TWI508187B - Method for manufacturing a semiconductor device - Google Patents

Method for manufacturing a semiconductor device Download PDF

Info

Publication number
TWI508187B
TWI508187B TW101128187A TW101128187A TWI508187B TW I508187 B TWI508187 B TW I508187B TW 101128187 A TW101128187 A TW 101128187A TW 101128187 A TW101128187 A TW 101128187A TW I508187 B TWI508187 B TW I508187B
Authority
TW
Taiwan
Prior art keywords
layer
oxide layer
forming
semiconductor device
barrier
Prior art date
Application number
TW101128187A
Other languages
Chinese (zh)
Other versions
TW201407688A (en
Inventor
Lu Ping Chiang
Jung Yuan Hsieh
Chih Chao Huang
Original Assignee
Winbond Electronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Winbond Electronics Corp filed Critical Winbond Electronics Corp
Priority to TW101128187A priority Critical patent/TWI508187B/en
Publication of TW201407688A publication Critical patent/TW201407688A/en
Application granted granted Critical
Publication of TWI508187B publication Critical patent/TWI508187B/en

Links

Description

半導體裝置的形成方法Method of forming a semiconductor device

本發明係有關於半導體結構的形成方法,且特別是有關於一種利用阻障氧化物層作為保護層的半導體結構的形成方法。The present invention relates to a method of forming a semiconductor structure, and more particularly to a method of forming a semiconductor structure using a barrier oxide layer as a protective layer.

快閃記憶體裝置(Flash Memory)是一種不需要消耗電力就能保存資料的非揮發性記憶體裝置,其可在操作過程中多次刪除或寫入。此外,相較於其他記憶體裝置,快閃記憶體具有較低的讀取延遲、較佳的動態抗震性、且寫入大量資料時具有顯著的速度優勢,故常應用於一般性資料儲存,以及在電腦與其他數位產品間交換傳輸資料,如記憶卡與隨身碟。Flash Memory is a non-volatile memory device that saves data without consuming power and can be deleted or written multiple times during operation. In addition, compared to other memory devices, flash memory has lower read latency, better dynamic shock resistance, and has a significant speed advantage when writing large amounts of data, so it is often used for general data storage, and Exchange data between computers and other digital products, such as memory cards and flash drives.

此外,快閃記憶體的另一優點則為製造的成本較低,故快閃式記憶體目前已經成為非揮發性固態儲存最重要也最廣為採納的技術,例如可應用於筆記型電腦、數位隨身聽、數位相機、手機、遊戲主機等相關產品中。In addition, another advantage of flash memory is the low cost of manufacturing. Therefore, flash memory has become the most important and widely adopted technology for non-volatile solid-state storage, for example, it can be applied to notebook computers. Digital Walkman, digital camera, mobile phone, game console and other related products.

對於反及閘快閃式記憶體(NAND flash memory)而言,主要重點在於浮動閘極的電荷儲存能力。此外,在半導體的製程中,隨著記憶體尺寸的縮減,浮動閘極的效能也更加受到重視。在一般浮動閘極的製程中,硬罩幕的移除會造成閘極多晶矽的損害,而造成閘極效能的降低。另一方面,閘極矩形的尖端形狀則可能有尖端放電的問題。For NAND flash memory, the main focus is on the charge storage capability of the floating gate. In addition, in the semiconductor manufacturing process, as the size of the memory is reduced, the performance of the floating gate is also paid more attention. In the process of a general floating gate, the removal of the hard mask causes damage to the gate polysilicon and causes a decrease in gate efficiency. On the other hand, the tip shape of the gate rectangle may have a problem of tip discharge.

因此,目前亟需一種新穎的半導體製程,可提升浮動 閘極的效能。Therefore, there is a need for a novel semiconductor process that can improve floating. The effectiveness of the gate.

