇 7. 如申請專利範圍第1項的方法,判定該等能量產生 裝置是否操作於準理想條件下包含: 對各個該能量產生裝置而言,根據相關聯於各該等能 量產生裝置的一輸出功率値,計算該能量產生裝置被遮蔽 的一機率; 辨識該計算出的機率的一最大値; 比較該計算出的機率的該最大値與—DMPPT臨限値 •,及 當該計算出的機率的該最大値少於該DMPPT臨限値 時’判定該等能量產生裝置爲操作於準理想條件下。 8·如申請專利範圍第7項的方法,更包含當該系統爲 在該DMPPT模式中時’比較該計算出的機率的該最大値 與一診斷臨限値。 9.如申請專利範圍第8項的方法,更包含當該計算出 的機率的該最大値大於該診斷臨限値時,(i)將各該等 -50- 201009534 具有該能量產生裝置被遮蔽之一計算出的機率大於該診斷 臨限値的能量產生裝置辨識爲一有可能被遮蔽的能量產生 裝置,及(ii)對於各個該被辨識爲有可能被遮蔽的能量 產生裝置執行一完整特性掃描。 10.如申請專利範圍第9項的方法,更包含(i)根據 該完整特性掃描辨識至少一個表現不足的能量產生裝置, 及(Π)對各個該被辨識爲表現不足的能量產生裝置提供 @ 一校正。 1 1.如申請專利範圍第1項的方法,該等能量產生裝 置包含光伏打面板。 12.—種在能量產生系統中之集中式與分散式最大功 率點追蹤間作選擇的方法,該能量產生系統包含多數個能 量產生裝置,各該等能量產生裝置耦接至一對應的局部轉 換器,各個該局部轉換器包含用於該對應的能量產生裝置 的一局部控制器,該方法包含: Φ 計算各該等能量產生裝置的一輸出功率値; 對各個該能量產生裝置而言,根據該等能量產生裝置 的該等輸出功率値計算該能量產生裝置被遮蔽的一機率; 辨識該計算出的機率的一最大値; 比較該計算出的機率的該最大値與一分散式最大功率 點追蹤(DMPPT )臨限値; 當該計算出的機率的該最大値少於該DMPPT臨限値 時,將該能量產生系統設於一集中式最大功率點追蹤( CMPPT)模式中;及 -51 - 201009534 當該計算出的機率的該最大値等於或是大於該 DMPPT臨限値時,將該能量產生系統設於—DMPPT模式 中〇 13. 如申請專利範圍第12項的方法,更包含當該系統 爲設於該DMPPT模式中時,判定至少—個該等能量產生 裝置被遮蔽的一機率是否高於一預定臨限値。 14. 如申請專利範圍第13項的方法,判定至少一個該 等能量產生裝置被遮蔽的該機率是否高於該預定臨限値包 含比較該計算出的機率的該最大値與一診斷臨限値。 1 5 .如申請專利範圍第1 4項的方法,更包含當該計算 出的機率的該最大値大於該診斷臨限値時,(i)將各該 等具有能量產生裝置被遮蔽之一計算出的機率大於該診斷 臨限値之能量產生裝置辨識爲一有可能被遮蔽的能量產生 裝置,(Π)對各個該被辨識爲有可能被遮蔽的能量產生 裝置執行一完整特性掃描,(iU)根據該完整特性掃描辨 識至少一個表現不足的能量產生裝置,及(iv)對各個該 被辨識爲表現不足的能量產生裝置提供一校正。 16. 如申請專利範圍第12項的方法,該等能量產生裝 置包含光伏打面板。 17. —種中央陣列控制器,能在能量產生系統之集中 式與分散式最大功率點追蹤之間作選擇’該能量產生系統 包含多數個能量產生裝置’各該等能量產生裝置稱接至一 對應的局部轉換器,各個該局部轉換器包含用於該對應的 能量產生裝置的一局部控制器’該中央陣列控制器包含: 201009534 一診斷模組,能判定該等能量產生裝置是否操作於準 理想條件下;及 一控制模組,當該等能量產生裝置操作於準理想條件 下時’能將該能量產生系統設於一集中式最大功率點追蹤 (CMPPT)模式中’及當該等能量產生裝置並非操作於準 理想條件下時’將該能量產生系統設於一分散式最大功率 點追蹤(DMPPT )模式中。 〇 1 8 .如申請專利範圍第1 7項的中央陣列控制器,該控 制模組藉由去能該等局部控制器並致能一全域控制器而能 將該系統設於該CMPPT模式中。 1 9 ·如申請專利範圍第1 7項的中央陣列控制器,該控 制模組藉由致能該等局部控制器及去能一全域控制器而能 將該系統設於該DMPPT模式中。 2 〇 ·如申請專利範圍第1 7項的中央陣列控制器,當該 系統爲於該DMPPT模式中時,該診斷模組能更進—步判 ® 定至少一個該等能量產生裝置被遮蔽的一機率是否高於一 預定臨限値。 2 1 ·如申請專利範圍第2 0項的中央陣列控制器,當判 定至少一個該等能量產生裝置被遮蔽的該機率高於該預定 臨限値時,該診斷模組能更進一步辨識至少一個有 可能被遮蔽的能量產生裝置’及(ii)對各個該被辨識爲 有可能被遮蔽的能量產生裝置執行一完整特性掃描。 22.如申請專利範圍第21項的中央陣列控制器,該診 斷模組能更進一步(i)根據該完整特性掃描辨識至少一 -53- 201009534 個表現不足的能量產生裝置,及(Π)對各個該被辨識爲 表現不足的能量產生裝置提供一校正。 23 .如申請專利範圍第1 7項的中央陣列控制器,該等 能量產生裝置包含光伏打面板。 24. —種在能量產生陣列中啓動多數個能量產生裝置 其中之一個的局部轉換器的方法,該局部轉換器包含一功 率級及一局部控制器,該方法包含: 比較該能量產生裝置的一裝置電壓與一電壓啓動位準 :及 當該裝置電壓超出該電壓啓動位準時,自動啓動該局 部轉換器。 25. 如申請專利範圍第24項的方法,自動啓動該局部 轉換器包含產生用於該局部控制器的一非零供應電壓。 26. 如申請專利範圍第24項的方法,自動啓動該局部 轉換器包含設定該局部控制器的至少一個接腳。 27. 如申請專利範圍第24項的方法,自動啓動該局部 轉換器包含將一預定値寫入該局部控制器中的一暫存器。 28. 如申請專利範圍第24項的方法,自動啓動該局部 轉換器包含執行該局部轉換器的啓動程序,該啓動程序包 含暫存器初始化、時脈同步化、在該陣列中之該等能量產 生裝置的至少一子組合的電壓比較、及該陣列中的該等能 量產生裝置的至少一子組合的同步啓動其中至少一個。 29. 如申請專利範圍第24項的方法,包含於一串能量 產生裝置中的該能量產生裝置自動啓動該局部轉換器包含 -54- 201009534 :以一預定轉換比例操作該功率級,直到一功率級在該串 中的各個該能量產生裝置中爲操作中的爲止。 30. 如申請專利範圍第24項的方法,自動啓動該局部 轉換器包含: 比較該能量產生裝置的一裝置電流與一啓動電流位準 :及 當該裝置電流超出該啓動電流位準時,利用該局部控 φ 制器對該能量產生裝置執行最大功率點追蹤。 31. 如申請專利範圍第30項的方法,更包含當該裝置 電流下降到低於該啓動電流位準時,藉由監控該裝置電流 一段指定時間期間,自動停止該局部轉換器,及當該裝置 電流保持低於該啓動電流位準達該段指定時間期間時,完 成該局部轉換器的停止。 32. 如申請專利範圍第24項的方法,該等能量產生裝 置包含光伏打面板。 33. —種在能量產生陣列中停止多數個能量產生裝置 其中之一個的局部轉換器的方法,該局部轉換器包含一功 率級及一局部控制器,該方法包含: 將該能量產生裝置的一裝置電流與一啓動電流位準予 以比較;及 當該裝置電流下降到低於該啓動電流位準時,自動停 止該局部轉換器。 3 4.如申請專利範圍第33項的方法,自動停止該局部 轉換器包含產生用於該局部控制器的一零供應電壓。 -55- 201009534 35. 如申請專利範圍第33項的方法,自動停止該局部 轉換器包含設定該局部控制器的至少一個接腳。 36. 如申請專利範圍第33項的方法,自動停止該局部 轉換器包含將一預定値寫入該局部控制器中的一暫存器。 3 7.如申請專利範圍第33項的方法,自動停止該局部 轉換器包含實施該局部轉換器之停止程序,該停止程序包 含與一備份單元之同步、及該陣列中之該等能量產生裝置 的至少一子組合的同步停止其中至少一個。 _ 38.如申請專利範圍第33項的方法,自動停止該局部 轉換器包含: 監控該裝置電流一段指定時間期間;及 當該裝置電流維持低於該啓動電流位準達該指定時間 期間時,完成該局部轉換器的停止。 3 9.如申請專利範圍第33項的方法,該等能量產生裝 置包含光伏打面板。 40. —種啓動及停止能量產生陣列中之多數個能量產 Q 生裝置其中一個之局部轉換器的系統,包含: 一局部控制器,能對該能量產生裝置執行最大功率點 追蹤,及能開啓及關閉該局部轉換器之一功率級;及 一啓動器,耦接至該局部控制器,該啓動器能自動啓 動及停止該局部控制器。 41. 如申請專利範圍第40項的系統,該啓動器包含一 電源,能產生用於該局部控制器的一供應電壓。 42. 如申請專利範圍第41項的系統,當該能量產生裝 -56- 201009534 置之一裝置電壓超出一電壓啓動位準時,該啓動器能藉由 利1用該電源產生一非零供應電壓而自動啓動該局部控制器 〇 4 3.如申請專利範圍第42項的系統,當該能量產生裝 置之一裝置電流下降到低於一啓動電流位準時,該啓動器 能藉由利用該電源產生一零供應電壓而自動停止該局部控 制器。 # 44·如申請專利範圍第41項的系統,該電源包含一停 止節點,當該停止節點之一電壓位準大於一指定電壓時, 該電源能產生一非零供應電壓,且當該停止節點之該電壓 位準小於或是等於該指定電壓時,該電源能產生一零供應 電壓。 45. 