本發明一實施例提供一種半導體裝置的形成方法,包括:提供一基板,在該基板上依序形成一閘極介電層、一閘極材料層、一阻障氧化層、以及一硬罩幕層;依序蝕刻該硬罩幕層、該阻障氧化層、該閘極材料層、該閘極介電層及該基板,以在該基板中形成一溝槽;在該溝槽中填入一氧化物層;凹蝕該溝槽中的該氧化物層,以降低該氧化物層的高度;移除該硬罩幕層,且在該移除步驟中以該阻障氧化層保護其下之該閘極材料層;以及移除該阻障氧化層,而暴露出該閘極材料層。An embodiment of the present invention provides a method of forming a semiconductor device, including: providing a substrate on which a gate dielectric layer, a gate material layer, a barrier oxide layer, and a hard mask are sequentially formed. a layer; the hard mask layer, the barrier oxide layer, the gate material layer, the gate dielectric layer, and the substrate are sequentially etched to form a trench in the substrate; filling the trench An oxide layer; the oxide layer in the trench is recessed to reduce the height of the oxide layer; the hard mask layer is removed, and the barrier oxide layer is protected under the removing step The gate material layer; and removing the barrier oxide layer to expose the gate material layer.

為讓本發明之上述和其他目的、特徵、和優點能更明顯易懂,下文特舉出較佳實施例,並配合所附圖式,作詳細說明如下:The above and other objects, features and advantages of the present invention will become more <RTIgt;

以下依本發明之不同特徵舉出數個不同的實施例。本發明中特定的元件及安排係為了簡化,但本發明並不以這些實施例為限。舉例而言,於第二元件上形成第一元件的描述可包括第一元件與第二元件直接接觸的實施例,亦包括具有額外的元件形成在第一元件與第二元件之間、使得第一元件與第二元件並未直接接觸的實施例。此外,為簡明起見,本發明在不同例子中以重複的元件符號及/或字母表示,但不代表所述各實施例及/或結構間具有特定的關 係。Several different embodiments are set forth below in accordance with various features of the invention. The specific elements and arrangements of the present invention are intended to be simplified, but the invention is not limited to these embodiments. For example, a description of forming a first element on a second element can include an embodiment in which the first element is in direct contact with the second element, and also includes having additional elements formed between the first element and the second element such that An embodiment in which one element is not in direct contact with the second element. Moreover, for the sake of brevity, the present invention is represented by repeated element symbols and/or letters in the different examples, but does not represent a specific relationship between the various embodiments and/or structures. system.

第1圖顯示在本發明一實施例中,形成半導體裝置的方法流程圖。在步驟102中,提供基板,並在基板上依序形成閘極介電層、閘極材料層、阻障氧化層、以及硬罩幕層。在步驟104中,依序蝕刻硬罩幕層、阻障氧化層、閘極材料層、閘極介電層及基板,以在基板中形成一溝槽。在步驟106中,在溝槽中填入氧化物層。在步驟108中,凹蝕溝槽中的氧化物層,以降低該氧化物層的高度。在步驟110中,移除硬罩幕層,且在移除步驟中以阻障氧化層保護其下之閘極材料層。在步驟112中,移除阻障氧化層,而暴露出閘極材料層。1 is a flow chart showing a method of forming a semiconductor device in an embodiment of the present invention. In step 102, a substrate is provided, and a gate dielectric layer, a gate material layer, a barrier oxide layer, and a hard mask layer are sequentially formed on the substrate. In step 104, the hard mask layer, the barrier oxide layer, the gate material layer, the gate dielectric layer, and the substrate are sequentially etched to form a trench in the substrate. In step 106, an oxide layer is filled in the trench. In step 108, the oxide layer in the trench is recessed to reduce the height of the oxide layer. In step 110, the hard mask layer is removed and the underlying gate material layer is protected by a barrier oxide layer during the removal step. In step 112, the barrier oxide layer is removed to expose the gate material layer.

第2至11圖則顯示在一實施例中根據第1圖的方法所形成的半導體裝置在各個製造階段的剖面圖。為了更清楚、容易的了解本發明的概念,第2至11圖已經過簡化。在一些實施例中,可在半導體裝置中可增加額外的元件,在其他實施例中,下述半導體裝置中的一些元件則可被取代或移除。Figures 2 through 11 show cross-sectional views of the semiconductor device formed in accordance with the method of Figure 1 at various stages of fabrication in an embodiment. In order to understand the concept of the present invention more clearly and easily, the figures 2 to 11 have been simplified. In some embodiments, additional components may be added in the semiconductor device, and in other embodiments, some of the semiconductor devices described below may be replaced or removed.