如申請專利範圍第44項的系統,該電源更包含一 輸入節點及一輸出節點,該啓動器更包含一第一電阻、一 / 第二電阻、一第三電阻及一二極體,該第一及第二電阻串 Φ 連耦接於該輸入節點與一地端之間,該第三電阻及該二極 體串聯耦接於該輸出節點與一節點之間,該第一及第二電 阻在該節點相耦接,且該停止節點耦接至該第一及第二電 阻相耦接之該節點。 46. 如申請專利範圍第40項的系統,該等能量產生裝 置包含光伏打面板。 -57-201009534 VII. Patent application scope: 1. A method for selecting between centralized and decentralized maximum power point tracking in an energy generating system, the energy generating system comprising a plurality of energy generating devices coupled to each of the energy generating devices To a corresponding local converter, each of the local converters including a local controller for the corresponding energy generating device, the method comprising: determining whether the energy generating devices operate under quasi-ideal conditions; The energy generating device is set in a centralized maximum power point tracking (CMPPT) mode when operating under quasi-ideal conditions; and the energy is generated when the energy generating devices are not operating under quasi-ideal conditions The generation system is located in a Decentralized Maximum Power Point Tracking (DMPPT) mode. 2. As in the method of claim 1, the system is provided in the CMPPT mode to include the local controller and enable a global control φ device. 3. The method of claim 1, wherein setting the system in the DMPPT mode comprises enabling the local controllers and disabling a global controller. 4. The method of claim 1, further comprising determining whether the probability of at least one of the energy generating devices being masked is greater than a predetermined threshold when the system is in the DMPPT mode. 5. The method of claim 4, further comprising: when determining that the probability that at least one of the energy generating devices is obscured is above the predetermined threshold 値-49-201009534: identifying at least one energy that may be obscured Generating means; and performing a complete characteristic scan on each of the energy generating devices identified as potentially obscured. 6. The method of claim 5, further comprising: identifying at least one under-performing energy generating device based on the complete characteristic scan; and providing an adjustment to each of the energy generating devices identified as under-performing 〇7. The method of claim 1, wherein determining whether the energy generating devices operate under quasi-ideal conditions comprises: calculating, for each of the energy generating devices, an output power 相关 associated with each of the energy generating devices a probability that the energy generating device is obscured; identifying a maximum probability of the calculated probability; comparing the maximum probability of the calculated probability with the -DMPPT threshold, and when the calculated probability is the minimum When the DMPPT is limited, it is determined that the energy generating devices are operated under quasi-ideal conditions. 8. The method of claim 7, further comprising comparing the calculated probability of the maximum 値 and a diagnostic threshold when the system is in the DMPPT mode. 9. The method of claim 8, further comprising, when the calculated maximum of the probability is greater than the diagnostic threshold, (i) each of the -50-201009534 having the energy generating device obscured One of the calculated energy generating devices having a probability greater than the diagnostic threshold is identified as an energy generating device that is likely to be obscured, and (ii) performing a complete characteristic for each of the energy generating devices that are identified as likely to be obscured scanning. 10. The method of claim 9, further comprising (i) identifying at least one insufficiently performing energy generating device based on the full characteristic scan, and (Π) providing each of the energy generating devices identified as underexpressive. A correction. 1 1. The method of claim 1, wherein the energy generating device comprises a photovoltaic panel. 12. A method of selecting between centralized and decentralized maximum power point tracking in an energy generating system, the energy generating system comprising a plurality of energy generating devices, each of the energy generating devices coupled to a corresponding local conversion Each of the local converters includes a local controller for the corresponding energy generating device, the method comprising: Φ calculating an output power of each of the energy generating devices; for each of the energy generating devices, The output power of the energy generating devices 値 calculating a probability that the energy generating device is shielded; identifying a maximum 値 of the calculated probability; comparing the maximum 値 and a decentralized maximum power point of the calculated probability Tracking (DMPPT) threshold 値; when the calculated maximum 値 of the probability is less than the DMPPT threshold, the energy generating system is set in a centralized maximum power point tracking (CMPPT) mode; and -51 - 201009534 When the calculated maximum probability of the probability is equal to or greater than the DMPPT threshold, the energy generation system is set to the -DMPPT mode. The method of claim 12, further comprising determining whether a probability that at least one of the energy generating devices is obscured is greater than a predetermined threshold when the system is set in the DMPPT mode. . 14. The method of claim 13, wherein determining whether the probability that at least one of the energy generating devices is obscured is greater than the predetermined threshold comprises comparing the maximum probability of the calculated probability with a diagnostic threshold. . 1 5. The method of claim 14, wherein the method further comprises: (i) calculating each of the energy generating devices that are obscured when the calculated maximum probability is greater than the diagnostic threshold An energy generating device having a probability of being greater than the diagnostic threshold is identified as an energy generating device that is likely to be obscured, and (i) performing a complete characteristic scan on each of the energy generating devices that are identified as likely to be obscured (iU) Detecting at least one under-performing energy generating device based on the full characteristic scan, and (iv) providing a correction to each of the energy generating devices identified as underexpressing. 16. The method of claim 12, wherein the energy generating device comprises a photovoltaic panel. 17. A central array controller capable of selecting between a centralized and decentralized maximum power point tracking of an energy generating system - the energy generating system comprising a plurality of energy generating devices each of said energy generating devices Corresponding local converters, each of which includes a local controller for the corresponding energy generating device. The central array controller includes: 201009534 A diagnostic module capable of determining whether the energy generating devices are operated Under ideal conditions; and a control module, when the energy generating devices are operated under quasi-ideal conditions, the energy generating system can be set in a centralized maximum power point tracking (CMPPT) mode and when the energy is generated The energy generating system is set in a Decentralized Maximum Power Point Tracking (DMPPT) mode when the generating device is not operating under quasi-ideal conditions. 〇 18. In the central array controller of claim 17, the control module is capable of setting the system in the CMPPT mode by deactivating the local controllers and enabling a global controller. 1 9 . The central array controller of claim 17 of the patent application, the control module being capable of setting the system in the DMPPT mode by enabling the local controllers and disabling a global controller. 