參照第2圖,提供基板200,並在基板200上形成閘極介電層202。在一實施例中,基板200包括矽基板、矽鍺基板、或絕緣層上半導體(semiconductor-on-insulator)基板。閘極介電層202可包括介電材料如氧化矽、高介電常數介電材料、其他適合的介電材料、或前述之組合。在一實施例中,閘極介電層202可為利用熱氧化製程形成的通道氧化物層(tunnel oxide layer)。在另一實施例中,也可利用化學氣相沉積(CVD)、原子層沉積(ALD)等其他方法形成 閘極介電層202。Referring to FIG. 2, a substrate 200 is provided, and a gate dielectric layer 202 is formed on the substrate 200. In an embodiment, the substrate 200 includes a germanium substrate, a germanium substrate, or a semiconductor-on-insulator substrate. Gate dielectric layer 202 can comprise a dielectric material such as hafnium oxide, a high dielectric constant dielectric material, other suitable dielectric materials, or a combination of the foregoing. In an embodiment, the gate dielectric layer 202 can be a tunnel oxide layer formed using a thermal oxidation process. In another embodiment, it may also be formed by other methods such as chemical vapor deposition (CVD), atomic layer deposition (ALD), and the like. Gate dielectric layer 202.

參照第3圖,在閘極介電層202上形成閘極材料層204。在一實施例中,閘極材料層204包括多晶矽層。閘極材料層204的形成可利用沉積製程,例如化學氣相沉積(CVD)。Referring to FIG. 3, a gate material layer 204 is formed over the gate dielectric layer 202. In an embodiment, the gate material layer 204 comprises a polysilicon layer. The formation of the gate material layer 204 can utilize a deposition process such as chemical vapor deposition (CVD).

參照第4圖,在閘極材料層204上形成阻障氧化層206。阻障氧化層206可包括氧化矽、氮氧化矽、氧化鋁、氧化鑭、氧化鉿、氧化鋯、氮氧化鉿、或前述之組合。阻障氧化層206可利用任何適合的製程形成,例如熱氧化法、化學氣相沉積、旋塗等。在一實施例中,阻障氧化層206的形成可為在閘級材料層204上成長氧化矽介電層(silicon oxide dielectric)。Referring to FIG. 4, a barrier oxide layer 206 is formed on the gate material layer 204. The barrier oxide layer 206 may include hafnium oxide, hafnium oxynitride, aluminum oxide, hafnium oxide, tantalum oxide, zirconium oxide, hafnium oxynitride, or a combination thereof. The barrier oxide layer 206 can be formed using any suitable process, such as thermal oxidation, chemical vapor deposition, spin coating, and the like. In one embodiment, the barrier oxide layer 206 can be formed by growing a silicon oxide dielectric on the gate level material layer 204.

參照第5圖,在阻障氧化層206上形成硬罩幕層208。硬罩幕層208可包括氮化矽層或其他適合的硬罩幕材料。硬罩幕層208的形成可利用沉積製程,例如化學氣相沉積(CVD)。Referring to FIG. 5, a hard mask layer 208 is formed on the barrier oxide layer 206. The hard mask layer 208 can include a tantalum nitride layer or other suitable hard mask material. The formation of the hard mask layer 208 can utilize a deposition process such as chemical vapor deposition (CVD).

參照第6圖,在硬罩幕層208上形成圖案化光阻層210。圖案化光阻層210的形成可利用任何已知或未來發展的光阻材料及方法。參照第7圖,利用圖案化光阻層210為罩幕,依序蝕刻硬罩幕層208、阻障氧化層206、閘極材料層204、閘極介電層202、及基板200,以在基板200中形成溝槽212。上述蝕刻製程可包括乾蝕刻,如電漿蝕刻或反應性離子蝕刻。Referring to FIG. 6, a patterned photoresist layer 210 is formed on the hard mask layer 208. The formation of the patterned photoresist layer 210 can utilize any known or future developed photoresist material and method. Referring to FIG. 7, the patterned photoresist layer 210 is used as a mask, and the hard mask layer 208, the barrier oxide layer 206, the gate material layer 204, the gate dielectric layer 202, and the substrate 200 are sequentially etched to A trench 212 is formed in the substrate 200. The above etching process may include dry etching such as plasma etching or reactive ion etching.