2 〇 · As in the central array controller of claim 17 of the patent scope, when the system is in the DMPPT mode, the diagnostic module can further determine that at least one of the energy generating devices is obscured. Whether the probability is higher than a predetermined threshold. 2 1 · The central array controller of claim 20, wherein the diagnostic module can further identify at least one when it is determined that the probability that at least one of the energy generating devices is obscured is higher than the predetermined threshold An energy generating device that may be obscured and (ii) perform a full characteristic scan of each of the energy generating devices that are identified as likely to be obscured. 22. The central array controller of claim 21, wherein the diagnostic module can further (i) identify at least one-53-201009534 under-performing energy generating devices according to the complete characteristic scan, and (Π) pairs Each of the energy generating devices identified as being underexpressed provides a correction. 23. A central array controller as claimed in claim 17, wherein the energy generating device comprises a photovoltaic panel. 24. A method of activating a local converter of one of a plurality of energy generating devices in an energy generating array, the local converter comprising a power stage and a local controller, the method comprising: comparing one of the energy generating devices The device voltage and a voltage start level: and when the device voltage exceeds the voltage start level, the local converter is automatically activated. 25. The method of claim 24, wherein automatically activating the local converter comprises generating a non-zero supply voltage for the local controller. 26. The method of claim 24, wherein automatically starting the local converter comprises setting at least one pin of the local controller. 27. The method of claim 24, wherein automatically starting the local converter comprises writing a predetermined buffer to a register in the local controller. 28. The method of claim 24, wherein automatically starting the local converter includes executing a startup program of the local converter, the startup program including register initialization, clock synchronization, and the energy in the array At least one of the voltage comparison of at least a sub-combination of the generating devices and the synchronization of at least a sub-combination of the energy generating devices in the array. 29. The method of claim 24, wherein the energy generating device included in a string of energy generating devices automatically activates the local converter comprising -54-201009534: operating the power level at a predetermined conversion ratio until a power The stages are in operation in each of the energy generating devices in the string. 30. The method of claim 24, wherein automatically starting the local converter comprises: comparing a device current of the energy generating device with a starting current level: and when the device current exceeds the starting current level, utilizing the The local control φ controller performs maximum power point tracking on the energy generating device. 31. The method of claim 30, further comprising automatically stopping the local converter by monitoring the current of the device for a specified period of time when the current of the device drops below the starting current level, and when the device is The local converter is stopped when the current remains below the startup current level for the specified period of time. 32. The method of claim 24, wherein the energy generating device comprises a photovoltaic panel. 33. A method of stopping a local converter of one of a plurality of energy generating devices in an energy generating array, the local converter comprising a power stage and a local controller, the method comprising: one of the energy generating devices The device current is compared to a starting current level; and when the device current drops below the starting current level, the local converter is automatically stopped. 3. The method of claim 33, wherein automatically stopping the local converter comprises generating a zero supply voltage for the local controller. -55- 201009534 35. The method of claim 33, wherein automatically stopping the local converter comprises setting at least one pin of the local controller. 36. The method of claim 33, wherein automatically stopping the local converter comprises writing a predetermined defect to a register in the local controller. 3. The method of claim 33, the automatically stopping the local converter includes a stop program for implementing the local converter, the stop program comprising synchronizing with a backup unit, and the energy generating devices in the array The synchronization of at least one of the sub-combinations stops at least one of them. _ 38. The method of claim 33, wherein automatically stopping the local converter comprises: monitoring the current of the device for a specified period of time; and when the current of the device is maintained below the starting current level for the specified time period, The stop of the local converter is completed. 3 9. The method of claim 33, wherein the energy generating device comprises a photovoltaic panel. 40. A system for starting and stopping a local converter of one of a plurality of energy-generating devices in an energy generating array, comprising: a local controller capable of performing maximum power point tracking on the energy generating device, and capable of Turning on and off one of the local converter power stages; and an initiator coupled to the local controller, the starter can automatically start and stop the local controller. 41. The system of claim 40, wherein the actuator includes a power source capable of generating a supply voltage for the local controller. 42. The system of claim 41, wherein when the device of the energy generating device-56-201009534 exceeds a voltage starting level, the actuator can generate a non-zero supply voltage by using the power source. Automatically starting the local controller 〇4 3. As in the system of claim 42, when the device current of one of the energy generating devices drops below a starting current level, the actuator can generate a The local controller is automatically stopped with zero supply voltage. #44. The system of claim 41, wherein the power source includes a stop node, and when one of the stop nodes has a voltage level greater than a specified voltage, the power source can generate a non-zero supply voltage, and when the stop node The power supply can generate a zero supply voltage when the voltage level is less than or equal to the specified voltage. 45. The system of claim 44, wherein the power source further comprises an input node and an output node, the initiator further comprising a first resistor, a second resistor, a third resistor and a diode. The first and second resistor strings Φ are coupled between the input node and a ground end, and the third resistor and the diode are coupled in series between the output node and a node, the first and the first The two resistors are coupled to the node, and the stop node is coupled to the node to which the first and second resistors are coupled. 46. The system of claim 40, wherein the energy generating device comprises a photovoltaic panel. -57-
TW098115860A 2008-05-14 2009-05-13 Method and system for selecting between centralized and distributed maximum power point tracking in an energy generating system TWI498705B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US12/152,478 US9077206B2 (en) 2008-05-14 2008-05-14 Method and system for activating and deactivating an energy generating system
US12/152,566 US7991511B2 (en) 2008-05-14 2008-05-14 Method and system for selecting between centralized and distributed maximum power point tracking in an energy generating system