參照第8圖,在形成溝槽212後,對第7圖的結構進行灰化後清洗,並移除圖案化光阻層210。參照第9圖, 在溝槽212中填入氧化物層214,使得氧化物層214大抵填滿溝槽212。氧化物層214例如為二氧化矽。氧化物層214的形成可利用熱氧化法,例如在900℃至1050℃下反應14秒至22秒。應注意的是,在形成氧化物層214的過程中,閘極材料層204的邊角可一併被氧化,而形成圓弧形的邊角。Referring to FIG. 8, after the trench 212 is formed, the structure of FIG. 7 is ashed and then cleaned, and the patterned photoresist layer 210 is removed. Referring to Figure 9, The oxide layer 214 is filled in the trench 212 such that the oxide layer 214 substantially fills the trench 212. The oxide layer 214 is, for example, cerium oxide. The formation of the oxide layer 214 can be carried out by a thermal oxidation method, for example, at 900 ° C to 1050 ° C for 14 seconds to 22 seconds. It should be noted that in the process of forming the oxide layer 214, the corners of the gate material layer 204 may be oxidized together to form a circular arc-shaped corner.

參照第10圖,凹蝕溝槽212中的氧化物層214,以降低氧化物層214的高度。在一實施例中,氧化物層214的上表面可大抵介於閘極材料層204的上下表面之間。參照第11圖,移除硬罩幕層208,並利用阻障氧化層206保護其下方的閘極材料層204。在一實施例中,可利用濕蝕刻製程移除硬罩幕層208,例如利用熱磷酸蝕刻。而後,再移除阻障氧化層206,而暴露出閘極材料層204,如第12圖所示。在傳統的製程中,當以熱磷酸蝕刻移除硬罩幕層時,會直接暴露出閘極材料層,此時熱磷酸會延著閘極材料層(如多晶矽層)的晶格滲入閘極材料層中,使得所形成的元件效能受到損害。然而,在此實施例中,係利用額外的阻障氧化層206保護閘極材料層204不受到熱磷酸的損害,而後再以不會損害到閘極材料層204的製程移除阻障氧化層206。移除移除阻障氧化層206的方法例如包括緩衝氧化物蝕刻(buffered oxide etch;BHF)。Referring to FIG. 10, the oxide layer 214 in the trench 212 is recessed to reduce the height of the oxide layer 214. In an embodiment, the upper surface of the oxide layer 214 may be substantially between the upper and lower surfaces of the gate material layer 204. Referring to Figure 11, the hard mask layer 208 is removed and the barrier material layer 204 underneath is protected by a barrier oxide layer 206. In an embodiment, the hard mask layer 208 can be removed using a wet etch process, such as with a hot phosphoric acid etch. Then, the barrier oxide layer 206 is removed to expose the gate material layer 204 as shown in FIG. In the conventional process, when the hard mask layer is removed by hot phosphoric acid etching, the gate material layer is directly exposed, and the hot phosphoric acid will extend into the gate of the gate material layer (such as the polysilicon layer). In the material layer, the performance of the formed element is impaired. However, in this embodiment, the additional barrier oxide layer 206 is used to protect the gate material layer 204 from thermal phosphoric acid, and then the barrier oxide layer is removed in a process that does not damage the gate material layer 204. 206. The method of removing the barrier oxide layer 206 includes, for example, buffered oxide etch (BHF).

應注意的是,對第9圖所形成之氧化物層214進行凹蝕步驟時,氧化物層214的一部分216仍會殘留在溝槽212的側壁上,如第10圖所示。因此,在移除硬罩幕層208後,一般需利用另一蝕刻製程移除氧化物層的殘留部分216。 在此實施例中,可利用單一蝕刻製程,同時移除阻障氧化層206及氧化物層的殘留部分216。亦即,阻障氧化層206不僅可在移除硬罩幕層208的蝕刻製程中保護閘極材料層204,且可在移除氧化物層的殘留部分216的蝕刻步驟中一併移除,而不需要額外的製程步驟。在一較佳實施例中,氧化物層214殘留在側壁的部分216的厚度大抵等於阻障氧化層206的厚度。例如,阻障氧化層206的厚度可介於5 nm至10 nm。It should be noted that when the oxide layer 214 formed in FIG. 9 is subjected to the etching step, a portion 216 of the oxide layer 214 remains on the sidewalls of the trench 212 as shown in FIG. Therefore, after the hard mask layer 208 is removed, it is generally necessary to remove the residual portion 216 of the oxide layer using another etching process. In this embodiment, a single etch process can be utilized while removing the barrier oxide layer 206 and the residual portion 216 of the oxide layer. That is, the barrier oxide layer 206 can protect the gate material layer 204 not only in the etching process of removing the hard mask layer 208, but also in the etching step of removing the residual portion 216 of the oxide layer. No additional process steps are required. In a preferred embodiment, the thickness of the portion 216 of the oxide layer 214 remaining on the sidewall is substantially equal to the thickness of the barrier oxide layer 206. For example, the barrier oxide layer 206 can have a thickness between 5 nm and 10 nm.