Publications (2)

Publication Number Publication Date
TW201009534A true TW201009534A (en) 2010-03-01
TWI498705B TWI498705B (en) 2015-09-01

Family

ID=41319349

Family Applications (1)

Application Number Title Priority Date Filing Date
TW098115860A TWI498705B (en) 2008-05-14 2009-05-13 Method and system for selecting between centralized and distributed maximum power point tracking in an energy generating system

Country Status (6)

Country Link
EP (1) EP2291899A4 (en)
JP (1) JP5526333B2 (en)
KR (1) KR20110019742A (en)
CN (1) CN102067437B (en)
TW (1) TWI498705B (en)
WO (1) WO2009140551A2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102253682A (en) * 2010-05-18 2011-11-23 沈阳工程学院 Maximum power point tracking (MPPT) control method of photovoltaic battery
TWI488022B (en) * 2012-10-16 2015-06-11 Volterra Semiconductor Corp Scalable maximum power point tracking controllers and associated methods
TWI514714B (en) * 2014-12-09 2015-12-21 Univ Nat Cheng Kung Distributed solar power system and controlling method thereof

Families Citing this family (52)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11881814B2 (en) 2005-12-05 2024-01-23 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US10693415B2 (en) 2007-12-05 2020-06-23 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US8319483B2 (en) 2007-08-06 2012-11-27 Solaredge Technologies Ltd. Digital average input current control in power converter
US11309832B2 (en) 2006-12-06 2022-04-19 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US8473250B2 (en) 2006-12-06 2013-06-25 Solaredge, Ltd. Monitoring of distributed power harvesting systems using DC power sources
US8531055B2 (en) 2006-12-06 2013-09-10 Solaredge Ltd. Safety mechanisms, wake up and shutdown methods in distributed power installations
US8963369B2 (en) 2007-12-04 2015-02-24 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11855231B2 (en) 2006-12-06 2023-12-26 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US8384243B2 (en) 2007-12-04 2013-02-26 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US8816535B2 (en) 2007-10-10 2014-08-26 Solaredge Technologies, Ltd. System and method for protection during inverter shutdown in distributed power installations
US8947194B2 (en) 2009-05-26 2015-02-03 Solaredge Technologies Ltd. Theft detection and prevention in a power generation system
US8319471B2 (en) 2006-12-06 2012-11-27 Solaredge, Ltd. Battery power delivery module
US11888387B2 (en) 2006-12-06 2024-01-30 Solaredge Technologies Ltd. Safety mechanisms, wake up and shutdown methods in distributed power installations
US11735910B2 (en) 2006-12-06 2023-08-22 Solaredge Technologies Ltd. Distributed power system using direct current power sources
US11569659B2 (en) 2006-12-06 2023-01-31 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US8013472B2 (en) 2006-12-06 2011-09-06 Solaredge, Ltd. Method for distributed power harvesting using DC power sources
US9088178B2 (en) 2006-12-06 2015-07-21 Solaredge Technologies Ltd Distributed power harvesting systems using DC power sources
US11687112B2 (en) 2006-12-06 2023-06-27 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11728768B2 (en) 2006-12-06 2023-08-15 Solaredge Technologies Ltd. Pairing of components in a direct current distributed power generation system
PL2212983T3 (en) 2007-10-15 2021-10-25 Ampt, Llc Systems for highly efficient solar power
US7919953B2 (en) 2007-10-23 2011-04-05 Ampt, Llc Solar power capacitor alternative switch circuitry system for enhanced capacitor life
US8049523B2 (en) 2007-12-05 2011-11-01 Solaredge Technologies Ltd. Current sensing on a MOSFET
US11264947B2 (en) 2007-12-05 2022-03-01 Solaredge Technologies Ltd. Testing of a photovoltaic panel
EP3121922B1 (en) 2008-05-05 2020-03-04 Solaredge Technologies Ltd. Direct current power combiner
SG175717A1 (en) 2009-04-17 2011-12-29 Ampt Llc Methods and apparatus for adaptive operation of solar power systems
WO2011049985A1 (en) 2009-10-19 2011-04-28 Ampt, Llc Novel solar panel string converter topology
US20120310436A1 (en) * 2010-02-16 2012-12-06 Danfoss Solar Inverters A/S Method of operating a maximum power point tracker
WO2011142406A1 (en) * 2010-05-12 2011-11-17 オムロン株式会社 Voltage conversion device, voltage conversion method, power adjusting device, power adjusting method, solar power generation system, and management device
DE102010036966B4 (en) * 2010-08-12 2013-02-28 Sma Solar Technology Ag Method for operating a photovoltaic generator at a maximum power operating point
US10673229B2 (en) 2010-11-09 2020-06-02 Solaredge Technologies Ltd. Arc detection and prevention in a power generation system
GB2485527B (en) 2010-11-09 2012-12-19 Solaredge Technologies Ltd Arc detection and prevention in a power generation system
US10230310B2 (en) 2016-04-05 2019-03-12 Solaredge Technologies Ltd Safety switch for photovoltaic systems
US10673222B2 (en) 2010-11-09 2020-06-02 Solaredge Technologies Ltd. Arc detection and prevention in a power generation system
GB2483317B (en) 2011-01-12 2012-08-22 Solaredge Technologies Ltd Serially connected inverters
WO2012119233A1 (en) * 2011-03-09 2012-09-13 Solantro Semiconductor Corp. Self mapping photovoltaic array system
US8570005B2 (en) 2011-09-12 2013-10-29 Solaredge Technologies Ltd. Direct current link circuit
CN103166239B (en) * 2011-12-09 2015-07-08 上海康威特吉能源技术有限公司 Centralized-distributed mixed novel energy power generation system and maximum power point tracking control method
GB2498365A (en) 2012-01-11 2013-07-17 Solaredge Technologies Ltd Photovoltaic module
GB2498790A (en) 2012-01-30 2013-07-31 Solaredge Technologies Ltd Maximising power in a photovoltaic distributed power system
GB2498791A (en) 2012-01-30 2013-07-31 Solaredge Technologies Ltd Photovoltaic panel circuitry
US9853565B2 (en) 2012-01-30 2017-12-26 Solaredge Technologies Ltd. Maximized power in a photovoltaic distributed power system
GB2499991A (en) 2012-03-05 2013-09-11 Solaredge Technologies Ltd DC link circuit for photovoltaic array
CN103378602A (en) * 2012-04-20 2013-10-30 上海康威特吉能源技术有限公司 Distributed type tandem photovoltaic grid connected power generation system and current sampling correcting method
JP5988208B2 (en) * 2012-09-26 2016-09-07 パナソニックIpマネジメント株式会社 Inverter
US10333299B2 (en) 2013-03-05 2019-06-25 Abb Schweiz Ag Power converter and methods for increasing power delivery of soft alternating current power source
US9548619B2 (en) 2013-03-14 2017-01-17 Solaredge Technologies Ltd. Method and apparatus for storing and depleting energy
US9397497B2 (en) 2013-03-15 2016-07-19 Ampt, Llc High efficiency interleaved solar power supply system
US9667100B2 (en) * 2013-06-26 2017-05-30 Mitsubishi Electric Corporation Voltage monitoring control device and voltage monitoring control method
AU2014383916B2 (en) 2014-07-15 2017-02-02 Sungrow Power Supply Co., Ltd. Method for exiting or switching maximum power point tracking centralized modes and related applications
US11177663B2 (en) 2016-04-05 2021-11-16 Solaredge Technologies Ltd. Chain of power devices
US11018623B2 (en) 2016-04-05 2021-05-25 Solaredge Technologies Ltd. Safety switch for photovoltaic systems
US11843253B2 (en) 2020-10-06 2023-12-12 Navia Energy Inc. Controlled energy system