參照第12圖,移除阻障氧化層206後暴露出的閘極材料層204具有圓弧形的邊角。此圓弧形的邊角可避免在後續製程中所形成的元件尖端放電(point discharge)之不良效應。在一實施例中,閘極材料層204可作為快閃記憶體裝置中的浮動閘極。Referring to Fig. 12, the gate material layer 204 exposed after removing the barrier oxide layer 206 has a circular arc-shaped corner. This rounded corner avoids the undesirable effects of component point discharges that are formed in subsequent processes. In an embodiment, the gate material layer 204 can serve as a floating gate in a flash memory device.

在一實施例中,可將上述半導體結構上應用於反及閘快閃記憶體(NAND flash memory)的製程中。例如,在移除阻障氧化層206後,更進一步地在閘極材料層204上依序形成氧-氮-氧(ONO)層218及控制閘極層220,如第12圖所示,氧-氮-氧層218順應地形成在閘極材料層204及氧化物層214上。控制閘極層220例如為多晶矽,其係覆蓋在氧-氮-氧層218上並具有一平坦的平面。在本發明各種實施例中,可利用任何已知或未來發展的方法及材料形成氧-氮-氧層218及控制閘極層220。在此實施例中,閘極材料層204圓弧的邊角有利於氧-氮-氧層218的形成,可避免空隙(voids)的產生。In one embodiment, the above semiconductor structure can be applied to a process of NAND flash memory. For example, after the barrier oxide layer 206 is removed, an oxygen-nitrogen-oxygen (ONO) layer 218 and a control gate layer 220 are sequentially formed on the gate material layer 204, as shown in FIG. A nitrogen-oxygen layer 218 is conformally formed on the gate material layer 204 and the oxide layer 214. The control gate layer 220 is, for example, a polysilicon which covers the oxy-nitrogen-oxygen layer 218 and has a flat plane. In various embodiments of the invention, the oxygen-nitrogen-oxygen layer 218 and the control gate layer 220 may be formed using any known or future developed methods and materials. In this embodiment, the corners of the arc of the gate material layer 204 facilitate the formation of the oxygen-nitrogen-oxygen layer 218, avoiding the generation of voids.

在本發明各種實施例中,可提供一種無損傷的浮動閘 極結構,可利用阻障氧化層作為閘極材料層的保護層,以避免閘極材料層在移除硬罩幕層的蝕刻製程中受到損害而影響元件效能。此外,在溝槽中形成氧化物層的步驟中,可使閘極材料層形成圓弧邊角,以避免元件尖端放電的問題。另外,可利用移除溝槽側壁殘留的氧化物層的蝕刻步驟,一併移除上述阻障氧化層,因此不需再進行額外的製程步驟將其移除。In various embodiments of the invention, a damage-free floating gate can be provided The pole structure can utilize the barrier oxide layer as a protective layer of the gate material layer to prevent the gate material layer from being damaged in the etching process for removing the hard mask layer and affecting the device performance. Further, in the step of forming an oxide layer in the trench, the gate material layer can be formed into a circular arc corner to avoid the problem of discharge of the tip of the element. In addition, the above-mentioned barrier oxide layer can be removed by an etching step of removing the oxide layer remaining on the trench sidewalls, so that no additional process steps are required to remove it.

雖然本發明已以數個較佳實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明之精神和範圍內,當可作任意之更動與潤飾,因此本發明之保護範圍當視後附之申請專利範圍所界定者為準。While the invention has been described above in terms of several preferred embodiments, it is not intended to limit the scope of the present invention, and any one of ordinary skill in the art can make any changes without departing from the spirit and scope of the invention. And the scope of the present invention is defined by the scope of the appended claims.