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5327071A (en) * 1991-11-05 1994-07-05 The United States Of America As Represented By The Administrator Of The National Aeronautics & Space Administration Microprocessor control of multiple peak power tracking DC/DC converters for use with solar cell arrays
US7269036B2 (en) * 2003-05-12 2007-09-11 Siemens Vdo Automotive Corporation Method and apparatus for adjusting wakeup time in electrical power converter systems and transformer isolation
US7274116B2 (en) * 2003-08-05 2007-09-25 Matsushita Electric Industrial Co., Ltd. direct-current power supply and battery-powered electronic apparatus equipped with the power supply
JP2005151662A (en) * 2003-11-13 2005-06-09 Sharp Corp Inverter device and distributed power supply system
EP1706936A1 (en) * 2004-01-09 2006-10-04 Philips Intellectual Property & Standards GmbH Decentralized power generation system
CN1797892A (en) * 2004-12-30 2006-07-05 中国科学院电工研究所 Tracker for maximum power of light-volt electric-power production by solar energy, and control method
JP4776348B2 (en) * 2005-11-11 2011-09-21 シャープ株式会社 Inverter device
TWI296457B (en) * 2006-01-18 2008-05-01 Univ Yuan Ze High-performance power conditioner for solar photovoltaic system
US8751053B2 (en) * 2006-10-19 2014-06-10 Tigo Energy, Inc. Method and system to provide a distributed local energy production system with high-voltage DC bus

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102253682A (en) * 2010-05-18 2011-11-23 沈阳工程学院 Maximum power point tracking (MPPT) control method of photovoltaic battery
CN102253682B (en) * 2010-05-18 2013-07-24 沈阳工程学院 Maximum power point tracking (MPPT) control method of photovoltaic battery
TWI488022B (en) * 2012-10-16 2015-06-11 Volterra Semiconductor Corp Scalable maximum power point tracking controllers and associated methods
TWI514714B (en) * 2014-12-09 2015-12-21 Univ Nat Cheng Kung Distributed solar power system and controlling method thereof

Also Published As

Publication number Publication date
EP2291899A2 (en) 2011-03-09
WO2009140551A3 (en) 2010-02-25
TWI498705B (en) 2015-09-01
JP2011521363A (en) 2011-07-21
WO2009140551A2 (en) 2009-11-19
JP5526333B2 (en) 2014-06-18
EP2291899A4 (en) 2015-03-04
KR20110019742A (en) 2011-02-28
CN102067437A (en) 2011-05-18
CN102067437B (en) 2014-07-02

Similar Documents

Publication Publication Date Title
TW201009534A (en) Method and system for selecting between centralized and distributed maximum power point tracking in an energy generating system
TWI494734B (en) Method and system for providing maximum power point tracking in an energy generating system
JP5361994B2 (en) Method and system for providing a local transducer for providing maximum power point tracking in an energy generation system
US9077206B2 (en) Method and system for activating and deactivating an energy generating system
US7962249B1 (en) Method and system for providing central control in an energy generating system
US7991511B2 (en) Method and system for selecting between centralized and distributed maximum power point tracking in an energy generating system
TW201013361A (en) System and method for integrating local maximum power point tracking into an energy generating system having centralized maximum power point tracking
US11740647B2 (en) Circuit for interconnected direct current power sources
US8053929B2 (en) Solar power array with maximized panel power extraction
US10734913B2 (en) Method and apparatus for bidirectional power production in a power module
JP2022523238A (en) IV curve scanning methods for optimizers, photovoltaic systems, and solar cell modules
CN101931345B (en) Solar charging system, highest power point tracking device and turn ON/OFF method thereof
US9577425B1 (en) Systems and methods for controlling power switching converters for photovoltaic panels
CN102684241B (en) Solar inverter and control method thereof
KR101473902B1 (en) Photo-voltaic power generation battery system and method for regulating the generation power
KR20190120944A (en) A solar power conversion unit and operating method for the unit
Amin et al. Modeling, Simulation and Control of Battery Charging Mechanism of PV Array System