102、104、106、108、110、112‧‧‧步驟102, 104, 106, 108, 110, 112‧‧‧ steps

200‧‧‧基板200‧‧‧Substrate

202‧‧‧閘極介電層202‧‧‧ gate dielectric layer

204‧‧‧閘極材料層204‧‧‧ gate material layer

206‧‧‧阻障氧化層206‧‧‧Block oxide layer

208‧‧‧硬罩幕層208‧‧‧hard mask layer

210‧‧‧圖案化光阻層210‧‧‧ patterned photoresist layer

212‧‧‧溝槽212‧‧‧ trench

214‧‧‧氧化物層214‧‧‧Oxide layer

216‧‧‧氧化物層的殘留部分216‧‧‧Residual part of the oxide layer

220‧‧‧控制閘極層220‧‧‧Control gate layer

第1圖顯示在本發明一實施例之半導體裝置的形成方法的流程圖。Fig. 1 is a flow chart showing a method of forming a semiconductor device according to an embodiment of the present invention.

第2至13圖顯示在一實施例中根據第1圖的方法所形成的半導體裝置在各個製造階段的剖面圖。Figures 2 through 13 show cross-sectional views of the semiconductor device formed in accordance with the method of Figure 1 at various stages of fabrication in an embodiment.

200‧‧‧基板200‧‧‧Substrate

202‧‧‧閘極介電層202‧‧‧ gate dielectric layer

204‧‧‧閘極材料層204‧‧‧ gate material layer

206‧‧‧阻障氧化層206‧‧‧Block oxide layer

208‧‧‧硬罩幕層208‧‧‧hard mask layer

214‧‧‧氧化物層214‧‧‧Oxide layer

216‧‧‧氧化物層的殘留部分216‧‧‧Residual part of the oxide layer

Claims (10)

一種半導體裝置的形成方法,包括:提供一基板,在該基板上依序形成一閘極介電層、一閘極材料層、一阻障氧化層、以及一硬罩幕層;依序蝕刻該硬罩幕層、該阻障氧化層、該閘極材料層、該閘極介電層及該基板,以在該基板中形成一溝槽;在該溝槽中填入一氧化物層;凹蝕該溝槽中的該氧化物層,以降低該氧化物層的高度;移除該硬罩幕層,且在該移除步驟中以該阻障氧化層保護其下之該閘極材料層;以及移除該阻障氧化層,而暴露出該閘極材料層。A method for forming a semiconductor device includes: providing a substrate on which a gate dielectric layer, a gate material layer, a barrier oxide layer, and a hard mask layer are sequentially formed; a hard mask layer, the barrier oxide layer, the gate material layer, the gate dielectric layer and the substrate to form a trench in the substrate; filling an oxide layer in the trench; Etching the oxide layer in the trench to reduce the height of the oxide layer; removing the hard mask layer, and protecting the gate material layer under the barrier oxide layer in the removing step And removing the barrier oxide layer to expose the gate material layer. 如申請專利範圍第1項所述之半導體裝置的形成方法,其中在移除該阻障氧化層後暴露出的該閘極材料層具有圓弧形的邊角。The method of forming a semiconductor device according to claim 1, wherein the gate material layer exposed after removing the barrier oxide layer has a rounded corner. 如申請專利範圍第2項所述之半導體裝置的形成方法,其中該氧化物層係以熱氧化法形成,且該閘極材料層於該熱氧化步驟中形成圓弧形的邊角。The method of forming a semiconductor device according to claim 2, wherein the oxide layer is formed by a thermal oxidation method, and the gate material layer forms a circular arc-shaped corner in the thermal oxidation step. 如申請專利範圍第1項所述之半導體裝置的形成方法,其中該閘極介電層包括通道氧化物層。The method of forming a semiconductor device according to claim 1, wherein the gate dielectric layer comprises a channel oxide layer. 如申請專利範圍第1項所述之半導體裝置的形成方法,其中該硬罩幕層的移除係利用濕蝕刻製程,且該阻障氧化層的移除係利用乾蝕刻製程。The method of forming a semiconductor device according to claim 1, wherein the removal of the hard mask layer is performed by a wet etching process, and the removal of the barrier oxide layer is performed by a dry etching process. 如申請專利範圍第5項所述之半導體裝置的形成方法,其中該硬罩幕層的移除係利用熱磷酸蝕刻,且該阻障 氧化層的移除係利用緩衝氧化物蝕刻(buffered oxide etch;BHF)。The method of forming a semiconductor device according to claim 5, wherein the removal of the hard mask layer is performed by hot phosphoric acid etching, and the barrier is The removal of the oxide layer utilizes buffered oxide etch (BHF). 如申請專利範圍第1項所述之半導體裝置的形成方法,其中在凹蝕該溝槽中的該氧化物層後,該氧化物層的一部分仍殘留在該溝槽的側壁上,且在移除該阻障氧化層時一併移除殘留的部分。The method of forming a semiconductor device according to claim 1, wherein after etching the oxide layer in the trench, a portion of the oxide layer remains on the sidewall of the trench and is moving The residual portion is removed together with the barrier oxide layer. 如申請專利範圍第7項所述之半導體裝置的形成方法,其中該氧化物層殘留在側壁的該部分的厚度大抵等於該阻障氧化層的厚度。The method of forming a semiconductor device according to claim 7, wherein a thickness of the portion of the oxide layer remaining on the sidewall is substantially equal to a thickness of the barrier oxide layer. 如申請專利範圍第1項所述之半導體裝置的形成方法,在移除該阻障氧化層後,更包括在該閘極材料層上形成一氧-氮-氧(ONO)層。The method for forming a semiconductor device according to claim 1, after removing the barrier oxide layer, further comprising forming an oxygen-nitrogen-oxygen (ONO) layer on the gate material layer. 如申請專利範圍第9項所述之半導體裝置的形成方法,更包括在該氧-氮-氧層上形成一控制閘極。The method of forming a semiconductor device according to claim 9, further comprising forming a control gate on the oxy-nitrogen-oxygen layer.
TW101128187A 2012-08-06 2012-08-06 Method for manufacturing a semiconductor device TWI508187B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW101128187A TWI508187B (en) 2012-08-06 2012-08-06 Method for manufacturing a semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW101128187A TWI508187B (en) 2012-08-06 2012-08-06 Method for manufacturing a semiconductor device

Publications (2)

Publication Number Publication Date
TW201407688A TW201407688A (en) 2014-02-16
TWI508187B true TWI508187B (en) 2015-11-11

Family

ID=50550565

Family Applications (1)

Application Number Title Priority Date Filing Date
TW101128187A TWI508187B (en) 2012-08-06 2012-08-06 Method for manufacturing a semiconductor device

Country Status (1)

Country Link
TW (1) TWI508187B (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW506061B (en) * 2001-11-06 2002-10-11 Vanguard Int Semiconduct Corp Method for forming shallow trench isolation in semiconductor device
TW200421525A (en) * 2003-04-07 2004-10-16 Nanya Technology Corp Method of forming shallow trench isolation(STI) with chamfered corner

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW506061B (en) * 2001-11-06 2002-10-11 Vanguard Int Semiconduct Corp Method for forming shallow trench isolation in semiconductor device
TW200421525A (en) * 2003-04-07 2004-10-16 Nanya Technology Corp Method of forming shallow trench isolation(STI) with chamfered corner

Also Published As

Publication number Publication date
TW201407688A (en) 2014-02-16

Similar Documents

Publication Publication Date Title
TWI559458B (en) Embedded nonvolatile memory and manufacturing method thereof
CN109742076B (en) Flash memory and forming method thereof
TWI521710B (en) Semiconductor device structure and method for forming the same
CN107346759B (en) Semiconductor structure and manufacturing method thereof
US9111871B2 (en) Semiconductor structure and method for forming the same
CN104752363A (en) Forming method of flash memory
TW201401442A (en) Method of fabricating non-volatile memory device
CN108091562B (en) ONO etching method of SONOS memory
CN104425220A (en) Method for forming pattern
CN107204339B (en) The forming method of isolation structure and the forming method of semiconductor structure
US20100203702A1 (en) Method for forming isolation layer and method for fabricating nonvolatile memory device using the same
CN208674115U (en) Semiconductor devices
US7951674B2 (en) Method for fabricating a SONOS memory
CN107527858B (en) Method for fabricating shallow trench in flash memory
CN108807377B (en) Semiconductor device and method of forming the same
TWI508187B (en) Method for manufacturing a semiconductor device
CN105097702B (en) Flash memory fabrication method
TWI455206B (en) Method of etching oxide layer and nitride layer
CN103633031B (en) The formation method of semiconductor device
CN110767658A (en) Forming method of flash memory device
CN110416221B (en) Method for forming semiconductor device
US20090065846A1 (en) Non-volatile memory and manufacturing method thereof
TWI493660B (en) Non-volatile memory and manufacturing method thereof
JP2010157557A (en) Method of manufacturing non-volatile semiconductor memory device
US11069694B2 (en) Semiconductor structure and method for forming same